JP2022113030A - Secondary battery system - Google Patents

Secondary battery system Download PDF

Info

Publication number
JP2022113030A
JP2022113030A JP2021009121A JP2021009121A JP2022113030A JP 2022113030 A JP2022113030 A JP 2022113030A JP 2021009121 A JP2021009121 A JP 2021009121A JP 2021009121 A JP2021009121 A JP 2021009121A JP 2022113030 A JP2022113030 A JP 2022113030A
Authority
JP
Japan
Prior art keywords
secondary batteries
current
secondary battery
switch
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021009121A
Other languages
Japanese (ja)
Inventor
慎司 広瀬
Shinji Hirose
紀佳 林
Noriyoshi Hayashi
圭二 三宅
Keiji Miyake
昇一 家岡
Shoichi Ieoka
伸一 前
Shinichi Mae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2021009121A priority Critical patent/JP2022113030A/en
Publication of JP2022113030A publication Critical patent/JP2022113030A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To suppress an increase in the variation in voltages of a plurality of secondary batteries while suppressing the weight of a charging cable that connects a secondary battery system and a charger in the secondary battery system in which the plurality of secondary batteries are connected in series or in parallel with each other.SOLUTION: During constant-voltage charge control after constant-current charge control, when a current flowing through a plurality of secondary batteries B becomes equal to or less than a switching current which is a value obtained by dividing a constant current by the number of secondary batteries B, the current flowing through the plurality of secondary batteries B is gradually reduced after controlling the operation of a switching circuit such that the plurality of secondary batteries B are connected in parallel with each other and increasing the total current flowing through the plurality of secondary batteries B to a constant current.SELECTED DRAWING: Figure 1

Description

本発明は、複数の二次電池を互いに直列接続または並列接続させる二次電池システムに関する。 The present invention relates to a secondary battery system in which a plurality of secondary batteries are connected in series or in parallel.

二次電池システムとして、充電開始時、複数の二次電池を互いに直列接続させるとともに各二次電池に一定電流を流し、各二次電池の電圧のうちの少なくとも1つの電圧が所定電圧以上になると、各二次電池に流れる電流を徐々に小さくさせ、各二次電池に流れる電流が、二次電池に供給可能な最大電流値を二次電池の個数で除算した値以下になると、各二次電池を互いに並列接続させ、各二次電池に流れる電流のうちの少なくとも1つの電流が終止電流以下になると、各二次電池の充電を終了するものがある。関連する技術として、特許文献1がある。 As a secondary battery system, at the start of charging, a plurality of secondary batteries are connected in series and a constant current is passed through each secondary battery. , the current flowing through each secondary battery is gradually reduced, and when the current flowing through each secondary battery falls below the value obtained by dividing the maximum current value that can be supplied to the secondary battery by the number of secondary batteries, each secondary battery In some cases, batteries are connected in parallel and the charging of each secondary battery is terminated when at least one of the currents flowing in each secondary battery becomes equal to or less than the final current. As a related technology, there is Patent Document 1.

しかしながら、上記二次電池システムでは、二次電池に供給可能な最大電流値を大きくするほど、直列接続から並列接続に切り替わったときに各二次電池に流れる全体電流が大きくなるため、二次電池システムと充電器とをつなぐ充電ケーブルの定格電流を大きくする必要があり、充電ケーブルの重量化が懸念される。 However, in the above secondary battery system, the larger the maximum current value that can be supplied to the secondary batteries, the larger the total current that flows through each secondary battery when switching from series connection to parallel connection. It is necessary to increase the rated current of the charging cable that connects the system and the charger, and there is concern about the weight of the charging cable.

また、上記二次電池システムでは、直列接続から並列接続に切り替わった後に各二次電池に流れる全体電流を一定電流より小さくする場合、直列接続から並列接続に切り替わった後に各二次電池にそれぞれ流れる電流が小さくなり各二次電池を互いに並列接続させている期間が短くなるため、各二次電池の電圧のばらつきが大きくなるおそれがある。 Further, in the secondary battery system, when the total current flowing through each secondary battery after switching from series connection to parallel connection is made smaller than a constant current, each secondary battery flows after switching from series connection to parallel connection. Since the current becomes smaller and the period in which the secondary batteries are connected in parallel becomes shorter, there is a possibility that the voltages of the secondary batteries may vary widely.

特開2008-278635号公報JP 2008-278635 A

本発明の一側面に係る目的は、複数の二次電池を互いに直列接続または並列接続させる二次電池システムにおいて、二次電池システムと充電器とをつなぐ充電ケーブルの重量化を抑制しつつ、複数の二次電池の各電圧のばらつきが大きくなることを抑制することである。 An object according to one aspect of the present invention is to provide a secondary battery system in which a plurality of secondary batteries are connected in series or parallel to each other, while suppressing weight increase of a charging cable connecting the secondary battery system and a charger. It is to suppress an increase in variation in each voltage of the secondary battery.

本発明に係る一つの形態である二次電池システムは、複数の二次電池と、前記複数の二次電池を互いに直列接続または並列接続させる切替回路と、前記切替回路の動作を制御する制御部とを備える。 A secondary battery system according to one aspect of the present invention includes a plurality of secondary batteries, a switching circuit that connects the plurality of secondary batteries in series or parallel connection, and a control unit that controls the operation of the switching circuit. and

前記制御部は、前記複数の二次電池の放電中、前記複数の二次電池が互いに並列接続されるように前記切替回路の動作を制御し、前記複数の二次電池の充電中、前記複数の二次電池が互いに直列接続されるように前記切替回路の動作を制御するとともに前記複数の二次電池に一定電流を流し、前記複数の二次電池の各電圧のうちの少なくとも1つの電圧が所定電圧以上になると、前記少なくとも1つの電圧を前記所定電圧に保ちつつ前記複数の二次電池に流れる電流を徐々に低下させ、前記複数の二次電池に流れる電流が、前記一定電流を前記二次電池の個数で除算した値である切替電流以下になると、前記複数の二次電池が互いに並列接続されるように前記切替回路の動作を制御するとともに前記複数の二次電池に流れる全体電流を前記一定電流まで大きくさせた後、前記複数の二次電池に流れる電流を徐々に低下させ、前記複数の二次電池に流れる電流のうちの少なくとも1つの電流が前記切替電流より小さい終止電流以下になると、前記複数の二次電池に流れる電流をゼロにさせる。 The control unit controls the operation of the switching circuit so that the plurality of secondary batteries are connected in parallel to each other during discharging of the plurality of secondary batteries, and controls the operation of the switching circuit during charging of the plurality of secondary batteries. secondary batteries are connected in series with each other, a constant current is passed through the plurality of secondary batteries, and at least one voltage among the voltages of the plurality of secondary batteries is When the voltage reaches the predetermined voltage or higher, the current flowing through the plurality of secondary batteries is gradually reduced while maintaining the at least one voltage at the predetermined voltage, and the current flowing through the plurality of secondary batteries reduces the constant current to the second voltage. When the switching current becomes equal to or less than the value obtained by dividing the number of secondary batteries, the operation of the switching circuit is controlled so that the plurality of secondary batteries are connected in parallel, and the total current flowing through the plurality of secondary batteries is reduced. After increasing the current to the constant current, the current flowing through the plurality of secondary batteries is gradually decreased, and at least one current among the currents flowing through the plurality of secondary batteries becomes equal to or lower than the cut-off current that is smaller than the switching current. Then, the current flowing through the plurality of secondary batteries is made zero.

これにより、充電ケーブルの定格電流の増大を抑えることができるため、充電ケーブルの重量化を抑制することができる。また、各二次電池を互いに並列接続させる期間が短縮されることを抑えることができるため、各二次電池の電圧のばらつきが大きくなることを抑制することができる。 As a result, it is possible to suppress an increase in the rated current of the charging cable, thereby suppressing an increase in the weight of the charging cable. Moreover, since it is possible to suppress shortening of the period in which the secondary batteries are connected in parallel, it is possible to suppress an increase in variation in the voltages of the secondary batteries.

また、前記制御部は、前記複数の二次電池の充電中、前記複数の二次電池に流れる電流が前記切替電流以下になると、前記複数の二次電池に流れる電流をゼロにさせた後、前記複数の二次電池が互いに並列接続されるように前記切替回路の動作を制御するとともに前記複数の二次電池に流れる全体電流を前記一定電流まで大きくさせるように構成してもよい。 Further, when the current flowing through the plurality of secondary batteries becomes equal to or less than the switching current during charging of the plurality of secondary batteries, the control unit causes the current flowing through the plurality of secondary batteries to become zero, and then The operation of the switching circuit may be controlled so that the plurality of secondary batteries are connected in parallel with each other, and the total current flowing through the plurality of secondary batteries may be increased to the constant current.

これにより、各二次電池の充電中において、各二次電池が直列接続から並列接続に切り替わる際に各二次電池に突入電流が流れることを防止することができる。 As a result, it is possible to prevent an inrush current from flowing through each secondary battery when the secondary batteries are switched from series connection to parallel connection during charging of each secondary battery.

本発明によれば、複数の二次電池を互いに直列接続または並列接続させる二次電池システムにおいて、二次電池システムと充電器とをつなぐ充電ケーブルの重量化を抑制しつつ、各二次電池の電圧のばらつきが大きくなることを抑制することができる。 According to the present invention, in a secondary battery system in which a plurality of secondary batteries are connected in series or in parallel, each secondary battery can An increase in voltage variation can be suppressed.

実施形態の二次電池システムの一例を示す図である。It is a figure which shows an example of the secondary battery system of embodiment. 制御部の動作の一例を示すフローチャートである。4 is a flow chart showing an example of the operation of a control unit; 制御部の動作の変形例を示すフローチャートである。9 is a flow chart showing a modification of the operation of the control unit; 充電中の二次電池に流れる電流と充電中の二次電池の電圧の一例を示す図である。FIG. 3 is a diagram showing an example of the current flowing through a secondary battery being charged and the voltage of the secondary battery being charged; 実施形態の二次電池システムの変形例を示す図である。It is a figure which shows the modification of the secondary battery system of embodiment.

以下図面に基づいて実施形態について詳細を説明する。
図1は、実施形態の二次電池システムの一例を示す図である。
Embodiments will be described in detail below with reference to the drawings.
FIG. 1 is a diagram showing an example of a secondary battery system according to an embodiment.

図1に示す二次電池システム1は、フォークリフトなどの産業車両や電気自動車などの車両Veに搭載され、走行用モータなどの負荷Loに電力を供給する。 A secondary battery system 1 shown in FIG. 1 is mounted in a vehicle Ve such as an industrial vehicle such as a forklift or an electric vehicle, and supplies electric power to a load Lo such as a driving motor.

また、二次電池システム1は、車両Veの外部に設けられる充電器Chから充電ケーブルCaを介して電力が供給される。 Further, the secondary battery system 1 is supplied with electric power through a charging cable Ca from a charger Ch provided outside the vehicle Ve.

また、二次電池システム1は、二次電池B1~B4と、正極側充電端子Tipと、負極側充電端子Tinと、正極側放電端子Topと、負極側放電端子Tonと、第1出力部スイッチS11~S14と、第2出力部スイッチS21~S24と、直列接続用スイッチS31~S33と、スイッチS41、S42と、電流計Si1~Si4と、記憶部2と、制御部3とを備える。 The secondary battery system 1 also includes secondary batteries B1 to B4, a positive charge terminal Tip, a negative charge terminal Tin, a positive discharge terminal Top, a negative discharge terminal Ton, and a first output switch. S11 to S14, second output section switches S21 to S24, series connection switches S31 to S33, switches S41 and S42, ammeters Si1 to Si4, storage section 2, and control section 3.

なお、第1出力部スイッチS11~S14と、第2出力部スイッチS21~S24と、直列接続用スイッチS31~S33により切替回路を構成する。
また、直列接続用スイッチS31~S33をダイオードに置き換えてもよい。
A switching circuit is composed of the first output section switches S11 to S14, the second output section switches S21 to S24, and the series connection switches S31 to S33.
Further, the series connection switches S31 to S33 may be replaced with diodes.

また、二次電池B1~B4を特に区別しない場合、単に、二次電池Bとする。また、第1出力部スイッチS11~S14を特に区別しない場合、単に、第1出力部スイッチS1とする。また、第2出力部スイッチS21~S24を特に区別しない場合、単に、第2出力部スイッチS2とする。また、直列接続用スイッチS31~S33を特に区別しない場合、単に、直列接続用スイッチS3とする。また、電流計Si1~Si4を特に区別しない場合、単に、電流計Siとする。 Further, the secondary batteries B1 to B4 are simply referred to as a secondary battery B when not specifically distinguished. Further, when the first output section switches S11 to S14 are not particularly distinguished, they will simply be referred to as the first output section switch S1. Further, when the second output section switches S21 to S24 are not particularly distinguished, they are simply referred to as the second output section switch S2. Further, when the series connection switches S31 to S33 are not particularly distinguished, the series connection switch S3 is simply referred to. Further, when the ammeters Si1 to Si4 are not particularly distinguished, they are simply referred to as ammeters Si.

また、二次電池B、第1出力部スイッチS1、第2出力部スイッチS2、及び電流計Siのそれぞれの数は4つに限定されない。また、直列接続用スイッチS3の数は3つに限定されない。例えば、二次電池B、第1出力部スイッチS1、第2出力部スイッチS2、及び電流計Siのそれぞれの数を2つとし、直列接続用スイッチS3を1つとする場合、二次電池システム1は、二次電池B1、B2と、第1出力部スイッチS11、S12と、第2出力部スイッチS21、S22と、電流計Si1、Si2と、直列接続用スイッチS31とを備える。 Also, the number of each of the secondary battery B, the first output switch S1, the second output switch S2, and the ammeter Si is not limited to four. Also, the number of series connection switches S3 is not limited to three. For example, when the number of each of the secondary battery B, the first output switch S1, the second output switch S2, and the ammeter Si is two, and the series connection switch S3 is one, the secondary battery system 1 includes secondary batteries B1 and B2, first output switches S11 and S12, second output switches S21 and S22, ammeters Si1 and Si2, and a series connection switch S31.

二次電池Bは、リチウムイオン電池またはニッケル水素電池などの1つ以上の充放電可能な電池(モジュール)により構成される。 The secondary battery B is composed of one or more chargeable/dischargeable batteries (modules) such as lithium ion batteries or nickel-metal hydride batteries.

第1出力部スイッチS1、第2出力部スイッチS2、直列接続用スイッチS3、及びスイッチS41、S42は、それぞれ、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体スイッチまたは機械式スイッチ(電磁式リレー)により構成される。 The first output switch S1, the second output switch S2, the series connection switch S3, and the switches S41 and S42 are semiconductor switches such as MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) or mechanical switches (electromagnetic relays). ).

電流計Si1は、二次電池B1に流れる電流を検出し、その検出した電流を制御部3に送る。また、電流計Si2は、二次電池B2に流れる電流を検出し、その検出した電流を制御部3に送る。また、電流計Si3は、二次電池B3に流れる電流を検出し、その検出した電流を制御部3に送る。また、電流計Si4は、二次電池B4に流れる電流を検出し、その検出した電流を制御部3に送る。 Ammeter Si<b>1 detects current flowing through secondary battery B<b>1 and sends the detected current to control unit 3 . Ammeter Si<b>2 also detects the current flowing through secondary battery B<b>2 and sends the detected current to control unit 3 . Ammeter Si<b>3 detects current flowing through secondary battery B<b>3 and sends the detected current to control unit 3 . Ammeter Si<b>4 detects current flowing through secondary battery B<b>4 and sends the detected current to control unit 3 .

すなわち、第1出力部スイッチS11の一方端子が二次電池B1の正極端子に接続され、第1出力部スイッチS12の一方端子が二次電池B2の正極端子に接続され、第1出力部スイッチS13の一方端子が二次電池B3の正極端子に接続され、第1出力部スイッチS14の一方端子が二次電池B4の正極端子に接続されている。また、第1出力部スイッチS11~S14のそれぞれの他方端子は互いに接続されている。また、第1出力部スイッチS11~S14のそれぞれの他方端子の接続点は、正極側充電端子Tipを介して充電器Chの正極端子に接続されているとともに、正極側放電端子Topを介して負荷Loの正極端子に接続されている。また、第2出力部スイッチS21の一方端子が電流計Si1を介して二次電池B1の負極端子に接続され、第2出力部スイッチS22の一方端子が電流計Si2を介して二次電池B2の負極端子に接続され、第2出力部スイッチS23の一方端子が電流計Si3を介して二次電池B3の負極端子に接続され、第2出力部スイッチS24の一方端子が電流計Si4を介して二次電池B4の負極端子に接続されている。また、第2出力部スイッチS21~S24のそれぞれの他方端子は互いに接続されている。また、第2出力部スイッチS21~S24のそれぞれの他方端子の接続点は、スイッチS41及び負極側充電端子Tinを介して充電器Chの負極端子に接続されているとともに、スイッチS42及び負極側放電端子Tonを介して負荷Loの負極端子に接続されている。また、直列接続用スイッチS31の一方端子が電流計Si1を介して二次電池B1の負極端子に接続され、直列接続用スイッチS31の他方端子が二次電池B2の正極端子に接続されている。また、直列接続用スイッチS32の一方端子が電流計Si2を介して二次電池B2の負極端子に接続され、直列接続用スイッチS32の他方端子が二次電池B3の正極端子に接続されている。また、直列接続用スイッチS33の一方端子が電流計Si3を介して二次電池B3の負極端子に接続され、直列接続用スイッチS33の他方端子が二次電池B4の正極端子に接続されている。 That is, one terminal of the first output switch S11 is connected to the positive terminal of the secondary battery B1, one terminal of the first output switch S12 is connected to the positive terminal of the secondary battery B2, and the first output switch S13 is connected to the positive terminal of the secondary battery B2. is connected to the positive terminal of the secondary battery B3, and one terminal of the first output switch S14 is connected to the positive terminal of the secondary battery B4. Further, the other terminals of the first output section switches S11 to S14 are connected to each other. Further, the connection point of the other terminal of each of the first output section switches S11 to S14 is connected to the positive terminal of the charger Ch via the positive charging terminal Tip, and is connected to the load via the positive discharging terminal Top. It is connected to the positive terminal of Lo. One terminal of the second output switch S21 is connected to the negative terminal of the secondary battery B1 through the ammeter Si1, and one terminal of the second output switch S22 is connected to the negative terminal of the secondary battery B2 through the ammeter Si2. One terminal of the second output switch S23 is connected to the negative terminal of the secondary battery B3 via an ammeter Si3, and one terminal of the second output switch S24 is connected to the negative terminal of the secondary battery B3 via an ammeter Si4. It is connected to the negative terminal of the secondary battery B4. Further, the other terminals of the second output section switches S21 to S24 are connected to each other. Further, the connection point of the other terminals of the second output section switches S21 to S24 is connected to the negative terminal of the charger Ch via the switch S41 and the negative charging terminal Tin, and the switch S42 and the negative charging terminal Tin. It is connected to the negative terminal of the load Lo via the terminal Ton. One terminal of the series connection switch S31 is connected to the negative terminal of the secondary battery B1 via the ammeter Si1, and the other terminal of the series connection switch S31 is connected to the positive terminal of the secondary battery B2. One terminal of the series connection switch S32 is connected to the negative terminal of the secondary battery B2 via the ammeter Si2, and the other terminal of the series connection switch S32 is connected to the positive terminal of the secondary battery B3. One terminal of the series connection switch S33 is connected to the negative terminal of the secondary battery B3 via the ammeter Si3, and the other terminal of the series connection switch S33 is connected to the positive terminal of the secondary battery B4.

記憶部2は、RAM(Random Access Memory)またはROM(Read Only Memory)などにより構成され、後述する、一定電流、所定電圧、所定電流、切替電流、及び終止電流などを記憶している。 The storage unit 2 is composed of RAM (Random Access Memory) or ROM (Read Only Memory), and stores a constant current, a predetermined voltage, a predetermined current, a switching current, an end current, and the like, which will be described later.

制御部3は、CPU(Central Processing Unit)またはプログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device))などにより構成され、切替回路の動作を制御する。 The control unit 3 is configured by a CPU (Central Processing Unit) or a programmable device (FPGA (Field Programmable Gate Array) or PLD (Programmable Logic Device)) or the like, and controls the operation of the switching circuit.

<二次電池B1~B2の放電中の切替回路の動作制御について>
制御部3は、二次電池B1~B4の放電中、二次電池B1~B4が互いに並列接続されるように切替回路の動作を制御するとともに、二次電池B1~B4を負荷Loに接続させる。すなわち、制御部3は、二次電池B1~B4の放電中、第1出力部スイッチS11~S14、第2出力部スイッチS21~S24、スイッチS42を導通させるとともに、直列接続用スイッチS31~S33及びスイッチS41を遮断させる。これにより、二次電池B1の正極端子から第1出力部スイッチS11、正極側放電端子Top、負荷Lo、負極側放電端子Ton、スイッチS42、第2出力部スイッチS21、電流計Si1を介して、二次電池B1の負極端子に電流を流すことが可能な状態になる。また、二次電池B2の正極端子から第1出力部スイッチS12、正極側放電端子Top、負荷Lo、負極側放電端子Ton、スイッチS42、第2出力部スイッチS22、電流計Si2を介して、二次電池B2の負極端子に電流を流すことが可能な状態になる。また、二次電池B3の正極端子から第1出力部スイッチS13、正極側放電端子Top、負荷Lo、負極側放電端子Ton、スイッチS42、第2出力部スイッチS23、電流計Si3を介して、二次電池B3の負極端子に電流を流すことが可能な状態になる。また、二次電池B4の正極端子から第1出力部スイッチS14、正極側放電端子Top、負荷Lo、負極側放電端子Ton、スイッチS42、第2出力部スイッチS24、電流計Si4を介して、二次電池B4の負極端子に電流を流すことが可能な状態になる。このように、二次電池B1~B4の放電中、二次電池B1~B4を互いに並列接続させることにより、二次電池B1~B4の全体の容量を増加させることができる。
<Regarding operation control of the switching circuit during discharging of the secondary batteries B1 and B2>
The control unit 3 controls the operation of the switching circuit so that the secondary batteries B1 to B4 are connected in parallel while the secondary batteries B1 to B4 are being discharged, and connects the secondary batteries B1 to B4 to the load Lo. . That is, while the secondary batteries B1 to B4 are being discharged, the control unit 3 turns on the first output unit switches S11 to S14, the second output unit switches S21 to S24, and the switch S42, and the series connection switches S31 to S33 and The switch S41 is turned off. As a result, from the positive terminal of the secondary battery B1 through the first output switch S11, the positive discharge terminal Top, the load Lo, the negative discharge terminal Ton, the switch S42, the second output switch S21, and the ammeter Si1, A current can flow to the negative terminal of the secondary battery B1. Further, from the positive electrode terminal of the secondary battery B2, a second output switch S12, a positive discharge terminal Top, a load Lo, a negative discharge terminal Ton, a switch S42, a second output switch S22, and an ammeter Si2 are connected. A current can flow to the negative terminal of the secondary battery B2. Further, from the positive electrode terminal of the secondary battery B3, a second output switch S13, a positive discharge terminal Top, a load Lo, a negative discharge terminal Ton, a switch S42, a second output switch S23, and an ammeter Si3 are connected. A current can flow to the negative terminal of the secondary battery B3. Further, from the positive electrode terminal of the secondary battery B4, a second output switch S14, a positive discharge terminal Top, a load Lo, a negative discharge terminal Ton, a switch S42, a second output switch S24, and an ammeter Si4 are connected. A current can flow to the negative terminal of the secondary battery B4. Thus, by connecting the secondary batteries B1 to B4 in parallel while the secondary batteries B1 to B4 are being discharged, the total capacity of the secondary batteries B1 to B4 can be increased.

<二次電池B1~B4の充電中の切替回路の動作制御について>
まず、制御部3は、二次電池B1~B4の充電開始時、二次電池B1~B4が互いに直列接続されるように切替回路の動作を制御するとともに、二次電池B1~B4を充電器Chに接続させる。すなわち、制御部3は、二次電池B1~B4の充電開始時、第1出力部スイッチS11、直列接続用スイッチS31~S33、第2出力部スイッチS24、及びスイッチS41を導通させるとともに、第1出力部スイッチS12~S14、第2出力部スイッチS21~S23、及びスイッチS42を遮断させる。
<Regarding operation control of the switching circuit during charging of the secondary batteries B1 to B4>
First, when charging of the secondary batteries B1 to B4 is started, the control unit 3 controls the operation of the switching circuit so that the secondary batteries B1 to B4 are connected in series with each other, and the secondary batteries B1 to B4 are connected to the charger. Connect to Ch. That is, when the charging of the secondary batteries B1 to B4 is started, the control unit 3 turns on the first output switch S11, the series connection switches S31 to S33, the second output switch S24, and the switch S41. The output section switches S12 to S14, the second output section switches S21 to S23, and the switch S42 are turned off.

次に、制御部3は、二次電池システム1に一定電流が流れるように電流指令値を充電器Chに送る。充電器Chは、電流指令値に基づいて、一定電流を二次電池システム1に流す。すると、充電器Chの正極端子から正極側充電端子Tip、第1出力部スイッチS11、二次電池B1、電流計Si1、直列接続用スイッチS31、二次電池B2、電流計Si2、直列接続用スイッチS32、二次電池B3、電流計Si3、直列接続用スイッチS33、二次電池B4、電流計Si4、第2出力部スイッチS24、スイッチS41、及び負極側充電端子Tinを介して充電器Chの負極端子に一定電流が流れ、二次電池B1~B4がそれぞれ充電されることにより、二次電池B1~B4の各電圧がそれぞれ上昇する。なお、一定電流は、充電ケーブルCaの定格電流などにより予め決められているものとする。このように、二次電池B1~B4を互いに直列接続させた状態で、二次電池B1~B4を充電させる場合、二次電池B1~B4全体にかかる電圧を比較的高くすることができるため、二次電池B1~B4に流れる電流を比較的小さくすることができる。そのため、充電ケーブルCaを小型化することができるため、ユーザにおける充電作業性を向上させることができる。 Next, the controller 3 sends a current command value to the charger Ch so that a constant current flows through the secondary battery system 1 . The charger Ch supplies a constant current to the secondary battery system 1 based on the current command value. Then, from the positive terminal of the charger Ch to the positive side charging terminal Tip, the first output section switch S11, the secondary battery B1, the ammeter Si1, the series connection switch S31, the secondary battery B2, the ammeter Si2, the series connection switch S32, secondary battery B3, ammeter Si3, series connection switch S33, secondary battery B4, ammeter Si4, second output section switch S24, switch S41, and negative electrode of charger Ch via negative charging terminal Tin A constant current flows through the terminals to charge the secondary batteries B1 to B4, respectively, thereby increasing the voltages of the secondary batteries B1 to B4. It should be noted that the constant current is determined in advance by the rated current of the charging cable Ca and the like. In this way, when the secondary batteries B1 to B4 are charged in a state in which the secondary batteries B1 to B4 are connected in series, the voltage applied to the entire secondary batteries B1 to B4 can be relatively high. The current flowing through the secondary batteries B1 to B4 can be made relatively small. Therefore, since the charging cable Ca can be made smaller, the charging workability for the user can be improved.

次に、制御部3は、二次電池B1~B4に一定電流を流しているとき、二次電池B1~B4の各電圧のうちの少なくとも1つの電圧が所定電圧以上になると、その少なくとも1つの電圧を所定電圧に保ちつつ二次電池B1~B4に流れる電流が徐々に小さくなるように電流指令値を充電器Chに送る。 Next, when the voltage of at least one of the voltages of the secondary batteries B1 to B4 becomes equal to or higher than a predetermined voltage while a constant current is flowing through the secondary batteries B1 to B4, the control unit 3 A current command value is sent to the charger Ch so that the current flowing through the secondary batteries B1 to B4 gradually decreases while maintaining the voltage at a predetermined voltage.

そして、制御部3は、二次電池B1~B4に流れる電流のうちの少なくとも1つの電流が終止電流になると、二次電池B1~B4のうちの少なくとも1つの二次電池Bが満充電状態になったと判断し、二次電池B1~B4に流れる電流がゼロになるように電流指令値を充電器Chに送り、二次電池B1~B4の充電を終了する。なお、終止電流は、二次電池B1~B4が満充電状態になったことを判断するための電流値である。 Then, when at least one of the currents flowing through the secondary batteries B1 to B4 becomes the terminal current, the control unit 3 causes at least one of the secondary batteries B1 to B4 to reach a fully charged state. Then, a current command value is sent to the charger Ch so that the current flowing through the secondary batteries B1-B4 becomes zero, and the charging of the secondary batteries B1-B4 is completed. Note that the final current is a current value for determining that the secondary batteries B1 to B4 have reached a fully charged state.

すなわち、制御部3は、二次電池B1~B4の充電中、定電流充電制御を行った後、定電圧充電制御を行う。 That is, while the secondary batteries B1 to B4 are being charged, the controller 3 performs constant-current charging control and then constant-voltage charging control.

ところで、二次電池B1~B4の充電中、二次電池B1~B4の製造ばらつきや経年劣化のばらつきなどの影響により二次電池B1~B4のそれぞれの充電率(満充電容量に対する現在の容量の割合)が互いに異なっていき、二次電池B1~B4の各電圧が互いに異なっていくおそれがある。また、二次電池B1~B4の各電圧が互いに異なっている状態において、二次電池B1~B4を放電させるために二次電池B1~B4を互いに並列接続させると、電圧が高い二次電池Bから電圧が低い二次電池Bに還流電流が流れ、二次電池B1~B4の各充電率(各電圧)が均等化される。そのため、二次電池B1~B4の充電が終了した後に二次電池B1~B4を放電させる場合、放電開始時の二次電池B1~B4の全体の充電率(電圧)が、充電終了直後の二次電池B1~B4の全体の充電率(電圧)に比べて低下するおそれがある。 By the way, during the charging of the secondary batteries B1 to B4, the charging rate of each of the secondary batteries B1 to B4 (the ratio of the current capacity to the full charge capacity) varies due to the influence of variations in manufacturing and aging deterioration of the secondary batteries B1 to B4. ratio) are different from each other, and there is a possibility that the respective voltages of the secondary batteries B1 to B4 are different from each other. Further, in a state where the secondary batteries B1 to B4 have different voltages, if the secondary batteries B1 to B4 are connected in parallel to discharge the secondary batteries B1 to B4, the secondary battery B having the higher voltage A return current flows from the secondary battery B having a lower voltage, and the charging rates (voltages) of the secondary batteries B1 to B4 are equalized. Therefore, when the secondary batteries B1 to B4 are discharged after the charging of the secondary batteries B1 to B4 is completed, the overall charging rate (voltage) of the secondary batteries B1 to B4 at the start of discharging is the same as that immediately after charging is completed. There is a possibility that the charging rate (voltage) of the following batteries B1 to B4 may be lower than that of the entire batteries B1 to B4.

そこで、実施形態の制御部3では、定電流充電制御後の定電圧充電制御中において、二次電池B1~B4に流れる電流が切替電流以下になったとき、二次電池B1~B4が互いに並列接続されるように切替回路の動作を制御する。これにより、二次電池B1~B4に互いに等しい電圧がかかり、まだ満充電状態に至っていない二次電池Bに比較的大きな電流が流れ、満充電状態に近い二次電池Bに比較的小さな電流が流れるため、二次電池B1~B4を充電させつつ、二次電池B1~B4の各電圧を均等化させることができる。そのため、充電終了後の放電開始時に二次電池B1~B4の間に流れる還流電流を低減することができ、充電終了後の放電開始時に二次電池B1~B4の全体の充電率(電圧)が低下することを抑制することができる。 Therefore, in the control unit 3 of the embodiment, when the current flowing through the secondary batteries B1 to B4 becomes equal to or less than the switching current during the constant voltage charging control after the constant current charging control, the secondary batteries B1 to B4 are connected in parallel with each other. It controls the operation of the switching circuit so that it is connected. As a result, the secondary batteries B1 to B4 are applied with the same voltage, a relatively large current flows through the secondary battery B that has not yet reached a fully charged state, and a relatively small current flows through the secondary battery B that is almost fully charged. Since the current flows, the voltages of the secondary batteries B1 to B4 can be equalized while the secondary batteries B1 to B4 are being charged. Therefore, it is possible to reduce the return current flowing between the secondary batteries B1 to B4 at the start of discharging after the end of charging, and the charging rate (voltage) of the entire secondary batteries B1 to B4 at the start of discharging after the end of charging can be reduced. It is possible to suppress the decrease.

また、実施形態では、一定電流を二次電池Bの個数で除算した値を切替電流とする。例えば、一定電流を200[A]とする場合、切替電流を50[A]=200[A]/4とする。これにより、二次電池B1~B4が直列接続から並列接続に切り替わるときに二次電池B1~B4に流れる全体電流が一定電流まで大きくなるため、充電ケーブルCaの定格電流を一定電流より大きい値にする必要がなく、充電ケーブルCaの重量化を抑制することができる。 Further, in the embodiment, a value obtained by dividing a constant current by the number of secondary batteries B is used as a switching current. For example, when the constant current is 200 [A], the switching current is 50 [A]=200 [A]/4. As a result, when the secondary batteries B1 to B4 are switched from series connection to parallel connection, the total current flowing through the secondary batteries B1 to B4 increases to a constant current, so the rated current of the charging cable Ca is set to a value higher than the constant current. Therefore, the weight of the charging cable Ca can be suppressed.

また、実施形態の制御部3では、定電圧充電制御中において、二次電池B1~B4を直列接続から並列接続に切り替えた後、二次電池B1~B4に流れる全体電流を一定電流まで大きくさせる。例えば、制御部3は、二次電池B1~B4を直列接続から並列接続に切り替えた後、一定電流と同じ値の電流指令値を充電器Chに送る。これにより、二次電池B1~B4が直列接続から並列接続に切り替わった後に二次電池B1~B4に流れる全体電流を一定電流より小さくさせる場合に比べて、二次電池B1~B4が直列接続から並列接続に切り替わった後に二次電池B1~B4にそれぞれ流れる電流が小さくならず、定電圧充電制御中において二次電池B1~B4を互いに並列接続させる期間が短くならないため、二次電池B1~B4の各電圧のばらつきが大きくなることを抑制することができる。 Further, in the control unit 3 of the embodiment, after switching the secondary batteries B1 to B4 from series connection to parallel connection during the constant voltage charging control, the total current flowing through the secondary batteries B1 to B4 is increased to a constant current. . For example, after switching the secondary batteries B1 to B4 from series connection to parallel connection, the control unit 3 sends a current command value equal to the constant current to the charger Ch. As a result, compared to the case where the total current flowing through the secondary batteries B1 to B4 after switching from the series connection to the parallel connection of the secondary batteries B1 to B4 is made smaller than a constant current, the secondary batteries B1 to B4 are switched from the series connection to the parallel connection. After switching to parallel connection, the current flowing through each of the secondary batteries B1 to B4 does not decrease, and the period during which the secondary batteries B1 to B4 are connected in parallel during the constant voltage charging control does not become shorter. It is possible to suppress an increase in the variation of each voltage of .

図2は、制御部3の動作の一例を示すフローチャートである。 FIG. 2 is a flow chart showing an example of the operation of the control section 3. As shown in FIG.

制御部3は、二次電池システム1から負荷Loへの電力供給開始指示が入力されると(ステップS1:Yes)、二次電池B1~B4が互いに並列接続されるように切替回路の動作を制御するとともに二次電池B1~B4が負荷Loに接続されるようにスイッチS41、S42の動作を制御する(ステップS2)。 When the control unit 3 receives an instruction to start supplying power to the load Lo from the secondary battery system 1 (step S1: Yes), the control unit 3 operates the switching circuit so that the secondary batteries B1 to B4 are connected in parallel with each other. In addition, the operations of the switches S41 and S42 are controlled so that the secondary batteries B1 to B4 are connected to the load Lo (step S2).

次に、制御部3は、二次電池システム1から負荷Loへの電力供給終了指示が入力されると(ステップS3:Yes)、スイッチS41、S42を遮断させて二次電池B1~B4の放電を終了させる。 Next, when an instruction to end the power supply to the load Lo is input from the secondary battery system 1 (step S3: Yes), the control unit 3 cuts off the switches S41 and S42 to discharge the secondary batteries B1 to B4. terminate.

また、制御部3は、二次電池B1~B4の充電開始指示が入力されると(ステップS1:No、ステップS4:Yes)、二次電池B1~B4が互いに直列接続されるように切替回路の動作を制御するとともに二次電池B1~B4が充電器Chに接続されるようにスイッチS41、S42の動作を制御する(ステップS5)。 Further, when the control unit 3 receives an instruction to start charging the secondary batteries B1 to B4 (step S1: No, step S4: Yes), the control unit 3 switches the switching circuit so that the secondary batteries B1 to B4 are connected in series with each other. and control the operations of the switches S41 and S42 so that the secondary batteries B1 to B4 are connected to the charger Ch (step S5).

次に、制御部3は、二次電池B1~B4に一定電流を流す定電流充電制御を行い(ステップS6)、二次電池B1~B4の各電圧が所定電圧Vthより小さい場合(ステップS7:No)、定電流充電制御を継続する。 Next, the control unit 3 performs constant current charging control to supply a constant current to the secondary batteries B1 to B4 (step S6). No), the constant current charging control is continued.

次に、制御部3は、二次電池B1~B4の各電圧のうちの少なくとも1つの電圧が所定電圧以上になると(ステップS7:Yes)、その少なくとも1つの電圧を所定電圧に保ちつつ二次電池B1~B4に流れる電流を所定電流分低下させる定電圧充電制御を行う(ステップS8)。 Next, when at least one of the voltages of the secondary batteries B1 to B4 reaches or exceeds a predetermined voltage (step S7: Yes), the control unit 3 keeps the at least one voltage at the predetermined voltage and Constant voltage charge control is performed to reduce the current flowing through the batteries B1 to B4 by a predetermined amount (step S8).

次に、制御部3は、二次電池B1~B4に流れる電流が切替電流より大きい場合(ステップS9:No)、定電圧充電制御を継続する。 Next, when the current flowing through the secondary batteries B1 to B4 is greater than the switching current (step S9: No), the control unit 3 continues constant voltage charging control.

一方、制御部3は、二次電池B1~B4に流れる電流が切替電流以下になると(ステップS9:Yes)、二次電池B1~B4が互いに並列接続されるように切替回路の動作を制御するとともに二次電池B1~B4に流れる全体電流を一定電流まで大きくさせた後(ステップS10)、二次電池B1~B4の各電圧のうちの少なくとも1つの電圧を所定電圧に保ちつつ二次電池B1~B4に流れる電流を所定電流分低下させる定電圧充電制御を行う(ステップS11)。なお、ステップS8における所定電流とステップS11における所定電流は、二次電池Bの特性や充電時間などにより予め決められる任意の値であって、互いに同じ値でもよいし、互いに異なる値でもよい。 On the other hand, when the current flowing through the secondary batteries B1 to B4 becomes equal to or less than the switching current (step S9: Yes), the control unit 3 controls the operation of the switching circuit so that the secondary batteries B1 to B4 are connected in parallel with each other. After increasing the total current flowing through the secondary batteries B1 to B4 to a constant current (step S10), while maintaining at least one of the voltages of the secondary batteries B1 to B4 at a predetermined voltage, the secondary battery B1 A constant voltage charging control is performed to reduce the current flowing through B4 by a predetermined amount (step S11). The predetermined current in step S8 and the predetermined current in step S11 are arbitrary values determined in advance according to the characteristics of the secondary battery B and the charging time, and may be the same value or different values.

次に、制御部3は、二次電池B1~B4にそれぞれ流れる電流が終止電流より大きい場合(ステップS12:No)、定電圧充電制御を継続する。 Next, when the current flowing through each of the secondary batteries B1 to B4 is greater than the final current (step S12: No), the control unit 3 continues constant voltage charging control.

一方、制御部3は、二次電池B1~B4に流れる電流のうちの少なくとも1つの電流が終止電流以下になると(ステップS12:Yes)、二次電池B1~B4に流れる電流をゼロにさせて二次電池B1~B4の充電を終了する(ステップS13)。 On the other hand, when at least one of the currents flowing through the secondary batteries B1 to B4 becomes equal to or less than the final current (step S12: Yes), the control unit 3 causes the current flowing through the secondary batteries B1 to B4 to become zero. Charging of the secondary batteries B1 to B4 ends (step S13).

なお、図3に示す制御部3の動作の変形例のように、制御部3は、二次電池B1~B4に流れる電流が切替電流以下になると(ステップS9:Yes)、二次電池B1~B4に流れる電流をゼロにさせた後(ステップS10´)、二次電池B1~B4を互いに並列接続させる(ステップS10)ように構成してもよい。例えば、制御部3は、二次電池B1~B4に流れる電流が切替電流以下になると、ゼロを示す電流指令値を充電器Chに送り、電流計Si1~Si4により検出される電流がそれぞれゼロになると、二次電池B1~B4を互いに並列接続させる。このように構成することにより、二次電池B1~B4の充電中において、二次電池B1~B4が直列接続から並列接続に切り替わる際に二次電池B1~B4に突入電流が流れることを防止することができる。 Note that, as in the modified example of the operation of the control unit 3 shown in FIG. After setting the current flowing through B4 to zero (step S10'), secondary batteries B1 to B4 may be connected in parallel (step S10). For example, when the current flowing through the secondary batteries B1 to B4 becomes equal to or less than the switching current, the control unit 3 sends a current command value indicating zero to the charger Ch, and the currents detected by the ammeters Si1 to Si4 become zero. Then, the secondary batteries B1 to B4 are connected in parallel with each other. With this configuration, it is possible to prevent a rush current from flowing through the secondary batteries B1 to B4 when the secondary batteries B1 to B4 are switched from series connection to parallel connection while the secondary batteries B1 to B4 are being charged. be able to.

図4(a)は、充電中の二次電池B1~B4に流れる電流の変化例を示す図である。なお、図4(a)に示す2次元座標の横軸は時間を示し、縦軸は電流を示している。また、図4(a)に示す実線は二次電池B1~B4に流れる全体電流を示し、図4(a)に示す破線は二次電池B1~B4にそれぞれ流れる電流のうちの1つの電流(個別電流)を示している。また、図4(b)は、充電中の二次電池B1~B4の各電圧の変化例を示す図である。なお、図4(b)に示す2次元座標の横軸は時間を示し、縦軸は電圧を示している。また、図4(b)に示す実線は二次電池B1の電圧を示し、図4(b)に示す破線は二次電池B2の電圧を示し、図4(b)に示す一点鎖線は二次電池B3の電圧を示し、図4(b)に示す二点鎖線は二次電池B4の電圧を示している。 FIG. 4(a) is a diagram showing an example of changes in the current flowing through the secondary batteries B1 to B4 during charging. Note that the horizontal axis of the two-dimensional coordinates shown in FIG. 4A indicates time, and the vertical axis indicates current. Further, the solid line shown in FIG. 4(a) indicates the total current flowing through the secondary batteries B1 to B4, and the dashed line shown in FIG. 4(a) indicates one current ( individual current). FIG. 4B is a diagram showing an example of voltage changes of the secondary batteries B1 to B4 during charging. Note that the horizontal axis of the two-dimensional coordinates shown in FIG. 4B indicates time, and the vertical axis indicates voltage. Further, the solid line shown in FIG. 4(b) indicates the voltage of the secondary battery B1, the dashed line shown in FIG. 4(b) indicates the voltage of the secondary battery B2, and the dashed line shown in FIG. The voltage of the battery B3 is shown, and the two-dot chain line shown in FIG. 4(b) shows the voltage of the secondary battery B4.

まず、制御部3は、時刻t0において、二次電池B1~B4を互いに直列接続させる。 First, at time t0, control unit 3 connects secondary batteries B1 to B4 in series with each other.

次に、制御部3は、時刻t0から時刻t1までの期間において、定電流充電制御を行う。なお、時刻t0から時刻t1までの期間において、二次電池B1~B4の各電圧は徐々に上昇する。また、時刻t1において、二次電池B1の電圧(充電率)が最も大きくなり、二次電池B2の電圧(充電率)が二番目に大きくなり、二次電池B3の電圧(充電率)が三番目に大きくなり、二次電池B4の電圧(充電率)が最も小さくなるものとする。 Next, the control unit 3 performs constant current charging control in a period from time t0 to time t1. In the period from time t0 to time t1, the voltages of secondary batteries B1 to B4 gradually increase. Also, at time t1, the voltage (charging rate) of secondary battery B1 is the highest, the voltage (charging rate) of secondary battery B2 is the second highest, and the voltage (charging rate) of secondary battery B3 is three. It is assumed that the voltage (charging rate) of the secondary battery B4 is the smallest.

次に、制御部3は、時刻t1において、二次電池B1の電圧が所定電圧以上になると、時刻t1から時刻t2までの期間において、定電圧充電制御を行う。なお、時刻t1から時刻t2までの期間において、二次電池B1の電圧は所定電圧に保たれ、二次電池B2~B4の各電圧は時刻t1における二次電池B2~B4の各電圧と同じ電圧に保たれるものとする。 Next, when the voltage of the secondary battery B1 becomes equal to or higher than a predetermined voltage at time t1, the control unit 3 performs constant voltage charging control during the period from time t1 to time t2. In the period from time t1 to time t2, the voltage of the secondary battery B1 is maintained at a predetermined voltage, and the voltages of the secondary batteries B2 to B4 are the same as the voltages of the secondary batteries B2 to B4 at time t1. shall be kept at

次に、制御部3は、時刻t2において、二次電池B1~B4に流れる電流(個別電流)が切替電流以下になると、二次電池B1~B4を互いに並列接続させるとともに二次電池B1~B4に流れる全体電流を一定電流まで大きくさせる。 Next, at time t2, when the current (individual current) flowing through the secondary batteries B1 to B4 becomes equal to or less than the switching current, the control unit 3 connects the secondary batteries B1 to B4 in parallel and switches the secondary batteries B1 to B4. increase the total current flowing through to a constant current.

次に、制御部3は、時刻t2から時刻t3までの期間において、定電圧充電制御を行う。このとき、二次電池B4に最も多く充電電流が流れ、二次電池B3に二番目に多く充電電流が流れ、二次電池B2に三番目に多く充電電流が流れ、二次電池B1に最も少なく充電電流が流れる。そのため、二次電池B2~B4の各電圧が二次電池B1の電圧に徐々に近づいていき、二次電池B1~B4の各電圧が均等化される。 Next, the control unit 3 performs constant voltage charging control during the period from time t2 to time t3. At this time, the largest amount of charging current flows through secondary battery B4, the second largest amount of charging current flows through secondary battery B3, the third largest amount of charging current flows through secondary battery B2, and the smallest amount of charging current flows through secondary battery B1. charging current flows. Therefore, the voltages of the secondary batteries B2 to B4 gradually approach the voltage of the secondary battery B1, and the voltages of the secondary batteries B1 to B4 are equalized.

そして、制御部3は、時刻t3において、二次電池B1~B4に流れる電流(個別電流)が終止電流以下になると、二次電池B1~B4に流れる電流(個別電流)をゼロにさせる。 At time t3, when the current (individual current) flowing through the secondary batteries B1-B4 becomes equal to or less than the final current, the control unit 3 causes the current (individual current) flowing through the secondary batteries B1-B4 to be zero.

このように、実施形態の二次電池システム1では、定電流充電制御後の定電圧充電制御中において、二次電池B1~B4に流れる電流が切替電流以下になると、二次電池B1~B4が互いに並列接続されるように切替回路の動作を制御するとともに二次電池B1~B4に流れる全体電流を一定電流まで大きくさせる構成である。これにより、充電ケーブルCaの重量化を抑制しつつ、二次電池B1~B4の各電圧のばらつきが大きくなることを抑制することができる。 As described above, in the secondary battery system 1 of the embodiment, when the current flowing through the secondary batteries B1 to B4 becomes equal to or less than the switching current during the constant voltage charging control after the constant current charging control, the secondary batteries B1 to B4 are This configuration controls the operation of the switching circuits so that they are connected in parallel and increases the total current flowing through the secondary batteries B1 to B4 to a constant current. As a result, it is possible to suppress an increase in variation in the voltages of the secondary batteries B1 to B4 while suppressing the weight of the charging cable Ca.

なお、本発明は、以上の実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。 The present invention is not limited to the above embodiments, and various improvements and modifications are possible without departing from the gist of the present invention.

<変形例>
図5は、実施形態の二次電池システムの変形例を示す図である。なお、図5に示す二次電池システム1において、図1に示す構成と同じ構成には同じ符号を付し、その説明を省略する。
<Modification>
FIG. 5 is a diagram showing a modification of the secondary battery system of the embodiment. In the secondary battery system 1 shown in FIG. 5, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.

図5に示す二次電池システム1において、図1に示す二次電池システム1と異なる点は、正極側充電端子Tipが二次電池B1の正極端子と第1出力部スイッチS11の一方端子との接続点に接続されている点と、負極側充電端子Tinが二次電池B4の負極端子と第2出力部スイッチS24の一方端子との接続点に接続されている点である。なお、スイッチS41は、二次電池B4の負極端子と第2出力部スイッチS24の一方端子との接続点と負極側充電端子Tinとの間に接続されているものとする。また、図5に示す二次電池システム1における二次電池B1~B4の放電中の切替回路の動作制御は、図1に示す二次電池システム1における二次電池B1~B4の放電中の切替回路の動作制御と同様であり、その説明を省略する。 The secondary battery system 1 shown in FIG. 5 differs from the secondary battery system 1 shown in FIG. 1 in that the positive electrode side charging terminal Tip is connected to the positive electrode terminal of the secondary battery B1 and one terminal of the first output section switch S11. and that the negative charge terminal Tin is connected to the connection point between the negative terminal of the secondary battery B4 and one terminal of the second output switch S24. The switch S41 is connected between the connection point between the negative terminal of the secondary battery B4 and one terminal of the second output switch S24 and the negative charging terminal Tin. Further, the operation control of the switching circuit during discharging of the secondary batteries B1 to B4 in the secondary battery system 1 shown in FIG. This is the same as the operation control of the circuit, so its explanation is omitted.

<二次電池B1~B4の充電中における切替回路の動作制御について>
まず、制御部3は、二次電池B1~B4の充電開始時、直列接続用スイッチS31~S33及びスイッチS41を導通させるとともに、第1出力部スイッチS11~S14、第2出力部スイッチS21~S24、及びスイッチS42を遮断させる。これにより、二次電池B1~B4が互いに直列接続されるとともに、二次電池B1~B4が充電器Chに接続される。
<Regarding operation control of the switching circuit during charging of the secondary batteries B1 to B4>
First, when charging of the secondary batteries B1 to B4 is started, the control unit 3 turns on the series connection switches S31 to S33 and the switch S41, and the first output unit switches S11 to S14 and the second output unit switches S21 to S24. , and the switch S42 is cut off. Thereby, the secondary batteries B1 to B4 are connected in series with each other, and the secondary batteries B1 to B4 are connected to the charger Ch.

次に、制御部3は、二次電池B1~B4に一定電流が流れるように電流指令値を充電器Chに送る。充電器Chは、電流指令値に基づいて、一定電流を二次電池システム1に流す。すると、充電器Chの正極端子から正極側充電端子Tip、二次電池B1、電流計Si1、直列接続用スイッチS31、二次電池B2、電流計Si2、直列接続用スイッチS32、二次電池B3、電流計Si3、直列接続用スイッチS33、二次電池B4、電流計Si4、スイッチS41、及び負極側充電端子Tinを介して充電器Chの負極端子に一定電流が流れ、二次電池B1~B4がそれぞれ充電されることにより、二次電池B1~B4の各電圧がそれぞれ上昇する。 Next, the controller 3 sends a current command value to the charger Ch so that a constant current flows through the secondary batteries B1 to B4. The charger Ch supplies a constant current to the secondary battery system 1 based on the current command value. Then, from the positive terminal of the charger Ch to the positive side charging terminal Tip, secondary battery B1, ammeter Si1, series connection switch S31, secondary battery B2, ammeter Si2, series connection switch S32, secondary battery B3, A constant current flows through the negative terminal of the charger Ch through the ammeter Si3, the switch S33 for series connection, the secondary battery B4, the ammeter Si4, the switch S41, and the negative charging terminal Tin, and the secondary batteries B1 to B4 are charged. By being charged, the voltages of the secondary batteries B1 to B4 rise.

次に、制御部3は、二次電池B1~B4に一定電流を流しているとき、二次電池B1~B4の各電圧のうちの少なくとも1つの電圧が所定電圧以上になると、その少なくとも1つの電圧を所定電圧に保ちつつ二次電池B1~B4に流れる電流が徐々に小さくなるように電流指令値を充電器Chに送る。 Next, when the voltage of at least one of the voltages of the secondary batteries B1 to B4 becomes equal to or higher than a predetermined voltage while a constant current is flowing through the secondary batteries B1 to B4, the control unit 3 A current command value is sent to the charger Ch so that the current flowing through the secondary batteries B1 to B4 gradually decreases while maintaining the voltage at a predetermined voltage.

次に、制御部3は、二次電池B1~B4に流れる電流が切替電流以下になると、第1出力部スイッチS11~S14、第2出力部スイッチS21~S24、スイッチS41を導通させるとともに、直列接続用スイッチS31~S33及びスイッチS42を遮断させる。これにより、二次電池B1~B4が互いに並列接続されるとともに、二次電池B1~B4が充電器Chに接続される。なお、制御部3は、二次電池B1~B4に流れる電流が切替電流以下になると、一旦、二次電池B1~B4に流れる電流をゼロにさせ、その後、二次電池B1~B4を互いに並列接続させるように構成してもよい。 Next, when the current flowing through the secondary batteries B1 to B4 becomes equal to or less than the switching current, the control unit 3 conducts the first output unit switches S11 to S14, the second output unit switches S21 to S24, and the switch S41, and switches the switches in series. The connection switches S31 to S33 and the switch S42 are turned off. Thereby, the secondary batteries B1 to B4 are connected in parallel with each other, and the secondary batteries B1 to B4 are connected to the charger Ch. When the current flowing through the secondary batteries B1-B4 becomes equal to or less than the switching current, the control unit 3 temporarily reduces the current flowing through the secondary batteries B1-B4 to zero, and then connects the secondary batteries B1-B4 in parallel. may be configured to be connected.

次に、制御部3は、二次電池B1~B4に流れる全体電流が一定電流まで大きくなるように電流指令値を充電器Chに送る。充電器Chは、電流指令値に基づいて、一定電流を二次電池システム1に流す。すると、充電器Chの正極端子から正極側充電端子Tip、二次電池B1、電流計Si1、第2出力部スイッチS21、第2出力部スイッチS24、スイッチS41、及び負極側充電端子Tinを介して、充電器Chの負極端子に電流が流れる。また、充電器Chの正極端子から正極側充電端子Tip、第1出力部スイッチS11、第1出力部スイッチS12、二次電池B2、電流計Si2、第2出力部スイッチS22、第2出力部スイッチS24、スイッチS41、及び負極側充電端子Tinを介して、充電器Chの負極端子に電流が流れる。また、充電器Chの正極端子から正極側充電端子Tip、第1出力部スイッチS11、第1出力部スイッチS13、二次電池B3、電流計Si3、第2出力部スイッチS23、第2出力部スイッチS24、スイッチS41、及び負極側充電端子Tinを介して、充電器Chの負極端子に電流が流れる。また、充電器Chの正極端子から正極側充電端子Tip、第1出力部スイッチS11、第1出力部スイッチS14、二次電池B4、電流計Si4、スイッチS41、及び負極側充電端子Tinを介して、充電器Chの負極端子に電流が流れる。 Next, the control unit 3 sends a current command value to the charger Ch so that the total current flowing through the secondary batteries B1 to B4 increases to a constant current. The charger Ch supplies a constant current to the secondary battery system 1 based on the current command value. Then, from the positive terminal of the charger Ch through the positive charging terminal Tip, the secondary battery B1, the ammeter Si1, the second output section switch S21, the second output section switch S24, the switch S41, and the negative charging terminal Tin, , a current flows to the negative terminal of the charger Ch. Further, from the positive terminal of the charger Ch to the positive side charging terminal Tip, the first output section switch S11, the first output section switch S12, the secondary battery B2, the ammeter Si2, the second output section switch S22, the second output section switch A current flows to the negative terminal of the charger Ch via S24, the switch S41, and the negative charging terminal Tin. Further, from the positive terminal of the charger Ch to the positive side charging terminal Tip, the first output section switch S11, the first output section switch S13, the secondary battery B3, the ammeter Si3, the second output section switch S23, the second output section switch A current flows to the negative terminal of the charger Ch via S24, the switch S41, and the negative charging terminal Tin. Also, from the positive terminal of the charger Ch through the positive side charging terminal Tip, the first output section switch S11, the first output section switch S14, the secondary battery B4, the ammeter Si4, the switch S41, and the negative side charging terminal Tin. , a current flows to the negative terminal of the charger Ch.

次に、制御部3は、二次電池B1~B4の各電圧のうちの少なくとも1つの電圧を所定電圧に保ちつつ二次電池B1~B4にそれぞれ流れる電流が徐々に小さくなるように電流指令値を充電器Chに送る。 Next, the control unit 3 maintains at least one of the voltages of the secondary batteries B1 to B4 at a predetermined voltage, and controls the current command value so that the currents flowing through the secondary batteries B1 to B4 gradually decrease. to the charger Ch.

そして、制御部3は、二次電池B1~B4にそれぞれ流れる電流のうちの少なくとも1つの電流が終止電流になると、二次電池B1~B4にそれぞれ流れる電流がゼロになるように電流指令値を充電器Chに送り、二次電池B1~B4の充電を終了する。 Then, when at least one of the currents flowing through the secondary batteries B1 to B4 becomes the terminal current, the control unit 3 sets the current command value so that the currents flowing through the secondary batteries B1 to B4 become zero. The secondary batteries B1 to B4 are sent to the charger Ch to finish charging.

なお、図5に示す二次電池システム1では、定電圧充電制御中において二次電池B1~B4が互いに並列接続されているとき、二次電池B2~B4にそれぞれ流れる電流の合計が第1出力部スイッチS11に流れる。そのため、二次電池B2~B4にそれぞれ流れる電流の合計に基づいて、第1出力部スイッチS11の定格電流が決められるものとする。 In the secondary battery system 1 shown in FIG. 5, when the secondary batteries B1 to B4 are connected in parallel during constant voltage charging control, the total current flowing through the secondary batteries B2 to B4 is the first output. flow to the internal switch S11. Therefore, it is assumed that the rated current of the first output section switch S11 is determined based on the total current flowing through each of the secondary batteries B2 to B4.

また、図5に示す二次電池システム1では、定電圧充電制御中において二次電池B1~B4が互いに並列接続されているとき、二次電池B1~B3にそれぞれ流れる電流の合計が第2出力部スイッチS24に流れる。そのため、二次電池B1~B3にそれぞれ流れる電流の合計に基づいて、第2出力部スイッチS24の定格電流が決められるものとする。 Further, in the secondary battery system 1 shown in FIG. 5, when the secondary batteries B1 to B4 are connected in parallel during constant voltage charging control, the total current flowing through each of the secondary batteries B1 to B3 is the second output. flow to the internal switch S24. Therefore, it is assumed that the rated current of the second output section switch S24 is determined based on the total current flowing through each of the secondary batteries B1 to B3.

また、図5に示す二次電池システム1では、充電ケーブルCaの定格電流、または、第1出力部スイッチS11及び第2出力部スイッチS24の定格電流に基づいて、切替電流が決められるものとする。 Further, in the secondary battery system 1 shown in FIG. 5, the switching current is determined based on the rated current of the charging cable Ca or the rated current of the first output section switch S11 and the second output section switch S24. .

例えば、充電ケーブルCaの定格電流が200[A]であり、第1出力部スイッチS11及び第2出力部スイッチS24の定格電流が160[A]である場合、切替電流として50[A]=200[A]/4及び40[A]=160[A]/4が考えられる。また、150[A]=50[A]×3及び120[A]=40[A]×3は、どちらも第1出力部スイッチS11及び第2出力部スイッチS24の定格電流以下である。そのため、50[A]及び40[A]のうち、大きい値である50[A]を切替電流とする。なお、200[A]=50[A]×4を一定電流とする。 For example, when the rated current of the charging cable Ca is 200 [A] and the rated current of the first output switch S11 and the second output switch S24 is 160 [A], the switching current is 50 [A]=200 [A]/4 and 40[A]=160[A]/4 are considered. Both 150 [A]=50 [A]×3 and 120 [A]=40 [A]×3 are below the rated currents of the first output section switch S11 and the second output section switch S24. Therefore, between 50 [A] and 40 [A], 50 [A], which is the larger value, is used as the switching current. A constant current is 200 [A]=50 [A]×4.

また、充電ケーブルCaの定格電流が200[A]であり、第1出力部スイッチS11及び第2出力部スイッチS24の定格電流が120[A]である場合、切替電流として50[A]=200[A]/4及び30[A]=120[A]/4が考えられる。また、90[A]=30[A]×3は、第1出力部スイッチS11及び第2出力部スイッチS24の定格電流以下であるが、150[A]=50[A]×3は、第1出力部スイッチS11及び第2出力部スイッチS24の定格電流より大きくなってしまう。そのため、50[A]及び30[A]のうちの30[A]を切替電流とする。なお、120[A]=30[A]×4を一定電流とする。 Further, when the rated current of the charging cable Ca is 200 [A] and the rated current of the first output section switch S11 and the second output section switch S24 is 120 [A], the switching current is 50 [A] = 200 [A]/4 and 30[A]=120[A]/4 are considered. Also, 90 [A] = 30 [A] x 3 is below the rated current of the first output section switch S11 and the second output section switch S24, but 150 [A] = 50 [A] x 3 is the It becomes larger than the rated current of the 1st output switch S11 and the 2nd output switch S24. Therefore, 30 [A] out of 50 [A] and 30 [A] is set as the switching current. A constant current is 120 [A]=30 [A]×4.

このように、図5に示す二次電池システム1においても、定電流充電制御後の定電圧充電制御中において、二次電池B1~B4に流れる電流が切替電流以下になると、二次電池B1~B4が互いに並列接続されるように切替回路の動作を制御するとともに二次電池B1~B4に流れる全体電流を一定電流まで大きくさせる構成である。これにより、充電ケーブルCaの重量化を抑制しつつ、二次電池B1~B4の各電圧のばらつきが大きくなることを抑制することができる。 As described above, in the secondary battery system 1 shown in FIG. 5 as well, during the constant voltage charging control after the constant current charging control, when the current flowing through the secondary batteries B1 to B4 becomes equal to or less than the switching current, the secondary batteries B1 to In this configuration, the operation of the switching circuit is controlled so that the secondary batteries B4 are connected in parallel with each other, and the total current flowing through the secondary batteries B1 to B4 is increased to a constant current. As a result, it is possible to suppress an increase in variation in the voltages of the secondary batteries B1 to B4 while suppressing the weight of the charging cable Ca.

1 二次電池システム
2 記憶部
3 制御部
B1~B4 二次電池
Ve 車両
Lo 負荷
Ch 充電器
Ca 充電ケーブル
Tip 正極側充電端子
Tin 負極側充電端子
Top 正極側放電端子
Ton 負極側放電端子
S11~S14 第1出力部スイッチ
S21~S24 第2出力部スイッチ
S31~S33 直列接続用スイッチ
S41、S42 スイッチ
1 Secondary battery system 2 Storage unit 3 Control unit B1 to B4 Secondary battery Ve Vehicle Lo Load Ch Charger Ca Charging cable Tip Positive side charging terminal Tin Negative side charging terminal Top Positive side discharging terminal Ton Negative side discharging terminal S11 to S14 First output section switches S21 to S24 Second output section switches S31 to S33 Series connection switches S41 and S42 Switches

Claims (2)

複数の二次電池と、
前記複数の二次電池を互いに直列接続または並列接続させる切替回路と、
前記切替回路の動作を制御する制御部と、
を備え、
前記制御部は、
前記複数の二次電池の放電中、前記複数の二次電池が互いに並列接続されるように前記切替回路の動作を制御し、
前記複数の二次電池の充電中、前記複数の二次電池が互いに直列接続されるように前記切替回路の動作を制御するとともに前記複数の二次電池に一定電流を流し、前記複数の二次電池の各電圧のうちの少なくとも1つの電圧が所定電圧以上になると、前記少なくとも1つの電圧を前記所定電圧に保ちつつ前記複数の二次電池に流れる電流を徐々に低下させ、前記複数の二次電池に流れる電流が、前記一定電流を前記二次電池の個数で除算した値である切替電流以下になると、前記複数の二次電池が互いに並列接続されるように前記切替回路の動作を制御するとともに前記複数の二次電池に流れる全体電流を前記一定電流まで大きくさせた後、前記複数の二次電池に流れる電流を徐々に低下させ、前記複数の二次電池に流れる電流のうちの少なくとも1つの電流が前記切替電流より小さい終止電流以下になると、前記複数の二次電池に流れる電流をゼロにさせる
ことを特徴とする二次電池システム。
a plurality of secondary batteries;
a switching circuit that connects the plurality of secondary batteries in series or in parallel;
a control unit that controls the operation of the switching circuit;
with
The control unit
controlling the operation of the switching circuit so that the plurality of secondary batteries are connected in parallel to each other during discharging of the plurality of secondary batteries;
During charging of the plurality of secondary batteries, the operation of the switching circuit is controlled so that the plurality of secondary batteries are connected in series with each other, and a constant current is passed through the plurality of secondary batteries, and the plurality of secondary batteries is charged. When at least one of the voltages of the batteries reaches a predetermined voltage or higher, the current flowing through the plurality of secondary batteries is gradually reduced while maintaining the at least one voltage at the predetermined voltage, When the current flowing through the battery becomes equal to or less than the switching current obtained by dividing the constant current by the number of the secondary batteries, the operation of the switching circuit is controlled so that the plurality of secondary batteries are connected in parallel with each other. and increasing the total current flowing through the plurality of secondary batteries to the constant current, then gradually decreasing the current flowing through the plurality of secondary batteries, and at least one of the currents flowing through the plurality of secondary batteries A secondary battery system characterized in that the current flowing through the plurality of secondary batteries is set to zero when one current becomes equal to or lower than a final current that is smaller than the switching current.
請求項1に記載の二次電池システムであって、
前記制御部は、前記複数の二次電池の充電中、前記複数の二次電池に流れる電流が前記切替電流以下になると、前記複数の二次電池に流れる電流をゼロにさせた後、前記複数の二次電池が互いに並列接続されるように前記切替回路の動作を制御するとともに前記複数の二次電池に流れる全体電流を前記一定電流まで大きくさせる
ことを特徴とする二次電池システム。
The secondary battery system according to claim 1,
When the current flowing through the plurality of secondary batteries becomes equal to or less than the switching current during charging of the plurality of secondary batteries, the control unit reduces the current flowing through the plurality of secondary batteries to zero, and then secondary batteries are connected in parallel with each other, and the operation of the switching circuit is controlled, and the total current flowing through the plurality of secondary batteries is increased to the constant current.
JP2021009121A 2021-01-22 2021-01-22 Secondary battery system Pending JP2022113030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021009121A JP2022113030A (en) 2021-01-22 2021-01-22 Secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021009121A JP2022113030A (en) 2021-01-22 2021-01-22 Secondary battery system

Publications (1)

Publication Number Publication Date
JP2022113030A true JP2022113030A (en) 2022-08-03

Family

ID=82657098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021009121A Pending JP2022113030A (en) 2021-01-22 2021-01-22 Secondary battery system

Country Status (1)

Country Link
JP (1) JP2022113030A (en)

Similar Documents

Publication Publication Date Title
US11489349B2 (en) Battery control unit and battery system
US8773070B2 (en) Apparatus and method for balancing charge capacity of battery cell
JP5502282B2 (en) How to charge the battery pack
EP2006973A1 (en) Power supply system
EP2685592A1 (en) Balance correction device and electricity storage system
CN112688372A (en) Battery system
US20080174274A1 (en) Battery unit
JP2005151720A (en) Cell balance correcting device, secondary battery, method of correcting cell balance and cell balance correcting program
JPWO2012049910A1 (en) Output circuit of power supply system
CN109874366B (en) Electric machine and apparatus
JP6102746B2 (en) Storage battery device and charge control method
CN112655131A (en) Power storage device and charging method
JP5744598B2 (en) Balance correction device and power storage system
CN111819758A (en) Monomer balance control device and monomer balance control system
JPH09200968A (en) Charge controller for battery set
JP4946747B2 (en) Power storage system
JP2016040999A (en) Charged state equalization method of storage battery device
JP2022113030A (en) Secondary battery system
CN113258632B (en) Power supply device
JP2016154423A (en) Voltage balance device
KR101988027B1 (en) Blancing Apparatus for Battery and Method thereof
JP7463921B2 (en) Secondary Battery System
JP7318548B2 (en) Secondary battery system and industrial vehicle
JP2003169424A (en) Secondary battery charging method and charging device
TWM566405U (en) DC synchronous charging balance system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230414

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20231025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240611