WO2022210965A1 - Battery electrode manufacturing device and battery electrode manufacturing method - Google Patents

Battery electrode manufacturing device and battery electrode manufacturing method Download PDF

Info

Publication number
WO2022210965A1
WO2022210965A1 PCT/JP2022/016269 JP2022016269W WO2022210965A1 WO 2022210965 A1 WO2022210965 A1 WO 2022210965A1 JP 2022016269 W JP2022016269 W JP 2022016269W WO 2022210965 A1 WO2022210965 A1 WO 2022210965A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
base film
active material
tension
space
Prior art date
Application number
PCT/JP2022/016269
Other languages
French (fr)
Japanese (ja)
Inventor
英明 堀江
健一郎 榎
勇輔 中嶋
Original Assignee
Apb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apb株式会社 filed Critical Apb株式会社
Publication of WO2022210965A1 publication Critical patent/WO2022210965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture

Definitions

  • the present invention relates to a battery electrode manufacturing apparatus and a battery electrode manufacturing method.
  • Patent Literature 1 discloses a surface treatment apparatus for a long substrate that is transported along a roll-to-roll transport path within a vacuum chamber. Also, conventionally, there is a technique for manufacturing a lithium-ion battery.
  • Patent Document 2 discloses a technique for manufacturing a battery structure having a first current collector, a positive electrode active material, a separator, a negative electrode active material, and a second current collector. The manufacturing process described in Patent Document 2 includes a step of supplying a positive electrode active material or a negative electrode active material onto a current collector sheet.
  • the base film is continuously supplied from outside the chamber (under normal pressure environment) into the chamber (under reduced pressure environment), It is necessary to supply the active material to the base film introduced inside.
  • the present inventors have found a configuration in which a slit is provided in a chamber whose internal space is reduced below the atmospheric pressure, and the substrate film is transported from the external space to the internal space of the chamber via the slit.
  • Patent Document 1 merely discloses a technique for transporting a long substrate along a roll-to-roll transport path in a vacuum chamber, and transports the long substrate from the external space to the internal space of the chamber. When doing so, it is desired to solve the problem of suppressing the vibration of the base material.
  • An object of the present invention is to provide a battery electrode manufacturing apparatus and a battery electrode capable of suppressing vibration of a base film transported into a chamber interior space reduced from atmospheric pressure and stably transporting the base film. It is to provide a manufacturing method.
  • the battery electrode manufacturing apparatus of the present invention comprises a chamber having an internal space that is reduced in pressure from atmospheric pressure and having a slit that communicates the internal space and the external space; A supply mechanism for supplying a powdery active material to a belt-shaped base film conveyed from the external space to the internal space by a feeding mechanism, an external roller arranged in the external space, and the slit in the internal space and an internal roller disposed between the supply mechanism and a tension mechanism for applying tension to the base film by the external roller and the internal roller.
  • the battery electrode manufacturing apparatus has the effect of suppressing the vibration of the base film transported into the inner space of the chamber whose pressure is reduced below the atmospheric pressure, and stably transporting the base film.
  • FIG. 1 is a schematic configuration diagram of a lithium-ion cell.
  • FIG. 2 is a schematic configuration diagram of the battery electrode manufacturing apparatus according to the embodiment.
  • Drawing 3 is a perspective view of a member sheet manufacturing device concerning an embodiment.
  • FIG. 4 is a diagram showing a tension mechanism according to the embodiment.
  • FIG. 5 is an explanatory diagram of a Karman vortex.
  • FIG. 6 is a diagram showing a tension mechanism according to a first modified example of the embodiment;
  • FIG. 7 is a diagram showing a tension mechanism according to a first modified example of the embodiment;
  • FIG. 8 is a diagram showing a tension mechanism according to a second modified example of the embodiment;
  • a battery electrode manufacturing apparatus and a battery electrode manufacturing method according to embodiments of the present invention will be described in detail below with reference to the drawings.
  • this invention is not limited by this embodiment.
  • components in the following embodiments include those that can be easily assumed by those skilled in the art or substantially the same components.
  • FIG. 1 An embodiment will be described with reference to FIGS. 1 to 5.
  • FIG. The present embodiment relates to a battery electrode manufacturing apparatus and a battery electrode manufacturing method.
  • the battery electrode manufacturing apparatus and battery electrode manufacturing method of the present embodiment are applied, for example, to the manufacture of lithium ion batteries.
  • Lithium ion batteries are used in the form of assembled batteries in which a plurality of lithium ion single cells (battery cells) are combined into a module, or in the form of battery packs in which a plurality of such assembled batteries are combined to adjust the voltage and capacity.
  • the lithium ion battery (battery cell, single cell, single battery unit) in this specification refers to a secondary battery that uses lithium ions as charge carriers and is charged and discharged by the movement of lithium ions between the positive and negative electrodes. .
  • the lithium ion battery includes a battery using a liquid material for the electrolyte and a battery using a solid material for the electrolyte (so-called all-solid-state battery).
  • the lithium ion battery in the present embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and is composed of a resin to which a conductive material is added instead of the metal foil, a so-called resin current collector. Including a battery with a body.
  • the resin current collector is used as a resin current collector for a bipolar electrode, which will be described later, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode. may be configured.
  • the lithium ion battery in the present embodiment includes those in which the positive electrode or negative electrode active material or the like is applied to the positive electrode current collector or the negative electrode current collector using a binder to configure the electrode, and in the case of a bipolar battery, is a bipolar electrode having a positive electrode layer formed by applying a positive electrode active material or the like using a binder to one surface of a current collector, and a negative electrode layer formed by applying a negative electrode active material or the like using a binder to the opposite surface of the current collector. including those that consist of Moreover, the method of stacking the assembled battery is arbitrary.
  • a unit cell having a positive electrode resin current collector on the first surface and a negative electrode resin current collector on the second surface is arranged such that the first surface (positive electrode side) and the first surface (positive electrode side) of a pair of adjacent unit cells are stacked.
  • a laminated battery may be formed by laminating a plurality of layers in series so that the two surfaces (negative electrode side) are adjacent to each other.
  • a single cell in which a positive electrode layer is provided on one side of a single resin current collector and a negative electrode layer is provided on the other side of the resin current collector may be laminated with an electrolyte layer interposed between them to form a laminated battery. good.
  • a lithium-ion cell Next, a lithium-ion cell will be described.
  • a lithium-ion single battery has a positive electrode current collector layer, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector layer laminated in this order, and the positive electrode current collector layer and the negative electrode current collector layer are laminated. as the outermost layer, and an electrolyte is enclosed by sealing the outer peripheries of the positive electrode active material layer and the negative electrode active material layer.
  • FIG. 1 is a schematic configuration diagram of a lithium-ion cell 10.
  • a positive electrode current collector layer 111, a positive electrode active material layer 113, a separator 130, a negative electrode active material layer 123, and a negative electrode current collector layer 121 are laminated in the order shown in FIG. That is, the positive electrode current collector layer 111 and the negative electrode current collector layer 121 are arranged as the outermost layers.
  • the frame 140 seals the edges of the positive electrode current collector layer 111 and the negative electrode current collector layer 121 (peripheries of the positive electrode active material layer 113 and the negative electrode active material layer 123). An electrolytic solution is enclosed in the positive electrode active material layer 113 and the negative electrode active material layer 123 .
  • the positive electrode current collector layer 111 As the positive electrode current collector layer 111 , a current collector used in a known lithium-ion single battery can be used. For example, a known metal current collector and a resin current collector ( resin current collectors described in JP-A-2012-150905 and WO 2015/005116, etc.) can be used.
  • the positive electrode current collector layer 111 is preferably a resin current collector from the viewpoint of battery characteristics and the like.
  • the thickness of the positive electrode current collector layer 111 is not particularly limited, it is preferably 5 to 150 ⁇ m.
  • the total thickness after lamination is preferably 5 to 150 ⁇ m.
  • the positive electrode current collector layer 111 can be obtained, for example, by molding a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and a dispersing agent for a filler used if necessary into a film by a known method. can be done.
  • the positive electrode active material layer 113 is preferably a non-bound mixture containing a positive electrode active material.
  • the non-bound body means that the position of the positive electrode active material is not fixed in the positive electrode active material layer, and the positive electrode active materials and the positive electrode active materials and the positive electrode active material and the current collector are irreversibly means not fixed.
  • the positive electrode active material layer 113 is a non-bound body, the positive electrode active materials are not irreversibly fixed to each other, so that the interface between the positive electrode active materials can be separated without mechanically destroying them. Even when stress is applied to the substance layer 113, the positive electrode active material moves, which is preferable because the positive electrode active material layer 113 can be prevented from being broken.
  • the positive electrode active material layer 113 which is a non-binder, can be obtained by a method such as making the positive electrode active material layer 113 containing a positive electrode active material and an electrolytic solution but not containing a binder. can.
  • Examples of the positive electrode active material include, but are not limited to, a composite oxide of lithium and a transition metal, a composite oxide containing two transition metal elements, and a composite oxide containing three or more metal elements. .
  • the positive electrode active material layer 113 may contain an electrolytic solution containing an electrolyte and a non-aqueous solvent.
  • an electrolytic solution containing an electrolyte and a non-aqueous solvent.
  • the electrolyte those used in known electrolytic solutions can be used.
  • non-aqueous solvent those used in known electrolytic solutions (for example, phosphate esters, nitrile compounds, etc., and mixtures thereof, etc.) can be used.
  • a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixture of ethylene carbonate (EC) and propylene carbonate (PC) can be used.
  • the thickness of the positive electrode active material layer 113 is not particularly limited, it is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m, from the viewpoint of battery performance.
  • the negative electrode current collector layer 121 As the negative electrode current collector layer 121, one having the same structure as that described for the positive electrode current collector layer 111 can be appropriately selected and used, and can be obtained by a similar method.
  • the negative electrode current collector layer 121 is preferably a resin current collector from the viewpoint of battery characteristics and the like. Although the thickness of the negative electrode current collector layer 121 is not particularly limited, it is preferably 5 to 150 ⁇ m.
  • the negative electrode active material layer 123 is preferably a non-bound mixture containing a negative electrode active material.
  • the reason why the negative electrode active material layer is preferably a non-binder, and the reason why the positive electrode active material layer 113 is preferably a non-binder is the method for obtaining the negative electrode active material layer 123 which is a non-binder. , and the method for obtaining the positive electrode active material layer 113 which is a non-binder.
  • the negative electrode active material for example, a carbon-based material, a silicon-based material, a mixture thereof, or the like can be used, but is not particularly limited.
  • the negative electrode active material layer 123 contains an electrolytic solution containing an electrolyte and a non-aqueous solvent.
  • an electrolytic solution similar to the electrolytic solution contained in the positive electrode active material layer 113 can be preferably used.
  • the thickness of the negative electrode active material layer 123 is not particularly limited, it is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m, from the viewpoint of battery performance.
  • separator 130 examples include a porous film made of polyethylene or polypropylene, but the separator is not particularly limited.
  • a sulfide-based or oxide-based inorganic solid electrolyte, or a polymer-based organic solid electrolyte can be used. By applying a solid electrolyte, an all-solid battery can be constructed.
  • the lithium-ion unit cell 10 has a structure in which an electrolytic solution is enclosed by sealing the edges of the positive electrode current collector layer 111 and the negative electrode current collector layer 121 with a frame 140 .
  • the frame 140 is arranged between the positive electrode current collector layer 111 and the negative electrode current collector layer 121 and has a function of sealing the outer circumferences of the positive electrode active material layer 113 , the negative electrode active material layer 123 and the separator 130 .
  • FIG. 1 shows a case where a part of the separator 130 is configured to enter the frame 140 . That is, in FIG. 1 , the width of the separator 130 is larger than that of the positive electrode active material layer 113 and the negative electrode active material layer 123 surrounded by the frame 140 , and a part of the separator 130 bites into the frame 140 . .
  • the embodiment is not limited to this, and for example, the positive electrode active material layer 113, the negative electrode active material layer 123, and the separator 130 may have the same width in the horizontal direction of FIG.
  • the frame 140 shown in FIG. 1 may be manufactured integrally, or may be manufactured, for example, by separately manufacturing a frame on the positive electrode side and a frame on the negative electrode side and combining them.
  • the frame 140 is not particularly limited as long as it is made of a material that is durable against the electrolytic solution, but a polymer material is preferred, and a thermosetting polymer material is more preferred. Specifically, epoxy-based resins, polyolefin-based resins, polyurethane-based resins, polyvinylidene fluoride resins, and the like can be mentioned, and epoxy-based resins are preferred because of their high durability and ease of handling.
  • the frame 140 is a frame-shaped member. In the process of manufacturing the lithium-ion single cell 10 , the frame 140 is attached to either the positive electrode current collector layer 111 or the negative electrode current collector layer 121 . In the following description, when the positive electrode side and the negative electrode side are not particularly distinguished, the positive electrode current collector layer 111 and the negative electrode current collector layer 121 are also simply referred to as current collectors. That is, the frame 140 is attached to the current collector on the positive electrode side or the negative electrode side. Further, after forming the positive electrode active material layer 113, the negative electrode active material layer 123, the separator 130, and the like inside the frame 140, the other current collector is further formed, whereby the lithium ion single battery 10 can be manufactured. .
  • the electrode manufacturing system 100 has a battery electrode manufacturing apparatus 1 and a film supply apparatus 30.
  • the film supply device 30 is a device that supplies the strip-shaped base film 23 to the battery electrode manufacturing apparatus 1 .
  • the film supply device 30 feeds out the base film 23 wound on a roll, for example.
  • Examples of the strip-shaped base film 23 include current collectors, separators, and transfer films.
  • the base film 23 is a transfer film, the active material layer (electrode composition layer) formed on the transfer film is transferred onto the current collector, for example, to obtain a lithium ion battery electrode. be able to.
  • the battery electrode manufacturing apparatus 1 has a chamber 2 , a supply mechanism 3 , a tension mechanism 4 , a roll press 5 , a tank 6 and a frame supply device 8 .
  • the chamber 2 is a room whose inside can be kept in a state of being reduced in pressure below atmospheric pressure.
  • the chamber 2 has a housing 20 forming a closed space.
  • the internal space 20a of the chamber 2 is decompressed below atmospheric pressure by a decompression pump (not shown).
  • the pressure in the internal space 20a may be any value as long as it is reduced below the atmospheric pressure. It may be adjusted to a high vacuum environment of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 7 Pa, or an ultrahigh vacuum of 10 ⁇ 8 to 10 ⁇ 9 Pa. It may be a level of extreme high vacuum.
  • the standard atmospheric pressure is approximately 1013 hPa (approximately 10 5 Pa).
  • the housing 20 has slits 20s. 20 s of slits are arrange
  • the illustrated slit 20 s penetrates the side wall 20 w along the transport direction X of the base film 23 .
  • the transport direction X is a direction perpendicular to the vertical direction Z, for example.
  • the shape of the slit 20s when the side wall 20w is viewed from the front is, for example, a rectangle.
  • the base film 23 is conveyed from the outer space 20b of the housing 20 to the inner space 20a through the slit 20s.
  • the width of the slit 20 s is slightly larger than the width of the base film 23 .
  • the height of the slit 20 s is slightly larger than the thickness of the base film 23 .
  • the frame supply device 8 is arranged in the internal space 20 a of the housing 20 .
  • the illustrated frame feeder 8 is arranged between the side wall 20w and the feeding mechanism 3 .
  • the frame supply device 8 supplies the frame 140 to the base film 23 being conveyed, and installs the frame 140 on the base film 23 .
  • the frame 140 is transported along the transport direction X together with the base film 23 .
  • the supply mechanism 3 is arranged in the internal space 20 a of the housing 20 .
  • the supply mechanism 3 supplies powdery active material 25 to the transported base film 23 . More specifically, the supply mechanism 3 supplies the active material 25 to the frame 140 installed on the base film 23 .
  • the powdery active material 25 is stored in the tank 6 arranged in the external space 20b.
  • the supply mechanism 3 fills the inside of the frame 140 with the active material 25 sent from the tank 6 and applies the active material 25 to the base film 23 .
  • the roll press 5 is arranged downstream of the supply mechanism 3 in the transport direction X.
  • the roll press 5 press-molds the active material 25 applied to the base film 23 .
  • the roll press 5 has a role of fixing the active material 25 to the strip-shaped base film 23 .
  • the steps of applying the active material 25 and press molding are performed in the reduced pressure internal space 20a. As a result, it is possible to prevent air from remaining inside the active material 25 and prevent expansion and deformation of the active material 25 after the end of pressing.
  • the frame supply device 8 may install the frame 140 on the base film 23 on the downstream side of the supply mechanism 3 .
  • the frame supply device 8 may be arranged between the supply mechanism 3 and the roll press 5, may be arranged downstream of the roll press 5, or may be arranged downstream of the roll press 5. may be arranged outside the housing 2 .
  • the battery electrode manufacturing apparatus or the battery electrode manufacturing method according to the present embodiment may not include the frame supply device or the frame supply step.
  • a frame may be arranged on the current collector to which the electrode composition layer has been transferred, or on the current collector before the electrode composition layer has been transferred.
  • the frame 140 may be installed on the base film 23 outside the housing 2 .
  • a member sheet manufacturing device 32 shown in FIG. 3 may be used.
  • the member sheet manufacturing device 32 is a device that manufactures the member sheet 24 by sequentially transferring a plurality of frames 140 onto the strip-shaped base film 23 .
  • the member sheet manufacturing device 32 has a transfer device 322 .
  • the transfer device 322 is a device that transfers the frame 140 of the transfer sheet 22 onto the strip-shaped base film 23 .
  • the transfer sheet 22 is a sheet in which a plurality of frames 140 are continuously arranged with respect to the film 21 . A plurality of frames 140 are crimped to the film 21 .
  • the member sheet manufacturing apparatus 32 pulls out the transfer sheet 22 from the roll 22 ′ and transfers the frame 140 of the transfer sheet 22 to the base film 23 .
  • the transfer device 322 has a transfer mechanism 3221 and a separation mechanism 3222.
  • the transfer mechanism 3221 presses the transfer sheet 22 and the strip-shaped base film 23 together.
  • the transfer mechanism 3221 is a press roll that sandwiches and presses the transfer sheet 22 and strip-shaped base film 23 , and adheres the frame 140 of the transfer sheet 22 to the strip-shaped base film 23 .
  • the base film 23 is transported at a predetermined transport speed by the transport rollers of the battery electrode manufacturing apparatus 1 .
  • the member sheet manufacturing apparatus 32 presses the frame 140 to the base film 23 by the transfer mechanism 3221 while running the transfer sheet 22 in parallel with the base film 23 at the same speed.
  • the separation mechanism 3222 separates the frame 140 crimped to the base film 23 from the film 21 . That is, the separation mechanism 3222 generates the member sheet 24 by peeling the film 21 from the frame 140 .
  • the separation mechanism 3222 may wind the film 21 separated from the frame 140 into a roll as shown in FIG.
  • the base film 23 to which the frame 140 is attached is transported into the housing 2 through the slit 20s.
  • the tension mechanism 4 applies tension to the base film 23 .
  • the tension mechanism 4 has an outer roller 41 and an inner roller 42 .
  • the external roller 41 is arranged in the external space 20 b of the housing 20 .
  • the internal roller 42 is arranged in the internal space 20 a of the housing 20 .
  • the position of the internal roller 42 in the internal space 20a is the position between the slit 20s and the supply mechanism 3 in the transport direction X. As shown in FIG. That is, the internal roller 42 is positioned upstream in the transport direction X with respect to the supply mechanism 3 .
  • the outer roller 41, the slit 20s, and the inner roller 42 are arranged linearly along the transport direction X. With such an arrangement, the tension Ft can be applied to the base film 23 along the straight transport path along the transport direction X. As shown in FIG.
  • the external roller 41 has a first roller 41a and a second roller 41b.
  • the first roller 41a is arranged above the conveying path of the base film 23, and the second roller 41b is arranged below the conveying path.
  • the external rollers 41 sandwich the base film 23 between the first roller 41a and the second roller 41b.
  • the outer diameter of the first roller 41a and the outer diameter of the second roller 41b are equal.
  • the external roller 41 is, for example, a brake roller. That is, the external roller 41 is configured to apply a braking force Fb in a direction opposite to the transport direction X to the base film 23 .
  • the outer roller 41 has rotational resistance corresponding to the braking force Fb.
  • the internal roller 42 has a pressing roller 42a, a driving roller 42b, and a motor 42c.
  • the pressure roller 42a is arranged above the conveying path of the base film 23, and the driving roller 42b is arranged below the conveying path.
  • the drive roller 42b is a member such as a capstan, and is, for example, a cylindrical metal shaft.
  • the motor 42c is a rotary motor that rotates the drive roller 42b.
  • the driving roller 42b may be connected to the output shaft of the motor 42c, or may be connected to the output shaft of the motor 42c via a reduction mechanism.
  • the pressing roller 42a is a roller that presses the base film 23 toward the driving roller 42b.
  • the outer diameter of the pressing roller 42a is larger than the outer diameter of the drive roller 42b.
  • the inner roller 42 may have a spring that biases the pressure roller 42a toward the drive roller 42b.
  • the driving roller 42 b applies a driving force Ff along the transport direction X to the base film 23 .
  • the internal roller 42 functions as a transport roller that transports the base film 23 .
  • the tension mechanism 4 applies tension Ft to the base film 23 with the driving force Ff and the braking force Fb.
  • the tension Ft is generated in the target portion 24m of the base film 23 located between the outer roller 41 and the inner roller 42 .
  • the battery electrode manufacturing apparatus 1 of the present embodiment can suppress vibration of the base film 23 caused by Karman vortices and the like.
  • FIG. 5 shows the air flow Af flowing from the outer space 20b of the housing 20 to the inner space 20a.
  • the air flow Af is caused by the pressure difference between the outer space 20b and the inner space 20a.
  • the atmospheric pressure of the external space 20b is, for example, the atmospheric pressure.
  • the air in the outer space 20b enters the inner space 20a along the transport direction X through the slits 20s.
  • a boundary layer BL is formed along the wall surface of the slit 20s in the slit 20s.
  • a Karman vortex Kv is generated on the downstream side in the transport direction X of the slit 20s.
  • the Karman vortices Kv are alternately generated above and below the base film 23 .
  • a first vortex line VL ⁇ b>1 is generated above the base film 23
  • a second vortex line VL ⁇ b>2 is generated below the base film 23 .
  • the battery electrode manufacturing apparatus 1 of the present embodiment can suppress the vibration of the base film 23 due to the Karman vortices Kv by the tension Ft.
  • the tension mechanism 4 suppresses vibration of the base film 23 by applying tension Ft to the base film 23 .
  • the tension Ft can make the amplitude of the base film 23 in the vertical direction Z smaller than when the tension Ft is not applied to the base film 23 .
  • the tension mechanism 4 can suppress the propagation of vibration in the base film 23 .
  • the internal rollers 42 can absorb vibrations generated in the target portion 24m at the internal rollers 42 .
  • the pressing roller 42a may be made of elastic resin such as rubber.
  • the internal roller 42 suppresses the vibration of the target portion 24m from propagating to the downstream side of the internal roller 42 .
  • the external roller 41 suppresses the vibration of the target portion 24m from propagating upstream of the external roller 41 .
  • the tension mechanism 4 preferably applies tension Ft so as to shift the natural frequency ⁇ of the target portion 24m from the vibration frequency fk of the Karman vortices Kv.
  • the vibration frequency fk of the Karman vortex Kv is, for example, a frequency corresponding to the period of the Karman vortex Kv.
  • the vibration frequency fk may be obtained theoretically or experimentally.
  • the vibration frequency fk is, for example, the pressure difference between the external space 20b and the internal space 20a, the cross-sectional shape of the slit 20s, the length of the slit 20s along the transport direction X, the roughness of the wall surface of the slit 20s, and the thickness of the base film 23. It may be calculated based on the thickness or the like.
  • the natural frequency ⁇ of the target portion 24m can be adjusted by the length Lx of the target portion 24m along the transport direction X and the magnitude of the tension Ft.
  • the tension mechanism 4 of this embodiment is configured to shift the natural frequency ⁇ with respect to the vibration frequency fk. Further, the tension mechanism 4 is configured to shift a multiple of the natural frequency ⁇ with respect to the vibration frequency fk. Therefore, the battery electrode manufacturing apparatus 1 of the present embodiment can suitably suppress the occurrence of resonance of the base film 23 due to the Karman vortices Kv.
  • the battery electrode manufacturing apparatus 1 has the chamber 2 having the slit 20s, the supply mechanism 3, and the tension mechanism 4.
  • the internal space 20a of the chamber 2 is evacuated below the atmospheric pressure.
  • the slit 20s communicates the internal space 20a and the external space 20b of the chamber 2 .
  • the supply mechanism 3 is arranged in the internal space 20a.
  • the supply mechanism 3 supplies the powdery active material 25 to the belt-like base film 23 conveyed from the external space 20b to the internal space 20a through the slit 20s.
  • the base film 23 is, for example, a current collector, but is not limited to this, and may be a separator, a transfer film, or the like. According to the configuration in which the substrate film 23 is continuously supplied from the external space 20b to the internal space 20a of the chamber 2 through the slit 20s as in the present embodiment, the production efficiency of the battery electrode can be improved.
  • the tension mechanism 4 has an external roller 41 arranged in the external space 20b and an internal roller 42 arranged between the slit 20s and the supply mechanism 3 in the internal space 20a.
  • the tension mechanism 4 applies tension Ft to the base film 23 with the external roller 41 and the internal roller 42 . That is, the tension mechanism 4 increases the tension of the base film 23 as compared with the case without the tension mechanism 4 .
  • the battery electrode manufacturing apparatus 1 of the present embodiment can suppress the vibration of the base film 23 that is transported to the inner space of the chamber whose pressure is reduced below the atmospheric pressure.
  • the battery electrode manufacturing apparatus 1 according to the present embodiment can stabilize the transport speed of the base film 23 by suppressing the vibration of the base film 23 . That is, the battery electrode manufacturing apparatus 1 can stably transport the base film 23 . Therefore, the battery electrode manufacturing apparatus 1 according to the present embodiment can improve the stability of the supplying process of supplying the active material 25 to the base film 23 .
  • the outer roller 41 and the inner roller 42 of this embodiment each have a roller pair that sandwiches the base film 23 .
  • the external rollers 41 have a first roller 41a and a second roller 41b that sandwich the base film 23 therebetween.
  • the internal roller 42 has a pressure roller 42a and a drive roller 42b that sandwich the base film 23 therebetween.
  • the internal roller 42 of this embodiment has a driving roller 42b that applies a driving force Ff in the transport direction X to the base film 23.
  • the external roller 41 applies a braking force Fb in a direction opposite to the conveying direction X to the base film 23 .
  • the internal roller 42 can function as a transport roller that transports the base film 23 .
  • the tension mechanism 4 of this embodiment is based on the tension Ft that makes the natural frequency ⁇ of the base film 23 between the outer roller 41 and the inner roller 42 different from the vibration frequency fk caused by the Karman vortices Kv generated in the slit 20s. It is added to the material film 23 . Therefore, vibration of the base film 23 between the outer roller 41 and the inner roller 42 is effectively suppressed.
  • the battery electrode manufacturing method has a step of applying tension and a step of supplying.
  • the tension Ft is applied to the strip-shaped base film 23 conveyed through the slits 20s of the chamber 2 into the internal space 20a of the chamber 2 .
  • the internal space 20a of the chamber 2 is pressure-reduced below atmospheric pressure.
  • the powdery active material 25 is supplied to the base film 23 in the internal space 20a.
  • tension Ft is applied to the base film 23 by the external roller 41 arranged in the external space 20b of the chamber 2 and the internal roller 42 arranged in the internal space 20a.
  • the active material 25 is supplied to the base film 23 after passing through the internal rollers 42 .
  • the method for manufacturing a battery electrode according to the present embodiment suppresses the vibration of the base film 23 that passes through the slit 20s and is conveyed to the inner space of the chamber whose pressure is reduced below the atmospheric pressure, and stabilizes the base film 23. can be transported.
  • FIG. 6 is a diagram showing a tension mechanism according to a first modified example of the embodiment;
  • the tension mechanism 4 shown in FIG. 6 differs from the tension mechanism 4 of the above embodiment in the configuration of the internal rollers 42 .
  • the internal rollers 42 shown in FIG. 6 have a first roller 42d and a second roller 42e.
  • the internal rollers 42 sandwich the base film 23 between the first roller 42d and the second roller 42e.
  • the outer diameters of the first roller 42d and the second roller 42e are equal.
  • either the first roller 42d or the second roller 42e may be a driving roller.
  • the first roller 42d may act as a driving roller to apply the driving force Ff to the base film 23.
  • the second roller 42e may be a driven roller.
  • both the outer roller 41 and the inner roller 42 may be brake rollers, as shown in FIG.
  • the transport roller 7 for transporting the base film 23 is provided on the downstream side in the transport direction X of the tension mechanism 4 .
  • the external roller 41 applies a braking force Fb1 to the base film 23 and the internal roller 42 applies a braking force Fb2 to the base film 23 .
  • the braking force Fb1 by the outer roller 41 is made larger than the braking force Fb2 by the inner roller 42 .
  • the tension mechanism 4 shown in FIG. 7 applies tension Ft1 to the target portion 24m.
  • the tension mechanism 4 can further apply tension Ft2 to the downstream side in the transport direction X of the internal roller 42 .
  • the tension Ft2 applied to the downstream side is, for example, smaller than the tension Ft1 applied to the target portion 24m.
  • FIG. 8 is a diagram showing a tension mechanism according to a second modified example of the embodiment.
  • the tension mechanism 4 shown in FIG. 8 differs from the tension mechanism 4 of the first modified example in the configuration of the external roller 41 .
  • the external rollers 41 shown in FIG. 8 have a first roller 41c, a second roller 41d, and a third roller 41e.
  • the external rollers 41 meander the base film 23 with the first roller 41c, the second roller 41d, and the third roller 41e.
  • the first roller 41c and the third roller 41e are arranged on an extension line of the slit 20s along the transport direction X.
  • the position of the second roller 41d in the vertical direction Z is shifted with respect to the two rollers 41c and 41e.
  • the external roller 41 is configured, for example, so that the contact angle of the base film 23 with respect to the first roller 41c and the third roller 41e is 90 degrees, and the contact angle of the base film 23 with respect to the second roller 41d is 180 degrees. be.
  • the tension mechanism 4 applies a driving force Ff to the base film 23 by, for example, the internal rollers 42 .
  • the external roller 41 generates tension Ft in the target portion 24m of the base film 23 by causing the base film 23 to meander.
  • the tension mechanism 4 may have a spring arranged on the second roller 41d. In this case, the tension mechanism 4 can adjust the magnitude of the tension Ft by the spring of the second roller 41d.
  • both the outer roller 41 and the inner roller 42 may have drive rollers.

Abstract

This battery electrode manufacturing device (1) comprises: a chamber (2) in which the pressure in an interior space (20a) is less than atmospheric pressure, said chamber (2) having a slit (20s) via which the interior space and an exterior space (20b) communicate; a feeding mechanism (3) that feeds a pulverulent active material (25) to a strip-form base film (23) that is conveyed through the slit from the exterior space to the interior space, said feeding mechanism (3) being positioned in the interior space; and a tension mechanism (4) having exterior rollers (41) positioned in the exterior space, and interior rollers (42) positioned between the slit and the feeding mechanism in the interior space, tension being applied to the base film (23) by the exterior rollers and the interior rollers.

Description

電池用電極製造装置および電池用電極製造方法Battery electrode manufacturing apparatus and battery electrode manufacturing method
 本発明は、電池用電極製造装置および電池用電極製造方法に関する。 The present invention relates to a battery electrode manufacturing apparatus and a battery electrode manufacturing method.
 従来、長尺の部材を搬送する技術がある。特許文献1には、真空チャンバー内においてロールツーロールの搬送経路に沿って搬送される長尺基材の表面処理装置が開示されている。また、従来、リチウムイオン電池を製造する技術がある。特許文献2には、第1の集電体、正極活物質、セパレータ、負極活物質、及び、第2の集電体、を有する電池構造体を製造する技術が開示されている。特許文献2に記載された製造工程は、集電体シート上に、正極活物質又は負極活物質を供給する工程を有する。 Conventionally, there are technologies for transporting long components. Patent Literature 1 discloses a surface treatment apparatus for a long substrate that is transported along a roll-to-roll transport path within a vacuum chamber. Also, conventionally, there is a technique for manufacturing a lithium-ion battery. Patent Document 2 discloses a technique for manufacturing a battery structure having a first current collector, a positive electrode active material, a separator, a negative electrode active material, and a second current collector. The manufacturing process described in Patent Document 2 includes a step of supplying a positive electrode active material or a negative electrode active material onto a current collector sheet.
特開2018-031040号公報Japanese Patent Application Laid-Open No. 2018-031040 特許第6633866号公報Japanese Patent No. 6633866
 ここで、リチウムイオン電池の製造工程における基材フィルムへの活物質の供給を、内部空間が大気圧よりも減圧されたチャンバー内で行う、という考え方がある。この考え方によれば、チャンバー内への不純物の混入等を予防して、電池用電極の品質を向上させることができる。 Here, there is an idea that the supply of the active material to the base film in the manufacturing process of the lithium-ion battery is performed in a chamber whose internal space is reduced below atmospheric pressure. According to this idea, it is possible to prevent impurities from entering the chamber and improve the quality of the battery electrode.
 上記チャンバー内で電池用電極を製造する場合に当該製造効率を向上させるためには、チャンバー外(常圧環境下)からチャンバー内(減圧環境下)に基材フィルムを連続的に供給し、チャンバー内に導入された基材フィルムに対して活物質を供給していく必要がある。本発明者らは、内部空間が大気圧よりも減圧されたチャンバーにスリットを設け、当該スリットを介して、チャンバーの外部空間から内部空間に基材フィルムを搬送する構成を見出した。 In order to improve the production efficiency when producing a battery electrode in the chamber, the base film is continuously supplied from outside the chamber (under normal pressure environment) into the chamber (under reduced pressure environment), It is necessary to supply the active material to the base film introduced inside. The present inventors have found a configuration in which a slit is provided in a chamber whose internal space is reduced below the atmospheric pressure, and the substrate film is transported from the external space to the internal space of the chamber via the slit.
 しかし、本発明者らが見出した構成によれば、外部空間からチャンバーの内部空間へ向けて基材フィルムを搬送する場合に、スリットを介して減圧されたチャンバー内に空気が流入することにより基材フィルムが振動(例えば、発生する渦等に起因する振動)することがある。特許文献1には、真空チャンバー内においてロールツーロールの搬送経路に沿って長尺基材を搬送する技術が開示されているにすぎず、外部空間からチャンバーの内部空間へ長尺基材を搬送する場合に、基材の振動を抑制することの課題を解決することが望まれている。 However, according to the configuration found by the present inventors, when the base film is transported from the outer space toward the inner space of the chamber, the air flows into the depressurized chamber through the slit, thereby The material film may vibrate (eg, due to generated eddies, etc.). Patent Document 1 merely discloses a technique for transporting a long substrate along a roll-to-roll transport path in a vacuum chamber, and transports the long substrate from the external space to the internal space of the chamber. When doing so, it is desired to solve the problem of suppressing the vibration of the base material.
 本発明の目的は、大気圧よりも減圧されたチャンバー内部空間へ搬送される基材フィルムの振動を抑制し、基材フィルムを安定的に搬送することができる電池用電極製造装置および電池用電極製造方法を提供することである。 An object of the present invention is to provide a battery electrode manufacturing apparatus and a battery electrode capable of suppressing vibration of a base film transported into a chamber interior space reduced from atmospheric pressure and stably transporting the base film. It is to provide a manufacturing method.
 本発明の電池用電極製造装置は、内部空間が大気圧よりも減圧されており、かつ前記内部空間と外部空間とを連通するスリットを有するチャンバーと、前記内部空間に配置され、前記スリットを介して前記外部空間から前記内部空間に搬送される帯状の基材フィルムに対して粉体状の活物質を供給する供給機構と、前記外部空間に配置された外部ローラと、前記内部空間における前記スリットと前記供給機構との間に配置された内部ローラと、を有し、前記外部ローラおよび前記内部ローラによって前記基材フィルムに対してテンションを付加するテンション機構と、を備えたことを特徴とする。 The battery electrode manufacturing apparatus of the present invention comprises a chamber having an internal space that is reduced in pressure from atmospheric pressure and having a slit that communicates the internal space and the external space; A supply mechanism for supplying a powdery active material to a belt-shaped base film conveyed from the external space to the internal space by a feeding mechanism, an external roller arranged in the external space, and the slit in the internal space and an internal roller disposed between the supply mechanism and a tension mechanism for applying tension to the base film by the external roller and the internal roller. .
 本発明に係る電池用電極製造装置は、大気圧よりも減圧されたチャンバー内部空間へ搬送される基材フィルムの振動を抑制し、基材フィルムを安定的に搬送できるという効果を奏する。 The battery electrode manufacturing apparatus according to the present invention has the effect of suppressing the vibration of the base film transported into the inner space of the chamber whose pressure is reduced below the atmospheric pressure, and stably transporting the base film.
図1は、リチウムイオン単電池の概略構成図である。FIG. 1 is a schematic configuration diagram of a lithium-ion cell. 図2は、実施形態に係る電池用電極製造装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the battery electrode manufacturing apparatus according to the embodiment. 図3は、実施形態に係る部材シート製造装置の斜視図である。 Drawing 3 is a perspective view of a member sheet manufacturing device concerning an embodiment. 図4は、実施形態に係るテンション機構を示す図である。FIG. 4 is a diagram showing a tension mechanism according to the embodiment. 図5は、カルマン渦の説明図である。FIG. 5 is an explanatory diagram of a Karman vortex. 図6は、実施形態の第1変形例に係るテンション機構を示す図である。FIG. 6 is a diagram showing a tension mechanism according to a first modified example of the embodiment; 図7は、実施形態の第1変形例に係るテンション機構を示す図である。FIG. 7 is a diagram showing a tension mechanism according to a first modified example of the embodiment; 図8は、実施形態の第2変形例に係るテンション機構を示す図である。FIG. 8 is a diagram showing a tension mechanism according to a second modified example of the embodiment;
 以下に、本発明の実施形態に係る電池用電極製造装置および電池用電極製造方法につき図面を参照しつつ詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるものあるいは実質的に同一のものが含まれる。 A battery electrode manufacturing apparatus and a battery electrode manufacturing method according to embodiments of the present invention will be described in detail below with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, components in the following embodiments include those that can be easily assumed by those skilled in the art or substantially the same components.
[実施形態]
 図1から図5を参照して、実施形態について説明する。本実施形態は、電池用電極製造装置および電池用電極製造方法に関する。
[Embodiment]
An embodiment will be described with reference to FIGS. 1 to 5. FIG. The present embodiment relates to a battery electrode manufacturing apparatus and a battery electrode manufacturing method.
(組電池)
 本実施形態の電池用電極製造装置および電池用電極製造方法は、例えば、リチウムイオン電池の製造に適用される。リチウムイオン電池は、複数のリチウムイオン単電池(電池セル)を組み合わせてモジュール化した組電池、或いは、このような組電池を複数組み合わせて電圧及び容量を調整した電池パックの形態で使用される。なお、本明細書におけるリチウムイオン電池(電池セル、単セル、単電池ユニット)は、電荷担体としてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電が行われる二次電池をいう。当該リチウムイオン電池(二次電池)は、電解質に液体材料を使用した電池を含み、電解質に固体材料を使用した電池(いわゆる全固体電池)を含む。また本実施形態におけるリチウムイオン電池は、集電体として金属箔(金属集電箔)を有する電池を含み、金属箔に代わって導電性材料が添加された樹脂から構成される、いわゆる樹脂集電体を有する電池を含む。当該樹脂集電体を、後述するバイポーラ電極用樹脂集電体として用いる場合には、当該樹脂集電体の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を構成したものであってもよい。なお、本実施形態におけるリチウムイオン電池は、バインダを用いて正極または負極活物質等を正極用または負極用集電体にそれぞれ塗布して電極を構成したものを含み、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成したものを含む。また、組電池の積層方法は、任意である。積層方法の一例として、第1面に正極樹脂集電体を有し、第2面に負極樹脂集電体を有する単セルを、隣り合う一対の単セルの第1面(正極側)と第2面(負極側)とが隣接するように直列に複数積層した積層電池としても良い。別の一例として、一枚の樹脂集電体の片面に正極層を設け、樹脂集電体の他方の面に負極層を設けた単セルを、電解質層を介して複数積層した積層電池としても良い。
(Battery pack)
The battery electrode manufacturing apparatus and battery electrode manufacturing method of the present embodiment are applied, for example, to the manufacture of lithium ion batteries. Lithium ion batteries are used in the form of assembled batteries in which a plurality of lithium ion single cells (battery cells) are combined into a module, or in the form of battery packs in which a plurality of such assembled batteries are combined to adjust the voltage and capacity. The lithium ion battery (battery cell, single cell, single battery unit) in this specification refers to a secondary battery that uses lithium ions as charge carriers and is charged and discharged by the movement of lithium ions between the positive and negative electrodes. . The lithium ion battery (secondary battery) includes a battery using a liquid material for the electrolyte and a battery using a solid material for the electrolyte (so-called all-solid-state battery). In addition, the lithium ion battery in the present embodiment includes a battery having a metal foil (metal current collector foil) as a current collector, and is composed of a resin to which a conductive material is added instead of the metal foil, a so-called resin current collector. Including a battery with a body. When the resin current collector is used as a resin current collector for a bipolar electrode, which will be described later, a positive electrode is formed on one surface of the resin current collector and a negative electrode is formed on the other surface to form a bipolar electrode. may be configured. In addition, the lithium ion battery in the present embodiment includes those in which the positive electrode or negative electrode active material or the like is applied to the positive electrode current collector or the negative electrode current collector using a binder to configure the electrode, and in the case of a bipolar battery, is a bipolar electrode having a positive electrode layer formed by applying a positive electrode active material or the like using a binder to one surface of a current collector, and a negative electrode layer formed by applying a negative electrode active material or the like using a binder to the opposite surface of the current collector. including those that consist of Moreover, the method of stacking the assembled battery is arbitrary. As an example of the lamination method, a unit cell having a positive electrode resin current collector on the first surface and a negative electrode resin current collector on the second surface is arranged such that the first surface (positive electrode side) and the first surface (positive electrode side) of a pair of adjacent unit cells are stacked. A laminated battery may be formed by laminating a plurality of layers in series so that the two surfaces (negative electrode side) are adjacent to each other. As another example, a single cell in which a positive electrode layer is provided on one side of a single resin current collector and a negative electrode layer is provided on the other side of the resin current collector may be laminated with an electrolyte layer interposed between them to form a laminated battery. good.
(リチウムイオン単電池)
 次に、リチウムイオン単電池について説明する。リチウムイオン単電池は、例えば、正極集電体層、正極活物質層、セパレータ、負極活物質層及び負極集電体層が順に積層され、上記正極集電体層と上記負極集電体層とを最外層に有し、上記正極活物質層及び上記負極活物質層の外周を封止することで電解液が封入された構成である。
(Lithium-ion cell)
Next, a lithium-ion cell will be described. For example, a lithium-ion single battery has a positive electrode current collector layer, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector layer laminated in this order, and the positive electrode current collector layer and the negative electrode current collector layer are laminated. as the outermost layer, and an electrolyte is enclosed by sealing the outer peripheries of the positive electrode active material layer and the negative electrode active material layer.
 図1は、リチウムイオン単電池10の概略構成図である。リチウムイオン単電池10は、正極集電体層111、正極活物質層113、セパレータ130、負極活物質層123及び負極集電体層121が図1に示す順に積層される。即ち、正極集電体層111及び負極集電体層121が最外層に配置される。また、枠体140は、正極集電体層111及び負極集電体層121の縁部(正極活物質層113及び負極活物質層123の外周)を封止する。正極活物質層113及び負極活物質層123には、電解液が封入される。 FIG. 1 is a schematic configuration diagram of a lithium-ion cell 10. FIG. In the lithium-ion single cell 10, a positive electrode current collector layer 111, a positive electrode active material layer 113, a separator 130, a negative electrode active material layer 123, and a negative electrode current collector layer 121 are laminated in the order shown in FIG. That is, the positive electrode current collector layer 111 and the negative electrode current collector layer 121 are arranged as the outermost layers. In addition, the frame 140 seals the edges of the positive electrode current collector layer 111 and the negative electrode current collector layer 121 (peripheries of the positive electrode active material layer 113 and the negative electrode active material layer 123). An electrolytic solution is enclosed in the positive electrode active material layer 113 and the negative electrode active material layer 123 .
(正極集電体)
 正極集電体層111としては、公知のリチウムイオン単電池に用いられる集電体を用いることができ、例えば公知の金属集電体及び導電材料と樹脂とから構成されてなる樹脂集電体(特開2012-150905号公報及び国際公開第2015/005116号等に記載の樹脂集電体等)を用いることができる。正極集電体層111は、電池特性等の観点から、樹脂集電体であることが好ましい。
(Positive electrode current collector)
As the positive electrode current collector layer 111, a current collector used in a known lithium-ion single battery can be used. For example, a known metal current collector and a resin current collector ( resin current collectors described in JP-A-2012-150905 and WO 2015/005116, etc.) can be used. The positive electrode current collector layer 111 is preferably a resin current collector from the viewpoint of battery characteristics and the like.
 正極集電体層111の厚さは特に限定されないが、5~150μmであることが好ましい。複数の樹脂集電体を積層して正極集電体として用いる場合には、積層後の全体の厚さが5~150μmであることが好ましい。 Although the thickness of the positive electrode current collector layer 111 is not particularly limited, it is preferably 5 to 150 μm. When a plurality of resin current collectors are laminated and used as a positive electrode current collector, the total thickness after lamination is preferably 5 to 150 μm.
 正極集電体層111は、例えば、マトリックス樹脂、導電性フィラー及び必要により用いるフィラー用分散剤を溶融混練して得られる導電性樹脂組成物を公知の方法でフィルム状に成形することにより得ることができる。 The positive electrode current collector layer 111 can be obtained, for example, by molding a conductive resin composition obtained by melt-kneading a matrix resin, a conductive filler, and a dispersing agent for a filler used if necessary into a film by a known method. can be done.
(正極活物質)
 正極活物質層113は、正極活物質を含む混合物の非結着体であることが好ましい。ここで、非結着体とは、正極活物質層中において正極活物質の位置が固定されておらず、正極活物質同士及び正極活物質同士及び正極活物質と集電体とが不可逆的に固定されていないことを意味する。正極活物質層113が非結着体である場合、正極活物質同士は不可逆的に固定されていないため、正極活物質同士の界面を機械的に破壊することなく分離することができ、正極活物質層113に応力がかかった場合でも正極活物質が移動することで正極活物質層113の破壊を防止することができ好ましい。非結着体である正極活物質層113は、正極活物質層113を、正極活物質と電解液とを含みかつ結着剤を含まない正極活物質層113にする等の方法で得ることができる。
(Positive electrode active material)
The positive electrode active material layer 113 is preferably a non-bound mixture containing a positive electrode active material. Here, the non-bound body means that the position of the positive electrode active material is not fixed in the positive electrode active material layer, and the positive electrode active materials and the positive electrode active materials and the positive electrode active material and the current collector are irreversibly means not fixed. When the positive electrode active material layer 113 is a non-bound body, the positive electrode active materials are not irreversibly fixed to each other, so that the interface between the positive electrode active materials can be separated without mechanically destroying them. Even when stress is applied to the substance layer 113, the positive electrode active material moves, which is preferable because the positive electrode active material layer 113 can be prevented from being broken. The positive electrode active material layer 113, which is a non-binder, can be obtained by a method such as making the positive electrode active material layer 113 containing a positive electrode active material and an electrolytic solution but not containing a binder. can.
 正極活物質としては、例えば、リチウムと遷移金属との複合酸化物、遷移金属元素が2種である複合酸化物及び金属元素が3種類以上である複合酸化物等が挙げられるが、特に限定されない。 Examples of the positive electrode active material include, but are not limited to, a composite oxide of lithium and a transition metal, a composite oxide containing two transition metal elements, and a composite oxide containing three or more metal elements. .
 正極活物質層113には、電解質と非水溶媒を含む電解液が含まれていてもよい。電解質としては、公知の電解液に用いられているもの等が使用できる。 The positive electrode active material layer 113 may contain an electrolytic solution containing an electrolyte and a non-aqueous solvent. As the electrolyte, those used in known electrolytic solutions can be used.
 非水溶媒としては、公知の電解液に用いられているもの(例えば、リン酸エステル、ニトリル化合物等及びこれらの混合物等)が使用できる。例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液、又は、エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合液を用いることができる。 As the non-aqueous solvent, those used in known electrolytic solutions (for example, phosphate esters, nitrile compounds, etc., and mixtures thereof, etc.) can be used. For example, a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixture of ethylene carbonate (EC) and propylene carbonate (PC) can be used.
 正極活物質層113の厚みは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 Although the thickness of the positive electrode active material layer 113 is not particularly limited, it is preferably 150 to 600 μm, more preferably 200 to 450 μm, from the viewpoint of battery performance.
(負極集電体)
 負極集電体層121としては、正極集電体層111で記載した構成と同様のものを適宜選択して用いることができ、同様の方法により得ることができる。負極集電体層121は、電池特性等の観点から、樹脂集電体であることが好ましい。負極集電体層121の厚さは特に限定されないが、5~150μmであることが好ましい。
(Negative electrode current collector)
As the negative electrode current collector layer 121, one having the same structure as that described for the positive electrode current collector layer 111 can be appropriately selected and used, and can be obtained by a similar method. The negative electrode current collector layer 121 is preferably a resin current collector from the viewpoint of battery characteristics and the like. Although the thickness of the negative electrode current collector layer 121 is not particularly limited, it is preferably 5 to 150 μm.
(負極活物質)
 負極活物質層123は、負極活物質を含む混合物の非結着体であることが好ましい。負極活物質層が非結着体であることが好ましい理由、及び非結着体である負極活物質層123を得る方法等は、正極活物質層113が非結着体であることが好ましい理由、及び非結着体である正極活物質層113を得る方法と同様である。
(Negative electrode active material)
The negative electrode active material layer 123 is preferably a non-bound mixture containing a negative electrode active material. The reason why the negative electrode active material layer is preferably a non-binder, and the reason why the positive electrode active material layer 113 is preferably a non-binder is the method for obtaining the negative electrode active material layer 123 which is a non-binder. , and the method for obtaining the positive electrode active material layer 113 which is a non-binder.
 負極活物質としては、例えば、炭素系材料、珪素系材料及びこれらの混合物などを用いることができるが、特に限定されない。 As the negative electrode active material, for example, a carbon-based material, a silicon-based material, a mixture thereof, or the like can be used, but is not particularly limited.
 負極活物質層123は、電解質と非水溶媒を含む電解液を含有する。電解液の組成は、正極活物質層113に含まれる電解液と同様の電解液を好適に用いることができる。 The negative electrode active material layer 123 contains an electrolytic solution containing an electrolyte and a non-aqueous solvent. As for the composition of the electrolytic solution, an electrolytic solution similar to the electrolytic solution contained in the positive electrode active material layer 113 can be preferably used.
 負極活物質層123の厚みは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。 Although the thickness of the negative electrode active material layer 123 is not particularly limited, it is preferably 150 to 600 μm, more preferably 200 to 450 μm, from the viewpoint of battery performance.
(セパレータ)
 セパレータ130としては、ポリエチレン又はポリプロピレン製の多孔性フィルム等が挙げられるが、特に限定されない。セパレータとして、硫化物系、酸化物系の無機系固体電解質、または高分子系の有機系固体電解質などを適用することもできる。固体電解質の適用により、全固体電池を構成することができる。
(separator)
Examples of the separator 130 include a porous film made of polyethylene or polypropylene, but the separator is not particularly limited. As the separator, a sulfide-based or oxide-based inorganic solid electrolyte, or a polymer-based organic solid electrolyte can be used. By applying a solid electrolyte, an all-solid battery can be constructed.
(枠体)
 リチウムイオン単電池10は、正極集電体層111及び負極集電体層121の縁部を枠体140により封止することで電解液が封入された構成である。枠体140は、正極集電体層111及び負極集電体層121の間に配置されており、正極活物質層113、負極活物質層123及びセパレータ130の外周を封止する機能を有する。
(frame body)
The lithium-ion unit cell 10 has a structure in which an electrolytic solution is enclosed by sealing the edges of the positive electrode current collector layer 111 and the negative electrode current collector layer 121 with a frame 140 . The frame 140 is arranged between the positive electrode current collector layer 111 and the negative electrode current collector layer 121 and has a function of sealing the outer circumferences of the positive electrode active material layer 113 , the negative electrode active material layer 123 and the separator 130 .
 なお、図1は、セパレータ130の一部が枠体140に入り込むように構成される場合を示している。即ち、図1では、枠体140に外周を囲まれる正極活物質層113及び負極活物質層123と比較してセパレータ130の幅が大きくなっており、その一部が枠体140に食い込んでいる。しかしながら実施形態はこれに限定されるものではなく、例えば、図1の横方向において正極活物質層113、負極活物質層123、セパレータ130の幅が同じになるように構成してもよい。また、図1に示す枠体140は一体的に製造されてもよいし、例えば正極側の枠体と負極側の枠体とを別個に製造して結合させることにより製造されてもよい。 Note that FIG. 1 shows a case where a part of the separator 130 is configured to enter the frame 140 . That is, in FIG. 1 , the width of the separator 130 is larger than that of the positive electrode active material layer 113 and the negative electrode active material layer 123 surrounded by the frame 140 , and a part of the separator 130 bites into the frame 140 . . However, the embodiment is not limited to this, and for example, the positive electrode active material layer 113, the negative electrode active material layer 123, and the separator 130 may have the same width in the horizontal direction of FIG. Further, the frame 140 shown in FIG. 1 may be manufactured integrally, or may be manufactured, for example, by separately manufacturing a frame on the positive electrode side and a frame on the negative electrode side and combining them.
 枠体140は、電解液に対して耐久性のある材料であれば特に限定されないが、高分子材料が好ましく、熱硬化性高分子材料がより好ましい。具体的には、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂及びポリフッ化ビニリデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。 The frame 140 is not particularly limited as long as it is made of a material that is durable against the electrolytic solution, but a polymer material is preferred, and a thermosetting polymer material is more preferred. Specifically, epoxy-based resins, polyolefin-based resins, polyurethane-based resins, polyvinylidene fluoride resins, and the like can be mentioned, and epoxy-based resins are preferred because of their high durability and ease of handling.
 枠体140は、フレーム状の部材である。リチウムイオン単電池10を製造する過程において、枠体140は、正極集電体層111又は負極集電体層121のいずれかに対して取り付けられる。なお、以下の説明において正極側と負極側とを特に区別しない場合、正極集電体層111及び負極集電体層121を単に集電体とも記載する。即ち、枠体140は、正極側又は負極側の集電体に対して取り付けられる。また、枠体140の内部に正極活物質層113、負極活物質層123、セパレータ130等を形成した後、他方の集電体を更に形成することでリチウムイオン単電池10を製造することができる。 The frame 140 is a frame-shaped member. In the process of manufacturing the lithium-ion single cell 10 , the frame 140 is attached to either the positive electrode current collector layer 111 or the negative electrode current collector layer 121 . In the following description, when the positive electrode side and the negative electrode side are not particularly distinguished, the positive electrode current collector layer 111 and the negative electrode current collector layer 121 are also simply referred to as current collectors. That is, the frame 140 is attached to the current collector on the positive electrode side or the negative electrode side. Further, after forming the positive electrode active material layer 113, the negative electrode active material layer 123, the separator 130, and the like inside the frame 140, the other current collector is further formed, whereby the lithium ion single battery 10 can be manufactured. .
 図2に示すように、本実施形態に係る電極製造システム100は、電池用電極製造装置1およびフィルム供給装置30を有する。フィルム供給装置30は、帯状の基材フィルム23を電池用電極製造装置1に対して供給する装置である。フィルム供給装置30は、例えば、ロールに巻かれた基材フィルム23を送り出す。なお、帯状の基材フィルム23の例としては、集電体、セパレータ、転写用のフィルムが挙げられる。基材フィルム23が転写用のフィルムである場合、転写用のフィルムに形成された活物質層(電極組成物層)を集電体上に、例えば転写することで、リチウムイオン電池用電極を得ることができる。 As shown in FIG. 2, the electrode manufacturing system 100 according to this embodiment has a battery electrode manufacturing apparatus 1 and a film supply apparatus 30. As shown in FIG. The film supply device 30 is a device that supplies the strip-shaped base film 23 to the battery electrode manufacturing apparatus 1 . The film supply device 30 feeds out the base film 23 wound on a roll, for example. Examples of the strip-shaped base film 23 include current collectors, separators, and transfer films. When the base film 23 is a transfer film, the active material layer (electrode composition layer) formed on the transfer film is transferred onto the current collector, for example, to obtain a lithium ion battery electrode. be able to.
 図2に示すように、電池用電極製造装置1は、チャンバー2と、供給機構3と、テンション機構4と、ロールプレス5と、タンク6と、枠体供給装置8と、を有する。チャンバー2は、内部を大気圧よりも減圧された状態に保持できる部屋である。チャンバー2は、閉空間を形成する筐体20を有する。チャンバー2の内部空間20aは、図示しない減圧ポンプにより大気圧よりも減圧される。内部空間20aの圧力は、大気圧よりも減圧されていれば任意の値でよいが、例えば、大気圧から1×10-1~1×10-2Paまでの低真空環境となるように調整されていてもよいし、1×10-6~1×10-7Paの高真空環境となるように調整されていてもよいし、それ以上の超高真空や10-8~10-9Paレベルの極高真空であってもよい。なお、標準大気圧は、約1013hPa(約10Pa)である。 As shown in FIG. 2 , the battery electrode manufacturing apparatus 1 has a chamber 2 , a supply mechanism 3 , a tension mechanism 4 , a roll press 5 , a tank 6 and a frame supply device 8 . The chamber 2 is a room whose inside can be kept in a state of being reduced in pressure below atmospheric pressure. The chamber 2 has a housing 20 forming a closed space. The internal space 20a of the chamber 2 is decompressed below atmospheric pressure by a decompression pump (not shown). The pressure in the internal space 20a may be any value as long as it is reduced below the atmospheric pressure. It may be adjusted to a high vacuum environment of 1×10 −6 to 1×10 −7 Pa, or an ultrahigh vacuum of 10 −8 to 10 −9 Pa. It may be a level of extreme high vacuum. The standard atmospheric pressure is approximately 1013 hPa (approximately 10 5 Pa).
 筐体20は、スリット20sを有する。スリット20sは、筐体20が有する一つの側壁20wに配置されている。例示されたスリット20sは、基材フィルム23の搬送方向Xに沿って側壁20wを貫通している。搬送方向Xは、例えば、鉛直方向Zに対して直交する方向である。側壁20wを正面視した場合のスリット20sの形状は、例えば、矩形である。基材フィルム23は、筐体20の外部空間20bからスリット20sを介して内部空間20aに搬送される。スリット20sの幅は、基材フィルム23の幅よりもわずかに大きい。また、スリット20sの高さは、基材フィルム23の厚さよりもわずかに大きい。 The housing 20 has slits 20s. 20 s of slits are arrange|positioned at one side wall 20w which the housing|casing 20 has. The illustrated slit 20 s penetrates the side wall 20 w along the transport direction X of the base film 23 . The transport direction X is a direction perpendicular to the vertical direction Z, for example. The shape of the slit 20s when the side wall 20w is viewed from the front is, for example, a rectangle. The base film 23 is conveyed from the outer space 20b of the housing 20 to the inner space 20a through the slit 20s. The width of the slit 20 s is slightly larger than the width of the base film 23 . Also, the height of the slit 20 s is slightly larger than the thickness of the base film 23 .
 枠体供給装置8は、筐体20の内部空間20aに配置されている。例示された枠体供給装置8は、側壁20wと供給機構3との間に配置されている。枠体供給装置8は、搬送される基材フィルム23に対して枠体140を供給し、基材フィルム23に枠体140を設置する。枠体140は、基材フィルム23と共に搬送方向Xに沿って搬送される。 The frame supply device 8 is arranged in the internal space 20 a of the housing 20 . The illustrated frame feeder 8 is arranged between the side wall 20w and the feeding mechanism 3 . The frame supply device 8 supplies the frame 140 to the base film 23 being conveyed, and installs the frame 140 on the base film 23 . The frame 140 is transported along the transport direction X together with the base film 23 .
 供給機構3は、筐体20の内部空間20aに配置されている。供給機構3は、搬送される基材フィルム23に対して粉体状の活物質25を供給する。より詳しくは、供給機構3は、基材フィルム23に設置された枠体140に対して活物質25を供給する。粉体状の活物質25は、外部空間20bに配置されたタンク6に貯留されている。供給機構3は、タンク6から送られる活物質25を枠体140の内部に充填し、活物質25を基材フィルム23に塗布する。 The supply mechanism 3 is arranged in the internal space 20 a of the housing 20 . The supply mechanism 3 supplies powdery active material 25 to the transported base film 23 . More specifically, the supply mechanism 3 supplies the active material 25 to the frame 140 installed on the base film 23 . The powdery active material 25 is stored in the tank 6 arranged in the external space 20b. The supply mechanism 3 fills the inside of the frame 140 with the active material 25 sent from the tank 6 and applies the active material 25 to the base film 23 .
 ロールプレス5は、搬送方向Xにおいて供給機構3の下流側に配置されている。ロールプレス5は、基材フィルム23に塗布された活物質25をプレス成型する。ロールプレス5は、活物質25を帯状の基材フィルム23に定着させる役割を有する。本実施形態の電池用電極製造装置1は、活物質25の塗布およびプレス成型の工程を減圧された内部空間20aにおいて行なう。これにより、活物質25の内部に空気が残留することを抑制し、プレス終了後における活物質25の膨張や変形を防止することができる。 The roll press 5 is arranged downstream of the supply mechanism 3 in the transport direction X. The roll press 5 press-molds the active material 25 applied to the base film 23 . The roll press 5 has a role of fixing the active material 25 to the strip-shaped base film 23 . In the battery electrode manufacturing apparatus 1 of the present embodiment, the steps of applying the active material 25 and press molding are performed in the reduced pressure internal space 20a. As a result, it is possible to prevent air from remaining inside the active material 25 and prevent expansion and deformation of the active material 25 after the end of pressing.
 なお、枠体供給装置8は、供給機構3よりも下流側において基材フィルム23に枠体140を設置してもよい。例えば、枠体供給装置8は、供給機構3とロールプレス5との間に配置されてもよいし、ロールプレス5の下流側に配置されてもよいし、或いは、ロールプレス5の下流側であって筐体2外部に配置されてもよい。また、本実施形態に係る電池用電極製造装置又は電池用電極製造方法は、枠体供給装置又は枠体供給工程を含まなくてもよい。例えば、基材フィルム23として転写用のフィルムが用いられる場合には、転写用のフィルム上に活物質層(電極組成物層)が形成された後(つまり、電極製造工程を終了した後)、当該電極組成物層が転写された集電体上に、又は、当該電極組成物層が転写される前の集電体上に、枠体が配置されてもよい。 Note that the frame supply device 8 may install the frame 140 on the base film 23 on the downstream side of the supply mechanism 3 . For example, the frame supply device 8 may be arranged between the supply mechanism 3 and the roll press 5, may be arranged downstream of the roll press 5, or may be arranged downstream of the roll press 5. may be arranged outside the housing 2 . Further, the battery electrode manufacturing apparatus or the battery electrode manufacturing method according to the present embodiment may not include the frame supply device or the frame supply step. For example, when a transfer film is used as the base film 23, after the active material layer (electrode composition layer) is formed on the transfer film (that is, after the electrode manufacturing process is finished), A frame may be arranged on the current collector to which the electrode composition layer has been transferred, or on the current collector before the electrode composition layer has been transferred.
 筐体2の内部において基材フィルム23に対して枠体140を供給することに代えて、筐体2の外部において基材フィルム23に枠体140が設置されてもよい。この場合、フィルム供給装置30に代えて、図3に示す部材シート製造装置32が用いられてもよい。部材シート製造装置32は、帯状の基材フィルム23に対し複数の枠体140を順次転写して部材シート24を製造する装置である。図3に示すように、部材シート製造装置32は、転写装置322を有する。転写装置322は、転写シート22の枠体140を帯状の基材フィルム23に対して転写する装置である。転写シート22は、フィルム21に対して複数の枠体140が連続的に配置されたシートである。複数の枠体140は、フィルム21に対して圧着されている。部材シート製造装置32は、ロール22’から転写シート22を引き出し、転写シート22の枠体140を基材フィルム23に転写する。 Instead of supplying the frame 140 to the base film 23 inside the housing 2 , the frame 140 may be installed on the base film 23 outside the housing 2 . In this case, instead of the film supply device 30, a member sheet manufacturing device 32 shown in FIG. 3 may be used. The member sheet manufacturing device 32 is a device that manufactures the member sheet 24 by sequentially transferring a plurality of frames 140 onto the strip-shaped base film 23 . As shown in FIG. 3 , the member sheet manufacturing device 32 has a transfer device 322 . The transfer device 322 is a device that transfers the frame 140 of the transfer sheet 22 onto the strip-shaped base film 23 . The transfer sheet 22 is a sheet in which a plurality of frames 140 are continuously arranged with respect to the film 21 . A plurality of frames 140 are crimped to the film 21 . The member sheet manufacturing apparatus 32 pulls out the transfer sheet 22 from the roll 22 ′ and transfers the frame 140 of the transfer sheet 22 to the base film 23 .
 転写装置322は、転写機構3221および分離機構3222を有する。転写機構3221は、転写シート22と帯状の基材フィルム23とを圧着する。例えば、転写機構3221は、転写シート22と帯状の基材フィルム23とを挟み込んで加圧するプレスロールであり、帯状の基材フィルム23に対して転写シート22の枠体140を接着させる。基材フィルム23は、電池用電極製造装置1の搬送ローラによって予め定められた搬送速度で搬送されている。部材シート製造装置32は、転写シート22を基材フィルム23と同じ速度で並走させながら、転写機構3221によって枠体140を基材フィルム23に圧着させる。 The transfer device 322 has a transfer mechanism 3221 and a separation mechanism 3222. The transfer mechanism 3221 presses the transfer sheet 22 and the strip-shaped base film 23 together. For example, the transfer mechanism 3221 is a press roll that sandwiches and presses the transfer sheet 22 and strip-shaped base film 23 , and adheres the frame 140 of the transfer sheet 22 to the strip-shaped base film 23 . The base film 23 is transported at a predetermined transport speed by the transport rollers of the battery electrode manufacturing apparatus 1 . The member sheet manufacturing apparatus 32 presses the frame 140 to the base film 23 by the transfer mechanism 3221 while running the transfer sheet 22 in parallel with the base film 23 at the same speed.
 分離機構3222は、基材フィルム23に対して圧着された枠体140をフィルム21から分離させる。つまり、分離機構3222は、枠体140からフィルム21を剥離させることにより、部材シート24を生成する。分離機構3222は、枠体140から分離させたフィルム21について、図3に示す通りロール状に巻き取ることとしても構わない。枠体140が取り付けられた基材フィルム23は、スリット20sを介して筐体2の内部に搬送される。 The separation mechanism 3222 separates the frame 140 crimped to the base film 23 from the film 21 . That is, the separation mechanism 3222 generates the member sheet 24 by peeling the film 21 from the frame 140 . The separation mechanism 3222 may wind the film 21 separated from the frame 140 into a roll as shown in FIG. The base film 23 to which the frame 140 is attached is transported into the housing 2 through the slit 20s.
 テンション機構4は、基材フィルム23に対してテンションを付加する。図2に示すように、テンション機構4は、外部ローラ41と、内部ローラ42と、を有する。外部ローラ41は、筐体20の外部空間20bに配置されている。内部ローラ42は、筐体20の内部空間20aに配置されている。内部空間20aにおける内部ローラ42の位置は、搬送方向Xにおけるスリット20sと供給機構3との間の位置である。つまり、内部ローラ42は、供給機構3に対して搬送方向Xの上流側に位置している。 The tension mechanism 4 applies tension to the base film 23 . As shown in FIG. 2 , the tension mechanism 4 has an outer roller 41 and an inner roller 42 . The external roller 41 is arranged in the external space 20 b of the housing 20 . The internal roller 42 is arranged in the internal space 20 a of the housing 20 . The position of the internal roller 42 in the internal space 20a is the position between the slit 20s and the supply mechanism 3 in the transport direction X. As shown in FIG. That is, the internal roller 42 is positioned upstream in the transport direction X with respect to the supply mechanism 3 .
 外部ローラ41、スリット20s、および内部ローラ42は、搬送方向Xに沿って直線上に配置されている。このような配置により、搬送方向Xに沿った直線の搬送路において基材フィルム23にテンションFtを与えることができる。 The outer roller 41, the slit 20s, and the inner roller 42 are arranged linearly along the transport direction X. With such an arrangement, the tension Ft can be applied to the base film 23 along the straight transport path along the transport direction X. As shown in FIG.
 図4に示すように、外部ローラ41は、第一ローラ41aおよび第二ローラ41bを有する。第一ローラ41aは基材フィルム23の搬送路に対して上側に配置され、第二ローラ41bは搬送路に対して下側に配置されている。外部ローラ41は、第一ローラ41aおよび第二ローラ41bによって基材フィルム23を挟み込む。例示された外部ローラ41では、第一ローラ41aの外径と第二ローラ41bの外径とが等しい。外部ローラ41は、例えば、ブレーキローラである。すなわち、外部ローラ41は、基材フィルム23に対して搬送方向Xとは逆方向のブレーキ力Fbを与えるように構成されている。例えば、外部ローラ41は、ブレーキ力Fbに応じた回転抵抗を有している。 As shown in FIG. 4, the external roller 41 has a first roller 41a and a second roller 41b. The first roller 41a is arranged above the conveying path of the base film 23, and the second roller 41b is arranged below the conveying path. The external rollers 41 sandwich the base film 23 between the first roller 41a and the second roller 41b. In the illustrated outer roller 41, the outer diameter of the first roller 41a and the outer diameter of the second roller 41b are equal. The external roller 41 is, for example, a brake roller. That is, the external roller 41 is configured to apply a braking force Fb in a direction opposite to the transport direction X to the base film 23 . For example, the outer roller 41 has rotational resistance corresponding to the braking force Fb.
 内部ローラ42は、押圧ローラ42a、駆動ローラ42b、およびモータ42cを有する。例示された内部ローラ42では、押圧ローラ42aが基材フィルム23の搬送路に対して上側に配置され、駆動ローラ42bが搬送路に対して下側に配置されている。駆動ローラ42bは、キャプスタンのごとき部材であり、例えば、円柱形状の金属軸である。モータ42cは、駆動ローラ42bを回転させる回転モータである。駆動ローラ42bは、モータ42cの出力軸に連結されていてもよく、減速機構を介してモータ42cの出力軸に連結されてもよい。押圧ローラ42aは、駆動ローラ42bに向けて基材フィルム23を押圧するローラである。押圧ローラ42aの外径は、駆動ローラ42bの外径よりも大きい。内部ローラ42は、押圧ローラ42aを駆動ローラ42bに向けて付勢するばねを有していてもよい。 The internal roller 42 has a pressing roller 42a, a driving roller 42b, and a motor 42c. In the illustrated internal rollers 42, the pressure roller 42a is arranged above the conveying path of the base film 23, and the driving roller 42b is arranged below the conveying path. The drive roller 42b is a member such as a capstan, and is, for example, a cylindrical metal shaft. The motor 42c is a rotary motor that rotates the drive roller 42b. The driving roller 42b may be connected to the output shaft of the motor 42c, or may be connected to the output shaft of the motor 42c via a reduction mechanism. The pressing roller 42a is a roller that presses the base film 23 toward the driving roller 42b. The outer diameter of the pressing roller 42a is larger than the outer diameter of the drive roller 42b. The inner roller 42 may have a spring that biases the pressure roller 42a toward the drive roller 42b.
 駆動ローラ42bは、基材フィルム23に対して搬送方向Xに沿った駆動力Ffを与える。内部ローラ42は、基材フィルム23を搬送する搬送ローラとしての機能を有する。テンション機構4は、駆動力Ffおよびブレーキ力Fbにより、基材フィルム23に対してテンションFtを付加する。テンションFtは、基材フィルム23のうち外部ローラ41と内部ローラ42との間に位置する対象部分24mに発生する。本実施形態の電池用電極製造装置1は、以下に説明するように、カルマン渦等に起因する基材フィルム23の振動を抑制することができる。 The driving roller 42 b applies a driving force Ff along the transport direction X to the base film 23 . The internal roller 42 functions as a transport roller that transports the base film 23 . The tension mechanism 4 applies tension Ft to the base film 23 with the driving force Ff and the braking force Fb. The tension Ft is generated in the target portion 24m of the base film 23 located between the outer roller 41 and the inner roller 42 . As described below, the battery electrode manufacturing apparatus 1 of the present embodiment can suppress vibration of the base film 23 caused by Karman vortices and the like.
 図5には、筐体20の外部空間20bから内部空間20aへ流入する空気の流れAfが示されている。空気の流れAfは、外部空間20bと内部空間20aとの圧力差によって生じる。外部空間20bの気圧は、例えば、大気圧である。外部空間20bの空気は、スリット20sを介して搬送方向Xに沿って内部空間20aに侵入する。スリット20sには、スリット20sの壁面に沿った境界層BLが形成される。 FIG. 5 shows the air flow Af flowing from the outer space 20b of the housing 20 to the inner space 20a. The air flow Af is caused by the pressure difference between the outer space 20b and the inner space 20a. The atmospheric pressure of the external space 20b is, for example, the atmospheric pressure. The air in the outer space 20b enters the inner space 20a along the transport direction X through the slits 20s. A boundary layer BL is formed along the wall surface of the slit 20s in the slit 20s.
 また、スリット20sよりも搬送方向Xの下流側には、カルマン渦Kvが発生する。カルマン渦Kvは、基材フィルム23の上側、および下側に交互に生成される。基材フィルム23の上側には第一の渦列VL1が発生し、基材フィルム23の下側には第二の渦列VL2が発生する。本実施形態の電池用電極製造装置1は、カルマン渦Kvによる基材フィルム23の振動をテンションFtによって抑制することができる。テンション機構4は、基材フィルム23に対してテンションFtを与えることにより、基材フィルム23の振動を抑制する。例えば、テンションFtは、基材フィルム23にテンションFtが付加されていない場合と比較して、鉛直方向Zにおける基材フィルム23の振幅を小さくすることができる。 Further, a Karman vortex Kv is generated on the downstream side in the transport direction X of the slit 20s. The Karman vortices Kv are alternately generated above and below the base film 23 . A first vortex line VL<b>1 is generated above the base film 23 , and a second vortex line VL<b>2 is generated below the base film 23 . The battery electrode manufacturing apparatus 1 of the present embodiment can suppress the vibration of the base film 23 due to the Karman vortices Kv by the tension Ft. The tension mechanism 4 suppresses vibration of the base film 23 by applying tension Ft to the base film 23 . For example, the tension Ft can make the amplitude of the base film 23 in the vertical direction Z smaller than when the tension Ft is not applied to the base film 23 .
 また、テンション機構4は、基材フィルム23における振動の伝播を抑制することができる。例えば、内部ローラ42は、対象部分24mにおいて発生した振動を内部ローラ42において吸収することができる。振動を吸収する構成として、例えば、押圧ローラ42aが弾性を有するゴム等の樹脂によって形成されてもよい。内部ローラ42は、対象部分24mの振動が内部ローラ42よりも下流側へ伝播することを抑制する。また、外部ローラ41は、対象部分24mの振動が外部ローラ41よりも上流側へ伝播することを抑制する。 Also, the tension mechanism 4 can suppress the propagation of vibration in the base film 23 . For example, the internal rollers 42 can absorb vibrations generated in the target portion 24m at the internal rollers 42 . As a configuration for absorbing vibrations, for example, the pressing roller 42a may be made of elastic resin such as rubber. The internal roller 42 suppresses the vibration of the target portion 24m from propagating to the downstream side of the internal roller 42 . In addition, the external roller 41 suppresses the vibration of the target portion 24m from propagating upstream of the external roller 41 .
 テンション機構4は、対象部分24mの固有振動数νをカルマン渦Kvによる振動周波数fkからずらすようにテンションFtを付加することが好ましい。カルマン渦Kvによる振動周波数fkは、例えば、カルマン渦Kvが発生する周期に応じた周波数である。振動周波数fkは、理論的に求められてもよく、実験的に求められてもよい。振動周波数fkは、例えば、外部空間20bと内部空間20aとの圧力差、スリット20sの断面形状、搬送方向Xに沿ったスリット20sの長さ、スリット20sの壁面の粗度、基材フィルム23の厚さ等に基づいて算出されてもよい。 The tension mechanism 4 preferably applies tension Ft so as to shift the natural frequency ν of the target portion 24m from the vibration frequency fk of the Karman vortices Kv. The vibration frequency fk of the Karman vortex Kv is, for example, a frequency corresponding to the period of the Karman vortex Kv. The vibration frequency fk may be obtained theoretically or experimentally. The vibration frequency fk is, for example, the pressure difference between the external space 20b and the internal space 20a, the cross-sectional shape of the slit 20s, the length of the slit 20s along the transport direction X, the roughness of the wall surface of the slit 20s, and the thickness of the base film 23. It may be calculated based on the thickness or the like.
 対象部分24mの固有振動数νは、搬送方向Xに沿った対象部分24mの長さLx、およびテンションFtの大きさによって調節することが可能である。本実施形態のテンション機構4は、振動周波数fkに対して、固有振動数νをずらすように構成されている。また、テンション機構4は、振動周波数fkに対して固有振動数νの倍数をずらすように構成されている。よって、本実施形態の電池用電極製造装置1は、カルマン渦Kvによる基材フィルム23の共振の発生を好適に抑制することができる。 The natural frequency ν of the target portion 24m can be adjusted by the length Lx of the target portion 24m along the transport direction X and the magnitude of the tension Ft. The tension mechanism 4 of this embodiment is configured to shift the natural frequency ν with respect to the vibration frequency fk. Further, the tension mechanism 4 is configured to shift a multiple of the natural frequency ν with respect to the vibration frequency fk. Therefore, the battery electrode manufacturing apparatus 1 of the present embodiment can suitably suppress the occurrence of resonance of the base film 23 due to the Karman vortices Kv.
 以上説明したように、本実施形態に係る電池用電極製造装置1は、スリット20sを有するチャンバー2と、供給機構3と、テンション機構4と、を有する。チャンバー2は、内部空間20aが大気圧よりも減圧されている。スリット20sは、チャンバー2の内部空間20aと外部空間20bとを連通している。供給機構3は、内部空間20aに配置されている。供給機構3は、スリット20sを介して外部空間20bから内部空間20aに搬送される帯状の基材フィルム23に対して粉体状の活物質25を供給する。基材フィルムは23、例えば、集電体であるが、これに限らず、セパレータや転写用のフィルム等であってもよい。本実施形態のようにスリット20sを介してチャンバー2の外部空間20bから内部空間20aに基材フィルム23を連続的に供給する構成によれば、電池用電極の製造効率を向上させることができる。 As described above, the battery electrode manufacturing apparatus 1 according to this embodiment has the chamber 2 having the slit 20s, the supply mechanism 3, and the tension mechanism 4. The internal space 20a of the chamber 2 is evacuated below the atmospheric pressure. The slit 20s communicates the internal space 20a and the external space 20b of the chamber 2 . The supply mechanism 3 is arranged in the internal space 20a. The supply mechanism 3 supplies the powdery active material 25 to the belt-like base film 23 conveyed from the external space 20b to the internal space 20a through the slit 20s. The base film 23 is, for example, a current collector, but is not limited to this, and may be a separator, a transfer film, or the like. According to the configuration in which the substrate film 23 is continuously supplied from the external space 20b to the internal space 20a of the chamber 2 through the slit 20s as in the present embodiment, the production efficiency of the battery electrode can be improved.
 テンション機構4は、外部空間20bに配置された外部ローラ41と、内部空間20aにおけるスリット20sと供給機構3との間に配置された内部ローラ42と、を有する。テンション機構4は、外部ローラ41および内部ローラ42によって基材フィルム23に対してテンションFtを付加する。つまり、テンション機構4は、テンション機構4が無い場合と比較して基材フィルム23のテンションを増加させる。本実施形態の電池用電極製造装置1は、テンションFtを付加することによって、大気圧よりも減圧されたチャンバー内部空間へ搬送される基材フィルム23の振動を抑制することができる。 The tension mechanism 4 has an external roller 41 arranged in the external space 20b and an internal roller 42 arranged between the slit 20s and the supply mechanism 3 in the internal space 20a. The tension mechanism 4 applies tension Ft to the base film 23 with the external roller 41 and the internal roller 42 . That is, the tension mechanism 4 increases the tension of the base film 23 as compared with the case without the tension mechanism 4 . By applying the tension Ft, the battery electrode manufacturing apparatus 1 of the present embodiment can suppress the vibration of the base film 23 that is transported to the inner space of the chamber whose pressure is reduced below the atmospheric pressure.
 本実施形態に係る電池用電極製造装置1は、基材フィルム23の振動を抑制することにより、基材フィルム23の搬送速度を安定させることができる。つまり、電池用電極製造装置1は、基材フィルム23を安定的に搬送できる。よって、本実施形態に係る電池用電極製造装置1は、基材フィルム23に対して活物質25を供給する供給工程の安定性を向上させることができる。 The battery electrode manufacturing apparatus 1 according to the present embodiment can stabilize the transport speed of the base film 23 by suppressing the vibration of the base film 23 . That is, the battery electrode manufacturing apparatus 1 can stably transport the base film 23 . Therefore, the battery electrode manufacturing apparatus 1 according to the present embodiment can improve the stability of the supplying process of supplying the active material 25 to the base film 23 .
 本実施形態の外部ローラ41および内部ローラ42は、それぞれ基材フィルム23を挟み込むローラ対を有する。外部ローラ41は、基材フィルム23を挟み込む第一ローラ41aおよび第二ローラ41bを有する。内部ローラ42は、基材フィルム23を挟み込む押圧ローラ42aおよび駆動ローラ42bを有する。外部ローラ41および内部ローラ42がそれぞれローラ対によって基材フィルム23を挟み込むことで、テンション機構4の大型化を抑制しつつ所望のテンションFtを付加することが可能となる。 The outer roller 41 and the inner roller 42 of this embodiment each have a roller pair that sandwiches the base film 23 . The external rollers 41 have a first roller 41a and a second roller 41b that sandwich the base film 23 therebetween. The internal roller 42 has a pressure roller 42a and a drive roller 42b that sandwich the base film 23 therebetween. By sandwiching the substrate film 23 between the outer roller 41 and the inner roller 42 by the pair of rollers, it is possible to apply a desired tension Ft while suppressing an increase in the size of the tension mechanism 4 .
 本実施形態の内部ローラ42は、基材フィルム23に対して搬送方向Xの駆動力Ffを与える駆動ローラ42bを有する。外部ローラ41は、基材フィルム23に対して搬送方向Xとは逆方向のブレーキ力Fbを与える。このような構成により、内部ローラ42は、基材フィルム23を搬送する搬送ローラとして機能することができる。 The internal roller 42 of this embodiment has a driving roller 42b that applies a driving force Ff in the transport direction X to the base film 23. The external roller 41 applies a braking force Fb in a direction opposite to the conveying direction X to the base film 23 . With such a configuration, the internal roller 42 can function as a transport roller that transports the base film 23 .
 本実施形態のテンション機構4は、外部ローラ41と内部ローラ42との間における基材フィルム23の固有振動数νをスリット20sにおいて発生するカルマン渦Kvによる振動周波数fkとは異ならせるテンションFtを基材フィルム23に対して付加する。よって、外部ローラ41と内部ローラ42との間における基材フィルム23の振動が効果的に抑制される。 The tension mechanism 4 of this embodiment is based on the tension Ft that makes the natural frequency ν of the base film 23 between the outer roller 41 and the inner roller 42 different from the vibration frequency fk caused by the Karman vortices Kv generated in the slit 20s. It is added to the material film 23 . Therefore, vibration of the base film 23 between the outer roller 41 and the inner roller 42 is effectively suppressed.
 本実施形態に係る電池用電極製造方法は、テンションを付加する工程と、供給する工程と、を有する。テンションを付加する工程では、チャンバー2の内部空間20aへチャンバー2のスリット20sを介して搬送される帯状の基材フィルム23に対してテンションFtが付加される。チャンバー2の内部空間20aは、大気圧よりも減圧されている。供給する工程では、基材フィルム23に対して内部空間20aにおいて粉体状の活物質25が供給される。 The battery electrode manufacturing method according to the present embodiment has a step of applying tension and a step of supplying. In the step of applying the tension, the tension Ft is applied to the strip-shaped base film 23 conveyed through the slits 20s of the chamber 2 into the internal space 20a of the chamber 2 . The internal space 20a of the chamber 2 is pressure-reduced below atmospheric pressure. In the supplying step, the powdery active material 25 is supplied to the base film 23 in the internal space 20a.
 テンションを付加する工程において、チャンバー2の外部空間20bに配置された外部ローラ41と、内部空間20aに配置された内部ローラ42と、によって基材フィルム23に対してテンションFtが付加される。供給する工程において、内部ローラ42を通過した後の基材フィルム23に対して活物質25が供給される。本実施形態に係る電池用電極製造方法は、スリット20sを通過して大気圧よりも減圧されたチャンバー内部空間へ搬送される基材フィルム23の振動を抑制し、基材フィルム23を安定的に搬送することができる。 In the step of applying tension, tension Ft is applied to the base film 23 by the external roller 41 arranged in the external space 20b of the chamber 2 and the internal roller 42 arranged in the internal space 20a. In the supplying step, the active material 25 is supplied to the base film 23 after passing through the internal rollers 42 . The method for manufacturing a battery electrode according to the present embodiment suppresses the vibration of the base film 23 that passes through the slit 20s and is conveyed to the inner space of the chamber whose pressure is reduced below the atmospheric pressure, and stabilizes the base film 23. can be transported.
[実施形態の第1変形例]
 実施形態の第1変形例について説明する。図6は、実施形態の第1変形例に係るテンション機構を示す図である。図6に示すテンション機構4において、上記実施形態のテンション機構4と異なる点は、内部ローラ42の構成である。図6に示す内部ローラ42は、第一ローラ42dおよび第二ローラ42eを有する。内部ローラ42は、第一ローラ42dおよび第二ローラ42eによって基材フィルム23を挟み込む。例示された内部ローラ42では、第一ローラ42dおよび第二ローラ42eの外径が等しい。
[First modification of the embodiment]
A first modification of the embodiment will be described. FIG. 6 is a diagram showing a tension mechanism according to a first modified example of the embodiment; The tension mechanism 4 shown in FIG. 6 differs from the tension mechanism 4 of the above embodiment in the configuration of the internal rollers 42 . The internal rollers 42 shown in FIG. 6 have a first roller 42d and a second roller 42e. The internal rollers 42 sandwich the base film 23 between the first roller 42d and the second roller 42e. In the illustrated inner roller 42, the outer diameters of the first roller 42d and the second roller 42e are equal.
 内部ローラ42において、第一ローラ42dおよび第二ローラ42eの何れかが駆動ローラであってもよい。例えば、第一ローラ42dが駆動ローラとして基材フィルム23に対して駆動力Ffを与えてもよい。この場合、第二ローラ42eは従動ローラであってもよい。 In the internal rollers 42, either the first roller 42d or the second roller 42e may be a driving roller. For example, the first roller 42d may act as a driving roller to apply the driving force Ff to the base film 23. FIG. In this case, the second roller 42e may be a driven roller.
 第1変形例のテンション機構4において、図7に示すように、外部ローラ41および内部ローラ42の両方がブレーキローラであってもよい。この場合、テンション機構4よりも搬送方向Xの下流側に基材フィルム23を搬送する搬送ローラ7が設けられることが望ましい。外部ローラ41は、基材フィルム23に対してブレーキ力Fb1を与え、内部ローラ42は基材フィルム23に対してブレーキ力Fb2を与える。外部ローラ41によるブレーキ力Fb1は、内部ローラ42によるブレーキ力Fb2よりも大きくされる。 In the tension mechanism 4 of the first modified example, both the outer roller 41 and the inner roller 42 may be brake rollers, as shown in FIG. In this case, it is desirable that the transport roller 7 for transporting the base film 23 is provided on the downstream side in the transport direction X of the tension mechanism 4 . The external roller 41 applies a braking force Fb1 to the base film 23 and the internal roller 42 applies a braking force Fb2 to the base film 23 . The braking force Fb1 by the outer roller 41 is made larger than the braking force Fb2 by the inner roller 42 .
 図7に示すテンション機構4は、対象部分24mにテンションFt1を付加する。テンション機構4は、更に、内部ローラ42よりも搬送方向Xの下流側にテンションFt2を付加することができる。下流側に付加されるテンションFt2は、例えば、対象部分24mに付加されるテンションFt1よりも小さい。 The tension mechanism 4 shown in FIG. 7 applies tension Ft1 to the target portion 24m. The tension mechanism 4 can further apply tension Ft2 to the downstream side in the transport direction X of the internal roller 42 . The tension Ft2 applied to the downstream side is, for example, smaller than the tension Ft1 applied to the target portion 24m.
[実施形態の第2変形例]
 実施形態の第2変形例について説明する。図8は、実施形態の第2変形例に係るテンション機構を示す図である。図8に示すテンション機構4において、上記第1変形例のテンション機構4と異なる点は、外部ローラ41の構成である。
[Second Modification of Embodiment]
A second modification of the embodiment will be described. FIG. 8 is a diagram showing a tension mechanism according to a second modified example of the embodiment; The tension mechanism 4 shown in FIG. 8 differs from the tension mechanism 4 of the first modified example in the configuration of the external roller 41 .
 図8に示す外部ローラ41は、第一ローラ41c、第二ローラ41d、および第三ローラ41eを有する。外部ローラ41は、第一ローラ41c、第二ローラ41d、および第三ローラ41eによって基材フィルム23を蛇行させる。第一ローラ41cおよび第三ローラ41eは、搬送方向Xに沿ったスリット20sの延長線上に配置される。鉛直方向Zにおける第二ローラ41dの位置は、二つのローラ41c,41eに対してずれた位置である。 The external rollers 41 shown in FIG. 8 have a first roller 41c, a second roller 41d, and a third roller 41e. The external rollers 41 meander the base film 23 with the first roller 41c, the second roller 41d, and the third roller 41e. The first roller 41c and the third roller 41e are arranged on an extension line of the slit 20s along the transport direction X. The position of the second roller 41d in the vertical direction Z is shifted with respect to the two rollers 41c and 41e.
 外部ローラ41は、例えば、第一ローラ41cおよび第三ローラ41eに対する基材フィルム23の接触角を90度とし、第二ローラ41dに対する基材フィルム23の接触角を180度とするように構成される。テンション機構4は、例えば、内部ローラ42によって基材フィルム23に駆動力Ffを与える。外部ローラ41は、基材フィルム23を蛇行させることにより、基材フィルム23の対象部分24mにテンションFtを発生させる。なお、テンション機構4は、第二ローラ41dに配置されたばねを有していてもよい。この場合、テンション機構4は、第二ローラ41dのばねによってテンションFtの大きさを調節することができる。 The external roller 41 is configured, for example, so that the contact angle of the base film 23 with respect to the first roller 41c and the third roller 41e is 90 degrees, and the contact angle of the base film 23 with respect to the second roller 41d is 180 degrees. be. The tension mechanism 4 applies a driving force Ff to the base film 23 by, for example, the internal rollers 42 . The external roller 41 generates tension Ft in the target portion 24m of the base film 23 by causing the base film 23 to meander. Note that the tension mechanism 4 may have a spring arranged on the second roller 41d. In this case, the tension mechanism 4 can adjust the magnitude of the tension Ft by the spring of the second roller 41d.
[実施形態の第3変形例]
 実施形態の第3変形例について説明する。上記実施形態および各変形例において、外部ローラ41および内部ローラ42の両方が駆動ローラを有していてもよい。
[Third modification of the embodiment]
A third modification of the embodiment will be described. In the above embodiments and modifications, both the outer roller 41 and the inner roller 42 may have drive rollers.
 上記の実施形態および変形例に開示された内容は、適宜組み合わせて実行することができる。 The contents disclosed in the above embodiments and modifications can be executed in combination as appropriate.

Claims (5)

  1.  内部空間が大気圧よりも減圧されており、かつ前記内部空間と外部空間とを連通するスリットを有するチャンバーと、
     前記内部空間に配置され、前記スリットを介して前記外部空間から前記内部空間に搬送される帯状の基材フィルムに対して粉体状の活物質を供給する供給機構と、
     前記外部空間に配置された外部ローラと、前記内部空間における前記スリットと前記供給機構との間に配置された内部ローラと、を有し、前記外部ローラおよび前記内部ローラによって前記基材フィルムに対してテンションを付加するテンション機構と、
     を備えた電池用電極製造装置。
    a chamber having an internal space reduced in pressure below atmospheric pressure and having a slit communicating between the internal space and the external space;
    a supply mechanism arranged in the internal space for supplying a powdery active material to a strip-shaped base film conveyed from the external space to the internal space through the slit;
    an external roller arranged in the external space; and an internal roller arranged between the slit and the supply mechanism in the internal space, wherein the external roller and the internal roller move against the base film. a tension mechanism that applies tension to the
    Battery electrode manufacturing equipment.
  2.  前記外部ローラおよび前記内部ローラは、それぞれ前記基材フィルムを挟み込むローラ対を有する
     請求項1に記載の電池用電極製造装置。
    The battery electrode manufacturing apparatus according to claim 1, wherein the outer roller and the inner roller each have a roller pair that sandwiches the base film.
  3.  前記内部ローラは、前記基材フィルムに対して搬送方向の駆動力を与える駆動ローラを有し、
     前記外部ローラは、前記基材フィルムに対して前記搬送方向とは逆方向のブレーキ力を与える
     請求項1または2に記載の電池用電極製造装置。
    The internal roller has a driving roller that applies a driving force in the conveying direction to the base film,
    The battery electrode manufacturing apparatus according to claim 1 or 2, wherein the external roller applies a braking force in a direction opposite to the conveying direction to the base film.
  4.  前記テンション機構は、前記外部ローラと前記内部ローラとの間における前記基材フィルムの固有振動数を前記スリットにおいて発生するカルマン渦による振動周波数とは異ならせるテンションを前記基材フィルムに対して付加する
     請求項1から3の何れか1項に記載の電池用電極製造装置。
    The tension mechanism applies a tension to the base film that makes the natural frequency of the base film between the outer roller and the inner roller different from the vibration frequency due to Karman vortices generated in the slit. The battery electrode manufacturing apparatus according to any one of claims 1 to 3.
  5.  大気圧よりも減圧されているチャンバーの内部空間へ前記チャンバーのスリットを介して搬送される帯状の基材フィルムに対してテンションを付加する工程と、
     前記基材フィルムに対して前記内部空間において粉体状の活物質を供給する工程と、
     を含み、
     前記テンションを付加する工程において、前記チャンバーの外部空間に配置された外部ローラと、前記内部空間に配置された内部ローラと、によって前記基材フィルムに対してテンションを付加し、
     前記供給する工程において、前記内部ローラを通過した後の前記基材フィルムに対して前記活物質を供給する
     電池用電極製造方法。
    a step of applying tension to a strip-shaped base film conveyed through a slit of the chamber into the inner space of the chamber, which is reduced in pressure below atmospheric pressure;
    a step of supplying a powdery active material to the base film in the internal space;
    including
    In the step of applying tension, tension is applied to the base film by an external roller arranged in the external space of the chamber and an internal roller arranged in the internal space,
    The method for manufacturing a battery electrode, wherein in the supplying step, the active material is supplied to the base film after passing through the internal roller.
PCT/JP2022/016269 2021-03-31 2022-03-30 Battery electrode manufacturing device and battery electrode manufacturing method WO2022210965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-060392 2021-03-31
JP2021060392A JP2022156610A (en) 2021-03-31 2021-03-31 Battery electrode manufacturing device and battery electrode manufacturing method

Publications (1)

Publication Number Publication Date
WO2022210965A1 true WO2022210965A1 (en) 2022-10-06

Family

ID=83459612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016269 WO2022210965A1 (en) 2021-03-31 2022-03-30 Battery electrode manufacturing device and battery electrode manufacturing method

Country Status (2)

Country Link
JP (1) JP2022156610A (en)
WO (1) WO2022210965A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212873A (en) * 2011-03-24 2012-11-01 Tokyo Electron Ltd Electrode manufacturing device, electrode manufacturing method, program and computer storage medium
JP2013184749A (en) * 2012-03-05 2013-09-19 Hitachi Industrial Equipment Systems Co Ltd System and device of driving/controlling thin film sheet, and sheet winding device using the same
JP2014123663A (en) * 2012-12-21 2014-07-03 Tokyo Electron Ltd Apparatus and method of manufacturing electrode for lithium ion capacitor
JP2016094629A (en) * 2014-11-12 2016-05-26 東レエンジニアリング株式会社 Substrate carrying and processing apparatus
JP2018031040A (en) * 2016-08-23 2018-03-01 住友金属鉱山株式会社 Surface treatment unit by roll-to-roll system, and film deposition method and film deposition apparatus using the same
JP2021012829A (en) * 2019-07-08 2021-02-04 東京エレクトロン株式会社 Electrode manufacturing device and electrode manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212873A (en) * 2011-03-24 2012-11-01 Tokyo Electron Ltd Electrode manufacturing device, electrode manufacturing method, program and computer storage medium
JP2013184749A (en) * 2012-03-05 2013-09-19 Hitachi Industrial Equipment Systems Co Ltd System and device of driving/controlling thin film sheet, and sheet winding device using the same
JP2014123663A (en) * 2012-12-21 2014-07-03 Tokyo Electron Ltd Apparatus and method of manufacturing electrode for lithium ion capacitor
JP2016094629A (en) * 2014-11-12 2016-05-26 東レエンジニアリング株式会社 Substrate carrying and processing apparatus
JP2018031040A (en) * 2016-08-23 2018-03-01 住友金属鉱山株式会社 Surface treatment unit by roll-to-roll system, and film deposition method and film deposition apparatus using the same
JP2021012829A (en) * 2019-07-08 2021-02-04 東京エレクトロン株式会社 Electrode manufacturing device and electrode manufacturing method

Also Published As

Publication number Publication date
JP2022156610A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
JP6210352B2 (en) Lamination device including electrode guide
JP6376406B2 (en) Manufacturing method of battery pack
CN112602229B (en) Hybrid lithium ion capacitor battery with carbon-coated separator and method of making same
EP3583640B1 (en) Method for manufacturing electric vehicle battery cells with polymer frame support
KR101799570B1 (en) Electrode Assembly Folded in the Bi-Direction and Lithium Secondary Battery Comprising the Same
KR102327294B1 (en) Method and apparatus for applying a self-adhesive film to an electrical energy storage cell
WO2022210965A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP6585337B2 (en) Electrical device
WO2022210966A1 (en) Battery electrode manufacturing device
JP2000315518A (en) Device for manufacturing sheet-foam battery element
JP5625770B2 (en) Electrode, battery, and electrode manufacturing method
JP7171643B2 (en) Secondary battery and secondary battery manufacturing method
JP2023003092A (en) Battery electrode manufacturing device
WO2023100840A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023157931A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023128855A (en) Manufacturing device for battery electrode and manufacturing method for battery electrode
JP2023003069A (en) Battery electrode manufacturing device and method for manufacturing battery electrode
WO2022270604A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023167339A1 (en) Apparatus for producing battery electrode and method for producing battery electrode
JP7425716B2 (en) Current collector supply device
JP2023080523A (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2000164241A (en) Electrode body for secondary battery and its manufacture
JP2023132707A (en) Battery electrode manufacturing device and battery electrode manufacturing method
WO2023171772A1 (en) Battery electrode manufacturing device and battery electrode manufacturing method
JP2023103563A (en) Battery electrode manufacturing device and battery electrode manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781175

Country of ref document: EP

Kind code of ref document: A1