JP2022126414A - 投影制御装置及び投影制御装置の制御方法 - Google Patents

投影制御装置及び投影制御装置の制御方法 Download PDF

Info

Publication number
JP2022126414A
JP2022126414A JP2021024470A JP2021024470A JP2022126414A JP 2022126414 A JP2022126414 A JP 2022126414A JP 2021024470 A JP2021024470 A JP 2021024470A JP 2021024470 A JP2021024470 A JP 2021024470A JP 2022126414 A JP2022126414 A JP 2022126414A
Authority
JP
Japan
Prior art keywords
projection
area
screen
distortion
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021024470A
Other languages
English (en)
Inventor
正治 山岸
Seiji Yamagishi
正樹 藤岡
Masaki Fujioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2021024470A priority Critical patent/JP2022126414A/ja
Publication of JP2022126414A publication Critical patent/JP2022126414A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

Figure 2022126414000001
【課題】歪みがあるスクリーンにおいて、マルチ投影画像のブレンド領域での位置ずれを軽減し、マルチ投影画像の画質を向上させることが可能な投影制御装置を提供する。
【解決手段】複数のプロジェクタによる投影画像の投影を制御する投影制御装置は、前記複数のプロジェクタが前記投影画像をスクリーンに投影する投影領域のうちの一部の領域である除外領域を決定する決定手段と、少なくとも前記除外領域以外の対象領域に、前記投影画像の投影位置を調整するためのマーカーを投影する投影手段と、前記マーカーが表示された前記スクリーンを撮像する撮像手段と、前記撮像手段によって撮像された前記マーカーのうち、前記対象領域に投影された前記マーカーに基づいて、前記投影位置を調整する調整手段とを有することを特徴とする。
【選択図】図11

Description

本発明は、投影制御装置及び投影制御装置の制御方法に関する。
プロジェクタによる投影方法として、複数台のプロジェクタを用いて一つの投影面を構成するマルチ投影が利用されている。マルチ投影では、各プロジェクタは、投影画像の投影位置及び形状を調整することで、それぞれの投影画像が重なるブレンド領域での画像の劣化を抑制する。
例えば、特許文献1は、幾何補正に用いる関数を、ブレンド領域とブレンド領域以外とで別々に算出することで、ブレンド領域の画質劣化を抑制する技術を開示する。また、特許文献2は、ブレンド領域に表示される特徴点の密度を変えることで、ブレンド領域の画質劣化を抑制する技術を開示する。
特開2005-252804号公報 特開2005-269528号公報
しかしながら、マルチ投影画像を表示するスクリーンに歪みがある場合、ブレンド領域での表示のずれは補正されない場合があるため、マルチ投影画像の画質が劣化するという課題があった。
本発明は、歪みがあるスクリーンにおいて、マルチ投影画像のブレンド領域での位置ずれを軽減し、マルチ投影画像の画質を向上させることが可能な投影制御装置を提供することを目的とする。
上記目的を達成するために、本発明の投影制御装置は、
複数のプロジェクタによる投影画像の投影を制御する投影制御装置であって、
前記複数のプロジェクタが前記投影画像をスクリーンに投影する投影領域のうちの一部の領域である除外領域を決定する決定手段と、
少なくとも前記除外領域以外の対象領域に、前記投影画像の投影位置を調整するためのマーカーを投影する投影手段と、
前記マーカーが表示された前記スクリーンを撮像する撮像手段と、
前記撮像手段によって撮像された前記マーカーのうち、前記対象領域に投影された前記マーカーに基づいて、前記投影位置を調整する調整手段と
を有することを特徴とする。
本発明によれば、歪みがあるスクリーンにおいて、マルチ投影画像のブレンド領域での位置ずれを軽減し、マルチ投影画像の画質を向上させることが可能な投影制御装置を提供することができる。
投影システムの構成例を示す図である。 プロジェクタのブロック図を例示する図である。 情報処理装置のブロック図を例示する図である。 撮像装置のブロック図を例示する図である。 平面スクリーンの歪みについて説明する図である。 スクリーンの歪み設定UIを例示する図である。 実施形態1に係る位置合わせ処理を例示するフローチャートである。 位置合わせに用いるマーカーを例示する図である。 歪み量のマッピングについて説明する図である。 除外領域決定処理を例示するフローチャートである。 除外領域決定結果を例示する図である。 パネル座標と撮像画像での座標との変換について説明する図である。 スクリーンの歪み度合いを説明する図である。 除外領域境界の形状とスクリーンの歪み量との関係を説明する図である。 実施形態3に係る位置合わせ処理を例示するフローチャートである。 マーカーの生成方法について説明する図である。
<実施形態1>
マルチ投影の方法として、スタック投影及びブレンド投影が挙げられる。スタック投影は、プロジェクタの投影面同士を重ねて、高輝度な投影を実現する投影方法である。ブレンド投影は、各プロジェクタが、全体の表示画像から一部を切り出した映像を表示し、各プロジェクタの投影領域の一部を重ね合わせて投影する投影方法である。
ブレンド投影では、各プロジェクタは、ブレンド領域の位置や形状を相互に合わせる。ユーザーは、光学ズーム、レンズシフト、幾何学補正といった機能を用いて、ブレンド領域の位置及び形状を合わせるための調整をする。ブレンド領域での表示ずれを調整するユーザーの操作負荷を軽減するため、投影面の撮像画像を解析し、投影画像の形状を補正する技術が知られている。
投影画像の位置及び形状の補正は、投影面に歪みがない状態を想定した補正である。このため、スクリーンに歪みがある場合、投影面に垂直な方向にずれが生じて、ブレンド領域では表示ずれが生じる場合がある。そこで、投影領域のうちの一部の領域を除外領域に設定し、除外領域は、位置合わせの対象外とする。除外領域は、例えば、ブレンド領域を基準として投影面に垂直な方向のずれが所定の閾値より大きい領域とすることができる。除外領域を除いて、ブレンド領域の周囲で位置合わせがされるため、ブレンド領域での位置合わせが優先され、ブレンド領域での表示ずれは軽減される。
(投影システムの構成)
以下、図面を参照して本発明の好適な実施形態を説明する。図1は、投影システムの構成例を示す図である。
図1の例では、投影システム1は、映像再生装置100、プロジェクタA101、プロジェクタB102、プロジェクタC103、プロジェクタD104、情報処理装置105、撮像装置106、及びスクリーン107を含む。
映像再生装置100は、プロジェクタA101へ映像信号ID1を出力し、プロジェクタB102へ映像信号ID2を出力する。また、映像再生装置100は、プロジェクタC103へ映像信号ID3を出力し、プロジェクタD104へ映像信号ID4を出力する。以下、入力映像信号の色空間はRGBの8bit信号(0~255階調)として説明する
プロジェクタA101は、映像再生装置100から入力される映像信号ID1をスクリーン107へ投影する。プロジェクタA101は、情報処理装置105から出力される制御信号により映像信号ID1を制御する。情報処理装置105から出力される制御信号は、例えば、スクリーン107へ投影される映像信号ID1の投影位置等を調整する。
同様に、プロジェクタB102、プロジェクタC103、プロジェクタD104は、それぞれ映像再生装置100から入力される映像信号ID2、映像信号ID3、映像信号ID4をスクリーン107へ投影する。プロジェクタB102、プロジェクタC103、プロジェクタD104は、情報処理装置105から出力される制御信号により、それぞれ映像信号ID2、映像信号ID3、映像信号ID4を制御する。プロジェクタB102、プロジェクタC103、プロジェクタD104の基本的な動作は、プロジェクタA101と同様である。
情報処理装置105は、ケーブルを介してプロジェクタA101、プロジェクタB102、プロジェクタC103、プロジェクタD104、及び撮像装置106に接続される。情報処理装置105は、撮像装置106に対し、スクリーン107に投影された投影画像の撮像を指示する。情報処理装置105は、撮像装置106が撮像した撮像画像を解析し、解析結果に基づいて、各プロジェクタから投影される映像信号を制御するための制御信号を生成する。情報処理装置105は、生成した制御信号を各プロジェクタに送信する。
撮像装置106は、スクリーン107の周辺を撮像して画像信号を取得する。撮像装置106は、プロジェクタA101、プロジェクタB102、プロジェクタC103、及びプロジェクタD104が投影した画像を撮影することができる。撮像装置106は、取得した画像及び映像を、静止画像データまたは動画像データに変換して保存する。撮像装置106は、被写体の光学像を取得するレンズ、レンズを駆動するアクチュエータ、アクチュエータを制御するマイクロプロセッサ、光学像を画像信号に変換する撮像素子、画像信号をデジタル信号に変換するAD変換部等を含む。
スクリーン107は、プロジェクタA101、プロジェクタB102、プロジェクタC103、及びプロジェクタD104が投影する画像を表示する面である。図1は、プロジェクタA101、プロジェクタB102、プロジェクタC103、及びプロジェクタD104が、それぞれの投影画像を別の領域に並べて投影することで解像度を高めるブレンド投影の例を示す。以下、ブレンド投影を前提として説明するが、本実施形態は、4台のプロジェクタが同じ座標位置に投影することで輝度を高めるスタック投影にも適用可能である。
なお、情報処理装置105は、投影制御装置に相当する。また、情報処理装置105は、映像再生装置100及び撮像装置106の少なくともいずれかと、一体に構成されてもよい。
(プロジェクタの構成)
図2を用いて、プロジェクタA101の構成の詳細を説明する。プロジェクタB102、プロジェクタC103、プロジェクタD104は、プロジェクタA101と同様の構成であるため、説明は省略する。
図2は、プロジェクタのブロック図を例示する図である。プロジェクタA101は、CPU110、ROM111、RAM112、操作部113、画像入力部130、画像処理部140を有する。また、プロジェクタA101は、液晶制御部150、液晶素子151
R、151G、151B、光源制御部160、光源161、色分離部162、色合成部163、光学系制御部170、投影光学系171を有する。また、プロジェクタA101は、記録再生部191、記録媒体192、通信部193、表示制御部195、表示部196を有してもよい。プロジェクタA101の各機能ブロックは、バス199により相互に接続される。
CPU(Central Processing Unit)110は、プロジェクタA101の各機能ブロッ
クを制御する。ROM(Read Only Memory)111は、CPU110の処理手順を記述した制御プログラムを記憶する。RAM(Random Access Memory)112は、ワークメモリとして一時的に制御プログラムまたはデータを格納する。
CPU110は、記録再生部191によって、記録媒体192から取得して再生された静止画データまたは動画データを、一時的にRAM112に記憶することができる。CPU110は、記憶したデータの画像または映像を、ROM111に記憶されたプログラムを用いて再生することができる。また、CPU110は、通信部193より受信した静止画データまたは動画データを一時的にRAM112に記憶し、記憶したデータの画像または映像を、ROM111に記憶されたプログラムを用いて再生することができる。
操作部113は、ユーザーの指示(操作)を受け付け、CPU110に指示信号を送信する。操作部113は、例えば、スイッチ、ダイヤル、表示部196上に設けられたタッチパネルなどである。操作部113は、リモコンからの信号を受信する信号受信部(赤外線受信部など)であってもよく、受信した信号に基づいて、所定の指示信号をCPU110に送信する。CPU110は、操作部113または通信部193から入力された制御信号を受信して、プロジェクタA101の各機能ブロックを制御する。
画像入力部130は、外部装置から映像信号を受信する。画像入力部130は、例えば、コンポジット端子、S映像端子、D端子、コンポーネント端子、アナログRGB端子、DVI-I端子、DVI-D端子、HDMI(登録商標)端子等を含む。画像入力部130は、アナログ映像信号を受信した場合、受信したアナログ映像信号をデジタル映像信号に変換する。画像入力部130は、受信した映像信号を、画像処理部140に送信する。外部装置は、映像信号を出力できるものであればよく、例えば、パーソナルコンピュータ、カメラ、携帯電話、スマートフォン、ハードディスクレコーダ、ゲーム機などであってもよい。
画像処理部140は、画像入力部130から受信した映像信号にフレーム数、画素数、画像形状などの変更処理を施して、液晶制御部150に送信する。画像処理部140は、例えば、画像処理用のマイクロプロセッサを備える。画像処理部140は、専用のマイクロプロセッサでなくてもよく、例えば、CPU110がROM111に記憶されたプログラムによって、画像処理部140と同様の処理を実行してもよい。画像処理部140は、フレーム間引き処理、フレーム補間処理、解像度変換処理、歪み補正処理(キーストーン補正処理)といった機能を実行することが可能である。また、画像処理部140は、画像入力部130から受信した映像信号以外にも、CPU110によって再生された画像または映像に対して上述の変更処理を施すこともできる。
液晶制御部150は、画像処理部140で処理の施された映像信号に基づいて、液晶素子151R、151G、151Bの画素の液晶に印可する電圧を制御して、液晶素子151R、151G、151Bの透過率を調整する。液晶制御部150は、制御用のマイクロプロセッサを備える。液晶制御部150は、専用のマイクロプロセッサでなくてもよく、例えば、CPU110がROM111に記憶されたプログラムによって、液晶制御部150と同様の処理を実行してもよい。例えば、画像処理部140に映像信号が入力されてい
る場合、液晶制御部150は、画像処理部140から1フレームの画像を受信する度に、画像に対応する透過率となるように、液晶素子151R、151G、151Bを制御する。
液晶素子151Rは、赤色に対応する液晶素子であって、光源161から出力された光は、色分離部162で赤色(R)、緑色(G)、青色(B)に分離される。液晶素子151Rは、色分離部162で分離された光のうち、赤色の光の透過率を調整する。液晶素子151Gは、緑色に対応する液晶素子であって、色分離部162で分離された光のうち、緑色の光の透過率を調整する。液晶素子151Bは、青色に対応する液晶素子であって、光源161から出力された光のうち、色分離部162で分離された光のうち、青色の光の透過率を調整する。
光源制御部160は、光源161のオン/オフを制御したり、光量を制御したりする。光源制御部160は、制御用のマイクロプロセッサを備える。光源制御部160は、専用のマイクロプロセッサでなくてもよく、例えば、CPU110がROM111に記憶されたプログラムによって、光源制御部160と同様の処理を実行してもよい。また、光源161は、不図示のスクリーンに画像を投影するための光を出力するものであり、例えば、ハロゲンランプ、キセノンランプ、高圧水銀ランプ、レーザー光源などであってもよい。
色分離部162は、光源161から出力された光を、赤色(R)、緑色(G)、青色(B)に分離する。色分離部162は、例えば、ダイクロイックミラー及びプリズムなどを備える。なお、光源161として、各色に対応するLED等を使用する場合には、色分離部162はなくてもよい。
色合成部163は、液晶素子151R、151G、151Bを透過した赤色(R)、緑色(G)、青色(B)の光を合成する。色合成部163は、例えば、ダイクロイックミラー及びプリズムなどを備える。色合成部163により赤色(R)、緑色(G)、青色(B)の成分を合成した光は、投影光学系171に送られる。液晶素子151R、151G、151Bは、画像処理部140から入力された画像に対応する光の透過率となるように、液晶制御部150により制御されている。このため、色合成部163により合成された光は、投影光学系171によりスクリーンに投影されると、画像処理部140により入力された画像に対応する画像がスクリーン上に表示される。
光学系制御部170は、投影光学系171を制御する。光学系制御部170は、制御用のマイクロプロセッサを備える。光学系制御部170は、専用のマイクロプロセッサでなくてもよく、例えば、CPU110がROM111に記憶されたプログラムによって、光学系制御部170と同様の処理を実行してもよい。
投影光学系171は、色合成部163から出力された合成光をスクリーンに投影する。投影光学系171は、例えば、複数のレンズ及びレンズ駆動用のアクチュエータを備える。投影光学系171は、レンズをアクチュエータにより駆動することによって、投影画像の拡大、縮小、移動、焦点などの調整をすることができる。
記録再生部191は、記録媒体192に記録された静止画データまたは動画データを再生する。記録再生部191は、例えば、撮像部194により得られた画像の静止画データまたは映像の動画データをCPU110から受信して記録媒体192に記録する。記録再生部191は、通信部193を介して受信した静止画データまたは動画データを記録媒体192に記録してもよい。
記録再生部191は、例えば、記録媒体192と電気的に接続するインタフェース及び
記録媒体192と通信するためのマイクロプロセッサを備える。記録再生部191は、専用のマイクロプロセッサを含まなくてもよく、例えば、CPU110がROM111に記憶されたプログラムによって、記録再生部191と同様の処理を実行してもよい。
記録媒体192は、静止画データ及び動画データ、その他、液晶プロジェクタの制御に用いられるデータなどを記録する。記録媒体192は、磁気ディスク、光学式ディスク、半導体メモリなど各種方式の記録媒体である。記録媒体192は、プロジェクタA101に対して、着脱可能な記録媒体であってもよく、内蔵型の記録媒体であってもよい。
通信部193は、外部装置からの制御信号、静止画データ、動画データなどを受信する。通信部193は、通信方式を特に限定するものではなく、例えば、無線LAN、有線LAN、USB、Bluetooth(登録商標)などを用いて通信することができる。画像入力部130の端子が、例えばHDMI(登録商標)端子であれば、外部装置との通信は、その端子を介したCEC(Consumer Electronics Control)通信であってもよい。外部装置は、プロジェクタA101と通信可能な電子機器であればよく、例えば、パーソナルコンピュータ、カメラ、携帯電話、スマートフォン、ハードディスクレコーダ、ゲーム機、リモコンなどである。
表示制御部195は、プロジェクタA101が備える表示部196に、プロジェクタA101を操作するための操作画面及びスイッチアイコン等の画像を表示させるための制御をする。表示制御部195は、表示制御を行うマイクロプロセッサを備える。表示制御部195が専用のマイクロプロセッサを備える場合に限られず、CPU110が、ROM111に記憶されたプログラムによって、表示制御部195と同様の処理を実行してもよい。
表示部196は、プロジェクタA101を操作するための操作画面及びスイッチアイコン等の画像を表示する。表示部196は、画像を表示できるものであればよく、例えば、液晶ディスプレイ、CRTディスプレイ、有機EL(Electro Luminescence)ディスプレイ、LEDディスプレイである。表示部196は、特定のボタンをユーザーに認識可能に掲示するために、各ボタンに対応するLED等を発光させるものであってもよい。
なお、画像処理部140、液晶制御部150、光源制御部160、光学系制御部170、記録再生部191、表示制御部195の機能は、これらの各ブロックと同様の処理を行うことのできる単数または複数のマイクロプロセッサより実現されてもよい。また、CPU110が、例えば、ROM111に記憶されたプログラムによって、各ブロックと同様の処理を実行してもよい。
(情報処理装置の構成)
図3を用いて、情報処理装置105の構成の詳細を説明する。図3は、情報処理装置105のブロック図を例示する図である。情報処理装置105は、CPU210、ROM211、RAM212、操作部213、通信部293、表示部296を有する。なお、情報処理装置105におけるCPU210以外の各機能ブロックは、プロジェクタA101における同名の機能ブロックと同様の処理を行うため説明は省略する。
CPU210は、情報処理装置105の各機能ブロック及び全体を制御することにより、決定手段、投影手段、撮像手段、調整手段として機能する。以下、CPU210の具体的動作を説明する。
CPU210は、撮像装置106によって撮像された撮像画像PICを、通信部293を介して取得する。CPU210は、ユーザーが操作部213を介して設定した投影画像
の調整目標領域(以下、調整目標形状とも称する)を取得する。CPU210は、ユーザーが設定した領域内の画像データに基づいて、スクリーン107に投影される画像全体の補正関数を生成する。CPU210は、生成した補正関数によって、各プロジェクタ101A、102B、103C、及び104Dの投影領域の位置、形状を調整する。補正関数は、例えば、撮像画像の画像データ上の座標を、投影領域での座標に変換する射影変換行列である。生成された補正関数は、RAM212に格納される。補正関数は、幾何変形パラメータに相当する。
(撮像装置の構成)
図4を用いて、撮像装置106の構成の詳細を説明する。図4は、撮像装置106のブロック図を例示する図である。撮像装置106は、CPU310、ROM311、RAM312、操作部313、撮像部394、通信部393、表示部396を有する。なお、撮像装置106におけるCPU310以外の各機能ブロックは、プロジェクタA101における同名の機能ブロックと同様の処理を行うため説明は省略する。
撮像部394は、複数のレンズを含む撮像光学系を有する。撮像部394は、撮像光学系を介してスクリーン107の周辺を撮影し、画像信号を取得する。撮像部394は、画像信号から得られた撮像画像PICをCPU310に出力する。
CPU310は、撮像装置106の各機能ブロックを制御する。また、CPU310は、撮像部394から取得する撮像画像PICを、ROM311に記憶されたプログラムに基づいて、静止画データまたは動画データに変換して、一時的にRAM312に記憶することができる。CPU310は、撮像部394から出力される撮像画像PICを、通信部393を介して情報処理装置105へ送信する。
(スクリーンの歪み)
図5を用いて、スクリーンの歪みについて説明する。スクリーンの歪みの情報は、複数のプロジェクタによる投影画像の位置合わせ処理で使用される。
図5(A)は、歪みのない理想的な平面スクリーンのイメージを模式的に示す。図5(B)は、4隅に歪みのある平面スクリーンのイメージを模式的に示す。図5(A)では、スクリーンは、全体が均一な平面である。
これに対し、図5(B)では、スクリーンの4隅の領域は、スクリーン中央の領域に対して、投影面に垂直な方向(奥行方向)にずれを有する。スクリーンの歪み量は、基準となる領域(図5(B)の例ではスクリーン中央の領域)に対する、投影面に垂直な方向でのずれの量またはずれの度合いとすることができる。即ち、スクリーンの歪み量は、スクリーンの各領域での視聴方向に対する奥行方向のずれに基づいて定義される。スクリーンの歪み量は、歪みの情報として、複数のプロジェクタによる投影画像の位置合わせに用いられる。
本実施形態では、スクリーンの歪み量は、複数のプロジェクタが投影する画像が最も多く重なるスクリーン中央のブレンド領域を基準とした歪み量であるものとして説明する。図5(B)のように4隅の領域で投影面に垂直な方向でずれがあるスクリーンは、スクリーン全体が均一な平面とはみなされない。スクリーンの歪みが発生する要因としては、例えば、経年劣化、温度、湿度、気圧、重心のずれによる自重の影響などが挙げられる。
次に、図6を用いて、スクリーンの歪み量の設定方法について説明する。スクリーンの歪み量は、情報処理装置105の操作部213を介して、ユーザーが設定することができる。図6は、スクリーンの歪み量を設定するユーザーインタフェース(UI)を例示する
。ユーザーは、図6に例示するUIを用いて、スクリーンの歪み量を入力することができる。
図6(A)は、スクリーンの歪み量設定前のUIを例示する。図6(A)に示す領域は、撮像装置106の撮像画像に対して、ユーザーが指定したスクリーン端の4点で定められるスクリーン全体の領域である。初期状態では、すべての領域に対して、スクリーンの歪み量は未設定である。図6(A)の例では、スクリーンは、縦3×横5の領域に分割され、各領域には歪み量を色の濃さで示す丸印を表示する。スクリーン中央の丸印を囲むカーソル600は、スクリーン中央の領域が選択状態であることを示す。
図6(B)は、スクリーンの歪み量設定後の状態を例示する。図6(B)は、スクリーンの歪みがある領域にユーザーが歪み量を設定した状態を示している。ユーザーは、図6(A)のカーソル600で選択されている領域の歪み量を設定することができる。図6(B)の例では、ユーザーは、各領域に対し、「歪み量大」、「歪み量小」の2種類の歪み量を設定することができる。
図6(B)では、スクリーンの4隅の領域の歪み量は、「歪み量大」に設定されている。また、スクリーンの4隅の領域に隣接する領域の歪み量は、「歪み量小」に設定されている。図6(B)では、スクリーンの歪み量は、スクリーンの4隅に近づくほど大きくなるように設定されている。スクリーンの歪み量が設定されなかった領域は、歪み量未設定の領域として表示される。本実施形態では、スクリーンの歪み量は、各プロジェクタの投影画像が最も多く重なるスクリーン中央のブレンド領域を基準として、スクリーンの各領域における視聴方向の奥行方向でのずれと定義される。ユーザーは、縦3×横5に分割した領域のうち中央の領域を基準として、中央の領域を除く各領域に対し、スクリーンの歪み量を入力する。
図6は、スクリーンの歪み量を設定する分割領域として、スクリーンを縦3×横5の領域に分割した例を示すが、領域の分割数はこれに限定されず、細かく分割してもよい。スクリーンの分割数の増加により、ユーザーによる歪み量の入力の手間が増えるが、歪み量の設定精度は向上する。スクリーンの分割数は、ユーザーの入力負荷及び歪み量の設定精度を考慮して決定することができる。
また、スクリーンの歪み量は、「歪み量大」、「歪み量小」、「歪み量未設定」の3段階で設定する例を示したが、4段階以上のレベルに分けて設定されてもよい。さらに、スクリーンの歪み量は、数値により直接入力されてもよい。歪み量の値を入力する場合、ユーザーの入力負荷は増えるが、歪み量の設定精度は向上する。
また、スクリーンの歪み量は、ユーザーにより入力される場合に限られず、撮像装置106により自動で取得されるようにしてもよい。スクリーンの歪みの検出が可能な撮像装置106を用いることで、スクリーンの歪み量は、ユーザーが設定する場合と比べて、より精度良く取得することができる。なお、撮像装置106は、公知の技術により、スクリーンの歪みを検出することができる。例えば、撮像装置106は、スクリーンの各領域までの距離を計測することで、スクリーンの歪み量を取得することができる。撮像装置106によってスクリーンの歪み量を取得することで、ユーザーの入力負荷は軽減される。
(実施形態1の位置合わせ処理)
図7を用いて、複数台のプロジェクタによる投影領域の位置合わせ処理について説明する。図7は、実施形態1に係る位置合わせ処理を例示するフローチャートである。図7に示す位置合わせ処理は、例えば、情報処理装置105が、操作部213を介してユーザーから位置合わせの指示を受け付けたこと、または通信部293を介して外部装置から位置
合わせの指示信号を受信したことを契機として開始される。
S101で、情報処理装置105のCPU210は、位置合わせ処理を開始する。S102で、CPU210は、マルチ投影のための初期設定をする。初期設定は、位置調整対象のプロジェクタの選択、使用する撮像装置106の選択、各プロジェクタの配置設定などである。
配置設定は、例えば、各プロジェクタの投影画像の位置関係などの配置情報、及び各プロジェクタの投影画像同士を重ね合わせるブレンド幅の情報の設定を含む。以下、位置調整対象として選択されたプロジェクタは、図1に例示したプロジェクタA101、プロジェクタB102、プロジェクタC103、プロジェクタD104であるものとして説明する。
S103で、CPU210は、プロジェクタA101、プロジェクタB102、プロジェクタC103、プロジェクタD104の中から、位置調整の対象とする制御プロジェクタを1台選択する。CPU210は、S102の初期設定で選択された位置調整対象のプロジェクタのうち、調整が終わっていないプロジェクタのいずれかを、制御プロジェクタとして選択する。
S104で、CPU210は、位置合わせのために用いるマーカーを表示する。表示するマーカーの情報は、予めROM211に保存されており、マーカーパターン(画像)及び表示位置を含む。
図8を用いて、位置合わせに用いるマーカーについて説明する。CPU210は、通信部293を介して、制御プロジェクタに対してマーカーの情報を送信し、制御プロジェクタにマーカーの投影を指示する。図8は、制御プロジェクタのパネル800を示す。パネル800は、スクリーンに投影されるマーカーに対応する位置の座標に、×印のマーカー801等を表示する。パネル800上での座標は、以下、パネル座標と称する。
マーカーは、各プロジェクタの投影範囲内に複数投影される。図8は、制御プロジェクタの投影領域に対応するパネル800に、縦4×横7個のマーカーが表示される例を示す。なお、制御プロジェクタのパネル800に表示される各マーカーのパネル座標と、撮像画像での対応するマーカーの座標とは、公知の技術により対応付けが可能である。
S105で、CPU210は、S104で表示したマーカーの撮像画像を取得する。具体的には、CPU210は、通信部293を介して、撮像装置106に対し、制御プロジェクタの投影面の撮像を指示する。撮像装置106は、撮像した撮像画像PICを、RAM312またはROM311に記録し、通信部393を介して情報処理装置105へ送信する。
S106で、CPU210は、制御プロジェクタの投影範囲(投影領域)での歪み量を取得する。歪み量は、例えば、ユーザーが投影スクリーンの各領域に対して入力した歪み量に基づいて取得される。図9を用いて、ユーザーがスクリーン全体に対して入力した歪み量を、制御プロジェクタの投影範囲での歪み量に変換(マッピング)する例について説明する。
図9(A)は、スクリーンを縦3×横5の領域に分割し、各領域に対してユーザーが入力した歪み量の状態を示している。図9(B)は、ユーザーがスクリーンの各領域に対して入力した歪み量を、制御プロジェクタの投影範囲内のマーカー位置にマッピングした例を示す。
ユーザーが入力した歪み量を、制御プロジェクタの投影領域内のマーカー位置の歪み量にマッピングする方法について説明する。まず、CPU210は、制御プロジェクタの投影範囲と、スクリーンの分割した各領域との位置関係の相関を取る。
具体的には、CPU210は、ユーザーがスクリーンの歪み量を入力する際に、撮像装置106を介して取得したスクリーンの4隅を示す領域情報と、撮像画像での制御プロジェクタの投影領域との対応関係を取得する。CPU210は、取得した対応関係に基づいて、スクリーンの各領域の歪み量と、制御プロジェクタが投影するマーカー位置での歪み量との相関を取ることができる。
CPU210は、縦3×横5で分割したスクリーンの各領域の歪み量を、制御プロジェクタの投影領域のマーカー位置での歪み量にマッピングする。図9(B)に示すように、制御プロジェクタの投影領域のうち、スクリーンの隅の領域に対応するマーカー位置では、歪み量は大に設定される。また、スクリーンで歪み量が小に設定された領域に対応するマーカー位置では、歪み量は小に設定される。
S106では、CPU210は、ユーザーがスクリーンの各領域に対して設定した歪み量を、図8に例示した縦4×横7個のマーカー位置に再マッピングする。歪み量を再マッピングすることで、ユーザーは、プロジェクタごとに歪み量を入力するのではなく、スクリーン全体に対する歪み量を直観的に入力することができる。また、プロジェクタごとに歪み量を入力する場合と比較して、ユーザーの入力負荷は軽減される。
S107で、CPU210は、除外領域を決定する。ここで、図10を用いて、除外領域決定処理について説明する。除外領域決定処理では、CPU210は、図9(B)で再マッピングされた歪み量に基づいて、各マーカー位置の領域が、位置合わせに対する除外領域か、対象領域(非除外領域)かを判定する。ここで、対象領域とは、スクリーンのうち、除外領域以外の領域であって、各プロジェクタの投影領域の形状補正のためにマーカーの検出対象とする領域である。対象領域は、スクリーンの歪みが比較的小さい領域として設定される。
S201で、CPU210は、除外領域決定処理を開始する。S202で、CPU210は、S106で取得した各マーカー位置の歪み量を、予め設定された所定の閾値と比較する。歪み量が所定の閾値より大きい場合、処理はS203に進む。歪み量が所定の閾値以下の場合、処理はS204に進む。
なお、図6で説明したように、歪み量を「歪み量大」、「歪み量小」、「歪み量未設定」の3段階で設定した場合、所定の閾値は、例えば「歪み量未設定」とすることができる。この場合、CPU210は、歪み量が「歪み量大」または「歪み量小」の場合に、所定の閾値より大きいと判定し、歪み量が「歪み量未設定」の場合に、所定の閾値以下であると判定することができる。
S203で、CPU210は、歪み量が所定の閾値より大きい領域を、除外領域に設定する。S204で、CPU210は、歪み量が所定の閾値以下の領域を、対象領域に設定する。
S205で、CPU210は、各マーカー位置の領域に対して、除外領域か対象領域かの設定が完了したか否かを判定する。各マーカー位置の領域に対して設定が完了した場合、除外領域決定処理は終了する。各マーカー位置の領域に対して設定が完了していない場合、処理はS202に戻り、各マーカー位置の領域に対して設定が完了するまで、S20
2からS205までの処理が繰り返される。
図11は、除外領域決定結果を例示する図である。図11は、プロジェクタA101が投影する領域において、図9(B)でマッピングした歪み量に基づいて除外領域を決定した結果を示す。図11の例では、除外領域は、歪み量が「歪み量大」及び「歪み量小」の領域に決定されている。
除外領域の範囲は、所定の閾値を変更することで、制御することができる。例えば、所定の閾値を「歪み量未設定」に設定すれば、「歪み量大」及び「歪み量小」の領域が除外領域として決定される。また、所定の閾値を「歪み量小」に設定すれば、「歪み量小」の領域は除外領域に含まれず、「歪み量大」の領域が除外領域として決定される。このように、所定の閾値を小さくすることで、除外領域は広くなり、所定の閾値を大きくすることで、除外領域は狭くなる。
図7のS108で、CPU210は、幾何変形パラメータとして射影変換行列を生成する。CPU210は、S107で決定された除外領域に基づいて、取得した撮像画像PIC内のマーカーを解析し、制御プロジェクタでのパネル座標と撮像画像での座標とを対応付ける。即ち、CPU210は、対象領域内のマーカーを解析して、制御プロジェクタでのパネル座標と撮像画像での座標とを対応付ける。
ここで、図12を用いて、プロジェクタでのパネル座標と撮像画像での座標とを対応付ける処理について説明する。図12は、パネル座標と撮像画像での座標との変換について説明する図である。パネル座標と撮像画像での座標とは、スクリーンに投影した撮像画像を解析することにより対応付けが可能である。S104でスクリーンに投影されるマーカーは、撮像画像での座標が、プロジェクタのパネル上のどの座標に対応しているかを算出可能なマーカーである。
図12(A)は、S107で決定された除外領域を考慮していない場合、即ちスクリーンの歪みを考慮せずにマーカーを投影した場合のスクリーンの撮像画像を示す。図12(A)に示す撮像画像では、プロジェクタA101は、投影領域に、×印で示される28個のマーカーを投影する。
図12(B)は、図12(A)のように投影をしているプロジェクタA101のパネルを表す。プロジェクタA101のパネルに示された×印のマーカーは、図12(A)の撮像画像でのマーカーの座標に対応するパネル座標の位置を示している。図12(A)の撮像画像での各マーカーの座標は、図12(B)の各パネル座標と対応関係にある。例えば、図12(A)の撮像画像でのマーカー1200の座標は、図12(B)のパネルでのパネル座標1201と対応している。
図12(A)及び図12(B)のように、除外領域を考慮せずに投影領域全体にマーカーを表示した場合、CPU210は、対象領域に表示されたマーカーを用いて、投影画像の位置合わせをする。
なお、図12(A)及び図12(B)に示す例では、28個のマーカーの座標による対応関係を図示して説明したが、これに限られない。撮像画像での座標とパネル座標とは、任意の数及び任意の位置の座標について対応付けが可能である。CPU210は、投影領域全体に表示されたマーカーのうち、対象領域のマーカーを使用して位置合わせ処理をする。
CPU210は、図12で説明した対応関係に基づいて、撮像画像と制御プロジェクタ
が投影する表示映像(パネル上の映像)との間の変換行列を取得する。具体的には、CPU210は、プロジェクタでのパネル座標と撮像画像での座標との対応関係を取得し、パネル座標と撮像画像での座標との変換関係を求める。
変換関係は、例えば、射影変換行列である。撮像画像上の任意の点の座標は、3×3の行列である射影変換行列を用いて、プロジェクタのパネル上の対応する座標に変換することができる。また、プロジェクタのパネル上の任意の点の座標は、撮像画像上の対応する座標に変換することができる。S108で生成した射影変換行列は、補正関数(幾何変形パラメータ)の一例である。
図7のS109で、CPU210は、投影システム1の各プロジェクタのうち、未調整のプロジェクタがあるか否かを判定する。即ち、CPU210は、S104からS108の処理がされていないプロジェクタがあるか否かを判定する。未調整のプロジェクタがある場合、処理はS103に戻り、未調整のプロジェクタに対してS104からS108の処理を繰り返す。未調整のプロジェクタがない場合、処理はS110に進む。
S110で、CPU210は、ブレンド投影の全体形状の調整目標形状を設定する。例えば、CPU210は、通信部293を介して撮像装置106に撮像を指示し、撮像装置106から撮像画像PICを取得して表示部296に表示させる。ユーザーは、操作部213を介して、表示部296に表示された撮像画像上で全体形状の調整目標となる4点(端点)を指定することにより調整目標形状を設定することができる。
なお、CPU210は、通信部293を介して、調整目標形状の情報を位置調整対象の各プロジェクタに送信し、各プロジェクタの表示部196に調整目標となる4点を示すカーソル等を表示させてもよい。また、CPU210は、撮像画像PICを解析して、スクリーン107の端点4点を調整目標点として取得し、調整目標形状を設定してもよい。
S111では、CPU210は、位置調整対象の各プロジェクタに対し、投影画像の幾何変形処理及び投影を指示する。具体的には、CPU210は、位置調整対象の各プロジェクタのパネル上での調整目標形状を取得する。各プロジェクタのパネル上での調整目標形状は、S110で設定された全体形状の調整目標形状の4点、S102で設定したブレンド幅の情報、及びS108で生成した射影変換行列を用いて取得することができる。CPU210は、位置調整対象の各プロジェクタについての調整目標形状及び射影変換行列を、それぞれのプロジェクタへ送信し、投影画像の幾何変形による補正及び投影を指示する。位置調整対象の各プロジェクタへの指示が完了すると、図7に示す位置合わせ処理は終了する。
なお、図7に示す位置合わせ処理では、位置調整対象のプロジェクタごとに除外領域を決定する例を示すが、これに限られない。CPU210は、S107では、スクリーン全体の各領域に対して設定した歪み量を、制御プロジェクタの投影領域内のマーカー位置にマッピングし、S109の後、スクリーン全体に対して、所定の閾値との比較により除外領域を決定してもよい。
また、図10のS202では、所定の閾値は、予め設定された値として説明したが、各種条件に応じて変更することが可能である。例えば、所定の閾値は、プロジェクタからスクリーンまでの投写距離(焦点距離)に応じて設定することができる。投影レンズのタイプが短焦点タイプのレンズである場合、投写距離が近くなるため、スクリーンに表示される投影画像は、スクリーンの歪みの影響を受けやすい。このような場合には、位置合わせ処理で除外領域を増やすために、所定の閾値をより小さくすることが好ましい。
また、例えば、所定の閾値は、スクリーンの厚みに応じて設定することができる。スクリーンの厚みが薄くなると、スクリーンの位置が変動しやすくなるため、スクリーンに表示される投影画像は、スクリーンの歪みの影響を受けやすい。このような場合には、位置合わせ処理で除外領域を増やすために、所定の閾値をより小さくすることが好ましい。
また、例えば、所定の閾値は、スクリーンサイズに応じて設定することができる。スクリーンのサイズが大きくなると、一般的にスクリーンの平面性は低くなる。即ち、スクリーンの歪みがより大きくなり、スクリーンに表示される投影画像は、スクリーンの歪みの影響を受けやすい。このような場合には、位置合わせ処理で除外領域を増やすために、所定の閾値をより小さくすることが好ましい。
また、例えば、所定の閾値は、設定したブレンド幅に応じて設定することができる。ブレンド幅を小さくすると、位置ずれが生じた場合の画質妨害が目立つため、スクリーンに表示される投影画像は、スクリーンの歪みの影響を受けやすい。このような場合、位置合わせ処理で除外領域を増やすために、所定の閾値を小さくすることが好ましい。
また、所定の閾値は、経年劣化、温度、湿度、気圧、重心のずれによる自重などの要因による影響を考慮して設定されてもよい。例えば、情報処理装置105は、スクリーンの歪みに影響を与える各種要因に基づいて、スクリーンの歪み量を推定し、推定したスクリーンの歪み量に基づいて、所定の閾値を設定してもよい。
上述の実施形態1では、情報処理装置105は、投影画像を表示するスクリーンの歪みの情報に基づいて、位置合わせの対象外とする除外領域の大きさを調整する。これにより、情報処理装置105は、スクリーンに歪みがある場合でも、ブレンド領域での位置ずれを軽減しマルチ投影画像の画質を向上させることができる。
<実施形態2>
実施形態1は、スクリーンを分割した各領域に対する歪み量に基づいて、各プロジェクタの投影画像の位置合わせをする実施形態である。実施形態2は、ユーザーが入力したスクリーン全体の歪みの度合いに基づいて、各プロジェクタの投影画像の位置合わせをする実施形態である。なお、スクリーン全体の歪みの度合いは、情報処理装置105または撮像装置106が備える距離センサ等による測定に基づいて取得してもよい。
投影システム1、プロジェクタA101~プロジェクタD104、情報処理装置105、撮像装置106の構成は、実施形態1と同様であるため説明は省略する。実施形態2に係る位置合わせ処理で、実施形態1と異なる処理について詳細に説明する。
(実施形態2の位置合わせ処理)
実施形態2に係る位置合わせ処理は、図7と同様であるが、S106及びS107の処理の内容が実施形態1と異なる。以下、実施形態2に係るS106の歪み量の取得処理及びS107の除外領域決定処理の詳細を説明する。
実施形態2に係るS106では、CPU210は、ユーザーが入力したスクリーンの歪み度合いを歪み量として取得する。ユーザーは、例えば、情報処理装置105の表示部296に表示されたUIで、「歪み度合い:大」、「歪み度合い:中」、「歪み度合い:小」の中から、スクリーンの歪みの度合いを選択する。ユーザーは、撮像装置106によるスクリーンまでの距離測定結果、目視による判定結果などに基づいて、スクリーンの歪み度合いを入力することができる。
実施形態2に係るS107では、CPU210は、S106で取得した歪み量に基づい
て、位置合わせの対象外となる除外領域を決定する。ここで、図13及び図14を用いて、実施形態2に係る除外領域の決定について説明する。
図13は、スクリーンの歪み度合いを説明する図である。図13に示すように、スクリーンの上下端に比べて、スクリーン中央で投影面に垂直な方向のずれ量(歪み量)が大きいほど、投影画像のブレンド領域での位置ずれは増大する可能性がある。そこで、除外領域は、スクリーンの歪み度合いに応じて予め対応付けられた領域に設定される。スクリーンの歪み度合いに対応する除外領域は、情報処理装置105のRAM212またはROM211に記憶しておくことができる。
図14は、除外領域境界の形状とスクリーンの歪み度合いとの関係を説明する図である。図14(A)は、スクリーンの歪み度合いに対応する除外領域の境界を示す形状の例である。図14(B)は、スクリーンの歪み度合いと除外領域境界との対応関係を示す表である。
除外領域境界の形状は、ユーザーが入力したスクリーンの歪み量に応じて決定される。スクリーンの歪み度合いが小の場合、除外領域の境界は、図14(A)の形状3に決定される。スクリーンの歪み度合いが小の場合、歪み度合いが大または中の場合よりも、スクリーンの平面性が高いと判断され、除外領域の範囲は、歪み度合いが大または中の場合よりも狭い範囲に設定される。
また、スクリーンの歪み度合いが大の場合、除外領域の境界は、図14(A)の形状1に決定される。スクリーンの歪み度合いが大の場合、歪み度合いが中または小の場合よりも、スクリーンの平面性が低いと判断され、除外領域の範囲は、歪み度合いが中または小の場合よりも広い範囲に設定される。除外領域を広げることで、スクリーンの歪みによる影響は抑制される。
また、スクリーンの歪み度合いが中の場合、除外領域の境界は、図14(A)の形状2に決定される。除外領域の範囲は、歪み度合いが大の場合の形状1よりも狭く、歪み度合いが小の場合の形状3よりも広く設定される。
上述の実施形態2では、ユーザーは、スクリーン全体の歪み度合いを設定するという簡易な操作で、位置合わせの対象外とする除外領域を設定することができる。したがって、情報処理装置105は、スクリーンに歪みがある場合でも、ブレンド領域での位置ずれを、ユーザーの簡易な操作で軽減し、マルチ投影画像の画質を向上させることができる。
なお、実施形態2では、情報処理装置105は、ユーザーがスクリーンの歪み度合いをすることで、歪み度合いに対応付けられた領域を除外領域として決定するが、これに限られない。情報処理装置105は、スクリーンの歪み度合いに限られず、経年劣化、温度、湿度、気圧、重心のずれによる自重に関する情報に基づいて、スクリーンの歪み度合いを推定し、推定した歪み度合いに対応付けられた領域を除外領域として決定してもよい。経年劣化、温度、湿度、気圧、重心のずれによる自重などのスクリーンの歪みに影響する情報は、ユーザーが入力した情報であってもよく、情報処理装置105が備える各種センサにより計測して取得した情報であってもよい。情報処理装置105は、各種要因を考慮することにより、スクリーンの歪み量を精度よく推定し、除外領域を適切に設定することができる。
<実施形態3>
実施形態1、2では、位置合わせをする際に、除外領域に投影されたマーカーは、位置合わせに用いる対象から除外される。実施形態3では、位置合わせをする際に、除外領域
にはマーカーを投影せず、対象領域に位置合わせに用いるマーカーを投影する。
投影システム1、プロジェクタA101~プロジェクタD104、情報処理装置105、撮像装置106の構成は、実施形態1と同様であるため説明は省略する。以下、実施形態1と異なる処理について詳細に説明する。
(実施形態3の位置合わせ処理)
図15は、実施形態3に係る位置合わせ処理を例示するフローチャートである。図7に示す実施形態1に係る位置合わせ処理と同じ処理については、同じ符号を付して説明は省略する。
実施形態3の位置合わせ処理では、CPU210は、S103で制御プロジェクタを選択すると、マーカーを表示する前に、歪み量を取得し(S106)、除外領域を決定する(S107)。
S401で、CPU210は、位置合わせに使用するマーカーを生成する。CPU210は、位置合わせに使用するマーカーとして、対象領域に投写されるマーカーを生成する。S401で生成されるマーカーは、撮像画像での座標が、プロジェクタのパネル上のどの座標に対応しているかを算出可能なマーカーである。
S402で、CPU210は、位置合わせのために用いるマーカーを表示する。表示するマーカーは、S401でスクリーンの歪みを考慮して生成されたマーカー、即ち、対象領域に表示されるマーカーである。CPU210は、通信部293を介して、制御プロジェクタに対してマーカーの情報を送信し、制御プロジェクタにマーカーの投影を指示する。
S403で、CPU210は、S402で表示したマーカーの撮像画像を取得する。具体的には、CPU210は、通信部293を介して、撮像装置106に対し、制御プロジェクタの投影面の撮像を指示する。撮像装置106は、撮像した撮像画像PICを、RAM312またはROM311に記録し、通信部393を介して情報処理装置105へ送信する。
S404で、CPU210は、幾何変形パラメータとして射影変換行列を生成する。CPU210は、S403で取得した撮像画像PIC内のマーカーを解析し、プロジェクタでのパネル座標と撮像画像での座標とを対応付ける。
ここで、図16を用いて、プロジェクタのパネル座標と撮像画像の座標とを対応付ける処理について説明する。図16は、除外領域を考慮した撮像画像の解析処理を説明する図である。
図16(A)は、実施形態1の図12(A)と異なり、S107で決定された除外領域を考慮した場合、即ちスクリーンの歪みを考慮してマーカーを投影した場合のスクリーンの撮像画像を示す。位置合わせのためのマーカーは、除外領域と判定された領域では使用しないため投影されない。除外領域には位置合わせのためのマーカーが表示されないため、スクリーンに表示されるマーカーの数は減少する。図16(A)に示す撮像画像では、プロジェクタA101は、投影領域のうち対象領域に、×印で示される14個のマーカーを投影する。
図16(B)は、図16(A)のように投影をしているプロジェクタA101のパネルを表す。プロジェクタA101のパネルに示された×印のマーカーは、図16(A)の撮
像画像でのマーカーの座標に対応するパネル座標の位置を示している。図16(A)の撮像画像での各マーカーの座標は、図16(B)の各パネル座標と対応関係にある。例えば、図16(A)の撮像画像でのマーカー1600の座標は、図16(B)のパネルでのパネル座標1601と対応している。
図16(A)及び図16(B)のように、除外領域にはマーカーを表示しない場合、CPU210は、スクリーンに表示されたマーカーを用いて、投影画像の位置合わせをすることができる。
なお、図16(A)及び図16(B)に示す例では、14個のマーカー座標による対応関係を図示して説明したが、これに限られない。撮像画像での座標とパネル座標とは、任意の数及び任意の位置の座標について対応付けることが可能である。
CPU210は、図16で説明した対応関係に基づいて、撮像画像と制御プロジェクタが投影する表示映像(パネル上の映像)との間の変換行列を取得する。変換行列の取得については、実施形態1と同様である。
S109で、CPU210は、投影システム1の各プロジェクタのうち、未調整のプロジェクタがあるか否かを判定する。即ち、CPU210は、除外領域の決定及び射影変換行列の生成等の調整がされていないプロジェクタがあるか否かを判定する。未調整のプロジェクタがある場合、処理はS103に戻り、未調整のプロジェクタに対して、S103、S106、S107、S401~S404の処理を繰り返す。未調整のプロジェクタがない場合、処理はS110に進む。S110及びS111の処理は、実施形態1と同様である。
上述の実施形態3では、情報処理装置105は、スクリーンの歪みの情報に基づいて、位置合わせのために使用するマーカーを、除外領域には表示せず、対象領域に表示する。位置合わせに使用するマーカーを表示する領域を制御することで、情報処理装置105は、スクリーンに歪みがある場合でも、ブレンド領域での位置ずれを軽減しマルチ投影画像の画質を向上させることができる。
<その他の実施形態>
対象領域のマーカーを使用して位置合わせをしても、ブレンド領域の位置ずれが生じる場合、情報処理装置105は、除外領域を広げて、各プロジェクタの投影領域の投影位置を再調整してもよい。情報処理装置105は、ブレンド領域での位置ずれが、所定の閾値以下、例えば1画素以内になるまでの間、除外領域を広げて位置合わせ処理を繰り返すようにしてもよい。情報処理装置105は、除外領域を広げて、位置合わせ処理を繰り返すことで、ブレンド領域での位置ずれを所定の閾値以下とし、マルチ投影画像の画質を所定のレベルで維持することができる。
上記の各実施形態は、本発明の構成例を例示的に説明するものに過ぎない。本発明は上記の具体的な形態には限定されることはなく、その技術的思想の範囲内で種々の組み合わせまたは変形が可能である。
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
105:情報処理装置、106:撮像装置、107:スクリーン、210:CPU、293:通信部、310:CPU、393:通信部

Claims (20)

  1. 複数のプロジェクタによる投影画像の投影を制御する投影制御装置であって、
    前記複数のプロジェクタが前記投影画像をスクリーンに投影する投影領域のうちの一部の領域である除外領域を決定する決定手段と、
    少なくとも前記除外領域以外の対象領域に、前記投影画像の投影位置を調整するためのマーカーを投影する投影手段と、
    前記マーカーが表示された前記スクリーンを撮像する撮像手段と、
    前記撮像手段によって撮像された前記マーカーのうち、前記対象領域に投影された前記マーカーに基づいて、前記投影位置を調整する調整手段と
    を有することを特徴とする投影制御装置。
  2. 前記投影手段は、前記投影領域全体に前記マーカーを投影する
    ことを特徴とする請求項1に記載の投影制御装置。
  3. 前記投影手段は、前記投影領域のうち、前記対象領域に前記マーカーを投影し、前記除外領域に前記マーカーを投影しない
    ことを特徴とする請求項1に記載の投影制御装置。
  4. 前記調整手段は、前記対象領域に投影された前記マーカーに基づいて、前記投影位置を調整するための幾何変形パラメータを取得し、前記幾何変形パラメータに基づいて、前記投影画像を幾何変形する
    ことを特徴とする請求項1~3のいずれか1項に記載の投影制御装置。
  5. 前記決定手段は、前記スクリーンの歪みの情報に基づいて、前記除外領域を決定する
    ことを特徴とする請求項1~4のいずれか1項に記載の投影制御装置。
  6. 前記歪みの情報は、前記複数のプロジェクタが投影する画像が最も多く重なる領域に対する、前記スクリーンの投影面に垂直な方向のずれを示す歪み量である
    ことを特徴とする請求項5に記載の投影制御装置。
  7. 前記決定手段は、前記歪み量が所定の閾値より大きい領域を除外領域として決定する
    ことを特徴とする請求項6に記載の投影制御装置。
  8. 前記所定の閾値は、前記複数のプロジェクタから前記スクリーンまでの投写距離に応じた値である
    ことを特徴とする請求項7に記載の投影制御装置。
  9. 前記所定の閾値は、前記スクリーンの厚みに応じた値である
    ことを特徴とする請求項7または8に記載の投影制御装置。
  10. 前記所定の閾値は、前記スクリーンのサイズに応じた値である
    ことを特徴とする請求項7~9のいずれか1項に記載の投影制御装置。
  11. 前記所定の閾値は、前記複数のプロジェクタによる投影画像が重なる幅として設定したブレンド幅に応じた値である
    ことを特徴とする請求項7~10のいずれか1項に記載の投影制御装置。
  12. 前記歪みの情報は、ユーザーによって入力される
    ことを特徴とする請求項5~11のいずれか1項に記載の投影制御装置。
  13. 前記歪みの情報は、前記スクリーンの歪みの検出が可能な前記撮像手段によって取得される
    ことを特徴とする請求項5~11のいずれか1項に記載の投影制御装置。
  14. 前記歪みの情報は、前記スクリーン全体の歪み度合いであり、
    前記決定手段は、前記スクリーン全体の歪み度合いごとに予め対応付けられた領域を記憶しており、ユーザーが設定した前記スクリーン全体の歪み度合いに対応付けられた領域を前記除外領域として決定する
    ことを特徴とする請求項5~13のいずれか1項に記載の投影制御装置。
  15. 前記歪みの情報は、前記スクリーンの歪みに影響する情報であり、
    前記決定手段は、前記スクリーンの歪みに影響する情報に予め対応付けられた領域を記憶しており、取得した前記スクリーンの歪みに影響する情報に対応付けられた領域を前記除外領域として決定する
    ことを特徴とする請求項5~14のいずれか1項に記載の投影制御装置。
  16. 前記決定手段は、前記複数のプロジェクタによる前記投影画像が重なる領域で位置ずれが生じている場合、前記除外領域を広げ、
    前記調整手段は、広げられた除外領域に基づいて前記投影位置を再調整する
    ことを特徴とする請求項1~15のいずれか1項に記載の投影制御装置。
  17. 複数のプロジェクタによる投影画像の投影を制御する投影制御装置の制御方法であって、
    前記複数のプロジェクタが前記投影画像をスクリーンに投影する投影領域のうちの一部の領域である除外領域を決定する決定ステップと、
    少なくとも前記除外領域以外の対象領域に、前記投影画像の投影位置を調整するためのマーカーを投影する投影ステップと、
    前記マーカーが表示された前記スクリーンを撮像する撮像ステップと、
    前記撮像ステップで撮像された前記マーカーのうち、前記対象領域に投影された前記マーカーに基づいて、前記投影位置を調整する調整ステップと
    を有することを特徴とする投影制御装置の制御方法。
  18. 前記投影ステップでは、前記投影領域に前記マーカーを投影する
    ことを特徴とする請求項17に記載の投影制御装置の制御方法。
  19. 前記投影ステップでは、前記投影領域のうち、前記対象領域に前記マーカーを投影し、前記除外領域に前記マーカーを投影しない
    ことを特徴とする請求項17に記載の投影制御装置の制御方法。
  20. コンピュータを、請求項1から16のいずれか1項に記載の投影制御装置の各手段として機能させるためのプログラム。
JP2021024470A 2021-02-18 2021-02-18 投影制御装置及び投影制御装置の制御方法 Pending JP2022126414A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021024470A JP2022126414A (ja) 2021-02-18 2021-02-18 投影制御装置及び投影制御装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021024470A JP2022126414A (ja) 2021-02-18 2021-02-18 投影制御装置及び投影制御装置の制御方法

Publications (1)

Publication Number Publication Date
JP2022126414A true JP2022126414A (ja) 2022-08-30

Family

ID=83059059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021024470A Pending JP2022126414A (ja) 2021-02-18 2021-02-18 投影制御装置及び投影制御装置の制御方法

Country Status (1)

Country Link
JP (1) JP2022126414A (ja)

Similar Documents

Publication Publication Date Title
JP3620537B2 (ja) 画像処理システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
KR100710946B1 (ko) 화상 처리 시스템, 프로젝터 및 화상 처리 방법
US9554105B2 (en) Projection type image display apparatus and control method therefor
US20170244941A1 (en) Projector and control method thereof
JP2004304265A (ja) 画像処理システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
JP2015121779A (ja) 投写画像表示システム、投写画像表示方法及び投写型表示装置
US10582171B2 (en) Display system and information processing method
JP6208930B2 (ja) 投影装置及びその制御方法、プログラム、並びに記憶媒体
JP5205865B2 (ja) 投射画像の形状歪補正支援システム、投射画像の形状歪補正支援方法、及びプロジェクタ、並びにプログラム
JP6794092B2 (ja) 表示装置
JP2018125819A (ja) 制御装置、制御方法、プログラム及び記憶媒体
JP2007304284A (ja) プロジェクタ
JP6330371B2 (ja) 画像投影装置及び画像投影方法
JP2022126414A (ja) 投影制御装置及び投影制御装置の制御方法
JP2021132299A (ja) 制御装置、投影システム、投影装置の制御方法、プログラム、および記憶媒体
JP6700955B2 (ja) 投影装置及び投影方法
JP2020150481A (ja) 情報処理装置、投影システム、情報処理方法、及び、プログラム
JP2010130481A (ja) 画像投射装置
JP2014137386A (ja) プロジェクタ、その制御方法、及び画像投影システム
JP2019114887A (ja) 投射型画像表示装置およびその制御方法
JP2020072357A (ja) 投影装置および投影方法
US20230028087A1 (en) Control apparatus, image projection system, control method, and storage medium
US20230317031A1 (en) Display control apparatus used for color matching between reference image pickup apparatus and adjustment image pickup apparatus, control method therefor, and storage medium storing control program therefor
JP6704722B2 (ja) 画像処理装置及び画像処理方法
JP2018121201A (ja) 画像処理装置、画像処理方法、及びプログラム