JP2022145428A - 移動体の位置測位装置、移動体の位置測位システム、移動体の位置測位方法及び移動体の位置測位プログラム - Google Patents
移動体の位置測位装置、移動体の位置測位システム、移動体の位置測位方法及び移動体の位置測位プログラム Download PDFInfo
- Publication number
- JP2022145428A JP2022145428A JP2021142003A JP2021142003A JP2022145428A JP 2022145428 A JP2022145428 A JP 2022145428A JP 2021142003 A JP2021142003 A JP 2021142003A JP 2021142003 A JP2021142003 A JP 2021142003A JP 2022145428 A JP2022145428 A JP 2022145428A
- Authority
- JP
- Japan
- Prior art keywords
- camera
- captured image
- imaging
- moving body
- marker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 33
- 238000003384 imaging method Methods 0.000 claims abstract description 126
- 239000003550 marker Substances 0.000 claims abstract description 73
- 238000012937 correction Methods 0.000 claims description 123
- 230000032683 aging Effects 0.000 claims description 6
- 238000009434 installation Methods 0.000 abstract description 60
- 238000001514 detection method Methods 0.000 description 42
- 238000012545 processing Methods 0.000 description 20
- 238000004891 communication Methods 0.000 description 17
- 238000004364 calculation method Methods 0.000 description 15
- 230000001133 acceleration Effects 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 10
- 230000006870 function Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000004091 panning Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Studio Devices (AREA)
Abstract
【課題】カメラが向いている方向が設置当初の状態から様々な要因で変化した場合であっても良好に位置測位を継続可能とする。【解決手段】撮像方向が第1方向から第2方向に変化したカメラ201a~201dから、空間500内に配置されている少なくとも1つのマーカー300a~300eと、空間500内を動く少なくとも1つの移動体100a~100cと、を含む撮像画像を取得し、撮像画像と、初期データと、に基づいて、撮像方向の第1方向から第2方向への変化を検出し、現実世界におけるカメラ201a~201dの撮像方向を第2方向から第1方向に戻すことなしに、撮像画像に基づいて、少なくとも1つの移動体100a~100cの位置データを取得する。【選択図】図1
Description
本発明は、移動体の位置測位装置、移動体の位置測位システム、移動体の位置測位方法及び移動体の位置測位プログラムに関する。
従来、可視光を用いた測量・位置検出技術は、カメラの設置毎にキャリブレーションを行っており、ごく短期的に測定するのが一般的である。そのため、カメラを据置きして用いる場合、カメラ設置条件がカメラの清掃、地震等による外部要因、ネジの緩み等の経年要因により初期値からずれてきてしまい、位置検出精度の低下問題が発生する。現状、位置検出精度を回復させるためには、あらためてキャリブレーションを行う必要がある。
特許文献1は、カメラの設置時に検知エリアを撮像した基準画像と当該基準画像に設定された基準点の位置情報とを記憶し、周期的にカメラの撮像画像と基準画像との間の基準点のずれ量を検出し、検出されたずれ量に基づいて雲台を駆動するカメラシステムを開示する。
しかしながら、雲台を駆動したり、あらためてキャリブレーションを実行すると、システムを長時間停止する必要があり、現場作業に影響が発生する。
本発明は、上記に鑑みてなされたものであって、カメラの向いている方向が設置当初の状態から様々な要因で変化した場合であっても良好に位置測位を継続可能とすることを目的とする。
本発明に係る移動体の位置測位装置は、撮像方向が第1方向から第2方向に変化したカメラから、空間内に配置されている少なくとも1つのマーカーと、前記空間内を動く少なくとも1つの移動体と、を含む撮像画像を取得し、前記撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記撮像画像に基づいて、前記少なくとも1つの移動体の位置データを取得する。
本発明によれば、カメラの向いている方向が設置当初の状態から様々な要因で変化した場合であっても良好に位置測位を継続できる。
以下、本発明の実施の形態にかかる位置測位システムとして可視光通信システムについて図面を参照して説明する。
(第1の実施の形態)
図1は、可視光通信システム1の構成を示す図である。図1に示すように、可視光通信システム1は、空間500内に設置された移動体100a、100b、100c(以下、移動体100a、100b、100cのそれぞれを限定しない場合には、適宜「移動体100」と称する)と、位置測位装置に対応するサーバー200とを含んで構成される。
図1は、可視光通信システム1の構成を示す図である。図1に示すように、可視光通信システム1は、空間500内に設置された移動体100a、100b、100c(以下、移動体100a、100b、100cのそれぞれを限定しない場合には、適宜「移動体100」と称する)と、位置測位装置に対応するサーバー200とを含んで構成される。
移動体100aは、光源102aが取り付けられ、移動体100bは、光源102bが取り付けられ、移動体100cは、光源102cが取り付けられている(以下、光源102a、102b、102cのそれぞれを限定しない場合には、適宜「光源102」と称する)。サーバー200は、撮像装置に対応するカメラ201a、201b、201c、201dが取り付けられている(以下、カメラ201a、201b、201c、201dのそれぞれを限定しない場合には、適宜「カメラ201」と称する)。カメラ201は、雲台等の設置器具により空間500内に固定される。また、空間500内には、位置が変化しない固定点であるマーカー300a、300b、300c、300d、300eが設置されている(以下、マーカー300a、300b、300c、300d、300eのそれぞれを限定しない場合には、適宜「マーカー300」と称する)。マーカー300及び光源102は、図示しないLED(Light Emitting Diode)を含む。光源102は、位置測位対象に対応する。
本実施の形態において、移動体100に取り付けられた光源102が移動体100の状態等の各種の送信対象の情報に対応する光を発することにより情報を送信する。一方、サーバー200は、カメラ201の時系列的に連続した撮像により得られた光の画像における発光色の変化を復調して光源102が発する情報を取得する。
本実施の形態では、当初、カメラ201a~201dの位置及び撮像方向が不明である。このため、上述したサーバー200による移動体100の状態等の取得に先立って、各カメラのカメラパラメータを求めて、カメラ201a~201dが認識する仮想空間と現実世界の空間との対応をとるためのキャリブレーションを行う。これによりカメラ201が取得する撮像画像は歪みが少なくなるように補正される。カメラパラメータは各カメラの内部パラメータ及び外部パラメータである。内部パラメータは、カメラ座標を画像座標に変換する行列であるカメラ固有のパラメータであって、焦点距離、レンズの光学中心位置を含み、キャリブレーションによって変化しない。外部パラメータは、ワールド座標をカメラ座標に変換する行列であり、空間500におけるカメラ201の位置・方向の情報を含んでいる。サーバー200は、カメラ201a~201dの撮像によって得られた画像におけるマーカー300a、300b、300c、300d、300eの各像の位置(2次元座標情報)に基づいて、カメラパラメータを算出する。算出されたカメラパラメータは初期データとしてサーバー200に記憶される。
図2は、サーバー200の構成の一例を示す図である。図2に示すように、サーバー200は、制御部202、画像入力部204、メモリ205、操作部206、表示部207及び通信部208を含む。また、サーバー200には、カメラ201a~201dが配線を介して取り付けられている。サーバー200とカメラ201a~201dは、無線で接続されていてもよい。
カメラ201aは、レンズ203aを含み、カメラ201bは、レンズ203bを含み、カメラ201cは、レンズ203cを含み、カメラ201dは、レンズ203dを含む(以下、レンズ203a、203b、203c、203dのそれぞれを限定しない場合には、適宜「レンズ203」と称する)。レンズ203は、ズームレンズ等により構成される。レンズ203は、操作部206からのズーム制御操作、及び、制御部202による合焦制御により移動する。レンズ203の移動によってカメラ201が撮像する撮像画角や光学像が制御される。
カメラ201a~201dは、受光面に規則的に二次元配列された複数の受光素子により構成される。受光素子は、例えば、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等の撮像デバイスである。カメラ201a~201dは、レンズ203を介して入光された光学像を、制御部202からの制御信号に基づいて所定範囲の撮像画角で撮像(受光)し、その撮像画角内の画像信号をデジタルデータに変換してフレームを生成する。また、カメラ201a~201dは、撮像とフレームの生成とを時間的に連続して行い、連続するフレームをサーバー200内の画像入力部204に出力する。
画像入力部204には、制御部202からの制御信号に基づいて、カメラ201から出力されたフレーム(デジタルデータ)が入力される。
制御部202は、例えばCPU(Central Processing Unit)によって構成される。制御部202は、メモリ205に記憶されたプログラム(例えば、後述する図3に示すサーバー200の動作を実現するためのプログラム)に従ってソフトウェア処理を実行することにより、サーバー200が具備する各種機能を制御する。
メモリ205は、例えばRAM(Random Access Memory)やROM(Read Only Memory)である。メモリ205は、サーバー200における制御等に用いられる各種情報(プログラム等)を記憶する。また、メモリ205には、カメラ201a~201dの設置当初のキャリブレーション時に撮像した撮像画像、算出されたカメラパラメータが初期データとして記憶される。
操作部206は、テンキーやファンクションキー等によって構成され、ユーザの操作内容を入力するために用いられるインタフェースである。表示部207は、例えば、LCD(Liquid Crystal Display)、PDP(Plasma Display Panel)、EL(Electro Luminescence)ディスプレイ等によって構成される。表示部207は、制御部202から出力された画像信号に従って画像を表示する。通信部208は、例えばLAN(Local Area Network)カードである。通信部208は、通信制御部240の制御に基づき、外部の通信装置との間で通信を行う。
制御部202には、画像取得部231と、撮像方向検出部232と、補正判断部234と、補正値算出部236と、位置データ取得部238と、通信制御部240と、が含まれて構成される。
画像取得部231は、カメラ201から夫々出力され、画像入力部204に入力されたフレーム(デジタルデータ)について、表示部207にスルー画像として表示させるべく、周辺減光補正や歪曲補正を行い、画質や画像サイズを調整する。また、画像取得部231は、操作部206からの記録指示操作に基づく制御信号が入力されると、記録指示された時点のカメラ201における撮像画角内、あるいは、表示部207に表示される表示範囲内の光学像を、例えば、JPEG(Joint Photographic Experts Group)等の圧縮符号化方式にて符号化、ファイル化する機能を有する。
2台のカメラ201の組み合わせ(カメラペア)毎にカメラパラメータが求められた後、位置データ取得部238は、カメラ201a~201dの撮像によって画像取得部231から得られた各画像に含まれる巡回的な三色のパターンの光を検出する。
移動体100a、100b、100cにそれぞれ取り付けられた光源102a、102b、102cは、自己を一意に特定可能なID(Identification)を識別可能に変調した、R(赤)G(緑)B(青)の三色の任意のパターンで巡回的に変化する光を発する。これは一実施例であり、自己を一意に特定できれば、発光色を必ずしもR(赤)G(緑)B(青)の三色の任意のパターンで巡回的に変化させる必要も無い。
位置データ取得部238は、この三色の発光のパターンを検出し、IDへの復調を試みる。一実施例では、位置データ取得部238は、カメラペアに含まれる2台のカメラ201の撮像によって得られた画像の双方から同一のIDを検出することができた場合には、そのIDに対応する光源102を検出することができたと見なす。なお、1台のカメラ201からの撮像画像であっても、その撮像画像に固定点であるマーカーのいずれかが撮像されていれば、その撮像画像に含まれる発光体を備える移動体の位置の算出は可能である。
次に、位置データ取得部238は、カメラペア毎に、当該カメラペアに含まれる2台のカメラ201のうちの一方のカメラ201の撮像面における光源102の像の位置(Xga2,Yga2)と、他方のカメラ201の撮像面における上記光源102の像の位置(Xgb2,Ygb2)とを取得する。更に、位置データ取得部238は、双方の像の位置(Xga2,Yga2)、(Xgb2,Ygb2)の組み合わせと、カメラパラメータとを用いて、空間500内の光源102のワールド座標の設置位置(Xk2,Yk2,Zk2)を算出する。
撮像方向検出部232は、カメラ201a~201dの設置後、常時、定期的あるいはユーザの指示により、カメラ201a~201dの撮像方向の変化を検出する。撮像方向検出部232は、カメラ201a~201dの撮像方向の変化を検出することにより、カメラ設置後の外部要因・経年要因によるカメラ設置条件の設置当初からのずれを検出する。
撮像方向検出部232は、カメラ201a~201dの撮像によって得られた各画像におけるマーカー300の像の位置(2次元座標情報)を検出する。ここで、空間500内におけるマーカー300a、300b、300c、300d、300eの設置位置(ワールド座標系の3次元座標情報)は既知のものとされている。また、マーカー300a、300b、300c、300d、300eは、自己を一意に特定可能なIDを識別可能に変調された、R(赤)G(緑)B(青)の三色のパターンで巡回的に変化する光を発する。
撮像方向検出部232は、カメラ201a~201dについて、2台のカメラ201の組み合わせ(カメラペア)を設定する。4台のカメラ201からの任意の2台のカメラ201の組み合わせ(カメラペア)のパターンは6つ(6通り)となる。
撮像方向検出部232は、カメラ201a~201dの撮像によって得られた各画像に含まれる巡回的な三色のパターンの光を検出する。更に、撮像方向検出部232は、この三色の発光のパターンに対応するIDへの復調を試みる。メモリ205には、マーカー300a、300b、300c、300d、300eそれぞれの設置位置とIDとが対応付けられて初期データ(固定点である各マーカーのワールド座標データを含む)として記憶されている。
撮像方向検出部232は、カメラ201a~201dの各カメラの撮像によって画像取得部231から得られた画像から、IDに応じて変調された光である変調光領域(予め設定された値以上の高い輝度値を有する、特定のサイズ・形状からなる画素領域)の検出を試みる。そして、検出することができた場合には、そのIDに対応するマーカー300を検出することができたと見なす。撮像方向検出部232はIDに対応するマーカー300の設置位置を求める。
撮像方向検出部232は、カメラ201a~201dにより撮像された画像と初期データであるカメラ201a~201dの設置当初の撮像画像とを比較して、撮像画像に含まれるマーカー300の画像位置又は設置位置に基づき、カメラ201a~201dのそれぞれの撮像方向の変化を検出する。
補正判断部234は、撮像方向検出部232によって検出された撮像方向の変化に基づいて、カメラ201a~201dについて撮像方向の変動を補正するか否かを判断する。ここで、補正とは、空間500におけるカメラ201の位置・方向の情報である外部パラメータを修正する補正値を算出して撮像方向の変動をなくすよう修正する処理である。
補正判断部234は、補正をするか否かについて、(1)補正をする必要があるか否か、(2)補正が可能であるか否かという2つの観点から判断する。補正判断部234は、撮像画像に含まれるマーカー300の画像位置又は設置位置の、カメラ設置当初に撮像された撮像画像に含まれるマーカー300の画像位置又は設置位置からの変化(ずれ)が、設定された閾値に達するか否かにより補正の有無を判断する。閾値はカメラ毎に予めメモリ205に記憶されており、補正判断部234は、閾値をメモリ205から読み出して判断処理を実行する。また、閾値は、補正をする必要があるか否かを判断する閾値と、補正が可能であるか否かを判断する閾値とを備える。
補正値算出部236は、補正判断部234の判断により、補正が可能かつ必要であると判断されたものについて、補正値を算出する。補正値として、カメラ201の位置・方向の情報である外部パラメータを修正する補正値パラメータを算出する。具体的には、外部パラメータの変動パラメータの逆行列から補正値を算出する。これについて以下に説明する。
一般的に透視投影行列等を用いて、3次元空間のワールド座標〔Wp〕と2次元画像の画像座標〔u,v〕との関係は、カメラの内部パラメータ〔A〕及び外部パラメータ〔E〕を用いることによって、以下の式のように表される。
(数1)
〔u,v〕=〔A〕〔E〕〔Wp〕 ・・・(1)
〔u,v〕=〔A〕〔E〕〔Wp〕 ・・・(1)
次に、カメラ設置後に、外部要因・経年要因によりカメラの設置条件であるカメラの撮像方向が変動して、2次元画像の画像座標が〔u,v〕から〔u’,v’〕に変化した場合、3次元空間のワールド座標〔Wp〕と2次元画像の画像座標〔u’,v’〕との関係は、以下の式のように表される。
(数2)
〔u’,v’〕=〔A〕〔E〕〔E’〕〔Wp〕 ・・・(2)
〔u’,v’〕=〔A〕〔E〕〔E’〕〔Wp〕 ・・・(2)
ここで、〔E’〕は、カメラの撮像方向の変動による外部パラメータ〔E〕に対する変動分のパラメータである。なお、カメラの内部パラメータ〔A〕は、カメラ固有のパラメータであり、カメラの設置条件が動いた場合にも変化はない。式(2)において、画像座標が〔u,v〕から〔u’,v’〕に変化する要因は、外部パラメータ〔E〕に対する変動分のパラメータ〔E’〕によるものである。したがって、この変動分のパラメータ〔E’〕に対して、逆行列を求めることにより補正値〔E’〕-1を算出し、この補正値を掛けあわせることで座標に対して補正を行う。
逆行列を求めることにより補正値〔E’〕-1を算出するには、共通のマーカーをカメラペアが撮像していること、又は1台のカメラが2以上のマーカーを撮像していることが必要である。
上記以外の場合、すなわち1台のカメラが1つのマーカーを撮像している場合、逆行列を求めることにより補正値〔E’〕-1を算出することができない。この場合、補正値算出部236は、カメラ座標系の各座標軸回りの回転角の組み合わせを総当たりして補正値〔E’〕-1であるパラメータを選定する。ここで、カメラを固定する雲台が、カメラの左右方向の動きであるパン、カメラの上下方向の動きであるチルト、カメラの光軸回りの回転であるロールの3軸のうち、パン、チルトの2軸を調整できる回転台である場合、パン、チルトのみの回転角の組み合わせとすることにより、総当たりする組み合わせの数を少なくすることができる。さらに雲台のパン、チルト調整の可動範囲、可動単位である調整分解能に応じて総当たりする組み合わせの数を絞り込むことができる。
補正値算出部236は、逆行列を算出することにより、又は回転角の組み合わせを総当たりすることにより求めた補正値〔E’〕-1をメモリ205に記憶する。
次に、フローチャートを参照して、サーバー200の動作を説明する。図3は、サーバー200による撮像方向の変化検出・補正処理の動作の一例を示すフローチャートである。この処理は、空間500内の移動体100の位置測位を実行している間、常に実行されてもよく、定期的に実行されてもよく、ユーザの指示により実行されてもよい。
カメラ201a~201dは、空間500内の撮像を行っている。制御部202内の撮像方向検出部232は、画像取得部231によって取得されたカメラ201a~201dの撮像画像とメモリ205から読み出した初期データであるカメラ設置当初のカメラ201a~201dの撮像画像とを比較する。具体的には、撮像画像に含まれる共通IDのマーカー300の画像位置又は設置位置を比較する。比較に基づいて、画像取得部231によって新たに取得されたカメラ201a~201dの撮像方向について、カメラ設置当初のカメラ201a~201dの撮像方向である第1方向から第2方向への変化を検出する(ステップS101)。
なお本明細書で定義する第1方向とは、システム導入当初、或いは、システム稼働中、カメラのキャリブレーション実行時に固定手段によって固定されていたカメラの撮像方向である。
カメラ201を固定する固定手段により、カメラ201は当初、第1方向を向けて固定されていた。しかし、地震を含む外部要因やネジを含む固定部の緩みを含む経年要因により、カメラ201が向く方向は、前記第1方向から前記第1方向以外の方向(第2方向)にずれることがある。本実施例では、固定手段がカメラを固定する方向が物理的にずれたとしても、そのずれを物理的に変更する(戻す)操作を必要としない。
なお本明細書で定義する第1方向とは、システム導入当初、或いは、システム稼働中、カメラのキャリブレーション実行時に固定手段によって固定されていたカメラの撮像方向である。
カメラ201を固定する固定手段により、カメラ201は当初、第1方向を向けて固定されていた。しかし、地震を含む外部要因やネジを含む固定部の緩みを含む経年要因により、カメラ201が向く方向は、前記第1方向から前記第1方向以外の方向(第2方向)にずれることがある。本実施例では、固定手段がカメラを固定する方向が物理的にずれたとしても、そのずれを物理的に変更する(戻す)操作を必要としない。
次に、制御部202内の補正判断部234が、撮像方向検出部232により検出された撮像方向の変化に基づいて、外部パラメータの補正が必要か否かを判断する(ステップS102)。
補正判断部234は、撮像画像に含まれるマーカー300の画像位置又は設置位置のカメラ201の設置当初のマーカー300の画像位置又は設置位置に対する変化(ずれ)を閾値と比較する。カメラ201の設置当初の撮像方向である第1方向から現在の撮像方向である第2方向への変化量が閾値以上である場合、外部パラメータの補正が必要であると判断され(ステップS102:YES)、続いて、外部パラメータの補正が可能であるか否か判断される(ステップS103)。第1方向から第2方向への変化量は、マーカー300の画像位置又は設置位置の移動量で判断する。また、カメラ201の撮像方向が大きくずれて、設置当初の撮像画像に含まれるマーカー300が現在の撮像画像に含まれず、共通のマーカー300が存在しない場合、撮像方向検出部232は変化量を検出することができない。そこで、補正判断部234は、変化量を検出できない場合も補正が必要であると判断する。
カメラ201の設置当初の撮像方向である第1方向から現在の撮像方向である第2方向への変化量がわずかであるか、又は変化がなく、変化量が閾値より小さい場合、補正判断部234は、外部パラメータの補正の必要なしと判断し(ステップS102:NO)、処理を終了する。
次に、ステップS103において、補正判断部234は、現在のカメラ201の撮像画像から外部パラメータを補正可能であるか否かを判断する。具体的には、撮像画像に含まれるマーカー300の画像位置が、画像の中心から大きくずれて画像の隅の部分に位置しているか、又は画角から外れているか否かを判断する。マーカー300の位置が画像の中心から大きくずれて、外部パラメータの補正で調整できない場合、補正判断部234は、補正不可能であると判断し(ステップS103:NO)、エラーであることを表示部207に表示してユーザに警告する(ステップS104)。なお、警告は、視覚による表示に限らず、音声によるものであってもよい。ユーザへの警告後、制御部202は、処理を終了する。警告を受けて、ユーザはカメラ201の設置位置を調整する。
マーカー300の位置が外部パラメータの補正で調整できないほど画像の中心から大きくずれていない場合、補正判断部234は、補正可能であると判断し(ステップS103:YES)、補正値算出処理に移行する。
制御部202の補正値算出部236は、補正値算出に先立って、共通のマーカー300を撮像しているカメラペアが存在するか、又は単体のカメラ201が2以上の複数のマーカー300を撮像しているか否かを判断する(ステップS105)。共通のマーカー300を撮像しているカメラペアが存在する場合、又は1台のカメラ201が2以上のマーカー300を撮像している場合(ステップS105:YES)、カメラパラメータ(内部パラメータ及び外部パラメータ)と、メモリ205に記憶されているマーカー300の既知のワールド座標(真値)と、現在の撮像画像から算出されたマーカー300のワールド座標(ずれ後)と、に基づき逆行列を求めることにより補正値〔E’〕-1を算出する(ステップS106)。
共通のマーカー300を撮像しているカメラペアが存在せず、かつカメラ201が1つのマーカー300のみを撮像している場合(ステップS105:NO)、補正値算出部236は、カメラ座標系の各座標軸回りの回転角のうち、ロール方向のずれはないと仮定してパン、チルトについての回転角の組み合わせを総当たりして補正値〔E’〕-1であるパラメータを選定する(ステップS107)。なお、ロール方向にも調整可能な雲台の場合、ロール方向も変化させた組み合わせで総当たりして補正値〔E’〕-1を選定してもよい。
ステップS106又はステップS107で補正値〔E’〕-1が求められると、位置データ取得部238は、カメラパラメータの補正を実行して、補正されたカメラパラメータに基づいて、移動体100の位置データを取得する(ステップS108)。補正値〔E’〕-1は、カメラ201の撮像方向の変動による外部パラメータ〔E〕に対する変動分のパラメータ〔E’〕の逆行列である。したがって、この変動分のパラメータ〔E’〕に対して、この補正値を掛けあわせることで座標に対して補正を実行する。位置データ取得部238は、カメラ201の撮像面における移動体100の光源102の像の位置と、補正値を掛けあわせることにより補正されたカメラパラメータとを用いて、空間500内の光源102のワールド座標の設置位置を算出する。これにより、撮像方向がカメラ201の設置当初の第1方向から第2方向に変化しても、現実世界におけるカメラ201の撮像方向を第2方向から第1方向に戻すことなしに、撮像画像に基づいて、移動体100の位置データを取得する。このように、カメラ201が向いている方向が設置当初の状態から様々な要因で変化した場合であってもキャリブレーションを不要とし、稼働中のシステムを停止することなく位置測位精度を回復することができる。
(第2の実施の形態)
次に、他の実施の形態について説明する。本実施の形態において、可視光通信システム1は図1と同様であり、サーバー200は図2と同様である。本実施の形態においては、カメラペアごとにマーカー300及び光源102の設置位置が算出され、算出された設置位置についての信頼性が判断される。
次に、他の実施の形態について説明する。本実施の形態において、可視光通信システム1は図1と同様であり、サーバー200は図2と同様である。本実施の形態においては、カメラペアごとにマーカー300及び光源102の設置位置が算出され、算出された設置位置についての信頼性が判断される。
図4は、他の実施の形態に係るサーバー200による信頼性判断処理の動作の一例を示すフローチャートである。図4に示す動作は、マーカー300毎に行われる。
カメラペア毎に、当該カメラペアに含まれる2台のカメラ201は、同一のマーカー300を撮像すると、この撮像画像を画像入力部204を介して取得し、制御部202の撮像方向検出部232がID取得により当該マーカー300を特定することを試みる(ステップS201)。
次に、撮像方向検出部232は、ステップS301においてマーカー300を撮像し、IDを取得することができたカメラペアを選択する(ステップS202)。
次に、撮像方向検出部232は、ステップS202において選択したカメラペア毎に、当該カメラペアに含まれる2台のカメラ201による撮像画像に基づいて、マーカー300の設置位置を算出する(ステップS203)。具体的には、撮像方向検出部232は、カメラペアのうちの一方のカメラ201の撮像によって得られた画像におけるマーカー300の像の位置と、他方のカメラ201の撮像によって得られた画像におけるマーカー300の像の位置とを取得する。更に、撮像方向検出部232は、これら取得された2つの位置の組み合わせと、カメラペアに対応するカメラパラメータとを用いて、マーカー300の設置位置を算出する。
次に、撮像方向検出部232は、ステップS203において設置位置を算出したマーカー300について、設置信頼性を求める(ステップS204)。例えば、カメラ201aを中心として、カメラ201aとカメラ201bのカメラペアに基づいて算出されたマーカー300cの設置位置を(Xb,Yb,Zb)、カメラ201aとカメラ201cのカメラペアに基づいて算出されたマーカー300cの設置位置を(Xc,Yc,Zc)、カメラ201aとカメラ201dのカメラペアに基づいて算出されたマーカー300cの設置位置を(Xd,Yd,Zd)とする。ここで、いずれのカメラペアもカメラ設置当初においてマーカー300cを撮像可能であるとする。いずれのカメラペアもマーカー300cの設置位置を算出していることから、算出された値は、同じであるはずである。マーカー300cの設置位置は既知であり、予めメモリ205に記憶されている。撮像方向検出部232は、メモリ205からマーカー300cの設置位置を読み出して、各カメラペアによって算出されたマーカー300cの設置位置(Xb,Yb,Zb)、(Xc,Yc,Zc)、(Xd,Yd,Zd)との差を求める。
撮像方向検出部232は、各カメラペアについて求めた差が0であるか又は誤差範囲内であるか否かにより、図3の撮像方向の変化検出・補正処理が必要であるか否かを判断する(ステップS205)。各カメラペアについて求めた差が誤差範囲を超えているカメラペアがある場合(ステップS205:YES)、撮像方向検出部232は、撮像方向の変化検出・補正処理を行う必要があるとして、図3の処理に移行する。例えば、前記の例において、カメラ201aとカメラ201dのカメラペアに基づいて算出されたマーカー300cの設置位置(Xd,Yd,Zd)について求めた差が誤差範囲を超えており、他のカメラペアに基づいて算出されたマーカー300cの設置位置について求めた差が誤差範囲内である場合、カメラ201dの設置信頼性が低いと判断して、図3の撮像方向の変化検出・補正処理に移行する。
各カメラペアについて求めた差が0であるか又は誤差範囲内である場合(ステップS205:NO)、カメラ201a~201dの設置信頼性に問題がないと判断して処理を終了する。
なお、上記の例では、各カメラペアによって算出されたマーカー300の設置位置とメモリ205から読み出された既知のマーカー300の設置位置との差を求めたが、これに限らず、各カメラペアによって算出されたマーカー300の設置位置をそれぞれ比較し、他の複数のカメラペアによって算出されたマーカー300の設置位置と異なる設置位置が算出されたカメラペアについて、設置信頼性が低いと判断してもよい。例えば、カメラ201aとカメラ201bのカメラペアに基づいて算出されたマーカー300cの設置位置(Xb,Yb,Zb)とカメラ201aとカメラ201cのカメラペアに基づいて算出されたマーカー300cの設置位置(Xc,Yc,Zc)が同じであり、カメラ201aとカメラ201dのカメラペアに基づいて算出されたマーカー300cの設置位置(Xd,Yd,Zd)のみが他のカメラペアから算出された設置位置と比べて誤差範囲を超えて異なる場合、カメラ201dの設置信頼性が低いと判断する。
また、上記の信頼性判断処理を、図3の撮像方向の変化検出・補正処理のステップS101及びステップS102に置き換えてもよい。この場合、ステップS103において、既知のマーカー300の設置位置との差又は他の複数のカメラペアによって算出されたマーカー300の設置位置との差が、外部パラメータの補正で対応できないほど大きい場合、補正が不可能であると判断してエラーを警告するようにしてもよい。
(第3の実施の形態)
上記第1及び第2の実施の形態において、カメラ201は空間500内に固定設置されていた(以下、これをカメラ固定型と称する)。これに対して、第3の実施の形態では、カメラ201が移動体100に固定設置されており、カメラ201は移動体100の移動に伴って移動する場合(以下、これをカメラ移動型と称する)について説明する。
上記第1及び第2の実施の形態において、カメラ201は空間500内に固定設置されていた(以下、これをカメラ固定型と称する)。これに対して、第3の実施の形態では、カメラ201が移動体100に固定設置されており、カメラ201は移動体100の移動に伴って移動する場合(以下、これをカメラ移動型と称する)について説明する。
図5は、本実施の形態にかかる可視光通信システム1の構成を示す図である。ここでは、移動体100としてフォークリフトを例として記載している。図5に示すように、可視光通信システム1は、空間500内を移動する移動体100と、移動体100に取り付けられたカメラ201と、空間500の天井や側面等に取り付けられた光源であるマーカー300a、300b、300c、300dと、サーバー200とを含んで構成される。サーバー200とカメラ201は、無線で接続されており、サーバー200は空間500の外に設置されている。もちろん、サーバー200は空間500内に設置されてもよい。その他、図1と同じ構成については同一番号を付し、説明を省略する。また、サーバー200の構成は、サーバー200とカメラ201a~201dが無線で接続されている以外、図2に示す構成と同様であるため、説明を省略する。
カメラ201は移動体100の移動に伴って移動し、複数のマーカー300を撮像し、カメラが存在する位置、すなわち移動体100の位置を測定する。カメラ移動型では、2個以上のマーカーをカメラの視野に収めることでカメラ位置を測定できる。カメラ固定型と比較すると、観測点が少なくなるため、カメラパラメータに要求される精度要件は高くなる。カメラ201を移動体100に取り付ける関係上、移動体100の走行時の振動等によりカメラ201の設置条件が初期値からずれてきてしまい、位置検出精度の低下問題が発生する頻度が、カメラ固定型に比べ高くなる。したがって、カメラ移動型では、日常的にカメラ201の設置条件のずれを補正することが重要になる。例えば移動体100がフォークリフトの場合、作業終了時に、フォークリフトを停車させる位置が運用上決まっていることが多い。この場合、運用上決まっているフォークリフトの停車位置(ホームポジション)に戻った時に、カメラが向いている方向のずれを補正するとよい。ホームポジションから視認できるマーカーの位置は常に同じであるはずである。したがって、移動体100がホームポジションに戻った時に、カメラ201の撮像方向の変化検出・補正処理の動作を実行する。
図6は、サーバー200による撮像方向の変化検出・補正処理の動作の一例を示すフローチャートである。この処理は、移動体100がホームポジションに戻った時に、自動的に実行されるが、ユーザの指示により実行されてもよい。
移動体100がホームポジションに戻ると、カメラ201は、ホームポジションから空間500内の撮像を行う。制御部202内の撮像方向検出部232は、画像取得部231によって取得されたカメラ201の撮像画像とメモリ205から読み出した初期データであるカメラ設置当初のホームポジションにおけるカメラ201の撮像画像とを比較する。メモリ205には、カメラ201の設置当初のキャリブレーション時にホームポジションにおいて撮像した撮像画像、算出されたカメラパラメータが初期データとして予め記憶されている。撮像画像に含まれる共通IDのマーカー300の画像位置又は設置位置を比較し、画像取得部231によって新たに取得されたカメラ201の撮像方向について、カメラ設置当初のカメラ201の撮像方向である第1方向から現在の撮像方向である第2方向への変化を検出する(ステップS301)。
次に、制御部202内の補正判断部234が、撮像方向検出部232により検出された撮像方向の変化に基づいて、外部パラメータの補正が必要か否かを判断する(ステップS302)。
補正判断部234は、検出された第1方向から第2方向への変化量が閾値以上である場合、外部パラメータの補正が必要であると判断され(ステップS302:YES)、続いて、外部パラメータの補正が可能であるか否か判断される(ステップS303)。検出された第1方向から第2方向への変化量がわずかであるか、又は変化がなく、変化量が閾値より小さい場合、補正判断部234は、外部パラメータの補正の必要なしと判断し(ステップS302:NO)、処理を終了する。補正が必要であるか否かの判断は、図3のステップS102と同様である。
次に、ステップS303において、補正判断部234は、現在のカメラ201の撮像画像から外部パラメータを補正可能であるか否かを判断する。補正が可能であるか否かの判断は、図3のステップS103と同様である。マーカー300の位置が画像の中心から大きくずれて、外部パラメータの補正で調整できない場合、補正判断部234は、補正不可能であると判断し(ステップS303:NO)、エラーであることを表示部207に表示してユーザに警告する(ステップS304)。ユーザへの警告後、制御部202は、処理を終了する。マーカー300の位置が外部パラメータの補正で調整できないほど画像の中心から大きくずれていない場合、補正判断部234は、補正可能であると判断し(ステップS303:YES)、補正値算出処理に移行する。
制御部202の補正値算出部236は、カメラパラメータ(内部パラメータ及び外部パラメータ)と、撮像画像中の2以上のマーカー300についてメモリ205に記憶されているマーカー300の既知のワールド座標(真値)と、現在の撮像画像から算出されたマーカー300のワールド座標(ずれ後)と、に基づき逆行列を求めることにより補正値〔E’〕-1を算出する(ステップS305)。
ステップS305で補正値〔E’〕-1が求められると、位置データ取得部238は、カメラパラメータの補正を実行して、補正されたカメラパラメータに基づいて、カメラ201の位置、すなわち移動体100の位置について自己測位して位置データを取得する(ステップS306)。補正値〔E’〕-1は、カメラ201の撮像方向の変動による外部パラメータ〔E〕に対する変動分のパラメータ〔E’〕の逆行列である。したがって、この変動分のパラメータ〔E’〕に対して、この補正値を掛けあわせることで座標に対して補正を実行する。
補正が行われた移動体100の位置座標が求められると、ホームポジションの位置座標と比較して、求められた位置座標がホームポジションの位置と一致しているか、すなわち求められた位置座標が正しいか否か判断する(ステップS307)。ホームポジションの位置座標は予めメモリ205に記憶されている。制御部202は、メモリ205からホームポジションの位置座標を読み出して上記判断を実行する。求められた位置座標が正しい場合(ステップS307:YES)、処理を終了する。求められた位置座標が正しくない場合(ステップS307:NO)、ステップS301に戻り、ステップS301以降の処理を繰り返す。
第3の実施の形態によれば、カメラ201が移動体100に固定設置されている場合において、撮像方向がカメラ201の設置当初の第1方向から第2方向に変化しても、現実世界におけるカメラ201の撮像方向を第2方向から第1方向に戻すことなしに、撮像画像に基づいて、移動体100の位置データを取得する。このように、カメラ201が向いている方向が設置当初の状態から様々な要因で変化した場合であってもキャリブレーションを不要とし、稼働中のシステムを停止することなく位置測位精度を回復することができる。また、作業終了時に必ず戻るホームポジション位置で補正処理を実行することから、日常的に補正処理がなされる。したがって、カメラ201が移動体100に設置されることによるカメラ201の姿勢が変化しやすい環境において、位置測位精度を維持することが可能である。
(第4の実施の形態)
上記第3の実施の形態において、撮像画像からパン、チルト、ロールの3軸の回転角のすべてについて補正を行う補正値〔E’〕-1を求めた。これに対して、第4の実施の形態では、カメラ201に慣性センサを設置し、センサ値に基づいてパン、チルト、ロールの一部を補正したうえで、撮像画像から補正値〔E’〕-1を求める。これにより、補正値〔E’〕-1を求める計算処理が簡単になる。
上記第3の実施の形態において、撮像画像からパン、チルト、ロールの3軸の回転角のすべてについて補正を行う補正値〔E’〕-1を求めた。これに対して、第4の実施の形態では、カメラ201に慣性センサを設置し、センサ値に基づいてパン、チルト、ロールの一部を補正したうえで、撮像画像から補正値〔E’〕-1を求める。これにより、補正値〔E’〕-1を求める計算処理が簡単になる。
慣性センサとして、加速度センサ及びジャイロセンサがカメラ201に設置される。加速度センサ及びジャイロセンサはカメラ201の移動状態を測定する。なお、慣性センサは加速度センサとジャイロセンサのどちらか一方であってもよく、カメラ201の姿勢を検出できるものであればよい。また、慣性センサはカメラ201とともに移動するカメラ201の設置器具に設置されてもよい。加速度センサは、3軸加速度センサであり、互いに直交する3軸方向の加速度を検出することにより、カメラ201の移動中の動作速度の変化を計測する。ジャイロセンサは、3軸角速度センサであり、加速度センサにおいて加速度を規定する3軸について各々の軸を中心として回転する角速度を検出することにより、カメラ201の移動中の動作方向の変化を計測する。
図7は、本実施の形態におけるサーバー200による撮像方向の変化検出・補正処理の動作の一例を示すフローチャートである。第3の実施の形態と同様に、この処理は、移動体100がホームポジションに戻った時に、実行される。
移動体100がホームポジションに戻ると、カメラ201に設置された加速度センサ及びジャイロセンサのセンサ値から変化量を検出する(ステップS401)。
また、カメラ201は、ホームポジションから空間500内の撮像を行う。制御部202内の撮像方向検出部232は、画像取得部231によって取得されたカメラ201の撮像画像とメモリ205から読み出した初期データであるカメラ設置当初のホームポジションにおけるカメラ201の撮像画像とを比較する。比較に基づいて、画像取得部231によって新たに取得されたカメラ201の撮像方向について、カメラ設置当初のカメラ201の撮像方向である第1方向から第2方向への変化を検出する(ステップS402)。
次に、制御部202内の補正判断部234が、撮像方向検出部232により検出された撮像方向の変化に基づいて、外部パラメータの補正が必要か否かを判断する(ステップS403)。カメラ201の設置当初の撮像方向である第1方向から第2方向への変化量が閾値以上である場合、外部パラメータの補正が必要であると判断され(ステップS403:YES)、続いて、外部パラメータの補正が可能であるか否か判断される(ステップS404)。カメラ201の設置当初の撮像方向である第1方向から第2方向への変化量がわずかであるか、又は変化がなく、変化量が閾値より小さい場合、補正判断部234は、外部パラメータの補正の必要なしと判断し(ステップS403:NO)、処理を終了する。
次に、ステップS404において、補正判断部234は、現在のカメラ201の撮像画像から外部パラメータを補正可能であるか否かを判断する。マーカー300の位置が画像の中心から大きくずれて、外部パラメータの補正で調整できない場合、補正判断部234は、補正不可能であると判断し(ステップS404:NO)、エラーであることを表示部207に表示してユーザに警告する(ステップS405)。制御部202は、処理を終了する。マーカー300の位置が外部パラメータの補正で調整できないほど画像の中心から大きくずれていない場合、補正判断部234は、補正可能であると判断し(ステップS404:YES)、加速度センサ及びジャイロセンサのセンサ値に基づくチルト及びロールの補正処理(ステップS406)に移行する。
ステップS406では、センサ値に基づいてチルト及びロールの補正を行い、パンの補正は行わない。パンについては、センサ値に基づく補正処理が複雑となるため、続いて実行される撮像画像に基づく補正値算出処理によりパンの補正が行われる。ステップS406において、加速度センサの3軸出力とジャイロセンサの3軸出力をカルマンフィルタやローパスフィルタに入力することにより、地面に対する、加速度の3軸データと、角速度の3軸データとを算出して、重力方向の推定を行う。また、カルマンフィルタやローパスフィルタ以外の軸推定方式を採用して重力方向の推定を行ってもよい。重力方向の推定が行われると、加速度センサやジャイロセンサのデータについて推定された重力方向に姿勢を補正する。これにより、チルト及びロールについて補正がなされる。
次に、制御部202の補正値算出部236は、カメラパラメータ(内部パラメータ及び外部パラメータ)と、撮像画像中の2以上のマーカー300についてメモリ205に記憶されているマーカー300の既知のワールド座標(真値)と、現在の撮像画像から算出されたマーカー300のワールド座標(ずれ後)と、に基づき逆行列を求めることにより補正値〔E’〕-1を算出する(ステップS407)。ステップS406において既にチルト及びロールが補正されていることから、補正値〔E’〕-1を求める計算処理の負担は軽減される。
ステップS407で補正値〔E’〕-1が求められると、位置データ取得部238は、カメラパラメータの補正を実行して、補正されたカメラパラメータに基づいて、カメラ201の位置、すなわち移動体100の位置について自己測位して位置データを取得する(ステップS408)。
移動体100の位置座標が求められると、メモリ205から読み出したホームポジションの位置座標と比較して、求められた位置座標がホームポジションの位置と一致しているか、すなわち求められた位置座標が正しいか否か判断する(ステップS409)。求められた位置座標が正しい場合(ステップS409:YES)、処理を終了する。求められた位置座標が正しくない場合(ステップS409:NO)、ステップS401に戻り、ステップS401以降の処理を繰り返す。
第4の実施の形態によれば、第3の実施の形態による効果に加えて、補正値〔E’〕-1を算出するためのパラメータであるチルト、ロールの回転角を慣性センサのセンサ値に基づき補正することにより、パラメータが少なくなり、補正値〔E’〕-1を算出するための処理が簡単になる。また、慣性センサのセンサ値に基づく補正において計算処理が複雑となるパンの回転角を補正値〔E’〕-1によって補正することにより慣性センサのセンサ値に基づく補正の計算処理が簡単になる。
上記第2、第3、第4の実施の形態において、移動体100のホームポジションへの停車精度は考慮しなかった。これに対して、映像解析(Video Content Analysis)を併用して、移動体100の停車精度を緩和してもよい。例えば、チェッカーボードのようなパターンをホームポジションに設けることで、移動体100の停車姿勢を割出し、移動体100の停車方向のずれによる左右方向の回転のずれを補正する。
上記実施の形態において、CPUがRAMやROMに記憶されたプログラムを実行することによって、制御部202として機能した。しかしながら、CPUがRAMやROMに記憶されたプログラムを実行する代わりに、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、各種制御回路等の専用のハードウェアを備え、専用のハードウェアが、制御部202として機能しても良い。この場合、一部を専用のハードウェアによって実現し、他の一部をソフトウェア又はファームウェアによって実現しても良い。
本発明の実施の形態を説明したが、本発明の範囲は、上述の実施の形態に限定するものではなく、特許請求の範囲に記載された発明の範囲とその均等の範囲を含む。以下に、この出願の願書に最初に添付した特許請求の範囲に記載した発明を付記する。付記の番号は、この出願の願書に最初に添付した特許請求の範囲の通りである。
(付記1)
撮像方向が第1方向から第2方向に変化したカメラから、空間内に配置されている少なくとも1つのマーカーと、前記空間内を動く少なくとも1つの移動体と、を含む撮像画像を取得し、
前記撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記撮像画像に基づいて、前記少なくとも1つの移動体の位置データを取得する、
移動体の位置測位装置。
撮像方向が第1方向から第2方向に変化したカメラから、空間内に配置されている少なくとも1つのマーカーと、前記空間内を動く少なくとも1つの移動体と、を含む撮像画像を取得し、
前記撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記撮像画像に基づいて、前記少なくとも1つの移動体の位置データを取得する、
移動体の位置測位装置。
(付記2)
移動体側に固定されているカメラであって、撮像方向が第1方向から第2方向に変化したカメラから、空間内に配置されている複数のマーカーが撮像された撮像画像を取得し、
前記撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記カメラから取得される撮像画像に基づいて、前記移動体の位置データを取得する、
移動体の位置測位装置。
移動体側に固定されているカメラであって、撮像方向が第1方向から第2方向に変化したカメラから、空間内に配置されている複数のマーカーが撮像された撮像画像を取得し、
前記撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記カメラから取得される撮像画像に基づいて、前記移動体の位置データを取得する、
移動体の位置測位装置。
(付記3)
前記初期データは、マーカーが配置されるワールド座標データを含む、
付記1又は2に記載の移動体の位置測位装置。
前記初期データは、マーカーが配置されるワールド座標データを含む、
付記1又は2に記載の移動体の位置測位装置。
(付記4)
振動による外部要因又は経年要因により、前記カメラの前記撮像方向が前記第1方向から前記第2方向に変化する、
付記1乃至3のいずれか1つに記載の移動体の位置測位装置。
振動による外部要因又は経年要因により、前記カメラの前記撮像方向が前記第1方向から前記第2方向に変化する、
付記1乃至3のいずれか1つに記載の移動体の位置測位装置。
(付記5)
前記第2方向への変化を検出するときに、前記撮像画像に含まれるマーカーの画像座標データと、前記マーカーのワールド座標データと、に基づいて、前記カメラの前記撮像方向の変動を補正する補正値を算出する、
付記1乃至4のいずれか1つに記載の移動体の位置測位装置。
前記第2方向への変化を検出するときに、前記撮像画像に含まれるマーカーの画像座標データと、前記マーカーのワールド座標データと、に基づいて、前記カメラの前記撮像方向の変動を補正する補正値を算出する、
付記1乃至4のいずれか1つに記載の移動体の位置測位装置。
(付記6)
前記位置データを前記補正値に基づいて取得する、
付記5に記載の位置測位装置。
前記位置データを前記補正値に基づいて取得する、
付記5に記載の位置測位装置。
(付記7)
前記撮像画像は、前記移動体がホームポジションに位置する時に撮像される、
付記2に記載の移動体の位置測位装置。
前記撮像画像は、前記移動体がホームポジションに位置する時に撮像される、
付記2に記載の移動体の位置測位装置。
(付記8)
前記移動体は、前記カメラの姿勢を検出する慣性センサを備え、
前記慣性センサのセンサ値に基づき少なくともロールを除く前記カメラの姿勢を補正する、
付記2に記載の移動体の位置測位装置。
前記移動体は、前記カメラの姿勢を検出する慣性センサを備え、
前記慣性センサのセンサ値に基づき少なくともロールを除く前記カメラの姿勢を補正する、
付記2に記載の移動体の位置測位装置。
(付記9)
撮像方向が第1方向から第2方向に変化したカメラと、
空間内に配置されているマーカーと、
前記空間内を動く移動体と、
少なくとも1つのプロセッサと、を備え、
前記少なくとも1つのプロセッサは、
前記マーカーが撮像された第1撮像画像を取得し、
前記第1撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記第2方向を向く前記カメラにより取得される第2撮像画像に基づいて、前記移動体の位置を取得する、
移動体の位置測位システム。
撮像方向が第1方向から第2方向に変化したカメラと、
空間内に配置されているマーカーと、
前記空間内を動く移動体と、
少なくとも1つのプロセッサと、を備え、
前記少なくとも1つのプロセッサは、
前記マーカーが撮像された第1撮像画像を取得し、
前記第1撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記第2方向を向く前記カメラにより取得される第2撮像画像に基づいて、前記移動体の位置を取得する、
移動体の位置測位システム。
(付記10)
撮像方向が第1方向から第2方向に変化したカメラにより、空間内に配置されているマーカーが撮像された第1撮像画像を取得し、
前記第1撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記第2方向を向く前記カメラにより取得される第2撮像画像に基づいて、移動体の位置を取得する、
移動体の位置測位方法。
撮像方向が第1方向から第2方向に変化したカメラにより、空間内に配置されているマーカーが撮像された第1撮像画像を取得し、
前記第1撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記第2方向を向く前記カメラにより取得される第2撮像画像に基づいて、移動体の位置を取得する、
移動体の位置測位方法。
(付記11)
少なくとも1つのプロセッサが、
撮像方向が第1方向から第2方向に変化したカメラにより、空間内に配置されているマーカーが撮像された第1撮像画像を取得し、
前記第1撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記第2方向を向く前記カメラにより取得される第2撮像画像に基づいて、移動体の位置を取得する、
移動体の位置測位プログラム。
少なくとも1つのプロセッサが、
撮像方向が第1方向から第2方向に変化したカメラにより、空間内に配置されているマーカーが撮像された第1撮像画像を取得し、
前記第1撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記第2方向を向く前記カメラにより取得される第2撮像画像に基づいて、移動体の位置を取得する、
移動体の位置測位プログラム。
1…可視光通信システム、100a,100b,100c…移動体、102a,102b,102c…光源、200…サーバー、201a,201b,201c,201d…カメラ、202…制御部、203a,203b,203c,203d…レンズ、204…画像入力部、205…メモリ、206…操作部、207…表示部、208…通信部、231…画像取得部、232…撮像方向検出部、234…補正判断部、236…補正値算出部、238…位置データ取得部、240…通信制御部、300a,300b,300c,300d,300e…マーカー、500…空間
Claims (11)
- 撮像方向が第1方向から第2方向に変化したカメラから、空間内に配置されている少なくとも1つのマーカーと、前記空間内を動く少なくとも1つの移動体と、を含む撮像画像を取得し、
前記撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記撮像画像に基づいて、前記少なくとも1つの移動体の位置データを取得する、
移動体の位置測位装置。 - 移動体側に固定されているカメラであって、撮像方向が第1方向から第2方向に変化したカメラから、空間内に配置されている複数のマーカーが撮像された撮像画像を取得し、
前記撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記カメラから取得される撮像画像に基づいて、前記移動体の位置データを取得する、
移動体の位置測位装置。 - 前記初期データは、マーカーが配置されるワールド座標データを含む、
請求項1又は2に記載の移動体の位置測位装置。 - 振動による外部要因又は経年要因により、前記カメラの前記撮像方向が前記第1方向から前記第2方向に変化する、
請求項1乃至3のいずれか1項に記載の移動体の位置測位装置。 - 前記第2方向への変化を検出するときに、前記撮像画像に含まれるマーカーの画像座標データと、前記マーカーのワールド座標データと、に基づいて、前記カメラの前記撮像方向の変動を補正する補正値を算出する、
請求項1乃至4のいずれか1項に記載の移動体の位置測位装置。 - 前記位置データを前記補正値に基づいて取得する、
請求項5に記載の位置測位装置。 - 前記撮像画像は、前記移動体がホームポジションに位置する時に撮像される、
請求項2に記載の移動体の位置測位装置。 - 前記移動体は、前記カメラの姿勢を検出する慣性センサを備え、
前記慣性センサのセンサ値に基づき少なくともロールを除く前記カメラの姿勢を補正する、
請求項2に記載の移動体の位置測位装置。 - 撮像方向が第1方向から第2方向に変化したカメラと、
空間内に配置されているマーカーと、
前記空間内を動く移動体と、
少なくとも1つのプロセッサと、を備え、
前記少なくとも1つのプロセッサは、
前記マーカーが撮像された第1撮像画像を取得し、
前記第1撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記第2方向を向く前記カメラにより取得される第2撮像画像に基づいて、前記移動体の位置を取得する、
移動体の位置測位システム。 - 撮像方向が第1方向から第2方向に変化したカメラにより、空間内に配置されているマーカーが撮像された第1撮像画像を取得し、
前記第1撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記第2方向を向く前記カメラにより取得される第2撮像画像に基づいて、移動体の位置を取得する、
移動体の位置測位方法。 - 少なくとも1つのプロセッサが、
撮像方向が第1方向から第2方向に変化したカメラにより、空間内に配置されているマーカーが撮像された第1撮像画像を取得し、
前記第1撮像画像と、初期データと、に基づいて、前記撮像方向の前記第1方向から前記第2方向への変化を検出し、
現実世界における前記カメラの前記撮像方向を前記第2方向から前記第1方向に戻すことなしに、前記第2方向を向く前記カメラにより取得される第2撮像画像に基づいて、移動体の位置を取得する、
移動体の位置測位プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/682,244 US11956537B2 (en) | 2021-03-19 | 2022-02-28 | Location positioning device for moving body and location positioning method for moving body |
CN202210254965.8A CN115112099A (zh) | 2021-03-19 | 2022-03-15 | 移动体的位置定位装置、移动体的位置定位方法 |
JP2023091449A JP2023106611A (ja) | 2021-03-19 | 2023-06-02 | 移動体の位置測位装置、移動体の位置測位システム、移動体の位置測位方法及び移動体の位置測位プログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021045316 | 2021-03-19 | ||
JP2021045316 | 2021-03-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023091449A Division JP2023106611A (ja) | 2021-03-19 | 2023-06-02 | 移動体の位置測位装置、移動体の位置測位システム、移動体の位置測位方法及び移動体の位置測位プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022145428A true JP2022145428A (ja) | 2022-10-04 |
Family
ID=83460604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021142003A Pending JP2022145428A (ja) | 2021-03-19 | 2021-08-31 | 移動体の位置測位装置、移動体の位置測位システム、移動体の位置測位方法及び移動体の位置測位プログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022145428A (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04184203A (ja) * | 1990-11-20 | 1992-07-01 | Komatsu Ltd | 位置計測装置の制御装置 |
JP2003042760A (ja) * | 2001-07-27 | 2003-02-13 | Sumitomo Electric Ind Ltd | 計測装置、計測方法及び計測システム |
JP2016070693A (ja) * | 2014-09-26 | 2016-05-09 | 株式会社Screenホールディングス | 位置検出装置、基板処理装置、位置検出方法および基板処理方法 |
-
2021
- 2021-08-31 JP JP2021142003A patent/JP2022145428A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04184203A (ja) * | 1990-11-20 | 1992-07-01 | Komatsu Ltd | 位置計測装置の制御装置 |
JP2003042760A (ja) * | 2001-07-27 | 2003-02-13 | Sumitomo Electric Ind Ltd | 計測装置、計測方法及び計測システム |
JP2016070693A (ja) * | 2014-09-26 | 2016-05-09 | 株式会社Screenホールディングス | 位置検出装置、基板処理装置、位置検出方法および基板処理方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023106611A (ja) | 移動体の位置測位装置、移動体の位置測位システム、移動体の位置測位方法及び移動体の位置測位プログラム | |
EP1343332B1 (en) | Stereoscopic image characteristics examination system | |
WO2021259151A1 (zh) | 一种激光标定系统的标定方法、装置以及激光标定系统 | |
JP6886620B2 (ja) | キャリブレーション方法、キャリブレーションシステム及びプログラム | |
TWI253006B (en) | Image processing system, projector, information storage medium, and image processing method | |
EP3136377B1 (en) | Information processing device, information processing method, program | |
CN107289931B (zh) | 一种定位刚体的方法、装置和系统 | |
US11620732B2 (en) | Multi-projection system, image projection method and projector | |
EP3332387A1 (en) | Method for calibration of a stereo camera | |
KR20150069927A (ko) | 카메라 및 레이저 센서의 캘리브레이션 장치 및 캘리브레이션 방법 | |
JP2008045983A (ja) | ステレオカメラの調整装置 | |
JP2023126497A (ja) | 移動体位置決定装置、移動体位置決定方法及びプログラム | |
KR20120108256A (ko) | 로봇 물고기 위치 인식 시스템 및 로봇 물고기 위치 인식 방법 | |
JP2020021126A (ja) | 画像処理装置およびその制御方法、距離検出装置、撮像装置、プログラム | |
CN108260360B (zh) | 场景深度计算方法、装置及终端 | |
Lemkens et al. | Multi RGB-D camera setup for generating large 3D point clouds | |
CN111279685A (zh) | 运动估计 | |
JP2001272210A (ja) | 距離認識装置 | |
WO2019087253A1 (ja) | ステレオカメラのキャリブレーション方法 | |
JP2022145428A (ja) | 移動体の位置測位装置、移動体の位置測位システム、移動体の位置測位方法及び移動体の位置測位プログラム | |
JP5883688B2 (ja) | 設置状態検出システム、設置状態検出装置、及び設置状態検出方法 | |
CN116577072A (zh) | 设备的标定方法、装置、系统和存储介质 | |
JP2004077262A (ja) | 三次元撮像装置および方法 | |
JP4077755B2 (ja) | 位置検出方法、その装置及びそのプログラム、並びに、較正情報生成方法 | |
JP7396336B2 (ja) | 位置情報取得装置、位置情報取得方法及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230404 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20231003 |