JP2022149468A - 検出装置、検出プログラム、及び光学装置 - Google Patents

検出装置、検出プログラム、及び光学装置 Download PDF

Info

Publication number
JP2022149468A
JP2022149468A JP2021051645A JP2021051645A JP2022149468A JP 2022149468 A JP2022149468 A JP 2022149468A JP 2021051645 A JP2021051645 A JP 2021051645A JP 2021051645 A JP2021051645 A JP 2021051645A JP 2022149468 A JP2022149468 A JP 2022149468A
Authority
JP
Japan
Prior art keywords
light
receiving
detection
elements
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021051645A
Other languages
English (en)
Inventor
大介 井口
Daisuke Iguchi
崇 近藤
Takashi Kondo
智明 崎田
Tomoaki Sakita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Business Innovation Corp filed Critical Fujifilm Business Innovation Corp
Priority to JP2021051645A priority Critical patent/JP2022149468A/ja
Priority to US17/380,405 priority patent/US20220308212A1/en
Priority to EP21189968.7A priority patent/EP4063906A1/en
Priority to CN202111062794.0A priority patent/CN115128622A/zh
Publication of JP2022149468A publication Critical patent/JP2022149468A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4918Controlling received signal intensity, gain or exposure of sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

Figure 2022149468000001
【課題】複数の発光素子を備えた発光素子アレイから検出対象物に対して発光された光の反射光を検出することにより検出対象物を検出する場合に、検出対象物に直接入射して反射された直接光以外の光を考慮しない場合と比較して、直接光以外の光の影響を抑制することができる。
【解決手段】検出装置は、複数の発光素子を備えた発光素子アレイと、前記発光素子アレイから検出対象物に対して発光された光の反射光を受光する複数の受光素子を備えた受光素子アレイと、複数の前記発光素子アレイを選択的に駆動する駆動部と、前記検出対象物から前記受光素子に直接反射された直接光以外の光を受光した受光素子がある場合、その受光素子に直接光以外の光を照射した発光素子以外の発光素子を発光させて受光素子が受光した光の受光量から、前記検出対象物を検出する検出部と、を備える。
【選択図】図1

Description

本発明は、検出装置、検出プログラム、及び光学装置に関する。
特許文献1には、内面反射に起因する破損光に反応しない、深度を測定する方法であって、光を光源によって場面へ放射することと、破損光が画素に当たるが、前記画素の視野内の物体からの戻り光が前記画素に当たらない第1の期間の間に、前記画素に当たっている光に基づいて電荷を収集するように、前記画素の第1の電荷蓄積ユニットを制御することによって、破損光測定を行うことと、前記破損光測定に基づいて、前記破損光による影響を受けた1つ以上の測定から前記破損光からの寄与を除去することと、前記破損光からの前記寄与が除去された前記1つ以上の測定に基づいて、前記深度を判断することと、を含む方法が開示されている。
特許文献2には、対象物に対して光を投光する投光部と、前記対象物で反射又は散乱された光を受光する受光部と、前記投光部から投光された光を走査領域へ走査する走査部と、前記投光部による投光から前記受光部による受光までの時間を計測し、前記対象物までの距離を測定する距離測定部と、を備え、前記走査領域を複数の分割領域に分割し、該分割した全ての分割領域のうち一つの分割領域の走査開始から全ての分割領域の走査終了までを一走査と定義すると、前記一走査の間に前記距離測定部により測定された、第1の分割領域の測定値と、前記第1の分割領域の測定値よりも前に測定された第2 の分割領域の測定値とに基づいて、前記第1の分割領域の測定値が前記第1の分割領域の測定結果と出来るか否かを判定し、前記第1の分割領域の測定結果と出来ると判定された場合に、前記第1の分割領域の測定値を、前記第1の分割領域における対象物までの距離として出力することを特徴とする距離測定装置が開示されている。
特許文献3には、第1の光を第1の発光空間に発光する第1の光源と、複数の画素を有し、光を各画素により受光する受光部と、前記第1の光源から前記第1の光が繰り返し発光される発光期間において当該第1の光が対象物の表面で反射した第1の反射光を含む光が前記受光部に受光されることで、画素毎の自装置から対象物までの距離を示す距離画像を取得する距離画像取得部と、前記第1の光源から前記第1の光が繰り返し発光されない非発光期間において前記第1の光とは光軸が異なるように第2の光源から第1の発光空間の少なくとも一部を含む第2の発光空間に発光された第2の光が対象物の表面で反射した第2の反射光を含む光が前記受光部に受光されることで、画素毎の輝度値を示す輝度値画像を取得する輝度値画像取得部と、前記距離画像と前記輝度値画像とを用い、マルチパスが発生している領域を検出するマルチパス検出部と、を備えたことを特徴とする光飛行型測距装置が開示されている。
特許文献4には、探査光を出射する発光部と、前記探査光の反射光を受光する受光部と、を備え、前記受光部によって受光した反射光に基づいて、前記探査光を反射した対象物までの距離を測定する距離測定装置において、前記探査光が該探査光の波長より大きな径を有する水滴を透過又は該水滴で反射することで発生する散乱光の強度が、前記受光部のノイズレベルを超えた大きさとなる前記発光部を中心とした領域を強散乱領域として、前記受光部を、前記強散乱領域から外れた位置に設置すると共に、前記散乱光のうち、特定方向に収束する収束散乱光、及び該収束散乱光より大きな入射角で前記受光部に入射しようとする散乱光を遮る遮光手段を設けたことを特徴とする距離測定装置が開示されている。
特開2019-219400号公報 特開2019-028039号公報 特開2017-15448号公報 特開2007-333592号公報
本発明は、複数の発光素子を備えた発光素子アレイから検出対象物に対して発光された光の反射光を検出することにより検出対象物を検出する場合に、検出対象物に直接入射して反射された直接光以外の光を考慮しない場合と比較して、直接光以外の光の影響を抑制することができる検出装置、検出プログラム、及び光学装置を提供することを目的とする。
第1態様に係る検出装置は、複数の発光素子を備えた発光素子アレイと、前記発光素子アレイから検出対象物に対して発光された光の反射光を受光する複数の受光素子を備えた受光素子アレイと、複数の前記発光素子アレイを選択的に駆動する駆動部と、前記検出対象物から前記受光素子に直接反射された直接光以外の光を受光した受光素子がある場合、その受光素子に直接光以外の光を照射した発光素子以外の発光素子を発光させて受光素子が受光した光の受光量から、前記検出対象物を検出する検出部と、を備える。
第2態様に係る検出装置は、第1態様に係る検出装置において、前記検出部は、全ての前記発光素子を発光させ、全ての前記受光素子で受光した光の受光量のうち予め定めた閾値未満の受光量の受光素子に対応する前記発光素子を発光させて前記検出対象物を検出する。
第3態様に係る検出装置は、第2態様に係る検出装置において、前記検出部は、前記閾値以上の受光量の受光素子に対応する前記発光素子を、前記閾値未満の受光量の受光素子に対応する前記発光素子の発光回数よりも少ない発光回数で発光させて前記検出対象物を検出する。
第4態様に係る検出装置は、第3態様に係る検出装置において、前記検出部は、前記閾値未満の受光量の受光素子に対応する前記発光素子の発光と、前記閾値以上の受光量の受光素子に対応する前記発光素子の発光と、を並行して実行する。
第5態様に係る検出装置は、第1態様に係る検出装置において、前記検出部は、前記複数の発光素子を個別に発光させ、発光させた第1の発光素子に対応する第1の受光素子以外の第2の受光素子で受光した場合に、前記第2の受光素子に対応する第2の発光素子を発光させずに、前記第1の受光素子に対応する第1の発光素子を発光させて前記検出対象物を検出する。
第6態様に係る検出装置は、第1態様に係る検出装置において、前記検出部は、全ての前記発光素子を発光させ、全ての前記受光素子で受光した光の受光量から前記検出対象物までの距離を測定し、前記距離が連続的に変化する領域の受光素子に光を照射した発光素子以外の発光素子を発光させて前記検出対象物を検出する。
第7態様に係る検出装置は、第1態様に係る検出装置において、前記検出部は、前記複数の発光素子を個別に発光させ、前記複数の受光素子で受光した受光量の受光量マップから設定した前記複数の発光素子の発光順序に従って発光させて前記検出対象物を検出する。
第8態様に係る検出装置は、第7態様に係る検出装置において、前記検出部は、前記受光量マップから、光の相互干渉が生じない組み合わせの前記発光素子の組毎に発光させる。
第9態様に係る検出装置は、第1態様に係る検出装置において、前記検出部は、前記複数の発光素子を個別に発光させ、発光させた発光素子に対応する受光素子が受光した光の受光量から前記検出対象物を個別に検出する。
第10態様に係る検出装置は、第1態様に係る検出装置において、前記検出部は、前記複数の発光素子を個別に発光させ、発光させた発光素子に対応する受光素子以外の受光素子で受光した受光量を補正量として受光量を算出する。
第11態様に係る検出装置は、第1~第10態様の何れかの態様に係る検出装置において、前記発光素子アレイは、少なくとも2以上の発光素子を含む複数の発光区画毎に発光可能であり、前記検出部は、前記複数の発光区画毎に発光を制御する。
第12態様に係る検出装置は、第1~第11態様の何れかの態様に係る検出装置において、前記検出部は、タイムオブフライトにより前記検出対象物までの距離を検出する。
第13態様に係る検出装置は、複数の発光素子を備えた発光素子アレイと、前記発光素子アレイから検出対象物に対して発光された光の反射光を受光する複数の受光素子を備えた受光素子アレイと、複数の前記発光素子アレイを選択的に駆動する駆動部と、前記発光素子を発光させ、前記受光素子で受光した光の受光量のうち予め定めた閾値未満の受光量の受光素子に対応する前記発光素子を発光させて前記検出対象物を検出する検出部と、を備える。
第14態様に係る検出装置は、プロセッサを備え、前記プロセッサは、発光素子アレイに含まれる複数の発光素子の発光を制御し、前記発光素子アレイから検出対象物に対して発光された光の反射光を受光する受光素子アレイに含まれる複数の受光素子のうち、前記検出対象物から前記受光素子に直接反射された直接光以外の光を受光した受光素子がある場合、その受光素子に直接光以外の光を照射した発光素子以外の発光素子を発光させて受光素子が受光した光の受光量から、前記検出対象物を検出する。
第15態様に係る検出プログラムは、コンピュータに、発光素子アレイに含まれる複数の発光素子の発光を制御し、前記発光素子アレイから検出対象物に対して発光された光の反射光を受光する受光素子アレイに含まれる複数の受光素子のうち、前記検出対象物から前記受光素子に直接反射された直接光以外の光を受光した受光素子がある場合、その受光素子に直接光以外の光を照射した発光素子以外の発光素子を発光させて受光素子が受光した光の受光量から、前記検出対象物を検出する処理を実行させるための検出プログラムである。
第16態様に係る光学装置は、複数の発光素子を備えた発光素子アレイと、複数の受光素子を備えた受光素子アレイと、第1~第13態様の何れかの態様に係る検出部と、を備える。
第1、第13~第16態様によれば、複数の発光素子を備えた発光素子アレイから検出対象物に対して発光された光の反射光を検出することにより検出対象物を検出する場合に、検出対象物に直接入射して反射された直接光以外の光を考慮しない場合と比較して、直接光以外の光の影響を抑制することができる。
第2態様によれば、受光量に関係なく全ての発光素子を発光させる場合と比較して、受光量が飽和するのを抑制することができる。
第3態様によれば、全ての発光素子を同じ発光回数で発光させる場合と比較して、受光量が飽和するのを抑制することができる。
第4態様によれば、閾値未満の受光量の受光素子に対応する発光素子の発光と、閾値以上の受光量の受光素子に対応する発光素子の発光と、を順に実行する場合と比較して、処理時間を短縮することができる。
第5態様によれば、全ての発光素子を発光させる場合と比較して、マルチパスの影響を回避することができる。
第6態様によれば、壁等によるマルチパスの影響を回避することができる。
第7態様によれば、光の相互干渉の影響を回避することができる。
第8態様によれば、光の相互干渉の影響をより回避することができる。
第9態様によれば、全ての発光素子を発光させる場合と比較して、間接光の影響を抑えることができる。
第10態様によれば、発光素子の発光の制御が複雑になるのを抑制できる。
第11態様によれば、1つの発光素子毎に発光を制御する場合と比較して、発光素子の制御が複雑になるのを抑制できる。
第12態様によれば、検出対象物の三次元形状を特定できる。
第1実施形態に係る計測装置の構成を示す概略構成図である。 計測装置の電気系の要部構成を示すブロック図である。 光源の平面図である。 発光区画について説明するための図である。 計測装置の回路図である。 3Dセンサの平面図である。 第1実施形態に係る計測プログラムの処理の流れの一例を示すフローチャートである。 3Dセンサの平面図である。 マルチパスについて説明するための図である。 マルチパスについて説明するための図である。 第2実施形態に係る計測プログラムの処理の流れの一例を示すフローチャートである。 第3実施形態に係る計測プログラムの処理の流れの一例を示すフローチャートである。 第4実施形態に係る計測プログラムの処理の流れの一例を示すフローチャートである。 第5実施形態に係る計測プログラムの処理の流れの一例を示すフローチャートである。 第6実施形態に係る計測プログラムの処理の流れの一例を示すフローチャートである。
以下、図面を参照して開示の技術にかかる実施形態の一例を詳細に説明する。
<第1実施形態>
被計測物の三次元形状を計測する計測装置には、光の飛行時間による、いわゆるToF(Time of Flight)法に基づいて、三次元形状を計測する装置がある。ToF法では、計測装置の光源から光が出射されたタイミングから、照射された光が被計測物で反射して計測装置の三次元センサ(以下では、3Dセンサと表記する。)で受光されるタイミングまでの時間を計測し、被計測物までの距離を測定することで三次元形状を特定する。なお、三次元形状を計測する対象を被計測物と表記する。被計測物は、検出対象物の一例である。また、三次元形状を計測することを、三次元計測、3D計測又は3Dセンシングと表記することがある。
ToF法には、直接法及び位相差法(間接法)がある。直接法は、ごく短時間だけ発光するパルス光を被計測物に照射し、その光が帰ってくるまでの時間を実測する方法である。位相差法は、パルス光を周期的に点滅させ、複数のパルス光が被計測物との間を往復するときの時間遅れを位相差として検出する方法である。本実施形態では、位相差法により三次元形状を計測する場合について説明する。
このような計測装置は、携帯型情報処理装置などに搭載され、アクセスしようとするユーザの顔認証などに利用されている。従来、携帯型情報処理装置などでは、パスワード、指紋、虹彩などにより、ユーザを認証する方法が用いられてきた。近年、セキュリティ性がより高い認証方法が求められるようになってきた。そこで、携帯型情報処理装置に三次元形状を計測する計測装置を搭載するようになってきた。つまり、アクセスしたユーザの顔の三次元像を取得し、アクセスすることが許可されているか否かを識別し、アクセスが許可されているユーザであることが認証された場合にのみ、自装置(携帯型情報処理装置)の使用を許可することが行われている。
また、このような計測装置は、拡張現実(AR:AugmentedReality)など、継続的に被計測物の三次元形状を計測する場合にも適用される。
以下で説明する本実施の形態で説明する構成、機能、方法等は、顔認証や拡張現実だけでなく、その他の被計測物の三次元形状の計測にも適用しうる。
(計測装置1)
図1は、三次元形状を計測する計測装置1の構成の一例を説明するブロック図である。
計測装置1は、光学装置3と、制御部8とを備える。制御部8は、光学装置3を制御する。そして、制御部8は、被計測物の三次元形状を特定する三次元形状特定部81を含む。なお、計測装置1は、検出装置の一例である。また、制御部8は、検出部の一例である。
図2は、制御部8のハードウェア構成を示すブロック図である。図2に示すように、制御部8は、コントローラ12を備える。コントローラ12は、CPU(Central Processing Unit)12A、ROM(Read Only Memory)12B、RAM(Random Access Memory)12C、及び入出力インターフェース(I/O)12Dを備える。そして、CPU12A、ROM12B、RAM12C、及びI/O12Dがシステムバス12Eを介して各々接続されている。システムバス12Eは、コントロールバス、アドレスバス、及びデータバスを含む。
また、I/O12Dには、通信部14及び記憶部16が接続されている。
通信部14は、外部装置とデータ通信を行うためのインターフェースである。
記憶部16は、フラッシュROM等の不揮発性の書き換え可能なメモリ等で構成され、後述する計測プログラム16A及び後述する区画対応テーブル16B等を記憶する。CPU12Aは、記憶部16に記憶された計測プログラム16AをRAM12Cに読み込んで実行することによって、三次元形状特定部81が構成され、被計測物の三次元形状が特定される。なお、計測プログラム16Aは、検出プログラムの一例である。
光学装置3は、発光装置4と、3Dセンサ5とを備える。発光装置4は、配線基板10と、放熱基材100と、光源20と、光拡散部材30と、駆動部50と、保持部60と、キャパシタ70A、70Bとを備える。さらに、発光装置4は、駆動部50を動作させるために、抵抗素子6、キャパシタ7などの受動素子を備えてもよい。ここでは、抵抗素子6、キャパシタ7をそれぞれ2個備えるとする。また、2個のキャパシタ70A、70Bを表記したが、1個でもよい。なお、キャパシタ70A、70Bを区別しない場合はキャパシタ70と表記する。さらに、抵抗素子6及びキャパシタ7は、それぞれ1個であってもよく、複数であってもよい。ここでは、光源20、駆動部50及びキャパシタ70以外の、3Dセンサ5、抵抗素子6、キャパシタ7などの電気部品をそれぞれ区別しないで回路部品と表記することがある。なお、キャパシタは、コンデンサと呼ばれることがある。3Dセンサ5は、受光素子アレイの一例である。
発光装置4の放熱基材100、駆動部50、抵抗素子6及びキャパシタ7は、配線基板10の表面上に設けられている。なお、図1では、3Dセンサ5は、配線基板10の表面上に設けられていないが、配線基板10の表面上に設けられていてもよい。
光源20、キャパシタ70A、70B及び保持部60は、放熱基材100の表面上に設けられている。そして、光拡散部材30は、保持部60上に設けられている。ここでは、放熱基材100の外形と光拡散部材30の外形とが同じであるとしている。ここで、表面とは、図1の紙面の表側を言う。より具体的には、配線基板10においては、放熱基材100が設けられている方を表面、表側、又は表面側と言う。また、放熱基材100においては、光源20が設けられている方を表面、表側、又は表面側という。
光源20は、複数の発光素子が二次元に配置された発光素子アレイとして構成されている(後述する図3参照)。発光素子は、一例として垂直共振器面発光レーザ素子VCSEL(Vertical Cavity Surface EmittingLaser)である。以下では、発光素子は、垂直共振器面発光レーザ素子VCSELであるとして説明する。そして、以下では、垂直共振器面発光レーザ素子VCSELをVCSELと表記する。光源20は放熱基材100の表面上に設けられているので、光源20は、放熱基材100の表面に対して垂直に、放熱基材100から離れる方向に光を出射する。つまり、発光素子アレイは、面発光レーザ素子アレイである。なお、光源20における複数の発光素子が二次元に配置されていて、光を出射する光源20の面を出射面と表記することがある。
光拡散部材30は、光源20が出射した光が入射される。そして、光拡散部材30は、入射した光を拡散して出射する。光拡散部材30は、光源20及びキャパシタ70A、70Bを覆うように設けられている。つまり、光拡散部材30は、放熱基材100の表面上に設けられた保持部60により、放熱基材100上に設けられた光源20及びキャパシタ70A、70Bから予め定められた距離を離して設けられている。よって、光源20が出射する光は、光拡散部材30により拡散されて被計測物に照射される。つまり、光源20が出射した光は、光拡散部材30を備えない場合に比べ、光拡散部材30により拡散されてより広い範囲に照射される。
ToF法により三次元計測を行う場合、光源20は、駆動部50により、例えば、100MHz以上で、且つ、立ち上り時間が1ns以下のパルス光(以下では、出射光パルスと表記する。)を出射することが求められる。なお、顔認証を例とする場合、光が照射される距離は10cm程度から1m程度である。そして、光が照射される範囲は、1m角程度である。なお、光が照射される距離を計測距離と表記し、光が照射される範囲を照射範囲又は計測範囲と表記する。また、照射範囲又は計測範囲に仮想的に設けられる面を照射面と表記する。なお、顔認証以外の場合など、被計測物までの計測距離及び被計測物に対する照射範囲は、上記以外であってもよい。
3Dセンサ5は、複数の受光素子、例えば640×480個の受光素子を備え、光源20から光が出射されたタイミングから3Dセンサ5で受光されるタイミングまでの時間に相当する信号を出力する。
例えば、3Dセンサ5の各受光素子は、光源20からの出射光パルスに対する被計測物からのパルス状の反射光(以下では、受光パルスと表記する。)を受光し、受光するまでの時間に対応する電荷を受光素子毎に蓄積する。3Dセンサ5は、各受光素子が2つのゲートとそれらに対応した電荷蓄積部とを備えたCMOS構造のデバイスとして構成されている。そして、2つのゲートに交互にパルスを加えることによって、発生した光電子を2つの電荷蓄積部の何れかに高速に転送する。2つの電荷蓄積部には、出射光パルスと受光パルスとの位相差に応じた電荷が蓄積される。そして、3Dセンサ5は、ADコンバータを介して、受光素子毎に出射光パルスと受光パルスとの位相差に応じたデジタル値を信号として出力する。すなわち、3Dセンサ5は、光源20から光が出射されたタイミングから3Dセンサ5で受光されるタイミングまでの時間に相当する信号を出力する。つまり、3Dセンサ5から、被計測物の三次元形状に対応した信号が取得される。なお、ADコンバータは、3Dセンサ5が備えてもよく、3Dセンサ5の外部に設けられてもよい。
以上説明したように、計測装置1は、光源20が出射した光を拡散して被計測物に照射し、被計測物からの反射光を3Dセンサ5で受光する。このようにして、計測装置1は、被計測物の三次元形状を計測する。
まず、発光装置4を構成する光源20、光拡散部材30、駆動部50及びキャパシタ70A、70Bを説明する。
(光源20の構成)
図3は、光源20の平面図である。光源20は、複数のVCSELが二次元のアレイ状に配置されて構成されている。つまり、光源20は、VCSELを発光素子とする発光素子アレイとして構成されている。紙面の右方向をx方向、紙面の上方向をy方向とする。
x方向及びy方向と直交する方向をz方向とする。なお、光源20の表面とは、紙面の表側、つまり+z方向側の面を言い、光源20の裏面とは、紙面の裏側、つまり-z方向側の面を言う。光源20の平面図とは、光源20を表面側から見た図である。
さらに説明すると、光源20において、発光層(後述する活性領域206)として機能するエピタキシャル層が形成されている方を、光源20の表面、表側、又は表面側という。
VCSELは、半導体基板200上に積層された下部多層膜反射鏡と上部多層膜反射鏡との間に発光領域となる活性領域を設け、表面に対して垂直方向にレーザ光を出射させる発光素子である。このことから、VCSELは、端面出射型のレーザを用いる場合と比較し、二次元のアレイ化が容易である。光源20の備えるVCSELの数は、一例として、100個~1000個である。なお、複数のVCSELは、互いに並列に接続され、並列に駆動される。上記のVCSELの数は一例であり、計測距離や照射範囲に応じて設定されればよい。
また、光源20は、図4に示すように、複数の発光区画24に区画され、発光区画毎に駆動される。図4の例では、破線で示すように、4×3の12個の発光区画2411~2434に区画されているが、発光区画の数はこれに限られるものではない。なお、発光区画を特に区別しない場合は、単に発光区画24と称する。また、図4の例では、1つの発光区画24に16個のVCSELが含まれているが、1つの発光区画24に含まれるVCSELの数はこれに限られるものではなく、1つ以上のVCSELが含まれていればよい。
光源20の表面には、複数のVCSELに共通のアノード電極218(図5参照)が設けられている。光源20の裏面には、カソード電極214(図5参照)が設けられている。つまり、複数のVCSELは、並列接続されている。複数のVCSELを並列接続して駆動することで、VCSELを個別に駆動する場合と比較し、強度の強い光が出射される。
ここでは、光源20は、表面側から見た形状(平面形状と表記する。以下同様とする。)が長方形であるとする。そして、-y方向側の側面を側面21A、+y方向側の側面を側面21B、-x方向側の側面を側面22A及び+x方向側の側面を側面22Bと表記する。側面21Aと側面21Bとが対向する。側面22Aと側面22Bとは、それぞれが側面21Aと側面21Bとをつなぐとともに、対向する。
そして、光源20の平面形状における中心、つまりx方向及びy方向の中央を、中心Ovとする。
(駆動部50及びキャパシタ70A、70B)
光源20をより高速に駆動させたい場合は、ローサイド駆動するのがよい。ローサイド駆動とは、VCSELなどの駆動対象に対して、電流経路の下流側にMOSトランジスタ等の駆動素子を位置させた構成を言う。逆に、上流側に駆動素子を位置させた構成をハイサイド駆動と言う。
図5は、ローサイド駆動により光源20を駆動する場合の等価回路の一例を示す図である。図5では、光源20のVCSELと、駆動部50と、キャパシタ70A、70Bと、電源82とを示す。なお、電源82は、図1に示した制御部8に設けられている。電源82は、+側を電源電位とし、-側を基準電位とする直流電圧を発生する。電源電位は、電源線83に供給され、基準電位は、基準線84に供給される。なお、基準電位は、接地電位(GNDと表記されることがある。図5では[G]と表記する。)であってよい。
光源20は、前述したように複数のVCSELが並列接続されて構成されている。VCSELのアノード電極218(図3参照。図5では[A]と表記する。)が電源線83に接続される。
また、光源20は、前述したように、複数の発光区画24に区画されており、制御部8は、発光区画24毎にVCSELを駆動する。なお、図5では、1つの発光区画24のみ3個のVCSELを図示しており、他のVCSEL及び発光区画の図示を省略している。
図5に示すように、各VCSELと電源線83との間にスイッチ素子SWが設けられており、各スイッチ素子SWは、制御部8からの指令により同時にオンオフされる。これにより、1つの発光区画24に含まれるVCSELは同じタイミングで発光及び非発光が制御される。
駆動部50は、nチャネル型のMOSトランジスタ51と、MOSトランジスタ51をオンオフする信号発生回路52とを備える。MOSトランジスタ51のドレイン(図5では[D]と表記する。)は、VCSELのカソード電極214(図3参照。図5では[K]と表記する。)に接続される。MOSトランジスタ51のソース(図5では[S]と表記する。)は、基準線84に接続される。そして、MOSトランジスタ51のゲートは、信号発生回路52に接続される。つまり、VCSELと駆動部50のMOSトランジスタ51とは、電源線83と基準線84との間に直列接続されている。信号発生回路52は、制御部8の制御により、MOSトランジスタ51をオン状態にする「Hレベル」の信号と、MOSトランジスタ51をオフ状態にする「Lレベル」の信号とを発生する。
キャパシタ70A、70Bは、一方の端子が電源線83に接続され、他方の端子が基準線84に接続されている。ここでは、キャパシタ70が複数ある場合には、複数のキャパシタ70は、並列接続される。つまり、図5では、キャパシタ70が2個のキャパシタ70A、70Bであるとしている。なお、キャパシタ70は、例えば電解コンデンサやセラミックコンデンサなどである。
次に、ローサイド駆動である光源20の駆動方法を説明する。
まず、制御部8は、VCSELを発光させたい発光区画24のスイッチ素子SWをオンし、VCSELを発光させたくない発光区画24のスイッチ素子SWはオフしておく。
以下では、スイッチ素子SWをオンにした発光区画24に含まれるVCSELの駆動について説明する。
まず、駆動部50における信号発生回路52の発生する信号が「Lレベル」であるとする。この場合、MOSトランジスタ51は、オフ状態である。つまり、MOSトランジスタ51のソース(図5の[S])-ドレイン(図5の[D])間には電流が流れない。よって、MOSトランジスタ51と直列接続されたVCSELにも、電流が流れない。つまり、VCSELは非発光である。
このとき、キャパシタ70A、70Bは、電源82に接続されていて、キャパシタ70A、70Bの電源線83に接続された一方の端子が電源電位になり、基準線84に接続された他方の端子が基準電位になる。よって、キャパシタ70A、70Bは、電源82から電流が流れて(電荷が供給されて)充電される。
次に、駆動部50における信号発生回路52の発生する信号が「Hレベル」になると、MOSトランジスタ51がオフ状態からオン状態に移行する。すると、キャパシタ70A、70Bと、直列接続されたMOSトランジスタ51及びVCSELとで閉ループが構成され、キャパシタ70A、70Bに蓄積されていた電荷が、直列接続されたMOSトランジスタ51とVCSELとに供給される。つまり、VCSELに駆動電流が流れて、VCSELが発光する。この閉ループが、光源20を駆動する駆動回路である。
そして、駆動部50における信号発生回路52の発生する信号が再び「Lレベル」になると、MOSトランジスタ51がオン状態からオフ状態に移行する。これにより、キャパシタ70A、70Bと、直列接続されたMOSトランジスタ51及びVCSELとの閉ループ(駆動回路)が開ループになり、VCSELに駆動電流が流れなくなる。これにより、VCSELは、発光を停止する。すると、キャパシタ70A、70Bは、電源82から電荷が供給されて充電される。
以上説明したように、信号発生回路52の出力する信号が「Hレベル」と「Lレベル」とに移行する毎に、MOSトランジスタ51がオンオフを繰り返し、VCSELが発光と非発光とを繰り返す。MOSトランジスタ51のオンオフの繰り返しは、スイッチングと呼ばれることがある。
ところで、光源20から出射された光が被計測物に直接入射して反射された光のみを3Dセンサ5で受光できれば被計測物までの距離を精度良く計測可能である。
しかしながら、実際には、3Dセンサ5は図示しないレンズを備え、このレンズによって多重反射した余計な光を本来受光すべきでない受光素子が受光してしまうというレンズフレアの問題がある。なお、以下では、被計測物に直接入射して反射された光を受光素子で直接受光する光を直接光と称する。また、直接光以外の余計な光を間接光と称する。
レンズフレアによって、直接光だけなく間接光も受光する受光素子においては、想定を超えた受光量となり、飽和してしまう場合がある。また、計測装置1と被計測物との間に例えばユーザの指等の障害物が存在する場合も、障害物で反射した余計な間接光によって想定を超えた受光量となる場合がある。
そこで、本実施形態では、光源20から被計測物に対して発光された光の反射光を受光する3Dセンサ5に含まれる複数の受光素子PDのうち、被計測物に直接入射して反射された光を直接受光した受光素子PDが受光した直接光の受光量から、被計測物までの距離を測定する。具体的には、予め定めた閾値未満の受光量の受光素子PDに対応するVCSELを発光させて被計測物までの距離を測定する。すなわち、予め定めた閾値以上の受光量の受光素子PDに対応するVCSELを発光させない。なお、光源20を発光させてから被計測物までの距離を測定する一連の処理をインテグレーションという場合がある。
本実施形態では、図6に示すように、3Dセンサ5を複数の受光区画26に区画する。受光区画26は、1つ以上の受光素子PDを含む。図6の例では、1つの受光区画26に16個の受光素子PDが含まれているが、受光素子PDの数はこれに限られるものではない。なお、図6の例では、説明の便宜上、発光区画24と同様に3Dセンサ5を4×3の受光区画2611~2634に区画しているが、発光区画24と異なる数に区画してもよい。なお、受光区画を特に区別しない場合は、単に受光区画26と称する
また、本実施形態では、発光区画24毎に、発光区画24に属するVCSELを全て発光させた場合に、直接光を受光する受光素子PDが属する受光区画26が予め特定されているものとする。発光区画24と受光区画26との対応関係は区画対応テーブル16Bとして予め記憶部16に記憶されている(図2参照)。
区画対応テーブル16Bは、例えば障害物等が存在しない状態で予め定めた被計測物に対して発光区画24毎に個別に発光させ、各受光区画26で受光した光の受光量から求める。
なお、発光区画24と受光区画26とは、1対1、多対1、1体多、及び多対多の何れに対応していてもよいが、本実施形態では、説明の便宜上、1対1に対応しているものとする。
次に、本実施形態に係る計測装置1の作用について説明する。図7は、本実施形態に係る計測装置1の制御部8で実行される計測処理の流れを表すフローチャートである。図7に示す計測処理は、CPU12Aが記憶部16に記憶された計測プログラム16Aを読み込むことにより実行される。
ステップS100では、光源20の全発光区画24のVCSELが発光されるように、駆動部50のMOSトランジスタ51をオン状態にすると共に、全てのスイッチ素子SWをオン状態にする。これにより、全てのVCSELが発光する。
ステップS102では、全受光区画26の受光素子で受光した光の受光量(電荷量)を3Dセンサ5から取得する。
ステップS104では、受光量が予め定めた閾値以上の受光素子が存在するか否かを判定する。閾値は、直接光以外の間接光も受光しており、受光量が飽和していると判定可能な値に設定される。そして、受光量が予め定めた閾値以上の受光素子が存在する場合はステップS106へ移行する。一方、受光量が予め定めた閾値以上の受光素子が存在しない場合はステップS110へ移行する。
ステップS106では、区画対応テーブル16Bを参照し、受光量が閾値以上の受光素子が属する受光区画26に対応する発光区画24を特定する。そして、特定した発光区画24以外の発光区画24を第1の発光区画24として、第1の発光区画24に属するVCSELを予め定めた回数発光させ、発光させた第1の発光区画24に対応する受光区画26に属する受光素子の受光量を3Dセンサ5から取得し、前述した位相差法により被計測物までの距離を測定する。すなわち、受光量が閾値未満の受光素子が属する受光区画26に対応する第1の発光区画24に属するVCSELを発光させて被計測物までの距離を測定する。このように、間接光の影響が少ない受光区画26に対応する第1の発光区画24に属するVCSELを発光させて被計測物までの距離を測定する。なお、第1の発光区画24に対応する受光区画26に属する受光素子の受光量のみ取得して被計測物までの距離を測定してもよい。
ステップS108では、第1の発光区画24以外の第2の発光区画24に属するVCSELを発光させ、発光させた第2の発光区画24に対応する受光区画26に属する受光素子の受光量を3Dセンサ5から取得し、被計測物までの距離を測定する。このとき、ステップS106で第1の発光区画24のVCSELを発光させた回数N1よりも少ない回数N2で第2の発光区画24に属するVCSELを発光させる。なお、回数N2は、受光素子で受光される光の受光量が閾値未満となる回数に設定される。これにより、受光素子で受光する光の受光量が閾値以上となるのが抑制される。
ステップS110では、受光量が閾値以上の受光素子はないので、ステップS102で取得した全受光素子の受光量から被計測物までの距離を測定する。
このように、本実施形態では、受光量が予め定めた閾値未満の受光素子が属する受光区画26に対応する発光区画を第1発光区画24とし、受光量が予め定めた閾値以上の受光素子が属する受光区画26に対応する発光区画を第2の発光区画24とする。そして、第2の発光区画24については発光回数を減らして発光させる。
例えば図8に示すように、受光区画2622、2623、2631、2634に属する少なくとも一部の受光素子の受光量が閾値以上となっているとする。この場合、受光区画2622、2623、2631、2634に対応する発光区画2422、2423、2431、2434が第2の発光区画24に設定され、それ以外の受光区画26に対応する発光区画24が第1の発光区画24に設定される。
なお、図7の処理では、ステップS106の処理を実行してからステップS108の処理を実行しているが、ステップS106の処理とステップS108の処理を並行して実行しても良い。すなわち、第1の発光区画24の発光と第2の発光区画24の発光を並行して実行する。これにより、処理時間が短縮される。
<第2実施形態>
次に、第2実施形態について説明する。なお、第1実施形態と同一部分については同一符号を付し、詳細な説明は省略する。
計測装置1の構成は第1実施形態と同一であるので説明を省略する。
光源20からの光を被計測物に照射し、その反射光を受光して被計測物までの距離を測定する場合に生じる問題は、第1実施形態で説明したレンズフレアだけではない。例えば図9に示すように、光源20から出射された光は、被計測物28に直接入射して反射された直接光L1だけではない。例えば壁32等の障害物等によって反射し、複数の経路をたどってマルチパス光L2として3Dセンサ5で受光されるというマルチパスの問題がある。
マルチパスによって、受光素子が直接光だけでなく本来受光すべきでない間接光も受光してしまうため、測定した距離の精度に影響が生じる場合がある。
そこで、本実施形態では、本来受光すべきでない間接光を受光した受光素子が属する受光区画26に対応する第2の発光区画24は発光させず、第2の発光区画24以外の第1の発光区画24に属するVCSELを発光させて被計測物までの距離を測定する。これにより、図10に示すように、マルチパス光L2の影響を抑制した状態で被計測物28までの距離が測定される。
以下、本実施形態の作用について説明する。図11は、本実施形態に係る計測装置1の制御部8で実行される計測処理の流れを表すフローチャートである。
ステップS200では、未発光の1つの発光区画24を発光させる。すなわち、未発光の1つの発光区画24のVCSELが発光されるように、駆動部50のMOSトランジスタ51をオン状態にすると共に、未発光の1つの発光区画24のスイッチ素子SWをオン状態にする。これにより、1つの発光区画24のVCSELが発光し、その他の発光区画24のVCSELは発光しない。
ステップS202では、全受光区画26に属する受光素子の受光量を3Dセンサ5から取得する。
ステップS204では、区画対応テーブル16Bを参照してステップS200で発光させた発光区画24に対応する第1の受光区画26を特定する。そして、ステップS202で取得した全受光区画26に属する受光素子の受光量に基づいて、第1の受光区画26以外の第2の受光区画26で受光したか否かを判定する。
そして、第2の受光区画26で受光している場合はステップS206へ移行し、第2の受光区画26で受光していない場合はステップS208へ移行する。
ステップS206では、ステップS200で発光させた発光区画24を第2の発光区画24に設定する。
一方、ステップS208では、ステップS200で発光させた発光区画24を第1の発光区画24に設定する。
ステップS210では、全ての発光区画24で発光させたか否かを判定し、全ての発光区画24で発光させた場合はステップS212へ移行する。一方、未発光の発光区画24が存在する場合はステップS200へ移行し、未発光の発光区画24を発光させて上記と同様の処理を行う。
ステップS212では、ステップS208で設定された第1の発光区画24のみを予め定めた回数発光させ、3Dセンサ5から各受光素子の受光量を取得し、前述した位相差法により被計測物までの距離を測定する。
このように、本実施形態では、発光させた発光区画24に対応する第1の受光区画26以外の第2の受光区画26に属する受光素子で受光した場合は、第2の受光区画26に対応する第2の発光区画24以外の第1の発光区画24を発光させて、被計測物までの距離を測定する。
<第3実施形態>
次に、第3実施形態について説明する。なお、第1実施形態と同一部分については同一符号を付し、詳細な説明は省略する。
計測装置1の構成は第1実施形態と同一であるので説明を省略する。
以下、本実施形態の作用について説明する。図12は、本実施形態に係る計測装置1の制御部8で実行される計測処理の流れを表すフローチャートである。
ステップS300では、図7のステップS100と同様に、光源20の全発光区画24のVCSELが発光されるように、駆動部50のMOSトランジスタ51をオン状態にすると共に、スイッチ素子SWを全てオン状態にする。これにより、全てのVCSELが発光する。
ステップS302では、図7のステップS102と同様に、全受光区画26の受光素子で受光した光の受光量(電荷量)を3Dセンサ5から取得し、取得した受光量から被計測物までの距離を測定する。
ステップS304では、ステップS302で測定した距離が連続して変化する受光区画26が存在するか否か判定する。そして、距離が連続して変化する受光区画26が存在する場合はステップS306へ移行し、距離が連続して変化する受光区画26が存在しない場合はステップS308へ移行する。
ステップS306では、距離が連続して変化する受光区画26に対応する発光区画24を第2の発光区画24に設定し、その他の発光区画を第1の発光区画24に設定する。
ステップS308では、全ての発光区画24を第1の発光区画24に設定する。
ステップS310では、第1の発光区画24を発光させて全受光区画26の受光素子で受光した光の受光量を3Dセンサ5から取得し、被計測物までの距離を測定する。
これにより、距離が連続して変化する壁等に光を照射する発光区画24を発光させないため、マルチパスの影響が回避される。
<第4実施形態>
次に、第4実施形態について説明する。なお、第1実施形態と同一部分については同一符号を付し、詳細な説明は省略する。
計測装置1の構成は第1実施形態と同一であるので説明を省略する。
以下、本実施形態の作用について説明する。図13は、本実施形態に係る計測装置1の制御部8で実行される計測処理の流れを表すフローチャートである。
ステップS400では、図11のステップS200と同様に、未発光の発光区画24を発光させる。
ステップS402では、図11のステップS202と同様に、全受光区画26に属する受光素子の受光量を3Dセンサ5から取得し、取得した受光量を記憶部16に記憶する。
ステップS404では、全ての発光区画24で発光させたか否かを判定し、全ての発光区画24で発光させた場合はステップS406へ移行する。一方、未発光の発光区画24が存在する場合はステップS400へ移行し、未発光の発光区画24を発光させて上記と同様の処理を行う。これにより、発光区画24と、その発光区画24を発光させた場合における各受光区画26の受光量との対応関係を表す受光量マップが得られる。
ステップS406では、受光量マップに基づいて、発光区画24の発光順序を設定する。具体的には、光の相互干渉が生じない発光区画24毎に発光するように発光順序を設定する。ここで、光の相互干渉とは、複数の発光区画24を同時に発光させた場合に、対応する第1の受光区画26以外の第2の受光区画26でも受光してしまい、測定の精度に悪影響が生じる状況をいう。
例えば図8に示すように、受光量マップが、受光区画2622に対応する発光区画2422を発光させた場合に、受光区画2622の周辺の受光区画2611、2612、2622でも受光したことを表す受光量マップであったものとする。また、受光量マップが、受光区画2623に対応する発光区画2423を発光させた場合に、受光区画2623の周辺の受光区画2613、2624、2633でも受光したことを表す受光量マップであったものとする。また、受光量マップが、受光区画2631に対応する発光区画2431を発光させた場合に、受光区画2631の周辺の受光区画2621、2622、2632でも受光したことを表す受光量マップであったものとする。また、受光量マップが、受光区画2634に対応する発光区画2434を発光させた場合に、受光区画2634の周辺の受光区画2623、2624、2633でも受光したことを表す受光量マップであったものとする。
この場合、受光区画2611、2612、2613、2614、2621、2624、2632、2633に対応する発光区画2411、2412、2413、2414、2421、2424、2432、2433を同時に発光させても、相互干渉は生じない。同様に、受光区画2622、2623に対応する発光区画2422、2423を同時に発光させても、相互干渉は生じない。また、受光区画2631、2634に対応する発光区画2431、2434を同時に発光させても、相互干渉は生じない。
従って、図8の例では、1回目に発光区画2411、2412、2413、2414、2421、2424、2432、2433を同時に発光させ、2回目に発光区画2422、2423を同時に発光させ、3回目に発光区画2431、2434を同時に発光させるように発光順序を設定する。なお、発光回数が最小となるように発光順序を設定することが好ましい。
ステップS408では、ステップS406で設定した発光順序で発光区画24を発光し、被計測物までの距離を測定する。
このように、受光量マップから、光の相互干渉が生じない組み合わせの発光区画24の組毎に発光させる。
<第5実施形態>
次に、第5実施形態について説明する。なお、第1実施形態と同一部分については同一符号を付し、詳細な説明は省略する。
計測装置1の構成は第1実施形態と同一であるので説明を省略する。
以下、本実施形態の作用について説明する。図14は、本実施形態に係る計測装置1の制御部8で実行される計測処理の流れを表すフローチャートである。
ステップS500では、図11のステップS200と同様に、未発光の1つの発光区画24のみを予め定めた回数発光させる。
ステップS502では、区画対応テーブル16Bを参照してステップS500で発光させた発光区画24に対応する受光区画26を特定し、特定した受光区画26に属する受光素子の受光量を3Dセンサ5から取得する。
ステップS504では、ステップS504で取得した各受光素子の受光量に基づき、前述した位相差法により、ステップS500で発光させた発光区画24に対応する受光区画26における被計測物までの距離を測定する。
ステップS506では、全ての発光区画24で発光させたか否かを判定し、全ての発光区画24で発光させた場合は本ルーチンを終了する。一方、未発光の発光区画24が存在する場合はステップS500へ移行し、未発光の発光区画24を発光させて上記と同様の処理を行う。
このように、本実施形態では、1つずつ発光区画24を発光させ、発光させた発光区画24に対応する受光区画26における被計測物までの距離を測定する処理を個別に行う。
<第6実施形態>
次に、第6実施形態について説明する。なお、第1実施形態と同一部分については同一符号を付し、詳細な説明は省略する。
計測装置1の構成は第1実施形態と同一であるので説明を省略する。
以下、本実施形態の作用について説明する。図15は、本実施形態に係る計測装置1の制御部8で実行される計測処理の流れを表すフローチャートである。
ステップS600では、図11のステップS200と同様に、未発光の発光区画24を発光させる。
ステップS602では、図11のステップS202と同様に、全受光区画26に属する受光素子の受光量を3Dセンサ5から取得する。
ステップS604では、ステップS602で取得した全受光区画26に属する受光素子の受光量に基づいて、ステップS600で発光させた第1の発光区画24に対応する第1の受光区画26以外の第2の受光区画26で受光したか否かを判定する。
そして、第2の受光区画26で受光している場合はステップS606へ移行し、第2の受光区画26で受光していない場合はステップS608へ移行する。
ステップS606では、第2の受光区画26の受光素子で受光した光の受光量を補正量として記憶部16に記憶する。
ステップS608では、全ての発光区画24で発光させたか否かを判定し、全ての発光区画24で発光させた場合はステップS610へ移行する。一方、未発光の発光区画24が存在する場合はステップS600へ移行し、未発光の発光区画24を発光させて上記と同様の処理を行う。
ステップS610では、全ての発光区画24に属するVCSELを発光させる。
ステップS612では、3Dセンサ5から全受光区画26の受光素子の受光量を取得する。
ステップS614では、全受光区画26の受光素子のうち、ステップS606で記憶部16に補正量が記憶されている受光素子については、受光量から補正量を減算することにより受光量を補正する。そして、補正後の受光量を用いて被計測物までの距離を測定する。これにより、間接光の影響が回避される。
以上、実施の形態を説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施の形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。
また、上記実施の形態は、クレーム(請求項)にかかる発明を限定するものではなく、また実施の形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。前述した実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件の組み合わせにより種々の発明が抽出される。実施の形態に示される全構成要件から幾つかの構成要件が削除されても、効果が得られる限りにおいて、この幾つかの構成要件が削除された構成が発明として抽出され得る。
例えば、上記各実施形態では被計測物までの距離を測定することにより被計測物の三次元形状を特定する場合について説明したが、例えば予め定めた距離以内に被計測物が存在するか否かを検出するだけでもよい。
また、図7、11~15の処理を実行する制御部8を専用のプロセッサ(例えばGPU:Graphics Processing Unit、ASIC:Application Specific Integrated Circuit、FPGA:Field Programmable Gate Array、プログラマブル論理デバイス、等)で構成し、光学装置3に組み込んだ構成としてもよい。この場合、光学装置3単体で被計測物までの距離が測定される。
なお、本実施形態では、計測プログラム16Aが記憶部16にインストールされている形態を説明したが、これに限定されるものではない。本実施形態に係る計測プログラム16Aを、コンピュータ読取可能な記憶媒体に記録した形態で提供してもよい。例えば、本実施形態に係る計測プログラム16Aを、CD(Compact Disc)-ROM及びDVD(Digital Versatile Disc)-ROM等の光ディスクに記録した形態、若しくはUSB(Universal Serial Bus)メモリ及びメモリカード等の半導体メモリに記録した形態で提供してもよい。また、本実施形態に係る計測プログラム16Aを、通信部14に接続された通信回線を介して外部装置から取得するようにしてもよい。
上記実施形態において、プロセッサとは広義的なプロセッサを指し、汎用的なプロセッサ(例えばCPU:Central Processing Unit、等)や、専用のプロセッサ(例えばGPU:Graphics Processing Unit、ASIC:Application Specific Integrated Circuit、FPGA:Field Programmable Gate Array、プログラマブル論理デバイス、等)を含むものである。
また上記実施形態におけるプロセッサの動作は、1つのプロセッサによって成すのみでなく、物理的に離れた位置に存在する複数のプロセッサが協働して成すものであってもよい。また、プロセッサの各動作の順序は上記各実施形態において記載した順序のみに限定されるものではなく、適宜変更してもよい。
1 計測装置
3 光学装置
4 発光装置
5 3Dセンサ
6 抵抗素子
7 キャパシタ
8 制御部
16A 計測プログラム
16B 区画対応テーブル
20 光源
24 発光区画
26 受光区画
28 被計測物
81 三次元形状特定部

Claims (16)

  1. 複数の発光素子を備えた発光素子アレイと、
    前記発光素子アレイから検出対象物に対して発光された光の反射光を受光する複数の受光素子を備えた受光素子アレイと、
    複数の前記発光素子アレイを選択的に駆動する駆動部と、
    前記検出対象物から前記受光素子に直接反射された直接光以外の光を受光した受光素子がある場合、その受光素子に直接光以外の光を照射した発光素子以外の発光素子を発光させて受光素子が受光した光の受光量から、前記検出対象物を検出する検出部と、
    を備えた検出装置。
  2. 前記検出部は、
    全ての前記発光素子を発光させ、
    全ての前記受光素子で受光した光の受光量のうち予め定めた閾値未満の受光量の受光素子に対応する前記発光素子を発光させて前記検出対象物を検出する
    請求項1記載の検出装置。
  3. 前記検出部は、
    前記閾値以上の受光量の受光素子に対応する前記発光素子を、前記閾値未満の受光量の受光素子に対応する前記発光素子の発光回数よりも少ない発光回数で発光させて前記検出対象物を検出する
    請求項2記載の検出装置。
  4. 前記検出部は、
    前記閾値未満の受光量の受光素子に対応する前記発光素子の発光と、前記閾値以上の受光量の受光素子に対応する前記発光素子の発光と、を並行して実行する
    請求項3記載の検出装置。
  5. 前記検出部は、
    前記複数の発光素子を個別に発光させ、
    発光させた第1の発光素子に対応する第1の受光素子以外の第2の受光素子で受光した場合に、
    前記第2の受光素子に対応する第2の発光素子を発光させずに、前記第1の受光素子に対応する第1の発光素子を発光させて前記検出対象物を検出する
    請求項1記載の検出装置。
  6. 前記検出部は、
    全ての前記発光素子を発光させ、
    全ての前記受光素子で受光した光の受光量から前記検出対象物までの距離を測定し、
    前記距離が連続的に変化する領域の受光素子に光を照射した発光素子以外の発光素子を発光させて前記検出対象物を検出する
    請求項1記載の検出装置。
  7. 前記検出部は、
    前記複数の発光素子を個別に発光させ、
    前記複数の受光素子で受光した受光量の受光量マップから設定した前記複数の発光素子の発光順序に従って発光させて前記検出対象物を検出する
    請求項1記載の検出装置。
  8. 前記検出部は、
    前記受光量マップから、光の相互干渉が生じない組み合わせの前記発光素子の組毎に発光させる
    請求項7記載の検出装置。
  9. 前記検出部は、
    前記複数の発光素子を個別に発光させ、
    発光させた発光素子に対応する受光素子が受光した光の受光量から前記検出対象物を個別に検出する
    請求項1記載の検出装置。
  10. 前記検出部は、
    前記複数の発光素子を個別に発光させ、
    発光させた発光素子に対応する受光素子以外の受光素子で受光した受光量を補正量として受光量を算出する
    請求項1記載の検出装置。
  11. 前記発光素子アレイは、少なくとも2以上の発光素子を含む複数の発光区画毎に発光可能であり、
    前記検出部は、前記複数の発光区画毎に発光を制御する
    請求項1~10の何れか1項に記載の検出装置。
  12. 前記検出部は、タイムオブフライトにより前記検出対象物までの距離を検出する
    請求項1~11の何れか1項に記載の検出装置。
  13. 複数の発光素子を備えた発光素子アレイと、
    前記発光素子アレイから検出対象物に対して発光された光の反射光を受光する複数の受光素子を備えた受光素子アレイと、
    複数の前記発光素子アレイを選択的に駆動する駆動部と、
    前記発光素子を発光させ、前記受光素子で受光した光の受光量のうち予め定めた閾値未満の受光量の受光素子に対応する前記発光素子を発光させて前記検出対象物を検出する検出部と、
    備えた検出装置。
  14. プロセッサを備え、
    前記プロセッサは、
    発光素子アレイに含まれる複数の発光素子の発光を制御し、
    前記発光素子アレイから検出対象物に対して発光された光の反射光を受光する受光素子アレイに含まれる複数の受光素子のうち、前記検出対象物から前記受光素子に直接反射された直接光以外の光を受光した受光素子がある場合、その受光素子に直接光以外の光を照射した発光素子以外の発光素子を発光させて受光素子が受光した光の受光量から、前記検出対象物を検出する
    検出装置。
  15. コンピュータに、
    発光素子アレイに含まれる複数の発光素子の発光を制御し、
    前記発光素子アレイから検出対象物に対して発光された光の反射光を受光する受光素子アレイに含まれる複数の受光素子のうち、前記検出対象物から前記受光素子に直接反射された直接光以外の光を受光した受光素子がある場合、その受光素子に直接光以外の光を照射した発光素子以外の発光素子を発光させて受光素子が受光した光の受光量から、前記検出対象物を検出する
    処理を実行させるための検出プログラム。
  16. 複数の発光素子を備えた発光素子アレイと、
    複数の受光素子を備えた受光素子アレイと、
    請求項1~13の何れか1項に記載の検出部と、
    を備えた光学装置。
JP2021051645A 2021-03-25 2021-03-25 検出装置、検出プログラム、及び光学装置 Pending JP2022149468A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021051645A JP2022149468A (ja) 2021-03-25 2021-03-25 検出装置、検出プログラム、及び光学装置
US17/380,405 US20220308212A1 (en) 2021-03-25 2021-07-20 Detection apparatus, non-transitory computer readable medium storing program causing computer to execute process for detecting object, and optical device
EP21189968.7A EP4063906A1 (en) 2021-03-25 2021-08-05 Detection apparatus, detection program, and optical device
CN202111062794.0A CN115128622A (zh) 2021-03-25 2021-09-10 检测装置、存储检测程序的存储介质以及光学装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021051645A JP2022149468A (ja) 2021-03-25 2021-03-25 検出装置、検出プログラム、及び光学装置

Publications (1)

Publication Number Publication Date
JP2022149468A true JP2022149468A (ja) 2022-10-07

Family

ID=77249684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021051645A Pending JP2022149468A (ja) 2021-03-25 2021-03-25 検出装置、検出プログラム、及び光学装置

Country Status (4)

Country Link
US (1) US20220308212A1 (ja)
EP (1) EP4063906A1 (ja)
JP (1) JP2022149468A (ja)
CN (1) CN115128622A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024095625A1 (ja) * 2022-10-31 2024-05-10 ソニーセミコンダクタソリューションズ株式会社 測距装置および測距方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333592A (ja) 2006-06-15 2007-12-27 Denso Corp 距離測定装置
JP2017015448A (ja) 2015-06-29 2017-01-19 株式会社デンソー 光飛行型測距装置
JP6848364B2 (ja) * 2016-11-10 2021-03-24 株式会社リコー 測距装置、移動体、ロボット、3次元計測装置、監視カメラ及び測距方法
JP7005994B2 (ja) 2017-08-03 2022-01-24 株式会社リコー 距離測定装置及び距離測定方法
US11092678B2 (en) 2018-06-21 2021-08-17 Analog Devices, Inc. Measuring and removing the corruption of time-of-flight depth images due to internal scattering
EP3719529A1 (en) * 2019-03-20 2020-10-07 Ricoh Company, Ltd. Range finding device and range finding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024095625A1 (ja) * 2022-10-31 2024-05-10 ソニーセミコンダクタソリューションズ株式会社 測距装置および測距方法

Also Published As

Publication number Publication date
US20220308212A1 (en) 2022-09-29
EP4063906A1 (en) 2022-09-28
CN115128622A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
US10627491B2 (en) Integrated LIDAR illumination power control
JP6236758B2 (ja) 光学的測距装置
JP7211968B2 (ja) レーザパワー較正および補正
US11796648B2 (en) Multi-channel lidar illumination driver
JP2020112443A (ja) 距離測定装置及び距離測定方法
JP6911825B2 (ja) 光測距装置
JP2022149468A (ja) 検出装置、検出プログラム、及び光学装置
JP7259525B2 (ja) 光測距装置およびその方法
WO2022201570A1 (ja) 検出装置、検出プログラム、記憶媒体、検出方法、及び発光装置
WO2023185757A1 (zh) 激光雷达系统及其校准方法
US20230305149A1 (en) Light emitting element array and detection apparatus
US20230333212A1 (en) Light emitting element array, light emitting device, and detection apparatus
WO2022201571A1 (ja) 発光装置及び計測装置
JP2023113029A (ja) 距離測定装置及び距離測定プログラム
JP2020153886A (ja) 光学装置および光測距装置ならびにそれらの方法
JPH04338904A (ja) 距離検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240226