JP2022126520A - テンプレート基板及びその製造方法 - Google Patents
テンプレート基板及びその製造方法 Download PDFInfo
- Publication number
- JP2022126520A JP2022126520A JP2021024641A JP2021024641A JP2022126520A JP 2022126520 A JP2022126520 A JP 2022126520A JP 2021024641 A JP2021024641 A JP 2021024641A JP 2021024641 A JP2021024641 A JP 2021024641A JP 2022126520 A JP2022126520 A JP 2022126520A
- Authority
- JP
- Japan
- Prior art keywords
- inas layer
- substrate
- inas
- layer
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 132
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 229910000673 Indium arsenide Inorganic materials 0.000 claims abstract description 212
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims abstract description 211
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims description 16
- 238000004458 analytical method Methods 0.000 claims description 11
- 239000011701 zinc Substances 0.000 description 97
- 239000007789 gas Substances 0.000 description 70
- 230000000052 comparative effect Effects 0.000 description 16
- 239000013078 crystal Substances 0.000 description 11
- 239000012535 impurity Substances 0.000 description 8
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 4
- 238000000089 atomic force micrograph Methods 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910000070 arsenic hydride Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 229910005542 GaSb Inorganic materials 0.000 description 1
- -1 InAs compound Chemical class 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 1
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 1
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 1
- 229910000058 selane Inorganic materials 0.000 description 1
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
【課題】GaAs基板上にInAs層を有するテンプレート基板であって、表面平坦性が高い基板及びその基板の製造方法を提供する。【解決手段】テンプレート基板100は、GaAs基板1と、GaAs基板1上に配置され、100nm以上の厚さを有するInAs層2と、を備え、InAs層2は、1×1017atoms/cm3以上の平均濃度でZnを含み、GaAs基板1と接する側とは反対側のInAs層2の表面における、一辺の長さが10μmである正方形領域をAFMにより分析した二乗平均平方根粗さの値が2.0nm以下である。【選択図】図1
Description
本発明は、テンプレート基板及びその製造方法に関する。
中赤外領域(例えば、波長3μmから5μm)の波長域を有する受発光素子は、センサやガス分析などの用途で、幅広く用いられている。
このような受発光素子の活性層には、In、As及びSbを含むInAsSb系III-V族半導体が用いられる。InAsSb層などのInAsSb系III-V族半導体層をエピタキシャル成長させる場合、格子整合させるために、InAs基板やGaSb基板が成長用基板として用いられていた。
近年、InAsSb層などのInAsSb系III-V族半導体層と格子整合する安価な基板が求められるようになった。そのため、GaAs基板など異種基板にInAsを結晶成長したものをテンプレート基板として使用することも検討されている。
特許文献1には、有機金属気相成長法を用いるInAs等のIn系III-V族化合物半導体結晶の作製方法が記載されている。この方法では、In原料(TMI)とV族原料(AsH3)を交互に供給し、成長温度を600~800℃の範囲で、GaAs基板上にInAs結晶を気相成長することが記載されている。また、この方法によって得たInAs結晶は、ホール移動度30000cm2/Vsであり、結晶特性が良いことが記載されている。なお、特許文献1には、従来技術として、InAs化合物半導体やIII族元素がInであるIn系III-V族化合物半導体の結晶は有機金属気相成長法で作製されており、InAsを成長する場合には、400℃以上600℃未満の成長温度に加熱した基板上でIII族原料やV族原料を用いてこれらを熱分解して成長を行っていたことが記載されている。また、In系の原料では成長温度を600℃以上に上げると、基板上に良好な結晶を成長させることができなかったことが記載されている。
特許文献1に記載された発明では、表面平坦性の高いテンプレート基板を得ることができなかった。そのためGaAs基板上にInAs層を有するテンプレート基板であって、表面平坦性が高い基板及びその基板の製造方法の提供が望まれる。
本発明は、かかる実状に鑑みて為されたものであって、その目的は、GaAs基板上にInAs層を有するテンプレート基板であって、表面平坦性が高い基板及びその基板の製造方法を提供することにある。
上記目的を達成するための本発明に係るテンプレート基板は、
GaAs基板と、
前記GaAs基板上に配置され、100nm以上の厚さを有するInAs層と、を備え、
前記InAs層は、1×1017atoms/cm3以上の平均濃度でZnを含み、
前記GaAs基板と接する側とは反対側の前記InAs層の表面における、一辺の長さが10μmである正方形領域をAFMにより分析した二乗平均平方根粗さの値が2.0nm以下である。
GaAs基板と、
前記GaAs基板上に配置され、100nm以上の厚さを有するInAs層と、を備え、
前記InAs層は、1×1017atoms/cm3以上の平均濃度でZnを含み、
前記GaAs基板と接する側とは反対側の前記InAs層の表面における、一辺の長さが10μmである正方形領域をAFMにより分析した二乗平均平方根粗さの値が2.0nm以下である。
本発明に係るテンプレート基板では、更に、
前記InAs層の前記表面から深さ20nm以上50nm以下の範囲における、Znの平均濃度は、1×1017atoms/cm3以上1×1019atoms/cm3以下であってもよい。
前記InAs層の前記表面から深さ20nm以上50nm以下の範囲における、Znの平均濃度は、1×1017atoms/cm3以上1×1019atoms/cm3以下であってもよい。
上記目的を達成するための本発明に係るテンプレート基板の製造方法は、
GaAs基板上にInAs層を形成するInAs層形成工程と、
前記InAs層に含まれるZnの濃度が1×1017atoms/cm3以上となるようにZnをドープするドーピング工程と、を含み、
前記GaAs基板上に、400℃以上600℃未満の成長温度で、厚さ50nm以上の第一InAs層を成長させる第一成長工程と、
前記第一InAs層上に、600℃以上750℃未満の成長温度で、厚さ50nm以上の第二InAs層を成長させる第二成長工程と、を含み、
前記ドーピング工程は、前記第一成長工程及び前記第二成長工程において、Zn含有ガスを通流させる。
GaAs基板上にInAs層を形成するInAs層形成工程と、
前記InAs層に含まれるZnの濃度が1×1017atoms/cm3以上となるようにZnをドープするドーピング工程と、を含み、
前記GaAs基板上に、400℃以上600℃未満の成長温度で、厚さ50nm以上の第一InAs層を成長させる第一成長工程と、
前記第一InAs層上に、600℃以上750℃未満の成長温度で、厚さ50nm以上の第二InAs層を成長させる第二成長工程と、を含み、
前記ドーピング工程は、前記第一成長工程及び前記第二成長工程において、Zn含有ガスを通流させる。
本発明に係るテンプレート基板の製造方法では、更に、
前記ドーピング工程は、前記第二InAs層の前記GaAs基板に対向する側とは反対側の表面から深さ20nm以上50nm以下の範囲におけるZnの平均濃度が1×1017atoms/cm3以上1×1019atoms/cm3以下となるように、前記Zn含有ガスを通流させてもよい。
前記ドーピング工程は、前記第二InAs層の前記GaAs基板に対向する側とは反対側の表面から深さ20nm以上50nm以下の範囲におけるZnの平均濃度が1×1017atoms/cm3以上1×1019atoms/cm3以下となるように、前記Zn含有ガスを通流させてもよい。
本発明に係るテンプレート基板の製造方法では、更に、
前記ドーピング工程は、
前記第一成長工程において、前記Zn含有ガスの通流量を0.1ccm以上10ccm以下とし、
前記第二成長工程において、前記Zn含有ガスの通流量を0.1ccm以上10ccm以下としてもよい。
前記ドーピング工程は、
前記第一成長工程において、前記Zn含有ガスの通流量を0.1ccm以上10ccm以下とし、
前記第二成長工程において、前記Zn含有ガスの通流量を0.1ccm以上10ccm以下としてもよい。
本発明に係るテンプレート基板の製造方法では、更に、
前記ドーピング工程では、前記第二成長工程で通流させる前記Zn含有ガスの通流量は、前記第一成長工程で通流させる前記Zn含有ガスの通流量よりも少なくしてもよい。
前記ドーピング工程では、前記第二成長工程で通流させる前記Zn含有ガスの通流量は、前記第一成長工程で通流させる前記Zn含有ガスの通流量よりも少なくしてもよい。
GaAs基板上にInAs層を有するテンプレート基板であって、表面平坦性が高い基板及びその基板の製造方法を提供する。
本発明に従う実施形態の説明に先立ち、以下の点について予め説明する。本実施形態におけるInAsとは、III族として主にIn、V族として主にAsからなるIII-V族化合物である。InAsは、本発明の効果を奏する範囲でInやAs以外の不純物元素を含むことは許容される。この場合、III族元素であるGaについての表記がなくとも、Inの一部はGaに置換されていてもよい。また、V族元素であるP又はSbについての表記がなくとも、Asの一部はP又はSbに置換されていてもよい。
Zn等の特定の不純物を意図的には添加しておらず、電気的にp型又はn型として機能しない場合、「i型」又は「アンドープ」と言う。アンドープの層には、製造過程における不可避的な不純物の混入はあってよく、具体的には、キャリア密度が小さい(例えば4×1016/cm3未満)場合に「アンドープ」である、と本明細書において称する。また、Zn等の不純物濃度の値は、SIMS分析(二次イオン質量分析法、Secondary Ion Mass Spectrometry)によるものとする。本実施形態においては、Zn等の不純物濃度の値などとして、磁場型SIMSを用いて分析した値を採用することができる。
また、エピタキシャル成長により形成される各層の厚み全体は、光干渉式膜厚測定器を用いて測定することができる。SIMS、TEM(透過型電子顕微鏡)、SEM(電子顕微鏡)によりInAs層の厚さを測定しても良い。更に、各層の厚みのそれぞれは、成長装置に付属させた光干渉式膜厚測定器や、成長レートの計算から求めることができ、隣接する各層の組成が十分異なる場合には、TEM、SEMによる成長層の断面観察から算出できる。
以下、図面を参照して本発明の実施形態について説明する。なお、同一の構成要素には原則として同一の参照番号を付して、重複する説明を省略する。また、各図において、説明の便宜上、基板及び各層の縦横の比率を実際の比率から誇張して示している。
(テンプレート基板の構造の説明)
図1には、本実施形態に係るテンプレート基板100を示している。テンプレート基板100は、GaAs基板1と、GaAs基板1上に配置され、100nm以上の厚さ(膜厚)を有するInAs層2と、を備えている。
図1には、本実施形態に係るテンプレート基板100を示している。テンプレート基板100は、GaAs基板1と、GaAs基板1上に配置され、100nm以上の厚さ(膜厚)を有するInAs層2と、を備えている。
GaAs基板1は、導電型をn型としたものを用いることができる。GaAs基板1における、InAs層2の結晶成長(エピタキシャル成長)を行う表面の面方位は(100)面であるものを用いることができ、オフ角度をつけることもできる。なお、GaAs基板1は、図2に示すように、基板となる第一GaAs層11上に初期層としてアンドープの第二GaAs層12が形成されたものを用いることが好ましい。
InAs層2は、III族として主にIn、V族として主にAsからなるIII-V族化合物で形成された層である。InAs層は、1×1017atoms/cm3以上の平均濃度でZnを含む。ここで、InAs層のZnの平均濃度は、SIMS分析を行う側の表面(本実施形態ではGaAs基板1と接する側と反対の表面と同じ)から深さ20nm未満の範囲を除くInAs層の深さ方向における平均(算術平均)のZn濃度である。以下では、InAs層の深さ方向におけるZnの平均濃度を、単にInAs層のZnの平均濃度と記載する場合がある。すなわち、単にInAs層のZnの平均濃度と記載した場合は、SIMS分析により求めたZnの濃度であって、SIMS分析を行う側の表面から深さ20nm未満の範囲を除いたInAs層の表面からの深さ方向における平均のZn濃度を意味する。なお、表面から深さ20nm未満の範囲の分析値は異常値を取りやすいためInAs層のZnの平均濃度の分析に用いていない。
以下では、InAs層2のうち、GaAs基板1と接する側と反対の表面を単に表面と称する場合がある。
InAs層2の表面における、二乗平均平方根粗さ(RMS)の値は2nm以下である。InAs層2の表面の二乗平均平方根粗さの値が2.0nm以下であることで、その上に平坦な結晶成長をすることのできるテンプレート基板とすることができる。以下では、InAs層2の表面における二乗平均平方根粗さの値をRMS値と称する。InAs層2の表面は、後述するように、InAs層2に不純物(本発明ではZn)を含ませることにより平坦化される。
二乗平均平方根粗さ(RMS)の値は、原子間力顕微鏡(AFM)によって計測した値を用いることができる。本実施形態では、原子間力顕微鏡(株式会社日立ハイテク製AFM5200S)を用い、一辺の長さが10μmである正方形領域(10nm×10nm角の範囲)の表面の凹凸を測定して求めた二乗平均平方根粗さをRMS値として用いる。RMS値の算出は、上記AFM5200Sに付属の解析ソフト(SPIWin)で行う。
InAs層2のうち、表面から深さ20nm以上50nm以下の範囲における、Znの平均濃度は、1×1017atoms/cm3以上1×1019atoms/cm3以下であることが好ましく、5×1017atoms/cm3以上4.5×1018atoms/cm3以下であることがより好ましい。
(テンプレート基板の製造方法の説明)
図3に示すように、テンプレート基板100の製造方法は、GaAs基板1上にInAs層2を形成するInAs層形成工程と、InAs層2に含まれるZnの濃度が1×1017atoms/cm3以上となるようにZnをドープするドーピング工程とを含む。
図3に示すように、テンプレート基板100の製造方法は、GaAs基板1上にInAs層2を形成するInAs層形成工程と、InAs層2に含まれるZnの濃度が1×1017atoms/cm3以上となるようにZnをドープするドーピング工程とを含む。
上述のごとく、GaAs基板1は、基板となる第一GaAs層11上に初期層としてアンドープの第二GaAs層12が形成されたものを用いることが好ましい。本実施形態では、図3に示すように、GaAs基板1として、第一GaAs層11上に第二GaAs層12を形成する(図3のステップA)。GaAs基板1では、第二GaAs層12の表面(第一GaAs層11に接する側と反対側の面)上にInAs層2が形成される(図3のステップB)。第二GaAs層12を形成することで、第一GaAs層11の表面とMOCVD装置内のクリーニングを行うことができ、InAs層2を良好に形成可能となる。
図3に示すように、InAs層形成工程は、エピタキシャル成長によりInAs層2を結晶成長させて形成する(図3のステップD)。InAs層2は、100nm以上の厚さに成長される。InAs層2の厚さは100nm以上であることが好ましく、200nm以上600nm以下であることがより好ましい。
InAs層形成工程は、GaAs基板1上に第一InAs層21を成長させる第一成長工程(図3のステップB)と、第一InAs層21上に、第二InAs層22を成長させる第二成長工程(図3のステップC)と、を含む。すなわち、本実施形態においてInAs層2は、第一InAs層21上に第二InAs層22を形成することで得ることができる。
ドーピング工程は、InAs層形成工程の実行中に実行される(図3のステップB及びC)。ドーピング工程では、InAs層形成工程の実行中、すなわち、InAs層2の成長時にZn含有ガス(Zn不純物ガス)を通流させる。これにより、InAs層2にZnを不純物として添加(ドープ)する。Zn含有ガスとしては、DEZn(ジエチル亜鉛)、DMZn(ジメチル亜鉛)を使用することができる。
InAs層2は、1×1017atoms/cm3以上の平均濃度でZnを含むようにZnを添加される。InAs層2は、1×1017atoms/cm3以上1×1019atoms/cm3以下の平均濃度でZnを含むようにZnを添加されることが好ましい。InAs層2へのZnのドープにより、InAs層2の表面が平坦化される。InAs層2のRMS値は、2.0nm以下まで平坦化される。InAs層2の表面の平坦化は、InAs層2の成長時にZn含有ガスを通流させることにより進行する。
ドーピング工程は、第一成長工程及び第二成長工程において実行される。以下では、第一成長工程及び第二成長工程、並びに、同時に実行されるドーピング工程について詳述する。以下では、InAs層2にZnを添加することを、単にドーピングと称する場合がある。
第一成長工程におけるエピタキシャル成長は、400℃以上600℃未満の成長温度で行われる。成長温度は、430℃以上570℃以下とすることがより好ましい。第一InAs層21は、厚さ(膜厚)が50nm以上となるまで成長されることが好ましい。第一InAs層21を50nm以上の厚さに成長させることで、GaAs基板1に接する側とは反対側の表面が十分に平坦化するためである。第一InAs層21は、厚さが80nm以上300nm以下に成長されると更に良い。
第一InAs層21の成長温度は、GaAs基板1の基板温度により制御される。本実施形態では、GaAs基板1の基板温度が第一InAs層21の成長温度である。また、ステージの上にGaAs基板1を載置して第一InAs層21の結晶成長を行うため、当該ステージの温度を基板温度、すなわち成長温度とみなして制御できる。
ドーピングは、第一InAs層21を成長させながら行う(図3のステップB)。第一InAs層21のZnの平均濃度は1×1017atoms/cm3以上1×1019atoms/cm3以下となるようにドーピングされるとよい。第一InAs層21のZnの平均濃度は、1×1018atoms/cm3以上1×1019atoms/cm3以下がより好ましく、4×1018/cm3以上とすることが更に好ましい。Zn含有ガスの流量は0.1ccm以上10ccm以下(cm3/min)とするとよい。Zn含有ガスは、Zn含有ガス単体又はその他のキャリアガスなどと混合して混合ガスG1として供給することができる。
なお、第一InAs層21のZnの平均濃度とは、GaAs基板1と接する面から表面側に向けて50nm以内の範囲における平均(算術平均)のZn濃度である。
第二成長工程におけるエピタキシャル成長は、第一成長工程におけるエピタキシャル成長の成長温度よりも高い温度で行う。第二成長工程におけるエピタキシャル成長は、600℃以上750℃未満の成長温度で行われる。成長温度は、630℃以上670℃以下とすることがより好ましい。なお、成長温度の制御は、第一成長工程と同様に行う。
第二InAs層22は、厚さ(膜厚)が50nm以上となるまで成長されることが好ましい。第二InAs層22を50nm以上の厚さに成長させることで、第一InAs層21に接する側とは反対側の表面が十分に平坦化するためである(図3のステップD)。第二InAs層22は、厚さが80nm以上300nm以下に成長されると更に良い。以下では、第一InAs層21及び第二InAs層22に関し、GaAs基板1に対向する側と反対側の表面を単に表面と称する。
第一InAs層21及び第二InAs層22の合計厚さ、すなわち、InAs層2の厚さは、上述のごとく、100nm以上であることが好ましく、150nm以上600nm以下であることがより好ましい。第一InAs層21及び第二InAs層22の厚さは、成長レートを用いて計算できる。例えば、第一InAs層21のみを成長した場合の成長後の膜厚をSIMS、TEM、SEMなどの方法で求めた場合と、第一InAs層21及び第二InAs層22を成長した後の合計膜厚をSIMS、TEM、SEMなどの方法で求めた場合について、それぞれ求めることで、各層ごとの成長レートを計算できる。
ドーピングは、第二InAs層22を成長させながら行う(図3のステップC)。第二InAs層22のZnの平均濃度は1×1017atoms/cm3以上1×1019/cm3以下となるようにドーピングされるとよい。第二InAs層22のZnの平均濃度は5×1017atoms/cm3以上4.5×1018atoms/cm3以下であることがより好ましい。Zn含有ガスの流量は、0.1ccm以上10ccm以下とするとよい。Zn含有ガスは、Zn含有ガス単体又はその他のキャリアガスなどと混合して混合ガスG2として供給することができる。混合ガスG2は、混合ガスG1と同じ処方であってもよいし、異なる処方であってもよい。
なお、第二InAs層22のZnの平均濃度とは、表面から深さ20nm以上50nm以下の範囲における平均(算術平均)のZn濃度である。
以下では、InAs層2の表面の平坦化の効果と、成長温度及びZn含有ガスの通流量との関係を説明する。
InAs層2を400℃以上600℃未満の低い基板温度で成長させた場合は、Zn含有ガスの通流量が少なくてもInAs層2へのZnの取り込みが多くなる(添加量が増大する)。Zn含有ガスの通流量が0.1ccm以上10ccm以下の範囲では、Zn含有ガスの通流量が増えるほどInAs層2の表面が平坦化する傾向がある。しかし、Zn含有ガスの通流量が10ccmを超えるとInAs層2の結晶成長速度が遅くなると共に、InAs層2の表面が逆に荒れることになる。
一方、InAs層2を600度以上の高い基板温度で成長した場合は、Zn含有ガスの通流量が0.1ccm以上10ccm以下の範囲では、Zn含有ガスの通流量が増えるにつれてInAs層2へのZnの取り込み量が増える(添加量が増大する)傾向にある。そして、InAs層2の表面の平坦化効果は、Zn含有ガスの通流量が少ない方が大きくなる傾向にある。
そのため、ドーピング工程では、第二成長工程で通流させるZn含有ガスの通流量を、第一成長工程で通流させるZn含有ガスの通流量よりも少なくするとよい。これにより、安定的に表面が平坦なInAs層2を得ることができる。
以下では、本実施形態に係るテンプレート基板の実施例を説明する。
(実施例1)
実施例1のテンプレート基板は、MOCVD法を用いて、GaAs基板上にInAs層を形成して製造した。InAs層の形成は、第一InAs層の形成後に成長温度を変更して第二InAs層を形成する二段階のステップで行った。InAs層の形成中には、Zn含有ガスを通流させて、InAs層にZnを添加した。
実施例1のテンプレート基板は、MOCVD法を用いて、GaAs基板上にInAs層を形成して製造した。InAs層の形成は、第一InAs層の形成後に成長温度を変更して第二InAs層を形成する二段階のステップで行った。InAs層の形成中には、Zn含有ガスを通流させて、InAs層にZnを添加した。
なお、実施例1では、アンドープのGaAs基板上に、650℃の成長温度で厚さ80nmのi-GaAs層を形成した後、このi-GaAs層上にInAs層を形成している。以下では、i-GaAs層が形成されたGaAs基板を単にGaAs基板と称する。以下、実施例1のテンプレート基板の製造方法について詳述する。
まず、MOCVD装置内のステージ上にGaAs基板を配置した。次に、ステージの温度を500℃に設定して、第一InAs層をGaAs基板上に成長させながら、MOCVD装置内に、TMI(トリメチルインジウム)ガス、AsH3(アルシン)ガス、DEZnガス及びキャリアガスとしての水素を同時に通流させた。TMIガス、AsH3ガス及びDEZnガスの流量は、それぞれ、100ccm、100ccm及び0.5ccmとした。第一InAs層は、厚さ90nmとなるまで成長させた。
厚さ90nmまで成長した第一InAs層のAFMによるRMS値は6.0nmであった。なお、厚さ90nmまで成長した第一InAs層のRMS値は、InAs層の形成を一旦停止してMOCVD装置から取り出して計測した。
その後、ステージ温度を650℃に変更し、第二InAs層を第一InAs層上に成長させながら、MOCVD装置内に、TMIガス、AsH3ガス、DEZnガス及びキャリアガスとしての水素を同時に通流させた。TMIガス、AsH3ガス及びDEZnガスの流量はそれぞれ流量100cc、100cc、0.5ccmとした。すなわち、第二InAs層の成長中に通流させるZn含有ガスの通流量は、第一InAs層の成長中に通流させるZn含有ガスの通流量と同じとした。第二InAs層は、厚さ90nmとなるまで成長させた。第一InAs層と第二InAs層を合わせたInAs層の合計厚さは180nmである。これにより、実施例のテンプレート基板を得た。
テンプレート基板における、第二InAs層の表面(InAs層の表面)のAFMによるRMS値は1.5nmであった。第二InAs層の表面のAFM像を図4の(a1)に示す。以下の説明では、InAs層の表面と記載した場合は、第二InAs層の表面と同義である。
(比較例1)
比較例1のテンプレート基板は、DEZnを使用せずにInAs層を形成した以外は実施例1のテンプレート基板と同様にして製造した。比較例1のテンプレート基板におけるInAs層の表面のAFM像を図4の(b1)に示す。InAs層表面のRMS値は2.4nmであった。
比較例1のテンプレート基板は、DEZnを使用せずにInAs層を形成した以外は実施例1のテンプレート基板と同様にして製造した。比較例1のテンプレート基板におけるInAs層の表面のAFM像を図4の(b1)に示す。InAs層表面のRMS値は2.4nmであった。
(比較例2)
比較例2のテンプレート基板は、DEZnの代わりに(DEZnを使用せずに)H2Se(セレン化水素)ガスを用いてInAs層を形成した以外は実施例1のテンプレート基板と同様にして製造した。比較例1のテンプレート基板におけるInAs層の表面のAFM像を図4の(b2)に示す。InAs層の表面のRMS値は3.2nmであった。
比較例2のテンプレート基板は、DEZnの代わりに(DEZnを使用せずに)H2Se(セレン化水素)ガスを用いてInAs層を形成した以外は実施例1のテンプレート基板と同様にして製造した。比較例1のテンプレート基板におけるInAs層の表面のAFM像を図4の(b2)に示す。InAs層の表面のRMS値は3.2nmであった。
実施例1、比較例1及び比較例2の結果より、Zn及びそれ以外の不純物を添加しない場合(比較例1)、Znとは別の不純物を添加しない場合(比較例1)のいずれもInAs層の表面の平坦化は十分ではなく、InAs層の表面を平坦化するにはZnを添加することが有効であることが分かった。
(実施例2)
実施例2のテンプレート基板は、DEZnガスの通流量を変更してInAs層を形成した以外は実施例1のテンプレート基板と同様にして製造した。実施例2では、第一InAs層と第二InAs層を形成するときのDEZnガスの流量を0.15ccmとした。
実施例2のテンプレート基板は、DEZnガスの通流量を変更してInAs層を形成した以外は実施例1のテンプレート基板と同様にして製造した。実施例2では、第一InAs層と第二InAs層を形成するときのDEZnガスの流量を0.15ccmとした。
第一InAs層は厚さ90nmで、RMS値は9.5nmであった。第二InAs層は厚さ90nmで、RMS値は1.8nmであった。InAs層の合計厚さは180nmであった。
SIMS分析では、第一InAs層のZnの平均濃度は、8.6×1018atoms/cm-3であった。また、第二InAs層のZnの平均濃度は、6.2×1017atoms/cm-3であった。また、InAs層のZnの平均濃度は、5.1×1018atoms/cm-3であった。
(実施例3)
実施例3のテンプレート基板は、DEZnガスの通流量を変更してInAs層を形成した以外は実施例1のテンプレート基板と同様にして製造した。実施例3では、第一InAs層と第二InAs層を形成するときのDEZnガスの流量を1.66ccmとした。
実施例3のテンプレート基板は、DEZnガスの通流量を変更してInAs層を形成した以外は実施例1のテンプレート基板と同様にして製造した。実施例3では、第一InAs層と第二InAs層を形成するときのDEZnガスの流量を1.66ccmとした。
第一InAs層は厚さ90nmで、RMS値は3.8nmであった。第二InAs層は厚さ90nmで、RMS値は1.8nmであった。InAs層の合計厚さは180nmであった。
SIMS分析では、第一InAs層のZnの平均濃度は、4.7×1018atoms/cm-3であった。また、第二InAs層のZnの平均濃度は、3.4×1018atoms/cm-3であった。また、InAs層のZnの平均濃度は、4.3×1018atoms/cm-3であった。
(実施例4)
実施例4のテンプレート基板は、DEZnガスの通流量を変更してInAs層を形成した以外は実施例1のテンプレート基板と同様にして製造した。実施例4では、第一InAs層と第二InAs層を形成するときのDEZnガスの流量を5ccmとした。
実施例4のテンプレート基板は、DEZnガスの通流量を変更してInAs層を形成した以外は実施例1のテンプレート基板と同様にして製造した。実施例4では、第一InAs層と第二InAs層を形成するときのDEZnガスの流量を5ccmとした。
第一InAs層は厚さ80nmで、RMS値は2.0nmであった。第二InAs層は厚さ80nmで、RMS値は2.0nmであった。InAs層の合計厚さは160nmであった。
SIMS分析では、第一InAs層のZnの平均濃度は、3.8×1018atoms/cm-3であった。また、第二InAs層のZnの平均濃度は、4.3×1018atoms/cm-3であった。また、InAs層のZnの平均濃度は、4.1×1018atoms/cm-3であった。
(比較例3)
比較例3のテンプレート基板は、DEZnガスを用いずにInAs層を形成した以外は実施例1のテンプレート基板と同様にして製造した。
比較例3のテンプレート基板は、DEZnガスを用いずにInAs層を形成した以外は実施例1のテンプレート基板と同様にして製造した。
第一InAs層は厚さ100nmで、RMS値は12nmであった。第二InAs層は厚さ100nmで、RMS値は2.5nmであった。InAs層の合計厚さは200nmであった。
SIMS分析では、第一InAs層のZnの平均濃度は、4.4×1015atoms/cm-3であった。また、第二InAs層のZnの平均濃度は、8.2×1015atoms/cm-3であった。また、InAs層のZnの平均濃度は、4.4×1015atoms/cm-3であった。なお、比較例3では、Zn含有ガスとしてのDEZnガスを用いておらずZnをInAs層に意図的には添加していないため、上記のZnの平均濃度は、いわゆるバックグランドとしての値である。比較例1及び2についてZnの平均濃度は計測していないが、比較例1及び2のテンプレート基板におけるInAs層のZnの平均濃度も、比較例3と同様のオーダーであると考えられる。
実施例1から4及び比較例3について、表1にテンプレート基板の製造条件及び各測定結果を示す。
以上の結果から、InAs層を成長させながらMOCVD装置内にZn含有ガスを通流させた実施例1から4のテンプレート基板はいずれも、InAs層を成長させながらMOCVD装置内にZn含有ガスを通流させなかった比較例3のテンプレート基板に比べて表面平坦性が高いことが分かった。
また、実施例1から4における第一InAs層のRMS値と第二InAs層のRMS値との関係を見ると、テンプレート基板が、GaAs基板と、GaAs基板上に配置され、100nm以上の厚さを有するInAs層と、を備え、InAs層全体として、1×1017atoms/cm3以上の平均濃度でZnを含む場合に、RMS値が2.0nm以下となり、表面平坦性が高いテンプレート基板を提供できることが分かった。
また、第二InAs層を650度で成長した場合においては、Zn含有ガスの通流量が増えるにつれてInAs層2へのZnの添加量が増大する傾向にあることが分かった。そして、InAs層2の表面の平坦化効果は、Zn含有ガスの通流量が少ない方が大きくなる傾向にあることがわかった。
以上のようにして、GaAs基板上にInAs層を有するテンプレート基板であって、表面平坦性が高い基板及びその基板の製造方法を提供することができる。
〔別実施形態〕
(1)上記実施形態では、実施例として第二InAs層の成長中に通流させるZn含有ガスの通流量は、第一InAs層の成長中に通流させるZn含有ガスの通流量と同じとした場合を説明した。しかしながら、第二InAs層の成長中に通流させるZn含有ガスの通流量は、第一InAs層の成長中に通流させるZn含有ガスの通流量よりも少なくしてもよい。これにより、InAs層の表面の平滑性をより高めることができる場合がある。
(1)上記実施形態では、実施例として第二InAs層の成長中に通流させるZn含有ガスの通流量は、第一InAs層の成長中に通流させるZn含有ガスの通流量と同じとした場合を説明した。しかしながら、第二InAs層の成長中に通流させるZn含有ガスの通流量は、第一InAs層の成長中に通流させるZn含有ガスの通流量よりも少なくしてもよい。これにより、InAs層の表面の平滑性をより高めることができる場合がある。
(2)上記実施形態では、Zn含有ガスとしてDEZnガスを用いた場合の実施例を説明した。しかし、DEZnガス以外のZn含有ガスを用いてもよい。
なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
本発明は、GaAs基板上にInAs層を有するテンプレート基板及びその製造方法に適用できる。
1 :GaAs基板
2 :InAs層
11 :第一GaAs層
12 :第二GaAs層
21 :第一InAs層
22 :第二InAs層
G1 :混合ガス
G2 :混合ガス
2 :InAs層
11 :第一GaAs層
12 :第二GaAs層
21 :第一InAs層
22 :第二InAs層
G1 :混合ガス
G2 :混合ガス
Claims (6)
- GaAs基板と、
前記GaAs基板上に配置され、100nm以上の厚さを有するInAs層と、を備え、
前記InAs層は、1×1017atoms/cm3以上の平均濃度でZnを含み、
前記GaAs基板と接する側とは反対側の前記InAs層の表面における、一辺の長さが10μmである正方形領域をAFMにより分析した二乗平均平方根粗さの値が2.0nm以下であるテンプレート基板。 - 前記InAs層の前記表面から深さ20nm以上50nm以下の範囲における、Znの平均濃度は、1×1017atoms/cm3以上1×1019atoms/cm3以下である請求項1に記載のテンプレート基板。
- GaAs基板上にInAs層を形成するInAs層形成工程と、
前記InAs層に含まれるZnの濃度が1×1017atoms/cm3以上となるようにZnをドープするドーピング工程と、を含み、
前記InAs層形成工程は、
前記GaAs基板上に、400℃以上600℃未満の成長温度で、厚さ50nm以上の第一InAs層を成長させる第一成長工程と、
前記第一InAs層上に、600℃以上750℃未満の成長温度で、厚さ50nm以上の第二InAs層を成長させる第二成長工程と、を含み、
前記ドーピング工程は、前記第一成長工程及び前記第二成長工程において、Zn含有ガスを通流させるテンプレート基板の製造方法。 - 前記ドーピング工程は、前記第二InAs層の前記GaAs基板に対向する側とは反対側の表面から深さ20nm以上50nm以下の範囲におけるZnの平均濃度が1×1017atoms/cm3以上1×1019atoms/cm3以下となるように、前記Zn含有ガスを通流させる請求項3に記載のテンプレート基板の製造方法。
- 前記ドーピング工程は、
前記第一成長工程において、前記Zn含有ガスの通流量を0.1ccm以上10ccm以下とし、
前記第二成長工程において、前記Zn含有ガスの通流量を0.1ccm以上10ccm以下とする請求項3又は4に記載のテンプレート基板の製造方法。 - 前記ドーピング工程では、前記第二成長工程で通流させる前記Zn含有ガスの通流量は、前記第一成長工程で通流させる前記Zn含有ガスの通流量よりも少ない請求項3から5のいずれか一項に記載のテンプレート基板の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021024641A JP2022126520A (ja) | 2021-02-18 | 2021-02-18 | テンプレート基板及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021024641A JP2022126520A (ja) | 2021-02-18 | 2021-02-18 | テンプレート基板及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022126520A true JP2022126520A (ja) | 2022-08-30 |
Family
ID=83058873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021024641A Pending JP2022126520A (ja) | 2021-02-18 | 2021-02-18 | テンプレート基板及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022126520A (ja) |
-
2021
- 2021-02-18 JP JP2021024641A patent/JP2022126520A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6232138B1 (en) | Relaxed InxGa(1-x)as buffers | |
US8421190B2 (en) | Group III nitride semiconductor substrate and manufacturing method thereof | |
US9472720B2 (en) | Nitride semiconductor wafer, nitride semiconductor element, and method for manufacturing nitride semiconductor wafer | |
TWI506675B (zh) | 半導體基板、半導體基板之製造方法及電子裝置 | |
US10008571B2 (en) | Semiconductor wafer, semiconductor device, and method for manufacturing nitride semiconductor layer | |
US9281427B2 (en) | Semiconductor device | |
WO2009084240A1 (ja) | 半導体基板、半導体基板の製造方法および電子デバイス | |
US9608148B2 (en) | Semiconductor element and method for producing the same | |
CN104518062A (zh) | 制造半导体发光器件的方法 | |
KR101353978B1 (ko) | Ⅲ/ⅴ 반도체 물질의 제조 방법, 및 상기 방법을 사용하여 제조된 반도체 구조 | |
TW201539739A (zh) | 氮化物半導體元件與氮化物半導體晶圓 | |
JP2010225870A (ja) | 半導体素子 | |
JP2022126520A (ja) | テンプレート基板及びその製造方法 | |
KR101391960B1 (ko) | 저결함 질화물 반도체층을 갖는 고품질 반도체 소자용 기판의 제조 방법 | |
US10483351B2 (en) | Method of manufacturing a substrate with reduced threading dislocation density | |
US20020129762A1 (en) | Relaxed InxGa1-xAs layers integrated with Si | |
WO2011090040A1 (ja) | エピタキシャル結晶基板の製造方法 | |
US9735008B2 (en) | Use of surfactants to control island size and density | |
Peiner et al. | High-quality In0. 53Ga0. 47As on exactly (001)-oriented Si grown by metal-organic vapour-phase epitaxy | |
JP4024965B2 (ja) | エピタキシャルウエハおよび発光ダイオード | |
US5827365A (en) | Compound semiconductor and its fabrication | |
JP3762575B2 (ja) | 発光ダイオード | |
JP2003173977A (ja) | 化合物半導体の製造方法 | |
JP3625677B2 (ja) | エピタキシャルウエハと発光ダイオード及び、その製造方法 | |
JP2023122382A (ja) | 半導体積層体の製造方法及び半導体積層体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241002 |