JP2022141340A - 電動車両および電動車両の充電制御方法 - Google Patents

電動車両および電動車両の充電制御方法 Download PDF

Info

Publication number
JP2022141340A
JP2022141340A JP2021041589A JP2021041589A JP2022141340A JP 2022141340 A JP2022141340 A JP 2022141340A JP 2021041589 A JP2021041589 A JP 2021041589A JP 2021041589 A JP2021041589 A JP 2021041589A JP 2022141340 A JP2022141340 A JP 2022141340A
Authority
JP
Japan
Prior art keywords
charging
voltage
storage device
battery
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021041589A
Other languages
English (en)
Inventor
崇弘 三澤
Takahiro Misawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021041589A priority Critical patent/JP2022141340A/ja
Priority to US17/692,178 priority patent/US20220289058A1/en
Priority to CN202210243923.4A priority patent/CN115071457A/zh
Priority to EP22162019.8A priority patent/EP4059762A1/en
Publication of JP2022141340A publication Critical patent/JP2022141340A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • B60L2200/42Fork lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits

Abstract

【課題】外部電源から充電可能な蓄電装置を備えた電動車両において、充電効率の低下を抑制可能な外部充電を行う。【解決手段】出力電圧取得部701は、外部充電設備80から受信した情報から、外部充電設備80の最大出力電圧Vcを取得する。上限電圧演算部402は、バッテリ10の充電終了時の端子間電圧であるバッテリ電圧VBuを算出する。切換部704は、比較部704から受信した比較結果が、Vc≧VBuのとき、DCインレットと電力線Laおよび電力線Naを接続するように、Vc<VBuのとき、DCインレットとバイパス電力線Lbおよびバイパス電力線Nbを接続するように充電リレー30を切り換える。【選択図】図4

Description

本開示は、電動車両に関し、特に、外部電源から充電可能な蓄電池を備えた電動車両、および電動車両の充電制御方法に関する。
近年、外部電源から供給される電力により充電可能な蓄電装置を搭載した、電気自動車やプラグインハイブリッド車などの電動車両が普及している。以下、外部電源から供給される電力により蓄電装置を充電することを、「外部充電」とも称する。
たとえば、特開2019-047677号公報(特許文献1)には、外部電源である外部充電器(充電スタンド等)から出力される最高電圧に応じて、昇圧装置を用いた蓄電装置の充電を行うことが開示されている。
特許文献1に開示された電動車両には、超高電圧(たとえば800V)の蓄装置が搭載されている。そして、充電スタンドから出力される電力の最高電圧Vmaxを所定の基準電圧Vrefと比較し、最高電圧Vmaxが基準電圧Vref以下である場合、外部充電モードを高圧充電モードに設定し、最高電圧Vmaxが基準電圧Vrefより高い場合、外部充電モードを超高圧充電モードに設定する。
外部充電モードが高圧充電モードである場合は、充電スタンドから供給された高電圧を昇圧装置で超高電圧(800V)に昇圧して蓄電装置を充電する。外部充電モードが超高圧充電モードである場合は、充電スタンドから供給された超高電圧(800V)を、昇圧装置を介することなく、蓄電装置に充電する。
特開2019-047677号公報
電動車両に搭載された蓄電装置の端子間電圧は、蓄電装置のSOC(State of Charge)によって変動し、一般的に、SOCが小さくなると、端子間電圧は低下する。特許文献1に開示された電動車両では、基準電圧Vrefが固定値(特許文献1では、たとえば500V)とされている。このため、蓄電装置のSOCが小さく、その端子間電圧が基準電圧Vrefより小さい場合であっても、充電スタンドの最高電圧Vmaxが基準電圧Vref以下であるときには、高圧充電モードが設定され、昇圧装置によって昇圧された電力が蓄電装置に充電される。このように、特許文献1の電動車両では、昇圧装置を用いなくても蓄電装置を充電可能な場合に、昇圧装置を作動して蓄電装置を充電する場合がある。昇圧装置による昇圧動作には損失が伴うので、昇圧装置を作動して充電を行うと充電効率が低下する可能性がある。
本開示は、外部電源から充電可能な蓄電装置を備えた電動車両において、充電効率の低下を抑制可能な外部充電を行うことを目的とする。
本開示の電動車両は、外部電源から充電可能な蓄電装置を備えた電動車両である。電動車両は、外部電源から供給される電力を昇圧して蓄電装置へ供給する昇圧装置と、外部電源から供給される電力を、昇圧装置を迂回して、蓄電装置へ供給するバイパス経路と、蓄電装置の充電を制御する制御装置と、を備える。制御装置は、外部電源から供給される電力の最大電圧が、蓄電装置の充電終了時の端子間電圧より低い場合、昇圧装置を用いて蓄電装置を充電し、最大電圧が充電終了時の端子間電圧より高い場合、バイパス経路を用いて蓄電装置を充電するよう構成されている。
この構成によれば、外部電源から供給される電力の最大電圧が、蓄電装置の充電終了時の端子間電圧より高く、昇圧装置による昇圧を実行しなくとも蓄電装置の充電が可能な場合は、バイパス経路を用いて蓄電装置が充電される。したがって、昇圧装置による損失が生じることなく、蓄電装置を充電でき、充電効率の低下を抑制できる。
制御装置は、バイパス経路を用いて蓄電装置を充電しているときに、最大電圧が蓄電装置の端子間電圧より低くなった場合、昇圧装置を用いて前記蓄電装置の充電を実行するよう構成されてもよい。
最大電圧が充電終了時の端子間電圧より高く、昇圧装置を用いないで蓄電装置を充電しているとき、端子間電圧の変動等により、最大電圧が端子間電圧より低くなると、充電が行われない。この構成によれば、昇圧装置を用いないで蓄電装置を充電している際、外部電源から供給される電力の最大電圧が、蓄電装置の端子間電圧より低くなり、充電が行えなくなると、昇圧装置によって昇圧を行い蓄電装置の充電を行うので、蓄電装置の充電を確実に実行できる。
制御装置は、最大電圧が充電終了時の端子間電圧より低い場合であっても、最大電圧と充電終了時の端子間電圧の差が第1所定値より小さい場合は、バイパス経路を用いて蓄電装置を充電するよう構成されてもよい。
昇圧装置で昇圧を実行すると、その損失により充電効率が悪化し、充電時間が延びる可能性がある。外部電源から供給される電力の最大電圧が、蓄電装置の充電終了時の端子間電圧より低い場合であっても、最大電圧と充電終了時の端子間電圧の差が第1所定値より小さい場合には、昇圧装置を用いることなく充電を実行することにより、充電時間が延びることを抑制することが可能になる。
制御装置は、最大電圧が充電終了時の端子間電圧より高い場合であっても、最大電圧と充電終了時の端子間電圧の差が第2所定値より小さい場合は、昇圧装置を用いて蓄電装置を充電するよう構成されてもよい。
最大電圧が充電終了時の端子間電圧より高く、昇圧装置を用いないで蓄電装置を充電しているとき、端子間電圧の変動等により、最大電圧が端子間電圧より低くなると、充電が行われない、あるいは昇圧装置を用いた充電が開始され、当初予定していた充電時間が延びる、等、充電が不安定になる可能性がある。最大電圧が充電終了時の端子間電圧より高い場合であっても、最大電圧と充電終了時の端子間電圧の差が第2所定値より小さい場合は、昇圧装置を用いて蓄電装置を充電することにより、充電電圧が端子間電圧より低くなる頻度を低減でき、安定的に充電を行える機会を拡大できる。
外部電源は直流電力を供給する外部充電設備であってよく、外部充電設備から供給される直流電力を昇圧装置に供給する経路と、外部充電設備から供給される直流電力をバイパス経路に供給する経路とに切り換える充電リレーを備え、制御装置が、外部充電設備から受信した情報に基づいて、外部電源から供給される電力の最大電圧を取得する出力電圧取得部と、蓄電装置の充電終了時のSOCに基づいて、充電終了時の端子間電圧を算出する上限電圧演算部と、最大電圧と充電終了時の端子間電圧の大きさを比較する比較部と、比較部の比較結果に応じて、充電リレーを切り換える切換部と、を備えるようにしてもよい。
この構成によれば、外部充電設備から受信した情報から取得した最大電圧と、充電終了時の蓄電装置のSOCから求めた充電終了時の端子間電圧との比較結果に応じて、充電リレーを切り換えることにより、昇圧装置による損失が生じることなく、蓄電装置を充電でき、充電効率の低下を抑制できる。
本開示の充電制御方法は、外部電源から充電可能な蓄電装置を備えた電動車両の充電制御方法であって、外部電源から供給される電力の最大電圧と蓄電装置の充電終了時の端子間電圧とを比較するステップと、最大電圧が充電終了時の端子間電圧より低いとき、昇圧装置で昇圧して蓄電装置を充電するステップと、最大電圧が充電終了時の端子間電圧より高いとき、昇圧装置で昇圧することなく記蓄電装置を充電するステップと、を含む。
この充電制御方法によれば、外部電源から供給される電力の最大電圧が、蓄電装置の充電終了時の端子間電圧より高く、昇圧装置を用いなくても蓄電装置の充電が可能な場合は、バイパス経路を用いて蓄電装置が充電される。したがって、昇圧装置による損失が生じることなく、蓄電装置を充電でき、充電効率の低下を抑制できる。
蓄電装置の充電終了時のSOCに基づいて、充電終了時の端子間電圧を算出するステップを、さらに、含んでもよい。
蓄電装置の充電量は、充電時間、充電電力量、充電完了SOC等によって、任意に設定可能である。蓄電装置の充電終了時の端子間電圧は、充電終了時のSOCによって決まる。したがって、充電時間、充電電力量、充電完了SOC等から、充電終了時のSOCを求めることにより、充電終了時の端子間電圧を算出することができる。
本開示によれば、外部電源から充電可能な蓄電装置を備えた電動車両において、充電効率の低下を抑制可能な外部充電を行うことができる。
本実施の形態に係る電動車両の全体構成図である。 最大出力電圧Vcがバッテリ電圧VBuより高い場合における、充電電力の流れを示した図である。 最大出力電圧Vcがバッテリ電圧VBuより低い場合に置ける、充電電力の流れを示した図である。 ECU70内に構成された機能ブロックを示す図である。 ECU70で実行される処理の概略フローチャートである。 変形例1において、ECU70で実行される処理の概略フローチャートである。 変形例2において、ECU70で実行される処理の概略フローチャートである。 変形例3において、ECU70で実行される処理の概略フローチャートである。 充電リレーの他の構成例を示す図である。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
図1は、本実施の形態に係る電動車両の全体構成図である。本実施の形態において、電動車両100は、たとえば、電気自動車である。電動車両100は、電力制御ユニット(PCU:Power Control Unit)1と、回転電機であるモータジェネレータ(MG:Motor Generator)2と、動力伝達ギヤ3と、駆動輪4と、蓄電装置の一例であるバッテリ10と、監視ユニット11と、システムメインリレー(SMR:System Main Relay)40と、制御装置の一例である電子制御ユニット(ECU:Electronic Control Unit)70とを備える。
MG2は、たとえば埋込構造永久磁石同期電動機(IPMモータ)であって、電動機(モータ)としての機能と発電機(ジェネレータ)としての機能を有する。MG2の出力トルクは、減速機および差動装置等を含んで構成された動力伝達ギヤ3を介して駆動輪4に伝達される。
電動車両100の制動時には、駆動輪4によりMG2が駆動され、MG2が発電機として動作する。これにより、MG2は、電動車両100の運動エネルギーを電力に変換する回生制動を行なう制動装置としても機能する。MG2における回生制動力により生じた回生電力は、バッテリ10に蓄えられる。
PCU1は、MG2とバッテリ10との間で双方向に電力を変換する電力変換装置である。PCU1は、たとえば、ECU70からの制御信号に基づいて動作するインバータとコンバータとを含む。
コンバータは、バッテリ10の放電時に、バッテリ10から供給された電圧を昇圧してインバータに供給する。インバータは、コンバータから供給された直流電力を交流電力に変換してMG2を駆動する。
一方、インバータは、バッテリ10の充電時に、MG2によって発電された交流電力を直流電力に変換してコンバータに供給する。コンバータは、インバータから供給された電圧をバッテリ10の充電に適した電圧に降圧してバッテリ10に供給する。
また、PCU1は、ECU70からの制御信号に基づいてインバータおよびコンバータの動作を停止することによって充放電を休止する。なお、PCU1は、コンバータを省略した構成であってもよい。
SMR40は、バッテリ10とPCU1とを結ぶ電力線PLおよび電力線PNに電気的に接続されている。SMR40がECU70からの制御信号に応じて閉成(ON)されている(すなわち、導通状態である)場合、バッテリ10とPCU1との間で電力の授受が行なわれ得る。一方、SMR40がECU70からの制御信号に応じて開放(OFF)されている(すなわち、遮断状態である)場合、バッテリ10とPCU1との間の電気的な接続が遮断される。また、バッテリ10の外部充電を行う場合、ECU70からの信号によりSMR40が閉成(ON)される。
バッテリ10は、MG2を駆動するための電力を蓄える。バッテリ10は、再充電が可能な直流電源(二次電池)であり、複数個の単電池(電池セル)が積層され、たとえば、電気的に直列に接続されて構成される。単電池は、リチウムイオン電池であってよく、ニッケ水素電池であってもよい。また、バッテリ10に代えて、電気二重層キャパシタ等の蓄電装置であってもよい。
監視ユニット11は、図示しない、電圧センサと、電流センサと、温度センサとを含む。電圧センサは、バッテリ10の端子間の電圧VBを検出する。電流センサは、バッテリ10に入出力される電流IBを検出する。温度センサは、バッテリ10の温度TBを検出する。各センサは、その検出結果をECU70に出力する。
電動車両100はDCインレット31を備えており、バッテリ10は、充電設備である外部の直流(DC)電源から急速充電が可能とされている。DCインレット31は、外部DC電源(外部充電設備)80の充電ケーブルの先端に設けられたコネクタ81が接続可能に構成される。
充電リレー30は、DCインレット31と、昇圧装置である昇圧コンバータ(DCDCコンバータ)20とを結ぶ電力線Laと電力線Naに電気的に接続されている。充電リレー30は、たとえば、c接点リレー30aおよびc接点リレー30bを含み、電力線Laに接続されるc接点リレー30aは、昇圧コンバータ20を迂回して電力線PLに接続されるバイパス電力線Lbに接続され、電力線Naに接続されるc接点リレー30bは、昇圧コンバータ20を迂回して電力線PNに接続されるバイパス電力線Nbに接続される。充電リレー30は、ECU70からの制御信号に応じて、DCインレット31と昇圧コンバータ20との間で、電力経路を切り換える。充電リレー30が、DCインレット31と電力線Laおよび電力線Naを接続するように切り換えられると、昇圧コンバータ20によって昇圧した電力が、電力線PLおよび電力線PNを介してバッテリ10に供給されバッテリ10を充電する。充電リレー30が、DCインレット31とバイパス電力線Lbおよびバイパス電力線Nbを接続するように切り換えられると、外部充電設備80から供給される電力を昇圧コンバータ20で昇圧することなく、すなわち、外部充電設備80から供給される電力が直接バッテリ10に供給され、バッテリ10を充電する。
昇圧コンバータ20は、たとえば、非絶縁型の昇圧コンバータであり、電力線Laおよび電力線Naに供給された電力(直流電力)を昇圧して、電力線PLおよび電力線PNに出力(直流電力)する。なお、昇圧コンバータ20は、絶縁型の昇圧コンバータであってもよい。
外部充電設備80は、系統電源(たとえば商用電源)の交流電力を直流電力に変換し、充電ケーブルを介してコネクタ81から、電動車両100へ充電電力を出力するよう構成されている。外部充電設備80には、操作パネル82が設けられており、外部充電設備80に対する各種操作が可能となっている。
外部充電設備80のコネクタ81がDCインレット31に接続されると、電力線の他に、図示しない信号線が接続され、CAN(Controller Area Network)通信、および/または、PLC(Power Line Communication)通信により、外部充電設備80とECU70の間で通信が可能になる。
HMI装置90は、電動車両100の運転を支援するための情報をユーザに提供する装置である。HMI装置90は、代表的には、室内に設けられたディスプレイであり、スピーカ等も含む。また、HMI装置90は、ユーザが操作可能なタッチパネルとしても作動し、ユーザは、タッチパネルに触れることによって、たとえば、バッテリ10の充電開始時間や充電量等の充電要求情報を入力することができる。
ECU70は、CPU(Central Processing Unit)と、メモリ(たとえば、ROM(Read Only Memory)およびRAM(Random Access Memory)等を含む)とを含む。ECU70は、監視ユニット11から受ける信号、図示しない各種センサからの信号(たとえば、アクセル開度信号、車速信号、等)、メモリに記憶されたマップおよびプログラム等の情報に基づいて、電動車両100が所望の状態となるように各機器を制御する。また、ECU70は、監視ユニット11からのバッテリ10の入出力電流および/または電圧の検出値に基づいてバッテリ10の蓄電量を示すSOCを算出する。SOCは、たとえば、バッテリ10の満充電容量に対する現在の蓄電量を百分率で表した値である。
本実施の形態において、バッテリ10の端子間電圧(定格電圧、あるいは、公称電圧)は、たとえば600Vである。充電インフラとしての外部充電設備80の仕様は、国際規格等で定められているが、その最大出力電圧は、各種の仕様が混在している。たとえば、最大出力電圧が400Vの外部充電設備を用いて、本実施の形態のバッテリ10を充電する場合、従来(特許文献1に記載された技術)、昇圧コンバータ20によって、外部充電設備から供給される400Vの電力を600Vまで昇圧して、バッテリ10を充電していた。また、最大出力電圧が800Vの外部充電設備を用いて、本実施の形態のバッテリ10を充電する場合、従来、昇圧コンバータ20による昇圧を行うことなく、バッテリ10を充電している。
昇圧コンバータ20の昇圧動作には、スイッチング損失や導通損失等の損失が伴うので、外部充電設備80から供給される400Vの電力を600Vまで昇圧して充電を行うと、充電効率が低下する。バッテリ10の端子間電圧は、SOCによって変動し、SOCが小さくなると、端子間電圧は低下する。このため、充電終了時のSOCの値が小さい場合、充電終了時におけるバッテリ10の端子間電圧が400V以下になる状態もある。したがって、最大出力電圧が400Vの充電設備を用いた外部充電を行う際、充電終了時におけるバッテリ10の端子間電圧によっては、昇圧コンバータ20の昇圧機能を用いることなく、バッテリ10の充電が可能な場合もある。
本実施の形態では、バッテリ10の充電終了時のSOCから、バッテリ10の充電終了時の端子間電圧であるバッテリ電圧VBuを求め、外部充電設備80の最大出力電圧Vcと比較する。そして、最大出力電圧Vcがバッテリ電圧VBuより低い場合、昇圧コンバータ20を用いて、外部充電設備80の最大出力電圧Vcを昇圧して、バッテリ10を充電する。また、最大出力電圧Vcがバッテリ電圧VBuより高い場合、昇圧コンバータ20による昇圧を行うことなく、バッテリ10を充電する。
図2は、最大出力電圧Vcがバッテリ電圧VBuより高い場合における、充電電力の流れを示した図である。最大出力電圧Vcがバッテリ電圧VBuより低い場合、図2の矢印で示すように、充電リレー30が、DCインレット31と電力線Laおよび電力線Naを接続するように切り換えられ、昇圧コンバータ20によって昇圧された電力がバッテリ10に供給され、バッテリ10が充電される。
図3は、最大出力電圧Vcがバッテリ電圧VBuより低い場合における、充電電力の流れを示した図である。最大出力電圧Vcがバッテリ電圧VBuより高い場合、図3の矢印で示すように、充電リレー30を、DCインレット31とバイパス電力線Lbおよびバイパス電力線Nbを接続するように切り換える。これにより、昇圧コンバータ20を迂回したバイパス経路(バイパス電力線Lbおよびバイパス電力線Nb)を用いて、外部充電設備80から供給される電力を昇圧コンバータ20で昇圧することなく、バッテリ10を充電する。
図4は、ECU70内に構成された機能ブロックを示す図である。各機能ブロックは、ECU70のハードウェアおよびプログラムによるソフトウェアによる処理によって実現されている。出力電圧取得部701は、CAN通信、および/または、PLC通信により、外部充電設備80から受信した情報から、外部充電設備80の最大出力電圧Vcを取得する。最大出力電圧Vcは、外部充電設備80から安定的に出力可能な最大電圧であって、たとえば、定格出力電圧であってよい。なお、最大出力電圧Vcは、本開示の「最大電圧」に相当する。
上限電圧演算部702は、バッテリ10の充電終了時の端子間電圧であるバッテリ電圧VBuを算出する。バッテリ10の端子間電圧は、SOCによって変動し、SOCが大きくなると端子間電圧が上昇し、SOCが小さくなると端子間電圧が低下する。本実施の形態では、バッテリ10の充電終了時のSOCに基づいて、バッテリ電圧VBuを演算する。バッテリ10の充電量は、ユーザによって任意に設定可能である。たとえば、ユーザは、バッテリ10の充電量として、HMI装置90、あるいは操作パネル82を操作することにより、充電時間、あるいは充電量(Ah)を設定する場合がある。充電時間が設定されている場合、外部充電設備80から出力される充電電流(A)と充電時間から充電量(Ah)を算出し、算出した充電量(Ah)と充電開始時のバッテリ10のSOCから、充電終了時のSOCを算出する。また、充電量(Ah)が設定されている場合は、充電量(Ah)と充電開始時のバッテリ10のSOCから、充電終了時のSOCを算出する。
バッテリ10の充電量が、HMI装置90の操作によって、充電完了時のSOCとして設定されている場合は、充電完了時のSOCをバッテリ10の充電終了時のSOCに用いることができる。上限電圧演算部702は、HMI装置90、あるいは操作パネル82で設定された充電量に基づき、バッテリ10の充電終了時のSOCを取得し、SOCと端子間電圧の関係を表したマップから、バッテリ電圧VBuを求め、予め設定しておいてもよい。なお、SOCと端子間電圧の関係を表したマップは、予め実験等によって求め、メモリに記憶されている。
比較部703は、出力電圧取得部701で取得した最大出力電圧Vcの大きさと、上限電圧演算部702で算出したバッテリ電圧VBuの大きさを比較し、比較結果を、切換部704およびコンバータ制御部705へ出力する。
切換部704は、比較部703から受信した比較結果に基づいて、充電リレー30の切り換えを行う。最大出力電圧Vcがバッテリ電圧VBuより低い場合(Vc<VBu)、切換部704は、DCインレット31と電力線Laおよび電力線Naを接続するように充電リレー30を切り換える(図2参照)。また、最大出力電圧Vcがバッテリ電圧VBu以上の場合(Vc≧VBu)、切換部704は、DCインレット31とバイパス電力線Lbおよびバイパス電力線Nbを接続するように充電リレー30を切り換える(図3参照)。
コンバータ制御部705は、比較部から受信した比較結果が、最大出力電圧Vcがバッテリ電圧VBuより低い場合(Vc<VBu)、バッテリ10の充電開始と同時に、昇圧コンバータ20を作動して昇圧を行う。
充電電流制御部706は、バッテリ10の充電開始、充電終了等を制御する。たとえば、外部充電設備80との相互認証が成立すると、外部充電設備80に充電電力の出力要求を送信し、バッテリ10の充電を開始する。また、充電開始後、設定した充電時間が経過したとき、あるいは、設定した充電量(Ah)が充電されたとき、あるいは、バッテリ10のSOCが充電完了時のSOCになったとき、外部充電設備80に充電電力の停止要求を送信し、充電を終了する。
図5は、ECU70で実行される処理の概略フローチャートである。このフローチャートは、DCインレット31にコネクタ81が接続されると実行される。DCインレット31にコネクタ81が接続されると、まず、ステップ(以下、ステップをSと略す)10で、CAN通信、および/または、PLC通信により、外部充電設備80から受信した情報から、外部充電設備80の最大出力電圧Vcを取得し、S11へ進む。
S11では、バッテリ10の充電終了時のSOCに基づき、SOCと端子間電圧の関係を表したマップから、バッテリ10の充電終了時の端子間電圧であるバッテリ電圧VBuを算出する。なお、バッテリ10の充電終了時のSOCは、上述の通り、ユーザが設定した充電量(充電時間、充電量(Ah)、充電完了時のSOC、等)に基づいて取得する。
続くS12では、最大出力電圧Vcの大きさとバッテリ電圧VBuの大きさとを比較する。最大出力電圧Vcがバッテリ電圧VBu以上の場合(Vc≧VBu)、否定判定されS13へ進む。S13で、DCインレット31とバイパス電力線Lbおよびバイパス電力線Nbを接続するように充電リレー30を切り換え(図3参照)、S14へ進む。S14では、外部充電設備80に電力の出力要求を送信し、充電を開始したあと、S17へ進む。
S12において、最大出力電圧Vcがバッテリ電圧VBuより低い場合(Vc<VBu)、肯定判定されS15へ進む。S15で、DCインレット31と電力線Laおよび電力線Naを接続するように充電リレー30を切り換え(図2参照)、S16へ進む。S16では、外部充電設備80に電力の出力要求を送信するとともに昇圧コンバータ20を作動して昇圧を行い、充電を開始したあと、S17へ進む。
S17では、バッテリ10の充電が終了したか否かを判定する。たとえば、ユーザによって、充電完了時のSOCが設定されているときは、バッテリ10のSOCが充電完了時のSOCになると、充電が終了したと判定する。充電時間が設定されているときは、充電開始後、設定した充電時間が経過したときに、充電が終了したと判定すればよく、充電量(Ah)が設定されているときには、充電開始からの充電量が設定した充電量になったときに、充電が終了したと判定すればよい。バッテリ10の充電が終了していないときは、充電が終了するまで充電を継続し、バッテリ10の充電が終了すると、肯定判定されS18へ進む。
S18では、充電終了動作を実行したあと、今回のルーチンを終了する。充電終了動作は、たとえば、外部充電設備80に充電電力の停止要求を送信し、外部充電設備80からの電力供給を停止する。また、S13で、DCインレット31とバイパス電力線Lbおよびバイパス電力線Nbを接続するように充電リレー30を切り換えていた場合は、DCインレット31と電力線Laおよび電力線Naを接続するように充電リレー30を切り換える。S16で、昇圧コンバータ20の作動を行っていた場合は、昇圧コンバータ20の作動を停止する。
本実施の形態によれば、最大出力電圧Vcがバッテリ電圧VBu以上の場合、昇圧コンバータ20による昇圧を行うことなく、バッテリ10を充電する。したがって、昇圧コンバータ20の昇圧機能を用いることなくバッテリ10の充電が可能な場合には、昇圧コンバータ20を用いないで充電を行うので、昇圧コンバータ20による損失が生じることなくバッテリ10を充電でき、充電効率の低下を抑制できる。
なお、本実施の形態では、S12において、最大出力電圧Vcがバッテリ電圧VBu以上の場合(Vc≧VBu)、S13で、DCインレット31とバイパス電力線Lbおよびバイパス電力線Nbを接続するように充電リレー30を切り換えていた。しかし、最大出力電圧Vcがバッテリ電圧VBuより高い場合(Vc>VBu)、DCインレット31とバイパス電力線Lbおよびバイパス電力線Nbを接続するように充電リレー30を切り換えもよい。この場合、最大出力電圧Vcがバッテリ電圧VBu以下の場合(Vc≦VBu)、DCインレット31と電力線Laおよび電力線Naを接続するように充電リレー30を切り換える。
(変形例1)
バッテリ10の端子間電圧VBは、バッテリ10の温度等によって変動する。たとえば、バッテリ10の充電時、バッテリ10の端子間電圧VBは、温度の低下に伴い増大する傾向がある。このため、最大出力電圧Vcがバッテリ電圧VBuより高く、昇圧コンバータ20を用いないでバッテリ10を充電しているとき、温度等の影響により端子間電圧VBが、マップから算出したバッテリ電圧VBuより高くなると、最大出力電圧Vcが端子間電圧VBより低くなり、充電が行われない可能性がある。また、バッテリ10の経年変化等により、バッテリ電圧VBuの算出精度が低下した場合、最大出力電圧Vcがバッテリ電圧VBuより高く、昇圧コンバータ20を用いないでバッテリ10を充電しているとき、最大出力電圧Vcが端子間電圧VBより低くなり、充電が行われない可能性がある。変形例1では、昇圧コンバータ20を用いないでバッテリ10を充電している際に、最大出力電圧Vcが端子間電圧VBより低くなっても、バッテリ10の充電を可能とする。
図6は、変形例1において、ECU70で実行される処理の概略フローチャートである。図6のフローチャートは、図5のフローチャートにS20~S22を追加したものであり、S10~S18は、図5のフローチャートと同じであるので、その説明を省略する。
図6において、S14で、外部充電設備80に電力の出力要求を送信し、充電を開始したあと、S20へ進む。S20では、バッテリ10の充電が終了したか否かを判定する。S20の処理は、S17における処理と同一である。バッテリ10の充電が終了し、S20で肯定判定されとS18へ進み、充電終了動作を実行したあと、今回のルーチンを終了する。バッテリ10の充電が終了していない場合は、否定判定されS21へ進む。
S21では、監視ユニット11の電流センサで検出した、バッテリ10の端子間電圧VBが最大出力電圧Vcより大きいか否かを判定する。端子間電圧VBが最大出力電圧Vc以下である場合(VB≦Vc)、S20に戻って、充電が終了するまで充電を継続する。端子間電圧VBが最大出力電圧Vcより高い場合(VB>Vc)、S22へ進む。
S22では、充電を中断する。具体的には、外部充電設備80に充電電力の停止要求を送信し、外部充電設備80からの電力供給を停止したあと、S15へ進む。S15では、S15で、DCインレット31と電力線Laおよび電力線Naを接続するように充電リレー30を切り換え(図2参照)、S16へ進む。
この変形例1では、昇圧コンバータ20を用いないでバッテリ10を充電している際、最大出力電圧Vcが端子間電圧VBより低くなると、S21で肯定判定され、S22へ進み充電を、一旦、中断する。そして、S15で、DCインレット31と電力線Laおよび電力線Naを接続するように充電リレー30を切り換え、昇圧コンバータ20を用いて昇圧を行い、バッテリ10の充電を再開し、S17でバッテリ10の充電が終了するまで充電を継続するので、バッテリ10の充電を確実に実行できる。
(変形例2)
昇圧コンバータ20を使用してバッテリ10の充電を実行すると、昇圧コンバータ20の損失により充電効率が悪化する。このため、ユーザが設定した、充電量(Ah)あるいは充電完了SOCになるまで、昇圧コンバータ20を用いてバッテリ10の充電を継続した場合、充電時間が長くなる可能性がある。この場合、充電料が、充電時間によって課金される場合、充電量に対する充電料の単価が高額になる。変形例2では、充電料の単価が高額になることを抑制可能とする。
図7は、変形例2において、ECU70で実行される処理の概略フローチャートである。図7のフローチャートは、図5のフローチャートにS30~S32を追加したものであり、S10~S18は、図5のフローチャートと同じであるので、その説明を省略する。
図7において、S12で、最大出力電圧Vcがバッテリ電圧VBuより低い場合(Vc<VBu)、肯定判定されS30へ進む。S30では、最大出力電圧Vcとバッテリ電圧VBuと最の差である「VBu-Vc」が所定値αより小さいか否かを判定する。所定値αは、本開示の「第1所定値」に相当し、たとえば、バッテリ電圧VBuの5%の値になるよう設定されてもよい。「VBu-Vc≧α」であり否定判定されるとS15へ進み、「VBu-Vc<α」であり肯定判定されると、S13へ進む。
このように、変形例2では、最大出力電圧Vcがバッテリ電圧VBuより低い場合(S12で肯定判定)であっても、最大出力電圧Vcとバッテリ電圧VBuの差が所定値αより小さい場合(S30で肯定判定)は、S13に進んで、DCインレット31とバイパス電力線Lbおよびバイパス電力線Nbを接続するように充電リレー30を切り換え、昇圧コンバータ20を迂回したバイパス経路を用いて、外部充電設備80から供給される電力を昇圧コンバータ20で昇圧することなく、バッテリ10を充電する。
S31では、バッテリ10の充電が終了したか否かを判定する。S31の処理は、S17における処理と同一である。バッテリ10の充電が終了し、S31で肯定判定されとS18へ進み、充電終了動作を実行したあと、今回のルーチンを終了する。バッテリ10の充電が終了していない場合は、否定判定されS32へ進む。
S32では、監視ユニット11の電流センサで検出した、バッテリ10の端子間電圧VBが最大出力電圧Vcより大きいか否かを判定する。端子間電圧VBが最大出力電圧Vc以下である場合(VB≦Vc)、S31に戻って、充電が終了するまで充電を継続する。端子間電圧VBが最大出力電圧Vcより高い場合(VB>Vc)、18へ進み、充電終了動作を実行したあと、今回のルーチンを終了する。
この変形例2では、最大出力電圧Vcがバッテリ電圧VBuより低い場合であっても、最大出力電圧Vcとバッテリ電圧VBuの差が所定値αより小さい場合は、昇圧コンバータ20を迂回したバイパス経路を用いて、昇圧コンバータ20で昇圧することなくバッテリ10を充電する。そして、バッテリ10の充電が進み、バッテリ10の端子間電圧VBが最大出力電圧Vcより高くなると、ユーザが設定した充電量(Ah)あるいは充電完了SOCに至る前に、充電を終了する。したがって、ユーザの設定した充電量(Ah)あるいは充電完了SOCをほぼ満足しつつ、昇圧コンバータ20を使用したバッテリ10の充電を行わないので、充電時間が長くなることを抑制でき、充電料の単価が高額になることを抑制できる。なお、ユーザが、所定値αの大きさを適宜設定できるようにしてもよい。これにより、端子間電圧VBが最大出力電圧Vcより高くなり充電が終了した際のSOCは、ユーザが、充電料金と比較考量して許容できる範囲の値になる。
なお、S12とS30の処理を統合して、「VBu-Vc>α」が成立する場合は、S3へ進み、「VBu-Vc>α」が成立しない場合(VBu-Vc≦α)に、S15へ進むようにしてもよい。
(変形例3)
バッテリ10の端子間電圧VBは、バッテリ10の温度等によって変動する。最大出力電圧Vcがバッテリ電圧VBuより高く、昇圧コンバータ20を使用しないでバッテリ10を充電しているとき、端子間電圧VBが変動して、最大出力電圧Vcが端子間電圧VBより低くなると、充電が行われない、あるいは昇圧コンバータ20を用いた充電が開始され、当初予定していた充電時間が延びる等、充電が不安定になる可能性がある。また、バッテリ10の温度状態等によりバッテリ電圧VBuの算出精度が低下し、算出したバッテリ電圧VBuが実際のバッテリの充電終了時の端子間電圧より小さくなった場合、昇圧コンバータ20を用いないでバッテリ10を充電しているとき、最大出力電圧Vcが端子間電圧VBより低くなる可能性が高くなり、充電が行われない、あるいは昇圧コンバータ20を用いた充電が開始され、当初予定していた充電時間が延びる等、充電が不安定になる可能性がある。変形例3では、安定的に充電を行える機会を拡大する。
図8は、変形例3において、ECU70で実行される処理の概略フローチャートである。図8のフローチャートは、図5のフローチャートにS40~S43を追加したものであり、S10~S18は、図5のフローチャートと同じであるので、その説明を省略する。
図8において、S12で、最大出力電圧Vcがバッテリ電圧VBu以上の場合(Vc≧VBu)、否定判定されS40へ進む。S40では、最大出力電圧Vcとバッテリ電圧VBuと最の差である「Vc-VBu」が所定値βより小さいか否かを判定する。所定値βは、本開示の「第2所定値」に相当し、たとえば、バッテリ電圧VBuの5%の値になるよう設定されてもよい。「Vc-VBu<β」であり肯定判定されるとS15へ進み、「Vc-VBu≧β」であり否定判定されると、S13へ進む。
このように、変形例3では、最大出力電圧Vcがバッテリ電圧VBuより高い場合(S12で否定判定)であっても、最大出力電圧Vcとバッテリ電圧VBuの差が所定値βより小さい場合(S40で肯定判定)は、S15に進んで、DCインレット31と電力線Laおよび電力線Naを接続するように充電リレー30を切り換え、外部充電設備80から供給された電力を昇圧コンバータ20で昇圧して、バッテリ10を充電する。
S41では、バッテリ10の充電が終了したか否かを判定する。S41の処理は、S17における処理と同一である。バッテリ10の充電が終了し、S41で肯定判定されとS18へ進み、充電終了動作を実行したあと、今回のルーチンを終了する。バッテリ10の充電が終了していない場合は、否定判定されS42へ進む。
S42では、監視ユニット11の電流センサで検出した、バッテリ10の端子間電圧VBが最大出力電圧Vcより大きいか否かを判定する。端子間電圧VBが最大出力電圧Vc以下である場合(VB≦Vc)、S41に戻って、充電が終了するまで充電を継続する。端子間電圧VBが最大出力電圧Vcより高い場合(VB>Vc)、S43へ進み、充電を中断したあと、S15へ進む。
この変形例3では、最大出力電圧Vcがバッテリ電圧VBuより高い場合であっても、最大出力電圧Vcとバッテリ電圧VBuの差が所定値βより小さい場合は、昇圧コンバータ20を使用してバッテリ10を充電する。バッテリ電圧VBuに対して、最大出力電圧Vcが所定値βの余裕を備えた状態で昇圧コンバータ20を使用して充電を行うので、充電電圧がバッテリ10の端子間電圧VBより低くなる頻度を低減でき、安定的に充電を行える機会を拡大できる。
本実施の形態において、充電リレー30は、c接点リレー30aおよびc接点リレー30bから構成していたが、充電リレー30の構成はこれに限られない。図9は、充電リレーの他の構成例を示す図である。図9に示すように、充電リレーは、4個のa接点リレーから構成される充電リレー300としてもよい。充電リレー300は、4個のa接点リレーから構成されるので、DCインレット31にコネクタ81が接続されていないとき、すべてのa接点リレーを開放(OFF)することにより、バッテリ10とDCインレット31の電気的な接続を確実に遮断できる。なお、本実施の形態では、充電終了動作(S18)において、充電終了時、DCインレット31と電力線Laおよび電力線Naを接続するように充電リレー30を切り換えている。これにより、昇圧コンバータ20が絶縁型の場合は、その絶縁機能により、昇圧コンバータ20が非絶縁型の場合であっても、正極線に配置されたダイオードにより、バッテリ10とDCインレット31の電気的な接続を実質的に遮断することが可能である。また、本実施の形態で、バッテリ10の端子間電圧(定格電圧、あるいは、公称電圧)は、600Vとしたが、500Vであってよく、700Vあるいは800Vであってもよい。
なお、図1に示す電動車両100は電気自動車であるが、本開示が適用可能な車両は図1に示す電動車両100に限定されない。たとえば、エンジンとモータジェネレータとを備えるプラグインハイブリッド車両にも本開示は適用可能であり、蓄電池を備え外部充電可能な燃料電池車にも適用可能である。また、フォークリフト等の産業用車両であってもよい。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
1 PCU、2 モータジェネレータ(MG)、3 駆動伝達ギヤ、4 駆動輪、10 バッテリ、11 監視ユニット、20 昇圧コンバータ、30,300 充電リレー、31 DCインレット、40 SMR、70 ECU、80 外部充電設備、81 コネクタ、82 操作パネル、90 HMI装置、100 電動車両、701 出力電圧取得部、702 上限電圧演算部、703 比較部、704 切換部、705 コンバータ制御部、706 充電電流制御部。

Claims (7)

  1. 外部電源から充電可能な蓄電装置を備えた電動車両であって、
    前記外部電源から供給される電力を昇圧して前記蓄電装置へ供給する昇圧装置と、
    前記外部電源から供給される電力を、前記昇圧装置を迂回して、前記蓄電装置へ供給するバイパス経路と、
    前記蓄電装置の充電を制御する制御装置と、を備え、
    前記制御装置は、前記外部電源から供給される電力の最大電圧が、前記蓄電装置の充電終了時の端子間電圧より低い場合、前記昇圧装置を用いて前記蓄電装置を充電し、前記最大電圧が前記充電終了時の端子間電圧より高い場合、前記バイパス経路を用いて前記蓄電装置を充電するよう構成されている、電動車両。
  2. 前記制御装置は、前記バイパス経路を用いて前記蓄電装置を充電しているときに、前記最大電圧が前記蓄電装置の端子間電圧より低くなった場合、前記昇圧装置を用いて前記蓄電装置の充電を実行するよう構成されている、請求項1に記載の電動車両。
  3. 前記制御装置は、前記最大電圧が前記充電終了時の端子間電圧より低い場合であっても、前記最大電圧と前記充電終了時の端子間電圧の差が第1所定値より小さい場合は、前記バイパス経路を用いて前記蓄電装置を充電するよう構成されている、請求項1に記載の電動車両。
  4. 前記制御装置は、前記最大電圧が前記充電終了時の端子間電圧より高い場合であっても、前記最大電圧と前記充電終了時の端子間電圧の差が第2所定値より小さい場合は、前記昇圧装置を用いて前記蓄電装置を充電するよう構成されている、請求項1または2に記載の電動車両。
  5. 前記外部電源は直流電力を供給する外部充電設備であり、
    前記外部充電設備から供給される直流電力を前記昇圧装置に供給する経路と、前記外部充電設備から供給される直流電力を前記バイパス経路に供給する経路とに切り換える充電リレーを備え、
    前記制御装置は、
    前記外部充電設備から受信した情報に基づいて、前記外部電源から供給される電力の最大電圧を取得する出力電圧取得部と、
    前記蓄電装置の充電終了時のSOCに基づいて、前記充電終了時の端子間電圧を算出する上限電圧演算部と、
    前記最大電圧と前記充電終了時の端子間電圧の大きさを比較する比較部と、
    前記比較部の比較結果に応じて、前記充電リレーを切り換える切換部と、を備える、請求項1に記載の電動車両。
  6. 外部電源から充電可能な蓄電装置を備えた電動車両の充電制御方法であって、
    前記外部電源から供給される電力の最大電圧と前記蓄電装置の充電終了時の端子間電圧とを比較するステップと、
    前記最大電圧が前記充電終了時の端子間電圧より低いとき、昇圧装置で昇圧して前記蓄電装置を充電するステップと、
    前記最大電圧が前記充電終了時の端子間電圧より高いとき、前記昇圧装置で昇圧することなく前記蓄電装置を充電するステップと、を含む、電動車両の充電制御方法。
  7. 前記蓄電装置の充電終了時のSOCに基づいて、前記充電終了時の端子間電圧を算出するステップを、含む、請求項6に記載の電動車両の充電制御方法。
JP2021041589A 2021-03-15 2021-03-15 電動車両および電動車両の充電制御方法 Pending JP2022141340A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021041589A JP2022141340A (ja) 2021-03-15 2021-03-15 電動車両および電動車両の充電制御方法
US17/692,178 US20220289058A1 (en) 2021-03-15 2022-03-11 Electrically powered vehicle and method of controlling charging of electrically powered vehicle
CN202210243923.4A CN115071457A (zh) 2021-03-15 2022-03-14 电动车辆和电动车辆的充电控制方法
EP22162019.8A EP4059762A1 (en) 2021-03-15 2022-03-15 Electrically powered vehicle and method of controlling charging of electrically powered vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021041589A JP2022141340A (ja) 2021-03-15 2021-03-15 電動車両および電動車両の充電制御方法

Publications (1)

Publication Number Publication Date
JP2022141340A true JP2022141340A (ja) 2022-09-29

Family

ID=80780942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021041589A Pending JP2022141340A (ja) 2021-03-15 2021-03-15 電動車両および電動車両の充電制御方法

Country Status (4)

Country Link
US (1) US20220289058A1 (ja)
EP (1) EP4059762A1 (ja)
JP (1) JP2022141340A (ja)
CN (1) CN115071457A (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016122008A1 (de) * 2016-11-16 2018-05-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Allstrom-Ladegerät
JP6930306B2 (ja) 2017-09-05 2021-09-01 トヨタ自動車株式会社 電動車両
JP7010035B2 (ja) * 2018-02-06 2022-01-26 トヨタ自動車株式会社 電動車両
JP7103018B2 (ja) * 2018-07-25 2022-07-20 日産自動車株式会社 電動車両の電源システム
US11351875B2 (en) * 2019-05-17 2022-06-07 Hyundai Motor Company Multi-input charging system and method using motor driving system
JP7318435B2 (ja) 2019-09-10 2023-08-01 ブラザー工業株式会社 画像記録装置

Also Published As

Publication number Publication date
CN115071457A (zh) 2022-09-20
EP4059762A1 (en) 2022-09-21
US20220289058A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP5317806B2 (ja) 電源システム
US9007001B2 (en) Power supply system and vehicle equipped with power supply system
US11214153B2 (en) Driving system
EP2211439B1 (en) Charge system failure judging device and failure judging method
CN107082028B (zh) 电池充电系统和使用电池充电系统的充电方法
US20130020863A1 (en) Power supply system and vehicle equipped with power supply system
EP2823987B1 (en) Electric-powered vehicle and method for controlling same
EP2196350A1 (en) Vehicle control device and control method
CN103492214A (zh) 电动车辆的电源装置及其控制方法
US9061596B2 (en) Charging device and charging method for power storage device
JP2014143817A (ja) 車両の電源システム
JPWO2012101735A1 (ja) ハイブリッド車両およびその制御方法
US11135935B2 (en) Vehicle charging system
US20220289057A1 (en) Electrically powered vehicle and method of controlling charging of electrically powered vehicle
JP2014068485A (ja) 電力供給システム、ならびにそれに用いられる車両および管理装置
JP2019140721A (ja) 電動車両
US10158246B2 (en) Energy storage device, transport apparatus, and control method
JP5659943B2 (ja) 電源システムおよびそれを搭載する車両、ならびに車両の制御方法
JP2022141340A (ja) 電動車両および電動車両の充電制御方法
US20230219442A1 (en) Vehicle and method for external charging
JP2020092506A (ja) 車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230912