JP2022157625A - Method for manufacturing compressed bond magnet - Google Patents

Method for manufacturing compressed bond magnet Download PDF

Info

Publication number
JP2022157625A
JP2022157625A JP2021061951A JP2021061951A JP2022157625A JP 2022157625 A JP2022157625 A JP 2022157625A JP 2021061951 A JP2021061951 A JP 2021061951A JP 2021061951 A JP2021061951 A JP 2021061951A JP 2022157625 A JP2022157625 A JP 2022157625A
Authority
JP
Japan
Prior art keywords
magnet
magnetic field
molding
compression
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021061951A
Other languages
Japanese (ja)
Inventor
勇輝 柘植
Yuki Tsuge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2021061951A priority Critical patent/JP2022157625A/en
Publication of JP2022157625A publication Critical patent/JP2022157625A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

To provide a manufacturing method for obtaining a compressed bond magnet having high density and high orientation.SOLUTION: A method for manufacturing a compressed bond magnet includes a molding step of compressing a bond magnet raw material composed of magnet powder and a binder resin capable of binding the magnet powder in a cavity while heating the bond magnet raw material. The magnet powder contains anisotropic magnet powder. The binder resin contains a thermosetting resin. The molding step includes a first molding step of molding the raw material while applying an orientation magnetic field into the cavity, and a second molding step of molding the raw material by reducing or blocking the orientation magnetic field after the first molding step. The application of the orientation magnetic field is blocked in the middle of the molding step, which achieves high density of the bond magnet while maintaining orientation of the magnet particles. The manufacturing method can also reduce a compressive force in the molding step.SELECTED DRAWING: Figure 2

Description

本発明は、圧縮ボンド磁石の製造方法等に関する。 TECHNICAL FIELD The present invention relates to a method for manufacturing a compression bond magnet, and the like.

高性能化や省エネルギー化等を図るため、希土類磁石を用いた電磁機器(電動機等)が多く用いられる。希土類磁石には、希土類磁石粉末を焼結させた焼結磁石と、希土類磁石粉末をバインダ樹脂で結着させたボンド磁石がある。ボンド磁石は焼結磁石よりも、成形性に優れ、形状自由度が大きい。 Electromagnetic devices (motors, etc.) using rare earth magnets are often used in order to improve performance and save energy. Rare earth magnets include sintered magnets obtained by sintering rare earth magnet powder and bonded magnets obtained by binding rare earth magnet powder with a binder resin. Bond magnets are superior to sintered magnets in moldability and have a greater degree of freedom in shape.

ボンド磁石には、主に、磁石粉末と熱可塑性樹脂の溶融混合物を筐体のキャビティ(ロータコアのスロット等)へ射出して一体成形した射出ボンド磁石と、磁石粉末と熱硬化性樹脂の混合物または混練物を、金型や筐体等のキャビティ内で圧縮して成形した圧縮ボンド磁石とがある。圧縮ボンド磁石は、通常、バインダ樹脂に熱硬化性樹脂が用いられるため、射出ボンド磁石よりも耐熱性に優れる。このような圧縮ボンド磁石の製造方法に関連する記載が下記の特許文献1にある。 Bonded magnets mainly consist of injected bonded magnets, which are integrally molded by injecting a molten mixture of magnet powder and thermoplastic resin into the cavity of the housing (rotor core slot, etc.), and mixtures of magnet powder and thermosetting resin, or There is a compression bonded magnet formed by compressing a kneaded material in a cavity such as a mold or a housing. Compression bond magnets generally use a thermosetting resin as the binder resin, and are therefore superior in heat resistance to injection bond magnets. Patent Document 1 below describes a method for manufacturing such a compression bond magnet.

特開平8-31677号公報JP-A-8-31677

特許文献1は、磁気異方性樹脂結合型磁石(単に「ボンド磁石」という。)の製造方法を提案している。その具体的な工程は次の通りである(特許文献1の[0024]、[0065]等)。 Patent Document 1 proposes a method for manufacturing a magnetically anisotropic resin-bonded magnet (simply referred to as a "bonded magnet"). The specific steps are as follows ([0024], [0065], etc. of Patent Document 1).

先ず、磁石粉末と熱硬化性樹脂(エポキシ樹脂)の粉末(単に「樹脂粉末」という。)を混合した原料粉末を、加熱した成形用金型(金型温度:150℃)に給粉する。次に、樹脂粉末が溶融してから磁界(16kOe)の印加を開始し、その溶融樹脂が最低粘度となってから加圧(8ton/cm)を開始する。 First, raw material powder obtained by mixing magnet powder and thermosetting resin (epoxy resin) powder (simply referred to as “resin powder”) is fed into a heated mold (mold temperature: 150° C.). Next, after the resin powder melts, application of a magnetic field (16 kOe) is started, and after the melted resin reaches the minimum viscosity, pressure (8 ton/cm 2 ) is started.

その後、液体状になった樹脂の架橋反応が進み、その粘度が増加したところで、磁界印加、加熱および加圧を終了させ、成形用金型からボンド磁石を取り出す。取り出されたボンド磁石には、金型温度と同温度で加熱硬化処理(キュア処理)が施される。 After that, the cross-linking reaction of the liquefied resin progresses, and when the viscosity increases, magnetic field application, heating and pressurization are terminated, and the bond magnet is taken out from the molding die. The bonded magnet that is taken out is subjected to heat curing treatment (curing treatment) at the same temperature as the mold temperature.

特許文献1の加熱磁場中成形では、磁界印加の開始時と加圧の開始時との間に、意図的な時間差が設定されている。しかし、磁界印加の終了時と加圧の終了時との間には有意な時間差が設定されていない。すなわち、特許文献1の場合、磁界印加の終了と加圧の終了は略同時になされている。 In the heating magnetic field molding of Patent Document 1, an intentional time difference is set between the start of magnetic field application and the start of pressurization. However, no significant time difference is set between the end of magnetic field application and the end of pressurization. That is, in the case of Patent Document 1, the end of magnetic field application and the end of pressurization are performed substantially at the same time.

本発明はこのような事情に鑑みて為されたものであり、従来とは異なる新たな圧縮ボンド磁石の製造方法等を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to provide a novel method for manufacturing a compression bond magnet, which is different from the conventional method.

本発明者は鋭意研究した結果、加熱圧縮する成形工程の途中で、配向磁場を低減または遮断することにより、ボンド磁石の高密度化が図れることを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of intensive research, the present inventor newly found that the density of the bonded magnet can be increased by reducing or blocking the oriented magnetic field during the molding process of heating and compression. Developing this result led to the completion of the present invention described below.

《圧縮ボンド磁石の製造方法》
(1)本発明は、磁石粉末と該磁石粉末を結着させ得るバインダ樹脂からなるボンド磁石原料をキャビティ内で加熱しつつ圧縮する成形工程を備え、前記磁石粉末は、異方性磁石粉末を含み、該バインダ樹脂は、熱硬化性樹脂を含み、該成形工程は、該キャビティ内へ配向磁場を印加しつつなされる第1成形工程と、該第1成形工程後に該配向磁場を低減または遮断してなされる第2成形工程とを有する圧縮ボンド磁石の製造方法である。
<<Manufacturing method of compression bonded magnet>>
(1) The present invention comprises a molding step of heating and compressing in a cavity a bond magnet raw material comprising magnet powder and a binder resin capable of binding the magnet powder, wherein the magnet powder is an anisotropic magnet powder. wherein the binder resin contains a thermosetting resin, and the molding step includes a first molding step in which an oriented magnetic field is applied to the cavity, and after the first molding step, the oriented magnetic field is reduced or blocked. and a second molding step performed by:

(2)本発明の製造方法によれば、圧縮力を増大させるまでもなく、配向磁場の低減または遮断(「遮断等」という。)により、圧縮ボンド磁石(単に「ボンド磁石」という。)の高密度化が図られる。逆に、所望の配向度と密度を有するボンド磁石を、圧縮力を低減させつつ成形することが可能となる。圧縮力の低減により、例えば、キャビティを構成する金型・筐体の変形抑制、ボンド磁石の精度向上または磁石粒子の割れ抑制等も可能となり得る。 (2) According to the manufacturing method of the present invention, the compression bond magnet (simply referred to as "bond magnet") can be produced by reducing or blocking the oriented magnetic field (referred to as "blocking or the like") without increasing the compressive force. Higher density is achieved. Conversely, it is possible to mold a bonded magnet having a desired degree of orientation and density while reducing the compressive force. By reducing the compressive force, for example, it is possible to suppress deformation of the mold/casing forming the cavity, improve the precision of the bonded magnet, or suppress cracking of the magnet particles.

《圧縮ボンド磁石/磁気部材》
本発明は、上述した製造方法により得られた圧縮ボンド磁石としても把握できる。また本発明は、圧縮ボンド磁石とキャビティを有する筐体とが一体化した磁気部材としても把握される。磁気部材(電磁部材等)の一例として界磁子がある。
《Compression bond magnet/Magnetic member》
The present invention can also be grasped as a compression bond magnet obtained by the manufacturing method described above. The present invention can also be grasped as a magnetic member in which a compression bond magnet and a housing having a cavity are integrated. A field element is an example of a magnetic member (such as an electromagnetic member).

界磁子は、例えば、電動機の回転子(ロータ)または固定子(ステータ)である。電動機には、モータのみならず、ジェネレータが含まれる。電動機は、直流電動機でも交流電動機でもよい。界磁子がロータの場合、例えば、筐体はロータコアであり、キャビティはそのスロットである。ロータは、インナーロータでもアウターロータでもよい。 A field element is, for example, a rotor or a stator of an electric motor. Electric motors include generators as well as motors. The motor may be a DC motor or an AC motor. If the field element is a rotor, for example, the housing is the rotor core and the cavity is its slot. The rotor may be an inner rotor or an outer rotor.

《その他》
特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。また、特に断らない限り、本明細書でいう「x~yMPa」はxMPa~yMPaを意味する。他の単位系(μm等)についても同様である。
"others"
Unless otherwise specified, "x to y" as used herein includes the lower limit value x and the upper limit value y. A new range such as “a to b” can be established as a new lower or upper limit of any numerical value included in the various numerical values or numerical ranges described herein. Further, unless otherwise specified, "x to y MPa" as used herein means x MPa to y MPa. The same applies to other unit systems (μm, etc.).

加熱磁場中成形の各過程を模式的に示す説明図である。FIG. 4 is an explanatory view schematically showing each process of molding in a heating magnetic field; その成形中における圧縮力と配向磁場のタイムチャートである。It is a time chart of the compressive force and the oriented magnetic field during the molding. 熱硬化性樹脂の粘度の時間変化を示すグラフである。4 is a graph showing changes in viscosity of thermosetting resin over time. 無磁場成形した場合と磁場中成形した場合について、圧縮力(成形圧力)とボンド磁石の密度との関係を示すグラフである。4 is a graph showing the relationship between the compressive force (molding pressure) and the density of the bond magnet for the case of non-magnetic field molding and the case of magnetic field molding. 成形中に印加される磁場の有無が、ボンド磁石の密度に及ぼす影響を説明する模式図である。FIG. 4 is a schematic diagram illustrating the effect of the presence or absence of a magnetic field applied during molding on the density of a bonded magnet. 成形法の相違がボンド磁石の密度に及ぼす影響を圧縮力毎に示す散布図である。FIG. 4 is a scatter diagram showing the effect of different molding methods on the density of a bonded magnet for each compression force. 配向磁場の印加終了時と、ボンド磁石(圧縮力:20MPa)の密度、配向度または残留磁束密度との関係を示す散布図である。FIG. 4 is a scatter diagram showing the relationship between the end of application of an aligning magnetic field and the density, degree of orientation, or residual magnetic flux density of a bond magnet (compressive force: 20 MPa). 配向磁場の印加終了時と、ボンド磁石(圧縮力:30MPa)の密度、配向度または残留磁束密度との関係を示す散布図である。FIG. 4 is a scatter diagram showing the relationship between the end of application of an aligning magnetic field and the density, degree of orientation, or residual magnetic flux density of a bond magnet (compressive force: 30 MPa). スロットにボンド磁石を一体成形したIPM用ロータの外観写真である。4 is an appearance photograph of an IPM rotor in which bond magnets are integrally formed in slots.

本明細書中に記載した事項から任意に選択した一つまたは二つ以上の構成要素を上述した本発明の構成に付加し得る。製造方法に関する構成要素も物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the items described herein can be added to the configuration of the present invention described above. A component related to a manufacturing method can also be a component related to an object. Which embodiment is the best depends on the target, required performance, and the like.

《加熱磁場中成形》
本発明に係る加熱磁場中成形の概要と、それによりボンド磁石の高密度化等が図れる機序とを、図1A~図1E(まとめて「図1」という。)に基づいて説明する。
《Molding in heating magnetic field》
An overview of the magnetic field heating molding according to the present invention and a mechanism by which the density of the bonded magnet can be increased will be described with reference to FIGS. 1A to 1E (collectively referred to as "FIG. 1").

(1)概要
ボンド磁石の加熱磁場中成形は、図1Aに示す各過程(工程)を順に経てなされる。各過程は次の通りである。磁石粉末とバインダ樹脂(主に熱硬化性樹脂)からなる原料が、加熱された金型等のキャビティ内へ供給(投入、収容等)される(供給過程)。図1Aには、キャビティがダイと上下パンチにより形成される場合を例示した。特に断らない限り、成形開始(原料供給時)から成形終了(ボンド磁石の排出)まで加熱は継続される。
(1) Overview Bond magnets are molded in a heated magnetic field through the steps shown in FIG. 1A in order. Each process is as follows. A raw material consisting of magnet powder and binder resin (mainly thermosetting resin) is supplied (thrown in, accommodated, etc.) into a heated cavity of a mold or the like (supply process). FIG. 1A illustrates the case where the cavity is formed by a die and upper and lower punches. Unless otherwise specified, heating is continued from the start of molding (at the time of raw material supply) to the end of molding (discharge of the bonded magnet).

キャビティ内でバインダ樹脂(特に熱硬化性樹脂/単に「樹脂」という。)が溶融を開始した後、配向磁場が印加される(配向過程)。但し、配向磁場が印加されているキャビティ内へ原料が供給されてもよい。つまり、原料の供給と配向磁場の印加との先後は問わず、両者は同時でもよい。コンパウンドを供給後、配向磁場を印加すると、磁場の影響を受けることなく、コンパウンドをキャビティへ投入できて好ましい。 After the binder resin (especially thermosetting resin/simply referred to as "resin") starts to melt in the cavity, an orientation magnetic field is applied (orientation process). However, the raw material may be supplied into the cavity to which the orientation magnetic field is applied. In other words, it does not matter whether the supply of the raw material and the application of the aligning magnetic field are performed before or after, and they may be performed at the same time. It is preferable to apply an aligning magnetic field after supplying the compound so that the compound can be injected into the cavity without being affected by the magnetic field.

加熱および磁場印加された原料を圧縮(加圧)する(配向圧縮過程)。その後、圧縮を継続したまま、配向磁場を遮断等する(圧縮過程)。 Compress (pressurize) the heated and magnetic field applied raw material (orientation compression process). After that, the aligning magnetic field is interrupted while the compression is continued (compression process).

原料に加えられる配向磁場(H)と圧縮力(P)の経時変化(タイムチャート)は、図1Bに示すようになる。本発明に係る加熱磁場中成形では、磁場印加の開始時(t1)と圧縮の開始時(t2)との間のみならず、磁場印加の終了時(t3)と圧縮の終了時(t4)との間にも、有意な時間差(Δt)が意図的に設定されている。 FIG. 1B shows temporal changes (time charts) of the orientation magnetic field (H) and compressive force (P) applied to the raw material. In the heating magnetic field molding according to the present invention, not only between the start of magnetic field application (t1) and the start of compression (t2), but also between the end of magnetic field application (t3) and the end of compression (t4) A significant time difference (Δt) is also intentionally set between .

(2)機序
配向圧縮過程(第1成形工程に相当)と圧縮過程(第2成形工程に相当)とにより、高配向で高密度なボンド磁石が得られる理由は次のように考えられる。
(2) Mechanism The reason why a highly oriented and high-density bonded magnet can be obtained by the orientation compression process (corresponding to the first molding process) and the compression process (corresponding to the second molding process) is considered as follows.

先ず、キャビティ内で加熱された樹脂は、溶融して液体状となる。その粘度は、図1Cに示すように、当初、時間に対して単調減少して最小(極小)に到達した後、単調増加する。さらに加熱を継続すると、その樹脂は熱硬化して固体状となる。なお、原料(磁石粒子と樹脂)の粘度変化も、通常、ほぼ樹脂の粘度変化と同様な傾向となる。 First, the resin heated in the cavity melts and becomes liquid. The viscosity initially decreases monotonically with time, reaches a minimum (minimum), and then increases monotonically, as shown in FIG. 1C. When the heating is continued further, the resin is thermally cured into a solid state. Note that the change in viscosity of the raw materials (magnet particles and resin) usually has a similar tendency to the change in viscosity of the resin.

次に、配向磁場を印加して原料を加熱圧縮(「磁場中成形」という。)して得られたボンド磁石の密度と、配向磁場を印加せずに原料を加熱圧縮(「無磁場成形」という。)して得られたボンド磁石の密度は、例えば、図1Dに示すようになる。いずれの場合でも、ボンド磁石の密度は圧縮力の増加と共に増加する。但し、同じ圧縮力で観ると、無磁場成形したボンド磁石の方が、磁場中成形したボンド磁石よりも高密度となる。 Next, the density of the bonded magnet obtained by heating and compressing the raw material by applying an aligning magnetic field (referred to as "magnetic field molding"), ), the density of the bonded magnet obtained is, for example, as shown in FIG. 1D. In either case, the density of the bonded magnet increases with increasing compressive force. However, when viewed with the same compressive force, the bond magnet molded without a magnetic field has a higher density than the bonded magnet molded in a magnetic field.

配向磁場(H)の有無により、同じ圧縮力(P)でもボンド磁石の密度が変化する理由は定かではないが、結果から次のように推察される。図1Eに示すように、磁場中成形の場合、磁石粒子とキャビティ内壁面との間または隣接する磁石粒子間には、配向磁場の分だけ配向磁場(H)方向へより強い磁着力が作用する。この状況下で、配向磁場(H)に垂直な圧縮力が磁石粉末とバインダ樹脂からなるコンパウンドに作用すると、キャビディ内壁面と磁石粒子の間や磁石粒子同士の間で、磁着力に比例した摩擦力(f)が発生する。このような摩擦力により、磁場中成形される磁石粒子は、無磁場成形される磁石粒子よりも、姿勢変化や圧縮方向への移動等が制限される。その結果、磁場中成形すると、無磁場成形したときよりも、ボンド磁石の密度が低下すると考えられる。 Although it is not clear why the density of the bond magnet changes depending on the presence or absence of the aligning magnetic field (H) even with the same compressive force (P), the results suggest the following. As shown in FIG. 1E, in the case of molding in a magnetic field, a stronger magnetizing force acts in the direction of the aligning magnetic field (H) by the amount of the aligning magnetic field between the magnet particles and the inner wall surface of the cavity or between adjacent magnet particles. . Under these circumstances, when a compressive force perpendicular to the oriented magnetic field (H) acts on the compound consisting of the magnet powder and the binder resin, friction proportional to the magnetizing force occurs between the inner wall surface of the cavity and the magnet particles and between the magnet particles. A force (f) is generated. Due to such a frictional force, the magnet particles molded in a magnetic field are more restricted in their posture change and movement in the direction of compression than the magnet particles molded in the non-magnetic field. As a result, it is considered that the density of the bonded magnet is lower when molded in a magnetic field than when molded without a magnetic field.

本発明のように配向圧縮過程と圧縮過程を経ると、上述した樹脂の粘度変化と配向磁場による密度への影響とが相加的または相乗的に作用して、高配向で高密度なボンド磁石が得られるようにる。具体的にいうと、先ず、配向圧縮過程では、粘度が低下した樹脂中で磁石粒子が配向磁場に沿って十分に姿勢変動(移動・回転等)し、高配向化が図られる。次に、圧縮過程では、配向磁場に起因した抵抗がない状態で圧縮され、高密度化が図られる。 When the orientation compression process and the compression process are performed as in the present invention, the viscosity change of the resin and the effect of the orientation magnetic field on the density act additively or synergistically, resulting in a highly oriented and high-density bonded magnet. is obtained. Specifically, first, in the alignment compression process, the magnet particles sufficiently change their postures (movement, rotation, etc.) along the alignment magnetic field in the resin whose viscosity has decreased, and high alignment is achieved. Next, in the compression process, it is compressed in a state where there is no resistance due to the orientation magnetic field, and high density is achieved.

なお、配向磁場を遮断等する時期(圧縮過程(第2成形工程)の開始時期)は、溶融していた樹脂の粘度が極小となるときを経過した付近であるとよい。その時期が早過ぎると、配向度の低下を招き得る。その時期が遅過ぎると、密度の増加が不十分となる。 It should be noted that the timing of interrupting the aligning magnetic field (timing of starting the compression process (second molding process)) should be around the time when the viscosity of the melted resin reaches a minimum. If the timing is too early, it may lead to a decrease in the degree of orientation. If it is too late, the density increase will be insufficient.

《成形工程》
圧縮力は、従来のように高圧でもよいし、低圧でもよい。より十分な効果を得るに、圧縮力は、5~50MPaさらには10~40MPa程度の低圧でもよい。圧縮力の低減により、磁石粒子の割れ、キャビティを構成する筐体の変形等が抑制され得る。
《Molding process》
The compressive force may be conventionally high pressure or low pressure. In order to obtain a more sufficient effect, the compressive force may be as low as 5-50 MPa or even 10-40 MPa. By reducing the compressive force, cracking of the magnet particles, deformation of the housing forming the cavity, and the like can be suppressed.

第1成形工程と第2成形工程は、圧縮力が同じでも異なってもよい。例えば、圧縮力を一定とすれば、加圧装置や加圧制御等の簡素化を図れる。既に樹脂の粘度が十分増加した第2成形工程中の圧縮力を、第1成形工程中の圧縮力よりも大きくして、ボンド磁石のさらなる高密度化を図ってもよい。 The first molding step and the second molding step may have the same or different compressive forces. For example, if the compressive force is constant, the pressurizing device, pressurization control, etc. can be simplified. The compressive force during the second molding step, in which the viscosity of the resin has already increased sufficiently, may be made greater than the compressive force during the first molding step to further increase the density of the bonded magnet.

成形工程中の加熱温度は、バインダ樹脂(特に熱硬化性樹脂)の特性に応じて調整される。加熱温度は、例えば、100~200℃、120~180℃さらには130~170℃である。加熱温度が過小では、樹脂の軟化または溶融が不十分となり、配向度や密度の低下等が生じ得る。加熱温度が過大では、磁石粒子の酸化劣化や熱硬化性樹脂の早期硬化等が生じ得る。 The heating temperature during the molding process is adjusted according to the properties of the binder resin (especially thermosetting resin). The heating temperature is, for example, 100 to 200°C, 120 to 180°C, further 130 to 170°C. If the heating temperature is too low, the softening or melting of the resin will be insufficient, resulting in a decrease in the degree of orientation and density. If the heating temperature is too high, oxidative deterioration of the magnet particles and premature curing of the thermosetting resin may occur.

成形工程中の配向磁場は、通常、ボンド磁石原料の圧縮方向に交差(さらには直交)する配向方向へ印可される。配向磁場の大きさは、例えば、0.5~3Tさらには1~2Tである。配向磁場は、ボンド磁石が成形されるキャビティの内周面における磁束密度である。配向磁場の起磁源には、電磁石の他、希土類永久磁石を用いてもよい。 The aligning magnetic field during the molding process is usually applied in an aligning direction that intersects (or is perpendicular to) the compression direction of the bonded magnet raw material. The magnitude of the aligning magnetic field is, for example, 0.5-3T or even 1-2T. The oriented magnetic field is the magnetic flux density on the inner peripheral surface of the cavity in which the bonded magnet is molded. In addition to the electromagnet, a rare earth permanent magnet may be used as the magnetomotive source of the aligning magnetic field.

《ボンド磁石原料》
ボンド磁石原料は、コンパウンドでも、コンパウンドの予成形体でもよい。
《Raw materials for bonded magnets》
The bond magnet raw material may be a compound or a compound preform.

コンパウンドは、磁石粉末とバインダ樹脂を、混合または混練(「混合等」という。)した顆粒からなる。混合等は、少なくともバインダ樹脂が軟化する温度(軟化点)以上で、バインダ樹脂に含まれる熱硬化性樹脂があまりに急激に硬化する温度未満の温度でなされるとよい。バインダ樹脂(特に熱硬化性樹脂)の種類や配合にも依るが、その温度は、例えば、40~120℃さらには80~100℃である。 The compound consists of granules obtained by mixing or kneading (referred to as “mixing, etc.”) magnetic powder and binder resin. Mixing and the like should be performed at least at a temperature (softening point) or higher at which the binder resin softens and at a temperature lower than a temperature at which the thermosetting resin contained in the binder resin hardens too rapidly. The temperature is, for example, 40 to 120.degree. C., further 80 to 100.degree.

ボンド磁石原料は、磁石粒子にクラック等の損傷が生じ難い条件下の混合により調製されるとよい。具体的にいうと、磁石粉末とバインダ樹脂は、加圧力(せん断応力)があまり作用しない状況で混合されるとよい。混合には、例えば、バッチ式の混練機を用いるとよい。この際、ボンド磁石原料の投入量を、その処理槽の処理容積の75%以下さらには65%以下程度にして、加圧しない状態でブレードを回転させて加熱混合するとよい。 The raw materials for bonded magnets are preferably prepared by mixing under conditions in which damage such as cracks is unlikely to occur in the magnet particles. Specifically, the magnet powder and the binder resin should be mixed in a state where the pressure (shear stress) does not act so much. For mixing, for example, a batch-type kneader may be used. At this time, it is preferable to heat and mix by rotating the blades in a state where the load of the bond magnet raw material is set to about 75% or less, preferably 65% or less of the processing volume of the processing tank, and no pressure is applied.

予成形体は、上述したコンパウンドを所定の形態(形状、大きさ)にしたブロックからなる。予成形体は、ボンド磁石に類似した形態であると、キャビティへ効率的に収容(投入)できる。予成形体は、ボンド磁石に非類似な形態でもよい。例えば、キャビティに充填、装填等できる範囲内で、細分化された分割体(ペレット等)でもよい。この場合、ボンド磁石毎に専用の予成形体を用意する必要がなく、予成形体の汎用性が高まる。 The preform consists of a block obtained by forming the above-described compound into a predetermined form (shape, size). If the preform has a form similar to that of a bonded magnet, it can be efficiently accommodated (thrown in) into the cavity. The preform may have a form dissimilar to a bonded magnet. For example, it may be a segmented body (pellet, etc.) within a range that can be filled or loaded into the cavity. In this case, there is no need to prepare a dedicated preform for each bond magnet, and the versatility of the preform increases.

予成形(工程)も、磁石粒子にクラック等の損傷が生じ難い条件下でなされるとよい。予成形は、通常、ボンド磁石を成形するキャビティとは別なキャビティに充填したコンパウンドを加圧してなされる。 The preforming (process) should also be carried out under conditions in which damage such as cracks is unlikely to occur in the magnet particles. Preforming is usually performed by pressing a compound filled in a cavity separate from the cavity for molding the bond magnet.

《磁石粉末》
磁石粉末は、例えば、ボンド磁石原料(ボンド磁石)の全体(磁石粉末とバインダ樹脂の合計)に対して、例えば、60~80体積%、65~75体積%さらには68~73体積%含まれるとよい。磁石粉末が過少ではボンド磁石の磁気特性が低下し、磁石粉末が過多になると、配向度または密度が低下し得る。
《Magnet Powder》
The magnet powder is contained, for example, in an amount of 60 to 80% by volume, 65 to 75% by volume, or further 68 to 73% by volume, relative to the entire bonded magnet raw material (bonded magnet) (total of magnet powder and binder resin). Good. If the magnetic powder is too small, the magnetic properties of the bonded magnet will be lowered, and if the magnetic powder is too large, the degree of orientation or density will be lowered.

磁石粉末は、異方性磁石粉末(粒子)を含む限り、単種の粉末でも複数種の粉末でもよい。複数種の粉末は、例えば、形態(特に粒径)、成分組成または磁気特性(不可逆減磁性を含む)の少なくともいずれかが異なる粉末が混合された混合粉末である。 The magnet powder may be a single type of powder or multiple types of powders as long as it contains anisotropic magnet powder (particles). The multiple types of powders are, for example, mixed powders in which powders differing in at least one of morphology (especially particle size), component composition, and magnetic properties (including irreversible demagnetization) are mixed.

一例として、平均粒径の異なる粗粉末と微粉末を含む混合粉末を用いてもよい。粗粉末の平均粒径は、例えば、40~200μmさらには80~160μmである。微粉末の平均粒径は、例えば、1~10μmさらには2~6μmである。本明細書でいう平均粒径はレーザー回折式粒度分布測定装置(株式会社日本レーザー製HELOS)にて測定して定まる。 As an example, a mixed powder containing coarse powder and fine powder having different average particle diameters may be used. The coarse powder has an average particle size of, for example, 40 to 200 μm, further 80 to 160 μm. The fine powder has an average particle size of, for example, 1 to 10 μm, further 2 to 6 μm. The average particle size referred to in this specification is determined by measuring with a laser diffraction particle size distribution analyzer (HELOS manufactured by Nippon Laser Co., Ltd.).

粗粉末と微粉末の合計(または磁石粉末全体)に対する粗粉末の体積割合は、例えば、60~90体積%さらには65~85体積%である。換言すると、その合計に対する微粉末の体積割合は、例えば、10~40体積%さらには15~35体積%である。 The volume ratio of the coarse powder to the sum of the coarse powder and the fine powder (or the entire magnetic powder) is, for example, 60 to 90% by volume, or 65 to 85% by volume. In other words, the volume fraction of the fine powder to the total is, for example, 10-40% by volume, or even 15-35% by volume.

粗粉末と微粉末の各粒径や割合、ボンド磁石原料(ボンド磁石)全体に対する磁石量(樹脂量)を所定範囲内とすると、低圧成形したときでも、高密度なボンド磁石が得られる。 If the particle sizes and ratios of the coarse and fine powders and the magnet amount (resin amount) relative to the entire bonded magnet raw material (bonded magnet) are within a predetermined range, a high-density bonded magnet can be obtained even when low-pressure molding is performed.

磁石粉末には、例えば、水素処理された希土類異方性磁石粉末が用いられる。水素処理は、主に、吸水素による不均化反応(Hydrogenation-Disproportionation/単に「HD反応」ともいう。)と、脱水素による再結合反応(Desorption-Recombination/単に「DR反応」ともいう。)を伴う。HD反応とDR反応を併せて単に「HDDR反応」という。また、HDDR反応を生じる水素処理を、単に「HDDR(処理)」という。 For the magnet powder, for example, hydrogen-treated rare earth anisotropic magnet powder is used. Hydrogenation is mainly a disproportionation reaction due to hydrogen absorption (Hydrogenation-Disproportionation, also simply referred to as "HD reaction") and a recombination reaction due to dehydrogenation (Desorption-Recombination, also simply referred to as "DR reaction"). Accompanied by The HD reaction and DR reaction are collectively referred to simply as "HDDR reaction". Also, the hydrotreating that produces the HDDR reaction is simply referred to as "HDDR(process)."

なお、本明細書でいうHDDRには、特に断らない限り、改良型であるd―HDDR(dynamic-Hydrogenation-Disproportionation-Desorption-Recombination)も含まれる。d―HDDRについては、例えば、国際公開公報(WO2004/064085)等で詳述されている。 The HDDR referred to in this specification also includes the improved d-HDDR (dynamic-Hydrogenation-Disproportionation-Desorption-Recombination) unless otherwise specified. d-HDDR is described in detail in, for example, International Publication (WO2004/064085).

粗粉末の一例として、NdとFeとBを基成分とするNdFeB系異方性磁石粉末がある。微粉末の一例として、SmとFeとNを基成分とするSmFeN系異方性磁石粉末またはSmとCoを基成分とするSmCo系異方性磁石粉末がある。微粉末(一部)として、粒度調整がされたNdFeB系異方性磁石粉末を用いてもよい。 An example of coarse powder is NdFeB-based anisotropic magnet powder containing Nd, Fe, and B as base components. Examples of fine powder include SmFeN anisotropic magnet powder containing Sm, Fe, and N as base components or SmCo anisotropic magnet powder containing Sm and Co as base components. NdFeB-based anisotropic magnet powder whose particle size has been adjusted may be used as the fine powder (partially).

磁石粉末の一部として、希土類異方性磁石粉末以外の磁石粉末(希土類等方性磁石粉末、フェライト磁石粉末等)が含まれてもよい。なお、本明細書でいう基成分は、必須成分または主成分と換言できる。基成分となる元素の合計量は、通常、対象物(磁石粒子)全体に対して80原子%以上さらには90原子%以上である。なお、希土類磁石粉末は、その保磁力や耐熱性等を高める元素(Dy、Tb等の重希土類元素、Cu、Al、Co、Nb等)を含んでもよい。 Magnet powders other than rare earth anisotropic magnet powder (rare earth isotropic magnet powder, ferrite magnet powder, etc.) may be included as part of the magnet powder. In addition, the base component as used in this specification can be rephrased as an essential component or a main component. The total amount of elements serving as base components is usually 80 atomic % or more, preferably 90 atomic % or more, relative to the entire object (magnet particles). The rare earth magnet powder may contain elements (heavy rare earth elements such as Dy and Tb, Cu, Al, Co, Nb, etc.) that enhance coercive force and heat resistance.

《バインダ樹脂》
バインダ樹脂は熱硬化性樹脂を含む。熱硬化性樹脂には、エポキシ樹脂、フェノール樹脂 、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂等がある。代表的なエポキシ樹脂は、通常、主剤(プレポリマー)と硬化剤を混合物であり、エポキシ基による架橋ネットワーク化により硬化する。エポキシ樹脂のプレポリマーとして、例えば、ノボラック型、ビスフェノールA型、ビスフェノールF型、ビフェニル型、ナフタレン型、脂肪族型、グリシジルアミン型等が用いられる。エポキシ樹脂の硬化剤として、例えば、アミン系、フェノール系、酸無水物系が用いられる。
《Binder Resin》
The binder resin contains a thermosetting resin. Thermosetting resins include epoxy resins, phenolic resins, melamine resins, urea resins, unsaturated polyester resins, and the like. A typical epoxy resin is usually a mixture of a main agent (prepolymer) and a curing agent, and is cured by crosslinking network formation by epoxy groups. As prepolymers of epoxy resins, for example, novolac type, bisphenol A type, bisphenol F type, biphenyl type, naphthalene type, aliphatic type, glycidylamine type, and the like are used. As curing agents for epoxy resins, for example, amine-based, phenol-based, and acid anhydride-based curing agents are used.

一液性エポキシ樹脂を用いると、熱硬化時期をキュア処理(熱硬化工程)により調整でき、効率的なバッチ処理等が可能となる。キュア処理は、例えば、成形工程後のボンド磁石を130~250℃さらには150~230℃に加熱してなされる。 When a one-liquid epoxy resin is used, the timing of thermosetting can be adjusted by curing treatment (thermosetting step), and efficient batch treatment and the like are possible. Cure treatment is performed by heating the bonded magnet after the molding process to 130 to 250.degree. C., or 150 to 230.degree.

ちなみに、各磁石粒子は、使用する樹脂に適した界面活性剤で被覆処理されていてもよい。これにより、軟化または溶融した樹脂中における磁石粒子の姿勢変動性、磁石粒子と樹脂との結合性等が向上し得る。エポキシ樹脂を用いる場合なら、界面活性剤として、例えば、チタネート系カップリング剤やシラン系カップリング剤を用いれる。なお、界面活性剤層の厚さは0.1~2μm程度でよい。 Incidentally, each magnet particle may be coated with a surfactant suitable for the resin used. As a result, the posture changeability of the magnet particles in the softened or melted resin, the bonding between the magnet particles and the resin, and the like can be improved. When using an epoxy resin, for example, a titanate-based coupling agent or a silane-based coupling agent is used as a surfactant. Incidentally, the thickness of the surfactant layer may be about 0.1 to 2 μm.

《ボンド磁石》
ボンド磁石は、例えば、相対密度が90%以上、95%以上さらには98%以上であるとよい。相対密度の上限値は、99%さらには100%である。なお、相対密度(ρ/ρ)は、理論密度(ρ)に対する実密度(ρ)の比(百分率)である。理論密度(ρ)は、ボンド磁石を構成する磁石粉末とバインダ樹脂の各真密度とそれらの配合量から求まる。実密度(ρ)は、成形(さらにはキュア処理)したボンド磁石を測定して得られた質量と体積から求まる。体積は、アルキメデス法により求めても、成形体の形状(寸法)から算出してもよい。
《Bond Magnet》
The bonded magnet preferably has a relative density of, for example, 90% or higher, 95% or higher, or 98% or higher. The upper limit of relative density is 99% or even 100%. The relative density (ρ/ρ 0 ) is the ratio (percentage) of the actual density (ρ) to the theoretical density (ρ 0 ). The theoretical density (ρ 0 ) is obtained from the true densities of the magnet powder and the binder resin, which constitute the bonded magnet, and their compounding amounts. The actual density (ρ) is determined from the mass and volume obtained by measuring the molded (and cured) bonded magnet. The volume may be determined by the Archimedes method or calculated from the shape (dimensions) of the compact.

ボンド磁石は、キュア処理前またはキュア処理後に、着磁(着磁磁場:2~6T)がなされてもよい。ボンド磁石は、例えば、0.7T以上、0.75T以上さらには0.8T以上という高い残留磁束密度(Br)を発揮し得る。 The bond magnet may be magnetized (magnetizing magnetic field: 2 to 6 T) before or after curing. A bonded magnet can exhibit a high residual magnetic flux density (Br) of, for example, 0.7 T or more, 0.75 T or more, or even 0.8 T or more.

ボンド磁石は、耐熱性または耐久性の指標となる不可逆減磁率(100℃×1000時間後)が、例えば、-3%以内、-2%以内さらには-1.5%以内であるとよい。 The bonded magnet preferably has an irreversible demagnetization rate (after 1000° C.×1000 hours), which is an index of heat resistance or durability, for example, within −3%, within −2%, or within −1.5%.

《磁気部材》
ボンド磁石は種々の磁気部材に用いられる。筐体のキャビティ内にボンド磁石を一体成形すると、磁気部材の効率的な製造が可能となる。ボンド磁石を低圧成形すると、キャビティを構成する筐体の変形が抑制される。これにより、筐体の設計自由度の増大や磁気部材の精度向上が図られる。このような磁気部材の代表例として、電動機(車両駆動用モータ、エアコン、家電製品用モータ等)の界磁子がある。
《Magnetic member》
Bonded magnets are used in various magnetic members. Integrally molding the bonded magnet within the cavity of the housing allows for efficient manufacturing of the magnetic member. Low-pressure molding of the bonded magnet suppresses deformation of the housing forming the cavity. As a result, it is possible to increase the degree of freedom in designing the housing and improve the accuracy of the magnetic member. A representative example of such a magnetic member is a field element of an electric motor (vehicle drive motor, air conditioner, home electric appliance motor, etc.).

成形条件を変化させた複数の試料(圧縮ボンド磁石)を製作し、それらの特性を測定・評価した。このような具体例に基づいて、本発明を以下に詳しく説明する。 Several samples (compression bonded magnets) were produced under different molding conditions, and their characteristics were measured and evaluated. The present invention will be described in detail below based on such specific examples.

《第1実施例/試料の製造》
(1)磁石粉末とバインダ樹脂
磁石粉末として、水素処理(d-HDDR)して製造された粗粉末である市販のNdFeB系異方性磁石粉末(愛知製鋼株式会社製マグファイン/Br:1.28T、iHc:1313kA/m、平均粒径:125μm)と、微粉末である市販のSmFeN系異方性磁石粉末(住友金属鉱山株式会社製SmFeN合金微粉C /Br:1.35T、iHc:875kA/m、平均粒径:3μm)を用意した。
<<First embodiment/manufacture of sample>>
(1) Magnet powder and binder resin As the magnet powder, commercially available NdFeB-based anisotropic magnet powder (Magfine/Br:1. 28 T, iHc: 1313 kA/m, average particle size: 125 μm), and a commercially available SmFeN anisotropic magnet powder (Sumitomo Metal Mining Co., Ltd. SmFeN alloy fine powder C/Br: 1.35 T, iHc: 875 kA). /m, average particle size: 3 μm).

バインダ樹脂として、熱硬化性樹脂であるエポキシ樹脂(日本化薬株式会社製NC-3000L)を用意した。この樹脂の主剤はビフェニル型で、硬化剤はフェノール系である。また、その軟化点は60℃であった。 An epoxy resin (NC-3000L manufactured by Nippon Kayaku Co., Ltd.), which is a thermosetting resin, was prepared as the binder resin. The main component of this resin is biphenyl type, and the curing agent is phenol type. Also, its softening point was 60°C.

(2)ボンド磁石原料
粗粉末と微粉末を8:2(質量割合/体積割合でもほぼ同様)に秤量した磁石粉末と、バインダ樹脂とを混合したボンド磁石原料を調製した。磁石粉末は、磁石粉末(粗粉末および微粉末)とバインダ樹脂を合計した混合物(ボンド磁石原料)全体に対して70体積%(バインダ樹脂:30体積%)とした。
(2) Raw Material for Bonded Magnet A raw material for bonded magnet was prepared by mixing magnet powder obtained by weighing coarse powder and fine powder at 8:2 (mass ratio/volume ratio is almost the same) and binder resin. The magnet powder was 70% by volume (binder resin: 30% by volume) of the total mixture (bonded magnet raw material) of magnet powder (coarse powder and fine powder) and binder resin.

磁石粉末とバインダ樹脂の混合は、ニーダを低速回転(10rpm)させ、非加圧状態で5分間行った。このとき、ニーダの容体を90℃に保持した。こうして、磁石粉末とバインダ樹脂を溶融混合したコンパウンドを得た(溶融混合工程)。 The magnetic powder and the binder resin were mixed by rotating the kneader at a low speed (10 rpm) for 5 minutes in a non-pressurized state. At this time, the container of the kneader was kept at 90°C. Thus, a compound was obtained by melt-mixing the magnet powder and the binder resin (melt-mixing step).

(3)成形
コンパウンドを金型のキャビティへ充填した(収容工程)。金型(キャビティ内壁面)の温度は、成形開始(充填前)から成形終了まで150℃(一定)に保持した。キャビティへ印加した圧縮力(P)は、10MPa、20MPaまたは30MPaのいずれかとした。
(3) Molding The compound was filled into the cavity of the mold (housing step). The temperature of the mold (inner wall surface of the cavity) was maintained at 150° C. (constant) from the start of molding (before filling) to the end of molding. The compressive force (P) applied to the cavity was either 10 MPa, 20 MPa or 30 MPa.

なお、コンパウンドの予成形体を用いて、ロータコアのスロット等にボンド磁石を一体成形してもよい。予成形体は、例えば、そのスロット等よりも断面形状を僅かに小さくしたキャビティへ、コンパウンドを充填し、加圧して得られる(予成形工程)。 Note that the bond magnet may be integrally molded in the slot of the rotor core or the like using a compound preform. The preformed body is obtained, for example, by filling a compound into a cavity whose cross-sectional shape is slightly smaller than the slot and pressurizing it (preforming step).

配向磁場を印加しない「無磁場成形」と、一定の配向磁場を成形開始から成形終了まで継続して印加した「定磁場成形」と、成形途中で磁場の印加を遮断した「磁場変更成形」とを、各圧縮力でそれぞれ行った。キャビティへコンパウンドを充填(単に「原料供給」という。)する成形開始時(t0:硬化度0%)から、ボンド磁石をキャビティから排出する成形終了時(t5:硬化度95%)までの時間(単に「成形時間」という。)は5分間とした(図1B参照)。 "Molding without magnetic field" without application of an oriented magnetic field, "Constant magnetic field forming" in which a constant magnetic field is applied continuously from the start of forming to the end of forming, and "Molding with variable magnetic field" in which application of the magnetic field is cut off during forming. was performed at each compression force. The time ( simply referred to as “molding time”) was set to 5 minutes (see FIG. 1B).

いずれの場合も、圧縮開始時(t2)は成形開始時(原料供給時)から1分間経過後(硬化度10%以内)とした。また圧縮終了時(t4)は、成形開始時(原料供給時)から4分間経過後(成形終了時の1分前:硬化度70%以上)とした。 In both cases, the compression start time (t2) was defined as 1 minute after the start of molding (at the time of raw material supply) (curing degree of 10% or less). The end of compression (t4) was 4 minutes after the start of molding (at the time of raw material supply) (1 minute before the end of molding: hardening degree of 70% or more).

定磁場成形と磁場変更成形では、配向磁場の印加開始時(t1)を成形開始時から0.5分間経過後(硬化度5%以内)とした。定磁場成形では、配向磁場の印加終了時(t3)を成形開始時から4分間経過後(圧縮終了時と同時:硬化度70%以上)とした。 In the constant magnetic field molding and the magnetic field changing molding, the application start time (t1) of the aligning magnetic field was 0.5 minutes after the start of molding (hardening degree within 5%). In constant magnetic field molding, the end of application of the aligning magnetic field (t3) was 4 minutes after the start of molding (simultaneously with the end of compression: hardening degree of 70% or more).

磁場変更成形では、配向磁場の印加終了時(t3)を成形開始時から3分間経過後(圧縮終了時の1分前:硬化度35%)とした。この場合、配向磁場の印加終了時前(t2~t3またはt0~t3)が第1成形工程に相当し、配向磁場の印加終了時後(t3~t4またはt3~t5)が第2成形工程に相当する。 In the magnetic field change molding, the end of application of the aligning magnetic field (t3) was 3 minutes after the start of molding (1 minute before the end of compression: 35% degree of hardening). In this case, the period before the application of the aligning magnetic field (t2 to t3 or t0 to t3) corresponds to the first molding process, and the period after the application of the aligning magnetic field (t3 to t4 or t3 to t5) corresponds to the second molding process. Equivalent to.

なお、印加した配向磁場は1.2T(一定)とし、配向方向は圧縮方向(軸方向)に直交する方向(径方向)とした。配向磁場の印加と遮断は、電磁コイルへの通電の切り替え(ON/OFF)により行った。 The applied orientation magnetic field was 1.2 T (constant), and the orientation direction was the direction (radial direction) orthogonal to the compression direction (axial direction). Application and interruption of the aligning magnetic field were performed by switching (ON/OFF) the energization of the electromagnetic coil.

またボンド磁石に使用されるバインダ樹脂は、通常、主剤と硬化剤からなる。主剤と硬化剤は、受けた熱履歴に応じて架橋反応が進行する。硬化度は、その進行具合(割合)を示す。そこで本明細書でいう「硬化度」は下式から求めた。
・硬化度=(ボンド磁石中の総硬化完了樹脂量)/(ボンド磁石中の総樹脂量)
・ボンド磁石中の総硬化完了樹脂量
=(ボンド磁石中の総樹脂量)―(溶けだした樹脂(未反応樹脂)量)
・溶けだした樹脂(未反応樹脂)量
=(ボンド磁石総重量)―(溶剤浸漬後のボンド磁石重量)
Binder resins used in bond magnets usually consist of a main agent and a curing agent. A crosslinking reaction between the main agent and the curing agent progresses according to the heat history received. The degree of hardening indicates the degree of progress (ratio). Therefore, the "curing degree" referred to in this specification was obtained from the following formula.
Curing degree = (Total amount of cured resin in bonded magnet)/(Total amount of resin in bonded magnet)
・Total amount of cured resin in bond magnet
= (Total amount of resin in bonded magnet) - (Amount of dissolved resin (unreacted resin))
・Amount of melted resin (unreacted resin)
= (total weight of bonded magnet) - (weight of bonded magnet after immersion in solvent)

各重量は以下のように特定した。先ず、測定対象であるボンド磁石(試験片)の総重量を予め計量しておく。そのボンド磁石中の「総樹脂量」は、磁石粉末とバインダ樹脂の原料割合から算出される。次に、そのボンド磁石を溶媒(メチルエチルケトン)に浸漬して、未硬化(未反応)な主剤と硬化剤を溶出させる。溶出後の残量を計量することにより「溶剤浸漬後のボンド磁石重量」が求まる。 Each weight was specified as follows. First, the total weight of the bonded magnet (test piece) to be measured is weighed in advance. The "total amount of resin" in the bonded magnet is calculated from the raw material ratio of magnet powder and binder resin. Next, the bonded magnet is immersed in a solvent (methyl ethyl ketone) to elute the uncured (unreacted) main agent and curing agent. By weighing the remaining amount after elution, the "bond magnet weight after solvent immersion" can be obtained.

(4)キュア処理
金型のキャビティから取り出した各ボンド磁石(圧縮成形体)を大気中で150℃×30分間加熱して、バインダ樹脂をほぼ完全に熱硬化させた。
着磁の記載。
(4) Curing Treatment Each bonded magnet (compression-molded body) taken out from the mold cavity was heated in the atmosphere at 150° C. for 30 minutes to almost completely thermally cure the binder resin.
Description of magnetization.

(5)着磁
各ボンド磁石は、空芯コイルにより磁場(6T)を印加して着磁した。
(5) Magnetization Each bond magnet was magnetized by applying a magnetic field (6 T) with an air-core coil.

《第2実施例/試料の製造》
上述した磁場変更成形において、配向磁場の印加終了時(t3)を種々変更したボンド磁石も製造した。具体的にいうと、t3を、成形開始時(原料供給時)から1.5分後(硬化度15%)、2.5分後(硬化度25%)、3分後(硬化度35%)、3.5分後(硬化度45%)または5分後(硬化度95%)のいずれかとした。t3の変更を除けば、第1実施例と同様な磁場変更成形を行った。但し、圧縮力は20MPaまたは30MPaのいずれかとした。なお、本実施例では、圧縮終了時(t4)を成形開始時(原料供給時)から硬化度70%以上のときとした。このため、t3=5分(硬化度95%)のときは、実質的に定磁場成形(t3=t4=t5)を意味する。
<<Second embodiment/manufacture of sample>>
In the above-described magnetic field change molding, bond magnets were also manufactured by variously changing the end time (t3) of application of the aligning magnetic field. Specifically, t3 is 1.5 minutes (curing degree 15%), 2.5 minutes (curing degree 25%), 3 minutes (curing degree 35%) from the start of molding (when raw materials are supplied). ), either after 3.5 minutes (45% cure) or after 5 minutes (95% cure). Except for the change of t3, magnetic field change molding was performed in the same manner as in the first embodiment. However, the compressive force was either 20 MPa or 30 MPa. In this example, the end of compression (t4) was defined as the time when the hardening degree was 70% or more from the start of molding (at the time of raw material supply). Therefore, when t3=5 minutes (hardening degree 95%), it substantially means constant magnetic field molding (t3=t4=t5).

《測定・観察》
(1)密度
キュア処理後のボンド磁石の実密度(ρ)を、外形寸法から求まる体積と測定した質量とを用いて算出した。
《Measurement/Observation》
(1) Density The actual density (ρ) of the bonded magnet after curing was calculated using the volume determined from the external dimensions and the measured mass.

(2)磁気特性
ボンド磁石の磁気特性を直流BHトレーサー(東英工業株式会社製TRF-5BH-25Auto)を用いて常温で測定した。得られたB-H曲線から残留磁束密度(Br)を求めた。また、飽和磁化(4πIs)に対する残留磁束密度の比率(Br/4πIs)を配向度とした。
(2) Magnetic Properties The magnetic properties of the bonded magnet were measured at room temperature using a DC BH tracer (TRF-5BH-25Auto manufactured by Toei Industry Co., Ltd.). A residual magnetic flux density (Br) was obtained from the obtained BH curve. The ratio of residual magnetic flux density (Br/4πIs) to saturation magnetization (4πIs) was defined as the degree of orientation.

《評価》
第1実施例に基づいて、各ボンド磁石の密度を圧縮力毎にプロットした散布図を図2に示した。また第2実施例に基づいて、各ボンド磁石の密度、配向度および残留磁束密度を、図3Aと図3B(両者を併せて「図3」という。)に示した。図3Aは圧縮力を20MPaとしたときであり、図3Bは圧縮力を30MPaとしたときである。
"evaluation"
FIG. 2 shows a scatter diagram plotting the density of each bond magnet for each compression force based on the first embodiment. Based on the second example, the density, orientation and residual magnetic flux density of each bonded magnet are shown in FIGS. 3A and 3B (both collectively referred to as "FIG. 3"). FIG. 3A is when the compressive force is 20 MPa, and FIG. 3B is when the compressive force is 30 MPa.

図2から明らかなように、磁場変更成形を行うと、定磁場成形を行う場合よりも、高密度なボンド磁石が得られた。また、磁場変更成形して得られたボンド磁石の密度は、無磁場成形して得られたボンド磁石の密度とほぼ同程度であった。 As is clear from FIG. 2, when the magnetic field changing molding is performed, a bonded magnet with a higher density is obtained than when the constant magnetic field molding is performed. Further, the density of the bonded magnet obtained by magnetic field change molding was almost the same as the density of the bonded magnet obtained by non-magnetic field molding.

従って、磁場変更成形を行うと、磁場中成形を行う場合よりも、ボンド磁石の高密度化または圧縮力の低減を図れることがわかった。 Therefore, it was found that the magnetic field change molding can achieve higher density of the bonded magnet or reduce the compressive force than the magnetic field molding.

図3から明らかなように、磁場変更成形を行う場合、配向磁場の印加終了時(t3)を適切に設定することにより、高密度または高残留磁束密度と、高配向度を両立できることもわかった。第2実施例に基づけば、配向磁場の印加を終了(遮断)する時刻(t3)は、成形開始時(t0)から2.5~4分後(硬化度:25~70%)さらには3~3.5分後(硬化度:35~45%)とされるよい。 As is clear from FIG. 3, it was also found that when performing magnetic field change molding, by appropriately setting the end time (t3) of applying the orientation magnetic field, it is possible to achieve both a high density or a high residual magnetic flux density and a high degree of orientation. . According to the second embodiment, the time (t3) to end (shut off) the application of the aligning magnetic field is 2.5 to 4 minutes (curing degree: 25 to 70%) or 3 minutes after the start of molding (t0). After ~3.5 minutes (curing degree: 35-45%).

《ロータ》
上述した磁場変更成形を行って、永久磁石内包型同期モータ(IPM)のロータコア(筐体/電磁部材)のスロット(キャビティ)にボンド磁石を一体成形した。こうして得られたロータ(界磁子)の外観を図4に示した。なお、ロータコアは、所望形状に打ち抜かれたケイ素鋼板の積層体からなる。
《Rotor》
The above-described magnetic field changing molding was performed to integrally mold the bond magnet in the slot (cavity) of the rotor core (housing/electromagnetic member) of the internal permanent magnet synchronous motor (IPM). The appearance of the rotor (field element) thus obtained is shown in FIG. The rotor core is made of a laminate of silicon steel sheets punched into a desired shape.

ボンド磁石の成形圧が小さかったため、スロットの外周縁にある薄肉部でも、変形は殆ど生じなかった。従って、本発明の製造方法によれば、高密度および高配向度なボンド磁石を有する高精度(真円度、円筒度)なIPM用ロータが得られることも確認された。 Since the molding pressure of the bond magnet was small, almost no deformation occurred even in the thin portion at the outer peripheral edge of the slot. Therefore, it was also confirmed that the manufacturing method of the present invention can provide an IPM rotor with high precision (roundness and cylindricity) having bonded magnets with high density and high degree of orientation.

Claims (7)

磁石粉末と該磁石粉末を結着させ得るバインダ樹脂からなるボンド磁石原料をキャビティ内で加熱しつつ圧縮する成形工程を備え、
前記磁石粉末は、異方性磁石粉末を含み、
該バインダ樹脂は、熱硬化性樹脂を含み、
該成形工程は、該キャビティ内へ配向磁場を印加しつつなされる第1成形工程と、該第1成形工程後に該配向磁場を低減または遮断してなされる第2成形工程とを有する圧縮ボンド磁石の製造方法。
A forming step of heating and compressing a bond magnet raw material made of magnet powder and a binder resin capable of binding the magnet powder in a cavity,
The magnet powder includes an anisotropic magnet powder,
The binder resin comprises a thermosetting resin,
The molding step includes a first molding step in which an aligning magnetic field is applied to the cavity, and a second molding step in which the aligning magnetic field is reduced or cut off after the first molding step. manufacturing method.
前記成形工程は、圧縮力が5~50MPaである請求項1に記載の圧縮ボンド磁石の製造方法。 2. The method for producing a compression-bonded magnet according to claim 1, wherein the compression force is 5 to 50 MPa in the molding step. 前記ボンド磁石原料は、前記磁石粉末と前記バインダ樹脂の合計に対する該磁石粉末の体積割合が60~75体積%である請求項1または2に記載の圧縮ボンド磁石の製造方法。 3. The method for manufacturing a compression bonded magnet according to claim 1, wherein the volume ratio of the magnet powder to the total of the magnet powder and the binder resin is 60 to 75% by volume. 前記配向磁場は、前記ボンド磁石原料の圧縮方向に交差する配向方向へ印可される請求項1~3のいずれかに記載の圧縮ボンド磁石の製造方法。 4. The method for producing a compressed bond magnet according to claim 1, wherein the aligning magnetic field is applied in an alignment direction that intersects the direction of compression of the raw material for the bond magnet. 前記第2成形工程は、前記熱硬化性樹脂の硬化度が10 ~70%となる時点から開始される請求項1~4のいずれかに記載の圧縮ボンド磁石の製造方法。 5. The method of manufacturing a compression-bonded magnet according to claim 1, wherein the second molding step is started when the degree of cure of the thermosetting resin reaches 10-70%. 前記熱硬化性樹脂は、エポキシ樹脂である請求項1~5のいずれかに記載の圧縮ボンド磁石の製造方法。 6. The method for producing a compression-bonded magnet according to claim 1, wherein said thermosetting resin is an epoxy resin. 前記キャビティを有する筐体に前記圧縮ボンド磁石を一体化させた磁気部材が得られる請求項1~6のいずれかに記載の圧縮ボンド磁石の製造方法。 7. The method for producing a compression-bonded magnet according to claim 1, wherein a magnetic member is obtained by integrating the compression-bonded magnet into a housing having the cavity.
JP2021061951A 2021-03-31 2021-03-31 Method for manufacturing compressed bond magnet Pending JP2022157625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021061951A JP2022157625A (en) 2021-03-31 2021-03-31 Method for manufacturing compressed bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021061951A JP2022157625A (en) 2021-03-31 2021-03-31 Method for manufacturing compressed bond magnet

Publications (1)

Publication Number Publication Date
JP2022157625A true JP2022157625A (en) 2022-10-14

Family

ID=83560011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021061951A Pending JP2022157625A (en) 2021-03-31 2021-03-31 Method for manufacturing compressed bond magnet

Country Status (1)

Country Link
JP (1) JP2022157625A (en)

Similar Documents

Publication Publication Date Title
EP0155082A2 (en) Epoxy resin bonded rare earth-iron magnets
US5464670A (en) Resin bound magnet and its production process
US11362557B2 (en) Electric motor and field element
WO2004027795A1 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
JP3060104B2 (en) Radially-oriented magnetic anisotropic resin-bonded magnet and method for producing the same
US6007757A (en) Method of producing an anisotropic bonded magnet
JP7477745B2 (en) Field element and its manufacturing method
JP2022157625A (en) Method for manufacturing compressed bond magnet
JP2023005421A (en) Preform, preforming method, and method for manufacturing compressed bond magnet
JP3675452B2 (en) Method for manufacturing bonded magnet
JPH01205403A (en) Rare earth iron resin coupling type magnet
WO2021200517A1 (en) Compressed bonded magnet, manufacturing method therefor, and field coil
WO2024028989A1 (en) Preform, preforming method, and method of producing compression-bonded magnet
JP3883138B2 (en) Manufacturing method of resin bonded magnet
WO2024181326A1 (en) Production method for field element
WO2023053307A1 (en) Rotor and electric motor
JPH0831677A (en) Manufacture of magnetic anisotropy resin bonding type magnet and magnetic anisotropy resin type magnet
JPH09186012A (en) Magnetically isotropic resin bond magnet
JP7453512B2 (en) Manufacturing method of bonded magnets and compounds
JPH06302418A (en) Bond-type permanent magnet and its manufacture
JPH0774012A (en) Manufacture of bonded permanent magnet and raw material powder therefor
JP4887617B2 (en) Resin composition for anisotropic bonded magnet, anisotropic bonded magnet, and motor
JPH1012472A (en) Manufacture of rare-earth bond magnet
JPH104023A (en) Manufacture of bond type permanent magnet
EP2667386A1 (en) Bonded magnet and motor provided with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240924