JP2022129708A - Forward osmosis water treatment device and method - Google Patents

Forward osmosis water treatment device and method Download PDF

Info

Publication number
JP2022129708A
JP2022129708A JP2021028491A JP2021028491A JP2022129708A JP 2022129708 A JP2022129708 A JP 2022129708A JP 2021028491 A JP2021028491 A JP 2021028491A JP 2021028491 A JP2021028491 A JP 2021028491A JP 2022129708 A JP2022129708 A JP 2022129708A
Authority
JP
Japan
Prior art keywords
forward osmosis
solution
temperature
water
sensitive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021028491A
Other languages
Japanese (ja)
Inventor
浩司 渕上
Koji Fuchigami
猛志 辻
Takeshi Tsuji
啓二 戸村
Keiji Tomura
亮 功刀
Akira Kunugi
祐也 佐藤
Yuya Sato
彩 大里
Aya Osato
拓也 江川
Takuya Egawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2021028491A priority Critical patent/JP2022129708A/en
Publication of JP2022129708A publication Critical patent/JP2022129708A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

To provide means to stably perform an operation of a factory regardless of the variation of the water production amount of fresh water and the like by a forward osmosis method by using factory waste heat for a heat source to heat a diluted temperature sensitive agent aqueous solution to a cloud point or higher.SOLUTION: A forward osmosis water treatment device comprises: a forward osmosis membrane module 3 moving water in water 1 to be treated to a temperature sensitive agent aqueous solution 12 having a cloud point; heating means 6 heating a diluted temperature sensitive agent aqueous solution 5 flown out from the forward osmosis membrane module to the cloud point or greater; a gravity separation tank 7 where a concentrated solution phase and a diluted solution phase phase-separated by heating are layer-separated; a recovery membrane filter 15 obtaining fresh water by the membrane filtration of a diluted solution 8; cooling means 18 cooling a concentrated solution 9 to the cloud point of the temperature sensitive agent aqueous solution or lower; circulation means where the cooled concentrated solution is returned to the forward osmosis membrane module and reused as the temperature sensitive agent aqueous solution; and a line where a heating medium 23 heated by the heat exchange of a factory cooling system is supplied to the heating means and the heating medium 25 discharged from the heating means is returned to the cooling system.SELECTED DRAWING: Figure 1

Description

本発明は、正浸透法で海水や廃水等から塩類を除去する装置および方法に関するものである。 The present invention relates to an apparatus and method for removing salts from seawater, wastewater, etc. by forward osmosis.

海水から半透膜を用いて淡水を製造する方法は種々知られているが、海水に浸透圧以上の圧力を加えて水を強制的に透過させる逆浸透法が主に開発されてきた。しかし、この方法は高圧に加圧する必要があるため、設備費および運転費が嵩むという問題がある。そこで、半透膜を介して海水と海水より高濃度の溶液を吸引液として接触させ、加圧せずとも浸透圧により海水中の水をこの溶液に移動させ、分離、回収することにより淡水を製造する正浸透法が開発されている。 Various methods for producing fresh water from seawater using a semipermeable membrane are known, but the reverse osmosis method, in which a pressure higher than the osmotic pressure is applied to seawater to forcibly permeate the seawater, has been mainly developed. However, since this method requires high pressure, there is a problem that equipment costs and operating costs increase. Therefore, seawater and a solution with a higher concentration than seawater are brought into contact with each other through a semipermeable membrane as a suction liquid, and the water in the seawater is moved to this solution by osmotic pressure without pressurization, and the freshwater is separated and recovered. A manufacturing forward osmosis method has been developed.

この正浸透法では、吸引液としてアンモニアと二酸化炭素を水に溶解した溶液が用いられてきたが、蒸発にかかるコストやアンモニアの安全性などから、本出願人は、曇点を有する感温剤を用いる方法の開発に注力してきた。 In this forward osmosis method, a solution in which ammonia and carbon dioxide are dissolved in water has been used as a suction liquid. We have been focusing on the development of methods using

この感温剤を用いた正浸透法では、海水と感温剤水溶液とを半透膜を介して接触させて海水中の水分を半透膜を通して感温剤水溶液に移動させる正浸透工程と、この水で希釈された希釈感温剤水溶液を曇点以上に加温して感温剤を主体とする濃厚溶液と水を主体とする希薄溶液に分層させてこれらを分離する加温工程と重力分離工程と、分離された濃厚溶液を曇点以下に冷却して海水を接触させる感温剤水溶液として循環使用する冷却・循環工程よりなっている。 In the forward osmosis method using this temperature sensitive agent, a forward osmosis step of bringing seawater and an aqueous solution of a temperature sensitive agent into contact with each other through a semipermeable membrane to move moisture in the seawater through the semipermeable membrane to the aqueous solution of the temperature sensitive agent; a heating step of heating the dilute aqueous solution of the temperature-sensitive agent diluted with water to a cloud point or higher to separate the layers into a concentrated solution mainly composed of the temperature-sensitive agent and a dilute solution mainly composed of water; It consists of a gravitational separation process and a cooling/circulation process in which the separated concentrated solution is cooled to below the cloud point and is circulated as an aqueous thermosensitive agent solution that is brought into contact with seawater.

そして、この希薄溶液を淡水として使用するために、そこに残存している感温剤を膜処理して除去する回収膜ろ過工程が設けられることも知られている(特許文献1~3)。 In order to use this dilute solution as fresh water, it is also known that a recovery membrane filtration step is provided to remove the temperature-sensitive agent remaining therein by membrane treatment (Patent Documents 1 to 3).

この代表的なプロセスを図3に示す。同図に示すように、この装置は、正浸透モジュール3、熱交換器6、重力分離槽7、熱交換器11、膜ろ過装置15、熱交換器18およびボイラー19からなっている。海水1は、海水供給ポンプ2により正浸透モジュール3に供給され、モジュール内で半透膜4を介して感温剤水溶液12と接触し、海水中の水が浸透圧により感温剤水溶液側に移動する。水の移動により希釈された希釈感温剤水溶液5は、まず、熱交換器18で重力分離槽7で分離された濃厚溶液9と熱交換して加温されるが、濃厚溶液9の冷却によって回収される顕熱のみでは熱量が不足するため、さらに熱交換器6で所定の温度まで加温されて重力分離槽7に入れられる。その不足分の熱量を補うために、例えばボイラー19等の熱源を用いる。重力分離槽7で分離された感温剤の希薄溶液8はポンプ14により膜ろ過装置15に送られて、感温剤等が分離され、淡水が回収膜ろ過水16として取り出される。膜を通過しないで残った回収膜濃縮水17は、返送されて、正浸透モジュール3から流出する希釈感温剤水溶液5に加えられる。一方、重力分離槽7で分離された感温剤の濃厚溶液9は熱交換器18で希釈感温剤水溶液5と熱交換して冷却され、さらに熱交換器11で正浸透工程に適当な温度まで冷却されて、感温剤水溶液12として正浸透モジュール3に返送される。 This representative process is shown in FIG. As shown in the figure, this apparatus comprises a forward osmosis module 3, a heat exchanger 6, a gravity separation tank 7, a heat exchanger 11, a membrane filtration device 15, a heat exchanger 18 and a boiler 19. Seawater 1 is supplied to a forward osmosis module 3 by a seawater supply pump 2, contacts an aqueous solution of a temperature sensitive agent 12 through a semipermeable membrane 4 in the module, and the water in the seawater moves toward the aqueous solution of a temperature sensitive agent due to osmotic pressure. Moving. The dilute thermosensitive agent aqueous solution 5 diluted by the movement of water is first heated in the heat exchanger 18 by exchanging heat with the concentrated solution 9 separated in the gravity separation tank 7. Since the recovered sensible heat alone is insufficient in the amount of heat, it is further heated to a predetermined temperature by the heat exchanger 6 and put into the gravity separation tank 7 . A heat source such as a boiler 19 is used to make up for the shortage of heat. The temperature sensitive agent dilute solution 8 separated in the gravity separation tank 7 is sent to the membrane filtration device 15 by the pump 14 to separate the temperature sensitive agent and the like, and fresh water is taken out as recovered membrane filtered water 16 . The recovered membrane concentrated water 17 remaining without passing through the membrane is returned and added to the dilute temperature sensitive agent aqueous solution 5 flowing out from the forward osmosis module 3 . On the other hand, the concentrated solution 9 of the temperature sensitive agent separated in the gravity separation tank 7 is cooled by exchanging heat with the diluted aqueous solution of the temperature sensitive agent 5 in the heat exchanger 18, and is further cooled in the heat exchanger 11 to a temperature appropriate for the forward osmosis process. and returned to the forward osmosis module 3 as an aqueous temperature sensitive agent solution 12 .

特開2015-54292号公報JP 2015-54292 A 特開2017-56424号公報JP 2017-56424 A 特開2017-148734号公報JP 2017-148734 A

ところで、感温剤を用いた正浸透法でエネルギーを最も消費するのは、希釈感温剤水溶液を曇点以上まで加温する工程であり、淡水の製造コストを引下げるためにはこれが一番大きな問題である。この点に関し、特許文献2では、熱源に重力分離工程で分離された濃厚溶液の顕熱を使用することが好ましいことが記載され、また、その実施例では、工場の冷却器排気等の低温廃熱利用を想定している。しかしながら、濃厚溶液を冷却する熱交換器から排出される熱媒体は更に加温しなければ希釈感温剤水溶液の加温に利用することができず、この更に行う加温をどのようにするかについての説明は全くない。また、工場の冷却器排気等の低温廃熱利用もどのように行うか全く説明されていない。 By the way, in the forward osmosis method using a thermosensitive agent, the process that consumes the most energy is the process of heating the diluted thermosensitive agent aqueous solution to above the cloud point. It's a big problem. In this regard, Patent Document 2 describes that it is preferable to use the sensible heat of the concentrated solution separated in the gravity separation process as the heat source, and in its examples, low-temperature waste such as factory cooler exhaust Assuming heat utilization. However, the heat medium discharged from the heat exchanger that cools the concentrated solution cannot be used to heat the diluted thermosensitive agent aqueous solution unless it is further heated. There is no explanation about. In addition, there is no explanation at all about how to utilize low-temperature waste heat such as factory cooler exhaust.

本発明者らは、正浸透法での水処理において、感温剤を分離するための熱源に工場の廃熱を利用することを考えたが、工場の操業と正浸透法での水処理の運転の双方を安定させるシステムが未確立であった。 The present inventors considered using the waste heat of the factory as a heat source for separating the thermosensitive agent in water treatment by the forward osmosis method. A system to stabilize both operations has not been established.

本発明の目的は、正浸透法による水処理において、希釈感温剤水溶液を曇点以上に加温する熱源に工場の廃熱を利用し、その際に、正浸透法による淡水等の造水量の変動に係わりなく工場の操業を安定して行なえる手段を提供することにある。 The object of the present invention is to use waste heat from a factory as a heat source for heating a diluted thermosensitive agent aqueous solution above the cloud point in water treatment by the forward osmosis method. To provide means for stably operating a factory irrespective of fluctuations in temperature.

本発明者らは、上記課題を解決するべく鋭意検討を行い、正浸透水処理装置における希釈感温剤水溶液の加温手段と工場の冷却システムとの間に連結ラインを設置し、熱交換のラインを工場および正浸透法による水処理の稼働状況に応じて切替えられるようにし、それによって、工場の操業と正浸透法による水処理の双方の運転を安定化させることができた。
即ち、本発明は、
塩類を含有する被処理水中の水を曇点を有する感温剤水溶液に移動させる正浸透膜モジュールと、該正浸透膜モジュールから流出する希釈感温剤水溶液を前記曇点以上に加温する加温手段と、加温されて相分離した濃厚溶液相と希薄溶液相を重力で層分離する重力分離槽と、層分離されて前記重力分離槽から排出される希薄溶液を膜ろ過して淡水を得る回収膜ろ過装置と、やはり前記重力分離槽から排出される濃厚溶液を前記感温剤水溶液の曇点以下の温度まで冷却する冷却手段と、そこで冷却された濃厚溶液を前記正浸透膜モジュールに返送して前記感温剤水溶液として再使用する循環手段を有する正浸透水処理装置において、
工場の冷却システムで熱交換して加温された熱媒体を前記加温手段に供給し、該加温手段から排出される熱媒体を該冷却システムに返送するラインを設けたことを特徴とする正浸透水処理装置と、
塩類を含有する被処理水中の水を曇点を有する感温剤水溶液に移動させる正浸透工程と、前記の水の移動で得られた希釈感温剤水溶液を曇点以上に加温する加温工程と、加温されて相分離した濃厚溶液相と希薄溶液相を重力で層分離する重力分離工程と、層分離された前記希薄溶液を膜ろ過して淡水を得る回収膜ろ過工程と、やはり層分離された前記濃厚溶液を前記感温剤水溶液の曇点以下の温度まで冷却する冷却工程と、そこで冷却された濃厚溶液を前記正浸透工程に返送して感温剤水溶液として再使用する循環工程を有する正浸透水処理方法において、
工場の冷却システムで熱交換して加温された熱媒体を前記加温工程に供給し、該加温工程から排出される熱媒体を該冷却システムに返送して、冷却システムの目的物を冷却することを特徴とする正浸透水処理方法を提供するものである。
The present inventors have made intensive studies in order to solve the above problems, and installed a connection line between the heating means for the diluted thermosensitive agent aqueous solution in the forward osmosis water treatment apparatus and the cooling system of the factory, and the heat exchange. The line can be switched according to the operation status of the factory and the water treatment by the forward osmosis method, thereby stabilizing both the operation of the factory and the water treatment by the forward osmosis method.
That is, the present invention
A forward osmosis membrane module for moving water in the water to be treated containing salts to an aqueous temperature-sensitive agent solution having a cloud point; a heating means, a gravity separation tank for separating the heated and phase-separated dense solution phase and the dilute solution phase by gravity, and the diluted solution discharged from the gravity separation tank after layer separation is filtered through a membrane to remove fresh water. cooling means for cooling the concentrated solution discharged from the gravity separation tank to a temperature below the clouding point of the temperature-sensitive agent aqueous solution; In a forward osmosis water treatment apparatus having a circulation means for returning and reusing as the temperature sensitive agent aqueous solution,
A line is provided for supplying a heat medium heated by heat exchange in a factory cooling system to the heating means and for returning the heat medium discharged from the heating means to the cooling system. a forward osmosis water treatment device;
A forward osmosis step of moving the water in the water containing salts to be treated to an aqueous temperature-sensitive agent solution having a cloud point; a gravity separation step of separating the warmed and phase-separated thick solution phase and the dilute solution phase by gravity; a recovery membrane filtration step of obtaining fresh water by membrane filtration of the layer-separated dilute solution; a cooling step of cooling the layer-separated concentrated solution to a temperature below the cloud point of the aqueous temperature-sensitive agent solution; In a forward osmosis water treatment method comprising the steps of:
A heat medium heated by exchanging heat in a factory cooling system is supplied to the heating process, and the heat medium discharged from the heating process is returned to the cooling system to cool the object of the cooling system. To provide a forward osmosis water treatment method characterized by:

本発明により、工場の操業と正浸透法による水処理の双方を安定化させ、正浸透法における希釈感温剤水溶液の曇点以上への加温の熱源に工場の廃熱を利用することにより、正浸透法による造水コストを大幅に下げることができる。 According to the present invention, both the operation of the factory and the water treatment by the forward osmosis method are stabilized, and the waste heat of the factory is used as the heat source for heating the dilute thermosensitive agent aqueous solution above the cloud point in the forward osmosis method. , the cost of desalination by the forward osmosis method can be greatly reduced.

本発明の一実施形態における工場の冷却システムと正浸透水処理装置を連結した状態を示す図である。It is a figure which shows the state which connected the cooling system of the factory in one Embodiment of this invention, and the forward osmosis water treatment apparatus. 従来の工場の冷却システムの一例を示す図である。It is a figure which shows an example of the cooling system of the conventional factory. 従来の正浸透水処理装置の概略構成を示す図である。It is a figure which shows schematic structure of the conventional forward osmosis water treatment apparatus.

本発明の方法で処理される被処理水は水を溶媒とし、塩類を含有する溶液であり、海水、かん水、廃水などである。 The water to be treated by the method of the present invention is a solution containing salts in water as a solvent, such as seawater, brackish water, and wastewater.

正浸透膜モジュール
正浸透膜モジュールは、必要によりろ過処理した被処理水と、感温剤を水に溶解した高浸透圧の水溶液を半透膜を介して接触させ、被処理水中の水を半透膜を通して感温剤水溶液に移動させ、水で希釈された希釈感温剤水溶液と正浸透膜濃縮水を得る装置である。
Forward Osmosis Membrane Module The forward osmosis membrane module brings the water to be treated, which has been filtered if necessary, and a high osmotic pressure aqueous solution in which a thermosensitive agent is dissolved in water, into contact with each other through a semipermeable membrane. It is an apparatus for obtaining a water-diluted temperature-sensitive agent aqueous solution and a forward osmosis membrane-concentrated water by moving the temperature-sensitive agent solution through a permeable membrane.

感温剤は、低温では親水性で水によく溶けるが、ある温度以上になると疎水性化し溶解度が低下する物質であり、水溶性から非水溶性に変化する温度が下限臨界温度あるいは曇点と呼ばれる。この温度に達すると疎水性化した感温剤が凝集して白濁が起こる。 A thermosensitive agent is a substance that is hydrophilic at low temperatures and dissolves well in water, but becomes hydrophobic at a certain temperature or higher, and its solubility decreases. be called. When this temperature is reached, the hydrophobized thermosensitive agent agglomerates to cause white turbidity.

この感温剤は、各種界面活性剤、分散剤、乳化剤などとして利用されており、例示すれば、アルコール、アルキル基または脂肪酸と、エチレンオキサイドとプロピレンオキサイドの両方もしくは片方との化合物、アクリルアミドとアルキル基の化合物、グリセリンと、エチレンオキサイドとプロピレンオキサイドの両方もしくは片方との化合物、ペンタエリスリトールと、エチレンオキサイドとプロピレンオキサイドの両方もしくは片方との化合物、ヘキシレンングリコールと、エチレンオキサイドとプロピレンオキサイドの両方もしくは片方との化合物、などである。本発明において使用する感温剤としては、曇点が30℃~80℃の範囲、特に40℃~60℃の範囲のものが好ましい。 This thermosensitive agent is used as various surfactants, dispersants, emulsifiers, and the like. compounds of groups, glycerin and compounds of ethylene oxide and/or propylene oxide, pentaerythritol and compounds of ethylene oxide and/or propylene oxide, hexylene glycol and both ethylene oxide and propylene oxide Or a compound with one side, and the like. The temperature sensitive agent used in the present invention preferably has a cloud point in the range of 30°C to 80°C, particularly 40°C to 60°C.

感温剤水溶液の濃度は、感温剤水溶液の浸透圧が、被処理液の浸透圧より十分高くなるように調整しなければならず、高い方が好ましいが、実用的観点から60~95質量%程度、好ましくは70~95質量%程度、より好ましくは75~95質量%程度である。 The concentration of the aqueous temperature-sensitive agent solution must be adjusted so that the osmotic pressure of the aqueous temperature-sensitive agent solution is sufficiently higher than the osmotic pressure of the liquid to be treated. %, preferably about 70 to 95% by mass, more preferably about 75 to 95% by mass.

半透膜は水を選択的に透過できるものがよく、正浸透(Forward Osmosis)膜が好ましいが、逆浸透膜も使用できる。材質は特に制限されないが、例示すれば、酢酸セルロース系、ポリアミド系、ポリエチレンイミン系、ポリスルホン系、ポリベンゾイミダゾール系のものなどを挙げることができる。半透膜の形態も特に制限されず、平膜、管状膜、中空糸膜などいずれであってもよい。 The semipermeable membrane is preferably one capable of selectively permeating water, and is preferably a forward osmosis membrane, but a reverse osmosis membrane can also be used. Although the material is not particularly limited, examples include cellulose acetate, polyamide, polyethyleneimine, polysulfone, and polybenzimidazole. The form of the semipermeable membrane is also not particularly limited, and may be a flat membrane, a tubular membrane, a hollow fiber membrane, or the like.

この半透膜を装着する装置は通常は円筒形あるいは箱型の容器内に半透膜を設置して、この半透膜で仕切られた一方の室に被処理水を流し、他方の室に感温剤水溶液を流せるものであり、公知の半透膜装置を用いることができ、市販品を用いることもできる。 A device equipped with this semipermeable membrane usually has a semipermeable membrane installed in a cylindrical or box-shaped container, and the water to be treated flows into one chamber partitioned by this semipermeable membrane, and flows into the other chamber. An aqueous solution of a temperature sensitive agent can be flowed through, and a known semipermeable membrane device can be used, and a commercially available product can also be used.

正浸透膜モジュールで被処理水を半透膜を介して感温剤水溶液と接触させると浸透圧の差によって被処理水中の水が半透膜を通って感温剤水溶液に移動して希釈感温剤水溶液となり、残った被処理水は水の移動によって濃縮されて正浸透膜濃縮水として排出される。 When the water to be treated in the forward osmosis membrane module is brought into contact with the aqueous solution of the temperature-sensing agent through the semipermeable membrane, the difference in osmotic pressure causes the water in the water to move through the semi-permeable membrane to the aqueous solution of the temperature-sensing agent, resulting in dilution. The warm water solution is formed, and the remaining water to be treated is concentrated by the movement of water and discharged as forward osmosis membrane concentrated water.

なお、ここで得られた正浸透膜濃縮水は塩類を高濃度で含んでいるので、これを濃縮して塩類を析出させて分離し、有効利用することもできる。 In addition, since the forward osmosis membrane concentrated water obtained here contains salts at a high concentration, it can be concentrated to precipitate and separate the salts for effective use.

加温手段
正浸透膜モジュールで被処理水から水が移動して希釈された希釈感温剤水溶液を曇点以上の温度まで加温して、感温剤の少なくとも一部を凝集させる手段である。この凝集とは、感温剤の濃厚溶液が分離したものである。加温手段は、希釈感温剤水溶液を加温できればよく熱交換器等を使用できる。加温手段における加温温度は、例えば熱交換器へ導入する熱媒体の流量や温度の調整で制御できる。
Heating Means Means for coagulating at least part of the temperature-sensitive agent by heating the dilute aqueous solution of the temperature-sensitive agent, which has been diluted by moving water from the water to be treated in the forward osmosis membrane module, to a temperature equal to or higher than the cloud point. . The agglomerates are separate concentrated solutions of the temperature sensible. A heat exchanger or the like can be used as the heating means as long as it can heat the diluted thermosensitive agent aqueous solution. The heating temperature in the heating means can be controlled, for example, by adjusting the flow rate and temperature of the heat medium introduced into the heat exchanger.

この加温手段の熱源には、次の重力分離槽で分離された濃厚溶液の顕熱を使用することが好ましい。また、加温手段の熱源として重力分離槽で分離された希薄溶液の顕熱も使用すれば、エネルギー効率が更に向上するためより好ましい。濃厚溶液、および希薄溶液の回収顕熱で不足する加温手段の熱量はボイラーなどの熱源にて補い、さらに後述のように工場廃熱を利用する。 As a heat source for this heating means, it is preferable to use sensible heat of the concentrated solution separated in the following gravity separation tank. Further, if the sensible heat of the dilute solution separated in the gravity separation tank is also used as the heat source of the heating means, the energy efficiency is further improved, which is more preferable. A heat source such as a boiler compensates for the insufficient heat of the heating means due to the sensible heat recovered from the concentrated solution and the diluted solution, and the waste heat from the factory is used as described later.

重力分離槽
前記加温手段で相分離した感温剤を主体とする濃厚溶液層と水を主体とし少量の感温剤を含有する希薄溶液層に重力分離する。この重力分離は曇点以上の液温で静置又は連続的に流通させながら行うことができる。その際、前記加温手段で凝集した感温剤の濃厚溶液は重力分離槽に投入されると、濃厚溶液の微細液滴は速やかに沈降し、液滴同士が合一して重力分離槽下部に濃厚溶液層が形成される。
Gravity Separation Tank Gravity separation is performed into a thick solution layer mainly composed of the temperature-sensitive agent phase-separated by the heating means and a dilute solution layer mainly composed of water and containing a small amount of the temperature-sensitive agent. This gravitational separation can be carried out at a liquid temperature equal to or higher than the cloud point while standing still or continuously flowing. At that time, when the concentrated solution of the temperature sensitive agent aggregated by the heating means is put into the gravity separation tank, the fine droplets of the concentrated solution quickly settle, and the droplets are united to the lower part of the gravity separation tank. A thick solution layer is formed at

重力分離された希薄溶液の感温剤の濃度は0.01~2.0質量%程度、通常0.1~1.0質量%程度であり、感温剤は一部が溶解し、一部は懸濁状態になっている。 The concentration of the temperature sensitive agent in the dilute solution separated by gravity is about 0.01 to 2.0% by mass, usually about 0.1 to 1.0% by mass. is in suspension.

濃厚溶液の感温剤の濃度は70~95質量%程度、通常75~85質量%程度である。 The concentration of the thermosensitive agent in the concentrated solution is about 70-95 mass %, usually about 75-85 mass %.

回収膜ろ過装置
前記重力分離槽で分離された希薄溶液は、ナノろ過膜や逆浸透膜などで回収膜ろ過して、そこに主に溶解して残存している感温剤を除去する。回収膜ろ過水は淡水であり、飲料水などに利用できる。膜ろ過されないで残った回収膜濃縮水は、感温剤が含まれているので、正浸透膜モジュールから流出する希釈感温剤水溶液へ合流させるか、あるいは感温剤水溶液へ合流させることもできる。
Recovery Membrane Filtration Apparatus The dilute solution separated in the gravity separation tank is subjected to recovery membrane filtration using a nanofiltration membrane, a reverse osmosis membrane, or the like to remove mainly dissolved and remaining temperature sensitive agent. The recovered membrane filtered water is fresh water and can be used as drinking water. Since the collected membrane concentrated water remaining without membrane filtration contains the temperature sensitive agent, it can be combined with the diluted temperature sensitive agent aqueous solution flowing out from the forward osmosis membrane module, or can be combined with the temperature sensitive agent aqueous solution. .

冷却手段
前記重力分離槽で分離された濃厚溶液を、感温剤水溶液の曇点より低い温度に冷却することで水に溶解させて感温剤水溶液に再生する。この温度は広い範囲で採用可能であるが、経済性を考慮すると常温かそれより高い温度が好ましい。冷却手段も熱交換器等を使用できる。この冷却熱源としては、被処理水あるいは正浸透工程において得られた希釈感温剤水溶液を用いることがエネルギーの効率的な利用の点で好ましい。
Cooling Means The concentrated solution separated in the gravity separation tank is cooled to a temperature lower than the cloud point of the aqueous thermosensitive agent solution, thereby dissolving it in water and regenerating the aqueous thermosensitive agent solution. This temperature can be used in a wide range, but in consideration of economy, room temperature or higher is preferred. A heat exchanger or the like can be used as the cooling means. As the cooling heat source, it is preferable to use the water to be treated or the dilute thermosensitive agent aqueous solution obtained in the forward osmosis process from the viewpoint of efficient use of energy.

循環手段
再生した感温剤水溶液をそのまま正浸透膜モジュールに循環して再利用する手段である。
Circulation Means This means circulates the regenerated temperature-sensitive agent aqueous solution as it is to the forward osmosis membrane module for reuse.

ところで、感温剤水溶液を用いた本発明の正浸透法では、曇点以上に加温して希薄溶液と分離した濃厚溶液を正浸透工程で感温剤水溶液として循環使用するため、正浸透工程に適した温度まで濃厚溶液を冷却する必要があり、一方、被処理水中の水が移動して希釈された感温剤水溶液は、そこから水を分離するために曇点以上に加温する必要がある。このように、正浸透水処理装置では加熱や冷却のエネルギーの使用量が大きく、その管理が重要になる。 By the way, in the forward osmosis method of the present invention using an aqueous temperature-sensitive agent solution, the concentrated solution separated from the dilute solution by heating above the cloud point is circulated and used as the aqueous temperature-sensitive agent solution in the forward osmosis process. It is necessary to cool the concentrated solution to a temperature suitable for the temperature, while the aqueous solution of the temperature sensible agent diluted by the movement of water in the water to be treated needs to be warmed above the cloud point in order to separate the water from it. There is As described above, the forward osmosis water treatment apparatus uses a large amount of energy for heating and cooling, and its management is important.

希釈感温剤水溶液を曇点以上に加温する熱源としては、省エネルギーに加えて運転の安定性の観点からも系内の熱を優先使用することが望ましく、そのため、希釈感温剤水溶液は、まず、重力分離槽から排出される濃厚溶液の顕熱で加温するのがよい。さらに、希釈感温剤水溶液の加温熱源として希薄溶液も利用することができる。しかしながら、熱交換器で顕熱を全て回収することはできないので、不足分の熱量を別途補う必要があり、そのため、加温手段においては従来はボイラー等の熱源を別途設けていた。 As a heat source for heating the diluted thermosensitive agent aqueous solution above the cloud point, it is desirable to preferentially use the heat in the system from the viewpoint of operational stability as well as energy saving. First, the sensible heat of the concentrated solution discharged from the gravity separation tank should be used for heating. Furthermore, a dilute solution can also be used as a heat source for heating the diluted thermosensitive agent aqueous solution. However, since the heat exchanger cannot recover all of the sensible heat, it is necessary to make up for the shortage of heat.

本発明は、このような正浸透法による水処理において、一番熱エネルギーを消費する希釈感温剤水溶液の加温に工場の廃熱を利用するところに特徴がある。 The present invention is characterized in that waste heat from the factory is used for heating the dilute thermosensitive agent aqueous solution, which consumes the most thermal energy, in the forward osmosis water treatment.

加温手段においては、希釈感温剤水溶液は曇点以上に加温すればよいが、加温により相分離された希薄溶液は温度が高い程感温剤濃度が低くなる。その後の回収膜ろ過装置では、感温剤濃度が低い程負担が軽減できるのでなるべく加温手段における温度を高くする方がよい。従って、加温手段における希釈感温剤水溶液の温度は60~95℃程度、好ましくは80~90℃程度にすることが好ましい。 In the heating means, the dilute aqueous solution of the temperature-sensitive agent may be heated to a cloud point or higher, but the concentration of the temperature-sensitive agent decreases as the temperature of the dilute solution phase-separated by heating increases. In the subsequent recovery membrane filtration apparatus, the lower the concentration of the temperature-sensitive agent, the less the load, so it is better to increase the temperature of the heating means as much as possible. Therefore, the temperature of the diluted thermosensitive agent aqueous solution in the heating means is preferably about 60 to 95.degree. C., preferably about 80 to 90.degree.

そこで、正浸透水処理装置で利用する工場の廃熱は、冷却システムで熱交換することによって、温度が上記の温度より5~50℃程度、通常20~40℃程度高い温度にした熱媒体の形態であることが好ましい。熱媒体は、水、油等、通常用いられているものでよい。熱媒体をその沸点以上で使用する場合には、熱交換器や配管は耐圧性のものが必要である。 Therefore, the waste heat of the factory used in the forward osmosis water treatment equipment is heat-exchanged in the cooling system, and the temperature is raised to about 5 to 50°C, usually about 20 to 40°C, higher than the above temperature. preferably in the form The heat medium may be one commonly used such as water or oil. When the heat medium is used above its boiling point, the heat exchanger and piping must be pressure resistant.

利用する工場はこのような廃熱が必要量得られる工場であればよいが、製油所や火力発電所などを例として挙げることができる。製油所の冷却システムの例を図2に示す。製造されたガソリンや軽油などの熱流体は、例えば150℃で熱交換器21に送られ、そこで、冷却塔22の熱交換器26で例えば35℃に冷却された冷却水などの熱媒体23で例えば50℃に冷却されて製品として取出される。熱交換器21によって冷却水は例えば温度が120℃(2気圧)になって冷却塔22の熱交換器26に循環される。 The factory to be used may be any factory that can obtain the required amount of such waste heat, and examples include oil refineries and thermal power plants. An example of a refinery cooling system is shown in FIG. The produced hot fluid such as gasoline and light oil is sent to the heat exchanger 21 at, for example, 150° C., where it is cooled to, for example, 35° C. in the heat exchanger 26 of the cooling tower 22 with a heat medium 23 such as cooling water. For example, it is cooled to 50° C. and taken out as a product. The cooling water is brought to a temperature of, for example, 120° C. (2 atm) by the heat exchanger 21 and circulated to the heat exchanger 26 of the cooling tower 22 .

本発明においては、このような工場の熱媒体を、希釈感温剤水溶液を加熱する熱源として利用する。この工場の熱媒体で加熱する熱交換器は、新たに設けてもよいが、熱媒体が同一であればボイラー等で加熱する既設の熱交換器と兼用が可能である。また、正浸透水処理装置における冷却を工場の冷却水で行えるように、正浸透水処理装置の希釈感温剤水溶液と濃厚溶液を熱交換させる熱交換器と浸透膜モジュールの間に設けられた濃厚溶液を更に冷却するための熱交換器に、工場側の冷却塔の冷却水を供給できるようにすることも好ましい。 In the present invention, such a heat medium in the factory is used as a heat source for heating the diluted thermosensitive agent aqueous solution. The heat exchanger for heating with the heat medium in the factory may be newly installed, but if the heat medium is the same, it can be used as an existing heat exchanger for heating with a boiler or the like. In addition, in order to cool the forward osmosis water treatment device with factory cooling water, a heat exchanger for exchanging heat between the dilute thermosensitive agent aqueous solution and the concentrated solution of the forward osmosis water treatment device and the osmosis membrane module It is also preferred to be able to supply a heat exchanger for further cooling of the concentrated solution with cooling water from the cooling tower on the plant side.

工場の熱媒を正浸透水処理装置の加温手段に使用することにより、工場の冷却システムは、希釈感温剤水溶液による冷却と冷却水による冷却の2系統を持つことになる。そこで、正浸透水処理装置がフル稼働していて、希釈感温剤水溶液で工場の求める冷却能力を満たせば、工場側の冷却は希釈感温剤水溶液で行い、正浸透水処理装置の冷却を工場の冷却水で行うことができる。正浸透水処理装置の稼働率が低下して工場側の冷却を希釈感温剤水溶液のみでは十分に行えない場合は、冷熱の不足分を工場の冷却水で補えばよい。 By using the heating medium in the factory as a heating means for the forward osmosis water treatment device, the cooling system in the factory has two systems, one for cooling by the diluted thermosensitive agent aqueous solution and the other for cooling by cooling water. Therefore, if the forward osmosis water treatment equipment is operating at full capacity and the cooling capacity required by the factory is satisfied with the diluted thermosensitive agent aqueous solution, the cooling on the factory side will be performed with the diluted thermosensitive agent aqueous solution, and the forward osmosis water treatment equipment will be cooled. It can be done with factory cooling water. If the operation rate of the forward osmosis water treatment device is low and the cooling at the factory cannot be sufficiently performed with only the diluted temperature-sensing agent aqueous solution, the lack of cold heat can be supplemented with the cooling water from the factory.

本発明の一実施態様における、工場の冷却システムと正浸透水処理装置の加温手段を連結した状態を図1に示す。この実施態様においては、図3に示す従来の正浸透処理装置に図2に示す製油所の冷却システムを組み合わせて利用している。 FIG. 1 shows a state in which the factory cooling system and the heating means of the forward osmosis water treatment apparatus are connected in one embodiment of the present invention. This embodiment utilizes the conventional forward osmosis processing apparatus shown in FIG. 3 in combination with the refinery cooling system shown in FIG.

具体的には、新たに熱媒体23を正浸透水処理装置の熱交換器6(加温手段)に供給する熱媒体供給ライン27と、熱交換器6から排出された熱媒体25を工場の冷却システムに返送する熱媒体返送ライン28を設けている。そして、それぞれのラインには弁を設け、工場の冷却システムと正浸透水処理装置のボイラー19の熱媒体である熱水や蒸気をそれぞれの従来のラインを循環させることに加えて、工場の冷却システムの熱媒体23を希釈感温剤水溶液5を補充加熱する熱交換器6へも切替えて供給できるようにしている。熱媒体23の熱交換器6への供給は全量であっても、一部であっても良い。この例においては、工場の冷却システムの熱媒体23とボイラーの熱媒体20がいずれも水であるので熱交換器6は増設せず兼用させている。 Specifically, a heat medium supply line 27 that newly supplies the heat medium 23 to the heat exchanger 6 (heating means) of the forward osmosis water treatment device, and a heat medium 25 discharged from the heat exchanger 6 are sent to the factory. A heat medium return line 28 is provided for return to the cooling system. Then, each line is provided with a valve, and in addition to circulating hot water and steam, which are the heat medium of the factory cooling system and the boiler 19 of the forward osmosis water treatment device, through each conventional line, the factory cooling The heat medium 23 of the system can also be switched to be supplied to the heat exchanger 6 for replenishing and heating the diluted thermosensitive agent aqueous solution 5 . The heat medium 23 may be supplied to the heat exchanger 6 entirely or partially. In this example, the heat medium 23 of the cooling system of the factory and the heat medium 20 of the boiler are both water, so the heat exchanger 6 is not added and is used as both.

熱交換器6から排出された熱媒体25は熱媒体返送ライン28を通って工場の冷却システムに返送される。そして、工場の冷却システムに返送された熱媒体25は熱交換器26に供給されて所定温度まで冷却され、再び熱交換器21に供給される。 The heat medium 25 discharged from the heat exchanger 6 is returned to the factory cooling system through a heat medium return line 28 . Then, the heat medium 25 returned to the cooling system of the factory is supplied to the heat exchanger 26, cooled to a predetermined temperature, and supplied to the heat exchanger 21 again.

こうして、工場の冷却システムにおける熱交換器21で熱交換して加温された熱媒体23(蒸気)を必要に応じて正浸透水処理装置の熱交換器6に供給することにより、ボイラー19の負荷軽減が可能となる。 In this way, by supplying the heat medium 23 (steam) heated by heat exchange in the heat exchanger 21 in the cooling system of the factory to the heat exchanger 6 of the forward osmosis water treatment device as needed, the boiler 19 It is possible to reduce the load.

熱交換器26の冷却媒体(冷水)源である冷却塔22は、正浸透水処理装置の熱交換器11の冷却媒体(冷水)源も兼ねている。(図中のA、B)
冷却塔22を冷却媒体(冷水)源とする熱交換器26と熱交換器11を使用することにより、工場と正浸透水処理装置の冷熱をバランスさせることができる。
The cooling tower 22, which is a cooling medium (cold water) source for the heat exchanger 26, also serves as a cooling medium (cold water) source for the heat exchanger 11 of the forward osmosis water treatment apparatus. (A and B in the figure)
By using the heat exchanger 26 and the heat exchanger 11 with the cooling tower 22 as the cooling medium (chilled water) source, the cooling of the factory and the forward osmosis water treatment apparatus can be balanced.

本発明は、工場に併設されている、正浸透法による海水から淡水の製造や、廃水の脱塩などに広く利用できる。 INDUSTRIAL APPLICABILITY The present invention can be widely used for production of fresh water from seawater by forward osmosis, desalination of wastewater, and the like, which are installed in factories.

1 海水(被処理水)
2 海水供給ポンプ
3 正浸透膜モジュール
4 正浸透膜
5 希釈感温剤水溶液
6 熱交換器
7 重力分離槽
8 希薄溶液
9 濃厚溶液
10 感温剤水溶液ポンプ
11 熱交換器
12 感温剤水溶液
13 正浸透膜濃縮水
14 ポンプ
15 回収膜ろ過装置
16 回収膜ろ過水
17 回収膜濃縮水
18:熱交換器
19:ボイラー
20:熱媒体(蒸気、熱水)
21:熱交換器
22:冷却塔
23:熱媒体(蒸気、熱水)
25:熱媒体(蒸気、熱水)
26:熱交換器
27:熱媒体供給ライン
28:熱媒体返送ライン
1 seawater (water to be treated)
2 Seawater supply pump 3 Forward osmosis membrane module 4 Forward osmosis membrane 5 Diluted temperature sensitive agent aqueous solution 6 Heat exchanger 7 Gravity separation tank 8 Dilute solution 9 Concentrated solution 10 Temperature sensitive agent aqueous solution pump 11 Heat exchanger 12 Temperature sensitive agent aqueous solution 13 Positive Osmotic membrane concentrated water 14 Pump 15 Recovery membrane filtration device 16 Recovery membrane filtered water 17 Recovery membrane concentrated water 18: Heat exchanger 19: Boiler 20: Heat medium (steam, hot water)
21: Heat exchanger 22: Cooling tower 23: Heat medium (steam, hot water)
25: Heat medium (steam, hot water)
26: Heat exchanger 27: Heat medium supply line 28: Heat medium return line

Claims (4)

塩類を含有する被処理水中の水を曇点を有する感温剤水溶液に移動させる正浸透膜モジュールと、該正浸透膜モジュールから流出する希釈感温剤水溶液を前記曇点以上に加温する加温手段と、加温されて相分離した濃厚溶液相と希薄溶液相を重力で層分離する重力分離槽と、層分離されて前記重力分離槽から排出される希薄溶液を膜ろ過して淡水を得る回収膜ろ過装置と、やはり前記重力分離槽から排出される濃厚溶液を前記感温剤水溶液の曇点以下の温度まで冷却する冷却手段と、そこで冷却された濃厚溶液を前記正浸透膜モジュールに返送して前記感温剤水溶液として再使用する循環手段を有する正浸透水処理装置において、
工場の冷却システムで熱交換して加温された熱媒体を前記加温手段に供給し、該加温手段から排出される熱媒体を該冷却システムに返送するラインを設けたことを特徴とする正浸透水処理装置。
A forward osmosis membrane module for moving water in the water to be treated containing salts to an aqueous temperature-sensitive agent solution having a cloud point; a heating means, a gravity separation tank for separating the heated and phase-separated dense solution phase and the dilute solution phase by gravity, and the diluted solution discharged from the gravity separation tank after layer separation is filtered through a membrane to remove fresh water. cooling means for cooling the concentrated solution discharged from the gravity separation tank to a temperature below the clouding point of the temperature-sensitive agent aqueous solution; In a forward osmosis water treatment apparatus having a circulation means for returning and reusing as the temperature sensitive agent aqueous solution,
A line is provided for supplying a heat medium heated by heat exchange in a factory cooling system to the heating means and for returning the heat medium discharged from the heating means to the cooling system. Forward osmosis water treatment equipment.
前記加温手段が、前記正浸透膜モジュールから流出する前記希釈感温剤水溶液と前記重力分離槽から排出される前記濃厚溶液を熱交換する熱交換器と前記重力分離槽との間に設けられて前記希釈感温剤水溶液をさらに加温する熱交換器からなり、前記ラインは、前記工場の冷却システムで熱交換して加温された前記熱媒体を前記希釈感温剤水溶液をさらに加温する熱交換器に供給するように接続されている請求項1記載の正浸透水処理装置。 The heating means is provided between the gravity separation tank and a heat exchanger that exchanges heat between the dilute temperature-sensitive agent aqueous solution flowing out of the forward osmosis membrane module and the concentrated solution discharged from the gravity separation tank. a heat exchanger for further heating the diluted temperature-sensitive agent aqueous solution, and the line further heats the diluted temperature-sensitive agent aqueous solution with the heat medium heated by heat exchange in the cooling system of the factory. 2. The forward osmosis water treatment system of claim 1, wherein the forward osmosis water treatment system is connected in supply to a heat exchanger. 前記冷却手段が、前記正浸透膜モジュールから流出する前記希釈感温剤水溶液と前記重力分離槽から排出される前記濃厚溶液を熱交換する熱交換器と前記正浸透膜モジュールとの間に設けられて前記濃厚溶液をさらに冷却する熱交換器からなり、この濃厚溶液をさらに冷却する熱交換器に前記工場の前記冷却システムの冷却水を供給する循環ラインが接続されている請求項1又は2記載の正浸透水処理装置。 The cooling means is provided between the forward osmosis membrane module and a heat exchanger that exchanges heat between the diluted thermosensitive agent aqueous solution flowing out of the forward osmosis membrane module and the concentrated solution discharged from the gravity separation tank. 3. A circulation line for supplying cooling water from the cooling system of the factory is connected to the heat exchanger for further cooling the concentrated solution. of forward osmosis water treatment equipment. 塩類を含有する被処理水中の水を曇点を有する感温剤水溶液に移動させる正浸透工程と、前記の水の移動で得られた希釈感温剤水溶液を曇点以上に加温する加温工程と、加温されて相分離した濃厚溶液相と希薄溶液相を重力で層分離する重力分離工程と、層分離された前記希薄溶液を膜ろ過して淡水を得る回収膜ろ過工程と、やはり層分離された前記濃厚溶液を前記感温剤水溶液の曇点以下の温度まで冷却する冷却工程と、そこで冷却された濃厚溶液を前記正浸透工程に返送して感温剤水溶液として再使用する循環工程を有する正浸透水処理方法において、
工場の冷却システムで熱交換して加温された熱媒体を前記加温工程に供給し、該加温工程から排出される熱媒体を該冷却システムに返送して、冷却システムの目的物を冷却することを特徴とする正浸透水処理方法。
A forward osmosis step of moving the water in the water containing salts to be treated to an aqueous temperature-sensitive agent solution having a cloud point; a gravity separation step of separating the warmed and phase-separated thick solution phase and the dilute solution phase by gravity; a recovery membrane filtration step of obtaining fresh water by membrane filtration of the layer-separated dilute solution; A cooling step of cooling the layer-separated concentrated solution to a temperature below the cloud point of the aqueous temperature-sensitive agent solution, and a circulation of returning the cooled concentrated solution to the forward osmosis step for reuse as the aqueous temperature-sensitive agent solution. In a forward osmosis water treatment method comprising the steps of:
A heat medium heated by exchanging heat in a factory cooling system is supplied to the heating process, and the heat medium discharged from the heating process is returned to the cooling system to cool the object of the cooling system. A forward osmosis water treatment method characterized by:
JP2021028491A 2021-02-25 2021-02-25 Forward osmosis water treatment device and method Pending JP2022129708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021028491A JP2022129708A (en) 2021-02-25 2021-02-25 Forward osmosis water treatment device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021028491A JP2022129708A (en) 2021-02-25 2021-02-25 Forward osmosis water treatment device and method

Publications (1)

Publication Number Publication Date
JP2022129708A true JP2022129708A (en) 2022-09-06

Family

ID=83151291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021028491A Pending JP2022129708A (en) 2021-02-25 2021-02-25 Forward osmosis water treatment device and method

Country Status (1)

Country Link
JP (1) JP2022129708A (en)

Similar Documents

Publication Publication Date Title
JP6783384B2 (en) NMP aqueous solution purification system and purification method
JP5575015B2 (en) Fresh water production system
WO2013065293A1 (en) Method and device for preparing fresh water
US20130220581A1 (en) Forward osmosis with an organic osmolyte for cooling towers
JP6149627B2 (en) Water treatment method with semipermeable membrane
JP5988032B2 (en) Fresh water production apparatus and operation method thereof
JP5066117B2 (en) Fresh water production method and apparatus
JP5900743B2 (en) Method and apparatus for treatment of associated water from a well
JP2015192979A (en) Water treatment apparatus using semipermeable membrane
JP2015054292A (en) Water treatment method using semi-permeable membrane
JP6028645B2 (en) Water treatment equipment
WO2019004281A1 (en) Water treatment device and water treatment method
WO2017066534A1 (en) Hybrid cooling and desalination system
KR101298724B1 (en) Forward osmotic desalination device using membrane distillation method in which a part of draw solution is directly fed to a forward osmotic type separator
JP2014100692A (en) Water treatment method
JP2022129708A (en) Forward osmosis water treatment device and method
JP5910466B2 (en) Water purification manufacturing method and apparatus
JP6210008B2 (en) Water treatment equipment
JP6210034B2 (en) Water desalination method and apparatus
JP6414528B2 (en) Water desalination method and apparatus
JP6879228B2 (en) Water treatment equipment and water treatment method
JP2015037771A (en) Water treatment method
JP2022129707A (en) Purification method and device of temperature sensitive agent aqueous solution used in forward osmosis water treatment
JP2022129709A (en) Forward osmosis desalination method and apparatus thereof
JP5900745B2 (en) Fresh water production method and fresh water production apparatus