JP7318548B2 - Secondary battery system and industrial vehicle - Google Patents

Secondary battery system and industrial vehicle Download PDF

Info

Publication number
JP7318548B2
JP7318548B2 JP2020015730A JP2020015730A JP7318548B2 JP 7318548 B2 JP7318548 B2 JP 7318548B2 JP 2020015730 A JP2020015730 A JP 2020015730A JP 2020015730 A JP2020015730 A JP 2020015730A JP 7318548 B2 JP7318548 B2 JP 7318548B2
Authority
JP
Japan
Prior art keywords
secondary batteries
secondary battery
series
voltage
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020015730A
Other languages
Japanese (ja)
Other versions
JP2021125901A (en
Inventor
圭二 三宅
慎司 広瀬
昇一 家岡
伸一 前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2020015730A priority Critical patent/JP7318548B2/en
Publication of JP2021125901A publication Critical patent/JP2021125901A/en
Application granted granted Critical
Publication of JP7318548B2 publication Critical patent/JP7318548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、複数の二次電池を直列接続または並列接続させる二次電池システム及びその二次電池システムを備える産業車両に関する。 The present invention relates to a secondary battery system in which a plurality of secondary batteries are connected in series or in parallel, and an industrial vehicle equipped with the secondary battery system.

二次電池システムとして、複数の二次電池を充電させる場合、複数の二次電池を互いに直列接続させ、複数の二次電池を放電させる場合、複数の二次電池を互いに並列接続させるものがある。関連する技術として、特許文献1がある。 As a secondary battery system, when charging a plurality of secondary batteries, a plurality of secondary batteries are connected in series with each other, and when discharging a plurality of secondary batteries, a plurality of secondary batteries are connected in parallel with each other. . As a related technology, there is Patent Document 1.

ところで、複数の二次電池が互いに直列接続された状態で充電されると、各二次電池の製造ばらつきや劣化のばらつきなどにより、充電終了時の各二次電池の電圧が互いに異なるおそれがある。 By the way, if a plurality of secondary batteries are connected in series and charged, the voltages of the secondary batteries may differ from each other at the end of charging due to variations in manufacturing and deterioration of the secondary batteries. .

そのため、上記二次電池システムでは、充電終了時の各二次電池の電圧が互いに異なっている場合、各二次電池を放電させるために各二次電池を互いに並列接続させると、二次電池間に還流電流が流れるおそれがある。 Therefore, in the above secondary battery system, when the voltages of the secondary batteries at the end of charging are different from each other, if the secondary batteries are connected in parallel to discharge the secondary batteries, the voltage between the secondary batteries will increase. A return current may flow in the

特開2016-123228号公報JP 2016-123228 A

本発明の一側面に係る目的は、複数の二次電池を直列接続または並列接続させる二次電池システム及びその二次電池システムを備える産業車両において、充電終了後の直列接続から並列接続への切り替え時に二次電池間に還流電流が流れることを抑制することである。 An object according to one aspect of the present invention is to switch from series connection to parallel connection after charging is finished in a secondary battery system in which a plurality of secondary batteries are connected in series or in parallel and an industrial vehicle provided with the secondary battery system. It is to suppress the return current from sometimes flowing between the secondary batteries.

本発明に係る一つの形態である二次電池システムは、複数の二次電池を互いに直列接続または並列接続させる接続回路と、複数の二次電池を充電する場合、複数の二次電池が互いに直列接続されるように接続回路の動作を制御し、複数の二次電池を放電する場合、複数の二次電池が互いに並列接続されるように接続回路の動作を制御する制御部とを備える。 A secondary battery system according to one aspect of the present invention includes a connection circuit for connecting a plurality of secondary batteries in series or in parallel, and a control unit for controlling the operation of the connection circuit so that the secondary batteries are connected in parallel when discharging the plurality of secondary batteries.

制御部は、複数の二次電池を充電する場合、複数の二次電池のうちの所定の二次電池の充電が終了する度に、所定の二次電池が、互いに直列接続される複数の二次電池から外れるように、接続回路の動作を制御する。 When charging a plurality of secondary batteries, the control unit charges a plurality of secondary batteries connected in series each time charging of a predetermined secondary battery among the plurality of secondary batteries is completed. It controls the operation of the connecting circuit so that it is disconnected from the next battery.

これにより、各二次電池の充電終了時、各二次電池の電圧を均一化させることができるため、直列接続から並列接続への切り替え時に二次電池間に還流電流が流れることを抑制することができる。 As a result, the voltages of the secondary batteries can be made uniform when the charging of the secondary batteries is finished, so that it is possible to suppress the return current from flowing between the secondary batteries when switching from series connection to parallel connection. can be done.

また、制御部は、複数の二次電池を充電する場合、複数の二次電池が互いに直列接続されるように接続回路の動作を制御するとともに複数の二次電池に一定電流を流し、複数の二次電池のうちの所定の二次電池の電圧が閾値電圧以上になると、所定の二次電池の電圧を閾値電圧に保ちつつ複数の二次電池に流れる電流を徐々に低下させ、複数の二次電池に流れる電流が終止電流以下になると、所定の二次電池が、互いに直列接続される複数の二次電池から外れるように、接続回路の動作を制御することを、すべての二次電池の充電が終了するまで繰り返すように構成してもよい。 Further, when charging a plurality of secondary batteries, the control unit controls the operation of the connection circuit so that the plurality of secondary batteries are connected in series with each other, and causes a constant current to flow through the plurality of secondary batteries. When the voltage of a predetermined secondary battery among the secondary batteries reaches or exceeds the threshold voltage, the current flowing through the plurality of secondary batteries is gradually decreased while the voltage of the predetermined secondary battery is maintained at the threshold voltage. For all secondary batteries, the operation of the connection circuit is controlled such that when the current flowing through the secondary battery becomes equal to or less than the cut-off current, a predetermined secondary battery is disconnected from the plurality of secondary batteries connected in series with each other. You may comprise so that it may repeat until charge is complete|finished.

これにより、各二次電池の充電終了時、各二次電池の電圧を均一化させることができるため、直列接続から並列接続への切り替え時に二次電池間に還流電流が流れることを抑制することができる。 As a result, the voltages of the secondary batteries can be made uniform when the charging of the secondary batteries is finished, so that it is possible to suppress the return current from flowing between the secondary batteries when switching from series connection to parallel connection. can be done.

また、制御部は、複数の二次電池を充電する場合、複数の二次電池が互いに直列接続されるように接続回路の動作を制御するとともに複数の二次電池に一定電流を流し、複数の二次電池のうちの所定の二次電池の電圧が閾値電圧以上になる度に、所定の二次電池が、互いに直列接続される複数の二次電池から外れるように、接続回路の動作を制御し、充電が終了していない最後の二次電池の電圧が閾値電圧以上になると、複数の二次電池が互いに直列接続されるように接続回路の動作を制御するとともに複数の二次電池のそれぞれの電圧を閾値電圧に保ちつつ複数の二次電池に流れる電流を徐々に低下させ、複数の二次電池に流れる電流が終止電流以下になると、複数の二次電池に流れる電流をゼロにするように構成してもよい。 Further, when charging a plurality of secondary batteries, the control unit controls the operation of the connection circuit so that the plurality of secondary batteries are connected in series with each other, and causes a constant current to flow through the plurality of secondary batteries. The operation of the connection circuit is controlled so that the predetermined secondary battery is disconnected from the plurality of secondary batteries connected in series each time the voltage of the predetermined secondary battery among the secondary batteries reaches or exceeds the threshold voltage. Then, when the voltage of the last rechargeable battery that has not been charged reaches the threshold voltage or more, the operation of the connection circuit is controlled so that the plurality of rechargeable batteries are connected in series with each other, and each of the plurality of rechargeable batteries is connected in series. While maintaining the voltage of the secondary battery at the threshold voltage, the current flowing through the secondary batteries is gradually reduced. can be configured to

これにより、各二次電池の充電終了時、各二次電池の電圧を均一化させることができるため、直列接続から並列接続への切り替え時に二次電池間に還流電流が流れることを抑制することができる。また、各二次電池の充電時間の短縮化を図ることができる。 As a result, the voltages of the secondary batteries can be made uniform when the charging of the secondary batteries is finished, so that it is possible to suppress the return current from flowing between the secondary batteries when switching from series connection to parallel connection. can be done. Also, the charging time of each secondary battery can be shortened.

また、接続回路は、複数の二次電池の正極端子にそれぞれの一方端子が接続される複数の第1出力部スイッチと、複数の二次電池の負極端子にそれぞれの一方端子が接続される複数の第2出力部スイッチと、隣り合う二次電池のうちの一方の二次電池の負極端子と他方の二次電池の正極端子との間にそれぞれ接続される複数の直列接続用素子と、複数の第1出力部スイッチの他方端子に接続される正極側放電出力部と、複数の第2出力部スイッチの他方端子に接続される負極側放電出力部と、複数の直列接続用素子を介して直列接続される複数の二次電池のうちの一方端に設けられている二次電池の正極端子と第1出力部スイッチの一方端子との間に接続される正極側充電入力部と、複数の直列接続用素子を介して直列接続される複数の二次電池のうちの他方端に設けられている二次電池の負極端子と第2出力部スイッチの一方端子との間に接続される負極側充電入力部とを備え、制御部は、複数の二次電池を互いに直列接続させる場合、複数の第1出力部スイッチ及び複数の第2出力部スイッチを遮断させ、複数の二次電池を互いに並列接続させる場合、複数の第1出力部スイッチ及び複数の第2出力部スイッチを導通させ、複数の直列接続用素子は、ダイオードであってもよい。 Further, the connection circuit includes a plurality of first output section switches each having one terminal connected to the positive terminal of each of the plurality of secondary batteries, and a plurality of first output section switches each having one terminal connected to each of the negative terminals of the plurality of secondary batteries. and a plurality of series connection elements respectively connected between a negative terminal of one of the adjacent secondary batteries and a positive terminal of the other secondary battery, and a plurality of Through a positive discharge output section connected to the other terminal of the first output section switch, a negative discharge output section connected to the other terminal of the plurality of second output section switches, and a plurality of series connection elements a positive side charge input section connected between a positive terminal of a secondary battery provided at one end of a plurality of series-connected secondary batteries and one terminal of a first output section switch; The negative electrode side connected between the negative terminal of the secondary battery provided at the other end of the plurality of secondary batteries connected in series via the series connection element and the one terminal of the second output section switch a charging input unit, wherein when the plurality of secondary batteries are connected in series, the control unit cuts off the plurality of first output section switches and the plurality of second output section switches to connect the plurality of secondary batteries in parallel with each other; When connecting, the plurality of first output section switches and the plurality of second output section switches are conductive, and the plurality of series connection elements may be diodes.

これにより、複数の直列接続用素子がスイッチにより構成される場合に比べて、二次電池の直列接続と並列接続の切替制御が煩雑になることを抑制することができるとともに、二次電池システムを安価に構成することができる。 As a result, compared to the case where a plurality of series connection elements are configured by switches, it is possible to suppress complicated switching control between series connection and parallel connection of the secondary batteries, and the secondary battery system can be improved. It can be configured inexpensively.

また、本発明に係る一つの形態である産業車両は、上記二次電池システムを備える。 According to another aspect of the present invention, there is provided an industrial vehicle including the secondary battery system.

本発明によれば、複数の二次電池を直列接続または並列接続させる二次電池システム及びその二次電池システムを備える産業車両において、充電終了後の直列接続から並列接続への切り替え時に二次電池間に還流電流が流れることを抑制することができる。 According to the present invention, in a secondary battery system in which a plurality of secondary batteries are connected in series or in parallel and an industrial vehicle provided with the secondary battery system, the secondary battery is switched from series connection to parallel connection after charging is completed. It is possible to suppress the return current from flowing between them.

実施形態の二次電池システムを備える車両の一例を示す図である。It is a figure showing an example of vehicles provided with a rechargeable battery system of an embodiment. 実施例1の充電方式における二次電池の電圧変化の一例を示す図である。4 is a diagram showing an example of voltage change of a secondary battery in the charging method of Example 1. FIG. 実施例2の充電方式における二次電池の電圧変化の一例を示す図である。FIG. 10 is a diagram showing an example of voltage change of a secondary battery in the charging method of Example 2; 実施例3の充電方式における二次電池の電圧変化の一例を示す図である。FIG. 10 is a diagram showing an example of voltage change of a secondary battery in the charging method of Example 3;

以下図面に基づいて実施形態について詳細を説明する。
図1は、実施形態の二次電池システムを備える産業車両の一例を示す図である。
Embodiments will be described in detail below with reference to the drawings.
FIG. 1 is a diagram illustrating an example of an industrial vehicle that includes a secondary battery system according to an embodiment.

図1に示す産業車両Veは、フォークリフトなどの産業車両であり、二次電池システム1の他に、負荷Loを備える。 An industrial vehicle Ve shown in FIG. 1 is an industrial vehicle such as a forklift, and includes a secondary battery system 1 and a load Lo.

二次電池システム1は、走行用モータなどの負荷Loに電力を供給し、外部の充電器Chから電力が供給される。なお、充電器Chは、車両Veの内部に設けられていてもよい。 The secondary battery system 1 supplies power to a load Lo such as a driving motor, and the power is supplied from an external charger Ch. Note that the charger Ch may be provided inside the vehicle Ve.

また、二次電池システム1は、二次電池B1~B3と、正極側充電入力部Tipと、負極側充電入力部Tinと、正極側放電出力部Topと、負極側放電出力部Tonと、第1出力部スイッチS11~S13と、第2出力部スイッチS21~S23と、直列接続用素子Ss1、Ss2と、制御部2とを備える。 Further, the secondary battery system 1 includes secondary batteries B1 to B3, a positive electrode side charging input portion Tip, a negative electrode side charging input portion Tin, a positive electrode side discharge output portion Top, a negative electrode side discharge output portion Ton, and a second 1 output section switches S11 to S13, second output section switches S21 to S23, series connection elements Ss1 and Ss2, and a control section 2 are provided.

なお、正極側充電入力部Tipと、負極側充電入力部Tinと、正極側放電出力部Topと、負極側放電出力部Tonと、第1出力部スイッチS11~S13と、第2出力部スイッチS21~S23と、直列接続用素子Ss1、Ss2とを備えて接続回路を構成する。 A positive charge input section Tip, a negative charge input section Tin, a positive discharge output section Top, a negative discharge output section Ton, first output section switches S11 to S13, and a second output section switch S21. , S23, and series connection elements Ss1 and Ss2 to form a connection circuit.

また、二次電池B1~B3を特に区別しない場合、単に、二次電池Bとする。また、第1出力部スイッチS11~S13を特に区別しない場合、単に、第1出力部スイッチS1とする。また、第2出力部スイッチS21~S23を特に区別しない場合、単に、第2出力部スイッチS2とする。また、直列接続用素子Ss1、Ss2を特に区別しない場合、単に、直列接続用素子Ssとする。また、二次電池B、第1出力部スイッチS1、及び第2出力部スイッチS2のそれぞれの数は3つに限定されない。また、直列接続用素子Ssの数は2つに限定されない。 Further, the secondary batteries B1 to B3 are simply referred to as a secondary battery B when not specifically distinguished. Further, when the first output section switches S11 to S13 are not particularly distinguished, they are simply referred to as the first output section switch S1. Further, when the second output section switches S21 to S23 are not particularly distinguished, they are simply referred to as the second output section switch S2. Further, when the series connection elements Ss1 and Ss2 are not particularly distinguished, the series connection element Ss is simply referred to. Also, the number of each of the secondary battery B, the first output switch S1, and the second output switch S2 is not limited to three. Also, the number of series connection elements Ss is not limited to two.

二次電池B1~B3は、それぞれ、リチウムイオン電池またはニッケル水素電池などの1つ以上の充放電可能な電池により構成される。なお、リチウムイオン電池として、LFP(LiFePO4)やNMC(Nickel Manganese Cobalt)などを採用することが考えられる。 Each of the secondary batteries B1 to B3 is composed of one or more chargeable/dischargeable batteries such as lithium ion batteries or nickel metal hydride batteries. It is conceivable to adopt LFP (LiFePO4), NMC (Nickel Manganese Cobalt), etc. as the lithium ion battery.

例えば、第1出力部スイッチS11~S13は、それぞれ、第1のダイオードが並列接続される第1の半導体スイッチ(MOSFET(Metal Oxide Semiconductor Field Effect Transistor)など)と、第1のダイオードと順方向電流が流れる向きが反対である第2のダイオードが並列接続される第2の半導体スイッチ(MOSFETなど)とが互いに直列接続されて構成される。第1の半導体スイッチのドレイン端子が第1のダイオードのカソード端子に接続され、第1の半導体スイッチのソース端子が第1のダイオードのアノード端子、第2の半導体スイッチのソース端子、及び第2のダイオードのアノード端子に接続され、第2の半導体スイッチのドレイン端子が第2のダイオードのカソード端子に接続される。また、第1出力部スイッチS11~S13のそれぞれの一方端子(第1の半導体スイッチのドレイン端子)は、二次電池B1~B3の正極端子に接続され、第1出力部スイッチS11~S13のそれぞれの他方端子(第2の半導体スイッチのドレイン端子)は、正極側放電出力部Topに接続される。すなわち、第1出力部スイッチS11の一方端子は二次電池B1の正極端子に接続され、第1出力部スイッチS11の他方端子は正極側放電出力部Topに接続される。また、第1出力部スイッチS12の一方端子は二次電池B2の正極端子に接続され、第1出力部スイッチS12の他方端子は正極側放電出力部Topに接続される。また、第1出力部スイッチS13の一方端子は二次電池B3の正極端子に接続され、第1出力部スイッチS13の他方端子は正極側放電出力部Topに接続される。なお、第1出力部スイッチS11~S13は、例えば制御部2からの信号により電気的に導通と遮断を切り替え可能なメカニカルスイッチ(電磁式リレー)であってもよい。 For example, the first output switches S11 to S13 each include a first semiconductor switch (such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor)) to which a first diode is connected in parallel, a first diode and a forward current is connected in series with a second semiconductor switch (such as a MOSFET) to which a second diode in which the current flows in the opposite direction is connected in parallel. The drain terminal of the first semiconductor switch is connected to the cathode terminal of the first diode, the source terminal of the first semiconductor switch is connected to the anode terminal of the first diode, the source terminal of the second semiconductor switch, and the second semiconductor switch. It is connected to the anode terminal of the diode and the drain terminal of the second semiconductor switch is connected to the cathode terminal of the second diode. One terminal of each of the first output switches S11 to S13 (the drain terminal of the first semiconductor switch) is connected to the positive terminal of each of the secondary batteries B1 to B3. (drain terminal of the second semiconductor switch) is connected to the positive discharge output section Top. That is, one terminal of the first output switch S11 is connected to the positive terminal of the secondary battery B1, and the other terminal of the first output switch S11 is connected to the positive discharge output Top. One terminal of the first output switch S12 is connected to the positive terminal of the secondary battery B2, and the other terminal of the first output switch S12 is connected to the positive discharge output Top. One terminal of the first output switch S13 is connected to the positive terminal of the secondary battery B3, and the other terminal of the first output switch S13 is connected to the positive discharge output Top. Note that the first output unit switches S11 to S13 may be mechanical switches (electromagnetic relays) capable of electrically switching between conduction and interruption by a signal from the control unit 2, for example.

例えば、第2出力部スイッチS21~S23は、それぞれ、第1出力部スイッチS11~S13と同様に、第1のダイオードが並列接続される第1の半導体スイッチ(MOSFETなど)と、第1のダイオードと順方向電流が流れる向きが反対である第2のダイオードが並列接続される第2の半導体スイッチ(MOSFETなど)とが互いに直列接続されて構成される。第2出力部スイッチS21~S23のそれぞれの一方端子(第1の半導体スイッチのドレイン端子)は、二次電池B1~B3の負極端子に接続され、第2出力部スイッチS11~S13のそれぞれの他方端子(第2の半導体スイッチのドレイン端子)は、負極側放電出力部Tonに接続される。すなわち、第2出力部スイッチS21の一方端子は二次電池B1の負極端子に接続され、第2出力部スイッチS21の他方端子は負極側放電出力部Tonに接続される。また、第2出力部スイッチS22の一方端子は二次電池B2の負極端子に接続され、第2出力部スイッチS22の他方端子は負極側放電出力部Tonに接続される。また、第2出力部スイッチS23の一方端子は二次電池B3の負極端子に接続され、第2出力部スイッチS23の他方端子は負極側放電出力部Tonに接続される。なお、第2出力部スイッチS21~S23は、例えば制御部2からの信号により電気的に導通と遮断を切り替え可能なメカニカルスイッチであってもよい。 For example, like the first output switches S11 to S13, the second output switches S21 to S23 are each a first semiconductor switch (such as a MOSFET) in which a first diode is connected in parallel and a first diode. and a second semiconductor switch (such as a MOSFET) connected in parallel with a second diode in which the forward current flows in the opposite direction are connected in series. One terminal of each of the second output switches S21 to S23 (drain terminal of the first semiconductor switch) is connected to the negative terminal of each of the secondary batteries B1 to B3, and the other terminal of each of the second output switches S11 to S13. The terminal (drain terminal of the second semiconductor switch) is connected to the negative discharge output section Ton. That is, one terminal of the second output switch S21 is connected to the negative terminal of the secondary battery B1, and the other terminal of the second output switch S21 is connected to the negative discharge output Ton. One terminal of the second output switch S22 is connected to the negative terminal of the secondary battery B2, and the other terminal of the second output switch S22 is connected to the negative discharge output Ton. One terminal of the second output switch S23 is connected to the negative terminal of the secondary battery B3, and the other terminal of the second output switch S23 is connected to the negative discharge output Ton. The second output section switches S21 to S23 may be mechanical switches capable of electrically switching between conduction and interruption by a signal from the control section 2, for example.

直列接続用素子Ss1、Ss2は、それぞれ、隣り合う二次電池Bのうちの一方の二次電池Bの負極端子から他方の二次電池Bの正極端子方向への電流を許容する素子であり、例えば、ダイオードにより構成される。直列接続用素子Ss1、Ss2は、隣り合う二次電池Bのうちの一方の二次電池Bの負極端子と他方の二次電池Bの正極端子との間に接続される。すなわち、直列接続用素子Ss1のアノード端子は隣り合う二次電池B1、B2のうちの二次電池B1の負極端子に接続され、直列接続用素子Ss1のカソード端子は二次電池B2の正極端子に接続される。また、直列接続用素子Ss2のアノード端子は隣り合う二次電池B2、B3のうちの二次電池B2の負極端子に接続され、直列接続用素子Ss2のカソード端子は二次電池B3の正極端子に接続される。なお、直列接続用素子Ss1、Ss2は、それぞれ、制御部1からの信号により導通と遮断を切り替え可能な半導体スイッチ(MOSFET)やメカニカルスイッチなどのスイッチにより構成されてもよい。すなわち、直列接続用素子Ss1、Ss2は、二次電池Bの直列接続時において隣り合う二次電池Bのうちの一方の二次電池Bの負極端子から他方の二次電池Bの正極端子方向への電流を流せる一方で、並列接続時において隣り合う二次電池Bのうちの他方の二次電池Bの正極端子から一方の二次電池Bの負極端子方向への電流が流れない構成であればよい。直列接続用素子Ss1、Ss2がダイオードにより構成される場合は、直列接続用素子Ss1、Ss2がスイッチにより構成される場合に比べて、二次電池B1~B3の直列接続と並列接続の切替制御が煩雑になることを抑制することができるとともに、二次電池システム1を安価に構成することができる。 The series connection elements Ss1 and Ss2 are elements that allow current to flow from the negative terminal of one of the adjacent secondary batteries B to the positive terminal of the other secondary battery B, For example, it is composed of a diode. The series connection elements Ss1 and Ss2 are connected between the negative terminal of one of the adjacent secondary batteries B and the positive terminal of the other secondary battery. That is, the anode terminal of the series connection element Ss1 is connected to the negative terminal of the secondary battery B1 of the adjacent secondary batteries B1 and B2, and the cathode terminal of the series connection element Ss1 is connected to the positive terminal of the secondary battery B2. Connected. The anode terminal of the series connection element Ss2 is connected to the negative terminal of the secondary battery B2 of the adjacent secondary batteries B2 and B3, and the cathode terminal of the series connection element Ss2 is connected to the positive terminal of the secondary battery B3. Connected. The series connection elements Ss1 and Ss2 may each be composed of a switch such as a semiconductor switch (MOSFET) or a mechanical switch that can switch between conduction and interruption in response to a signal from the control section 1. FIG. That is, when the secondary batteries B are connected in series, the series connection elements Ss1 and Ss2 move from the negative terminal of one of the adjacent secondary batteries B to the positive terminal of the other secondary battery B. current can flow, while the current does not flow from the positive terminal of the other of the adjacent secondary batteries B to the negative terminal of one of the secondary batteries B when connected in parallel. good. When the series connection elements Ss1 and Ss2 are composed of diodes, compared to the case where the series connection elements Ss1 and Ss2 are composed of switches, switching control between the series connection and the parallel connection of the secondary batteries B1 to B3 is performed. Complications can be suppressed, and the secondary battery system 1 can be configured at low cost.

正極側充電入力部Tipは、二次電池B1、二次電池B2、二次電池B3の順に設けられている二次電池B1~B3のうちの一方端に設けられている二次電池B1の正極端子とその二次電池B1に対応する第1出力部スイッチS11の一方端子との間に接続される。言い換えると、正極側充電入力部Tipは、直列接続用素子Ss1、Ss2を介して直列接続される二次電池B1~B3のうちの一方端に設けられている二次電池B1の正極端子とその二次電池B1に対応する第1出力部スイッチS11の一方端子との間に接続される。 The positive electrode side charging input section Tip is the positive electrode of the secondary battery B1 provided at one end of the secondary batteries B1 to B3 provided in the order of the secondary battery B1, the secondary battery B2, and the secondary battery B3. It is connected between the terminal and one terminal of the first output switch S11 corresponding to the secondary battery B1. In other words, the positive charge input section Tip is connected to the positive terminal of the secondary battery B1 provided at one end of the secondary batteries B1 to B3 connected in series via the series connection elements Ss1 and Ss2, and the positive terminal of the secondary battery B1. It is connected between one terminal of the first output section switch S11 corresponding to the secondary battery B1.

負極側充電入力部Tinは、二次電池B1、二次電池B2、二次電池B3の順に設けられている二次電池B1~B3のうちの他方端に設けられている二次電池B3の負極端子とその二次電池B3に対応する第2出力部スイッチS23との間に接続される。言い換えると、負極側充電入力部Tinは、直列接続用素子Ss1、Ss2を介して直列接続される二次電池B1~B3のうちの他方端に設けられている二次電池B3の負極端子とその二次電池B3に対応する第2出力部スイッチS23との間に接続される。 The negative electrode side charging input portion Tin is the negative electrode of the secondary battery B3 provided at the other end of the secondary batteries B1 to B3 provided in the order of the secondary battery B1, the secondary battery B2, and the secondary battery B3. terminal and the second output switch S23 corresponding to the secondary battery B3. In other words, the negative charge input section Tin is connected to the negative terminal of the secondary battery B3 provided at the other end of the secondary batteries B1 to B3 connected in series via the series connection elements Ss1 and Ss2, and the negative terminal of the secondary battery B3. It is connected between the second output section switch S23 corresponding to the secondary battery B3.

制御部2は、CPU(Central Processing Unit)またはプログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device))などにより構成され、二次電池B1~B3の充電または放電に応じて、第1出力部スイッチS11~S13及び第2出力部スイッチS21~S23の動作を制御する。なお、直列接続用素子Ss1、Ss2をスイッチにより構成する場合、制御部2は、二次電池B1~B3の充電または放電に応じて、直列接続用素子Ss1、Ss2の動作を制御する。 The control unit 2 is composed of a CPU (Central Processing Unit) or a programmable device (FPGA (Field Programmable Gate Array) or PLD (Programmable Logic Device)), and according to the charging or discharging of the secondary batteries B1 to B3, It controls the operation of the first output section switches S11-S13 and the second output section switches S21-S23. When the series connection elements Ss1 and Ss2 are configured by switches, the control unit 2 controls the operations of the series connection elements Ss1 and Ss2 according to the charge or discharge of the secondary batteries B1 to B3.

すなわち、制御部2は、二次電池B1~B3を充電させる場合、二次電池B1~B3を互いに直列接続させる。制御部2は、二次電池B1~B3を互いに直列接続させる場合、第1出力部スイッチS11~S13及び第2出力部スイッチS21~S23を遮断させる。なお、直列接続用素子Ss1、Ss2をスイッチにより構成する場合、制御部2は、直列接続用素子Ss1、Ss2を導通させる。このとき、充電器Chから二次電池システム1に電力が供給されると、充電器Chのプラス端子から正極側充電入力部Tip、二次電池B1、直列接続用素子Ss1、二次電池B2、直列接続用素子Ss2、二次電池B3、及び負極側充電入力部Tinを介して充電器Chのマイナス端子に電流が流れる。このように、二次電池B1~B3を充電させる際、二次電池B1~B3を互いに直列接続することにより、二次電池B1~B3全体にかかる電圧を比較的高くすることができるため、二次電池B1~B3に流れる電流を低減することができる。そのため、充電器Chと正極側充電入力部Tip及び負極側充電入力部Tinとを互いにつなぐ充電ケーブルを小型化することができるため、充電作業性を向上させることができる。 That is, when the secondary batteries B1 to B3 are to be charged, the control unit 2 connects the secondary batteries B1 to B3 in series with each other. When connecting the secondary batteries B1 to B3 in series, the controller 2 turns off the first output switches S11 to S13 and the second output switches S21 to S23. When the series connection elements Ss1 and Ss2 are configured by switches, the control unit 2 causes the series connection elements Ss1 and Ss2 to conduct. At this time, when power is supplied from the charger Ch to the secondary battery system 1, the positive terminal of the charger Ch is connected to the positive electrode side charging input tip Tip, the secondary battery B1, the series connection element Ss1, the secondary battery B2, A current flows to the negative terminal of the charger Ch via the series connection element Ss2, the secondary battery B3, and the negative charge input section Tin. In this way, when the secondary batteries B1 to B3 are charged, by connecting the secondary batteries B1 to B3 in series with each other, the voltage applied to the entire secondary batteries B1 to B3 can be made relatively high. The current flowing through the secondary batteries B1 to B3 can be reduced. Therefore, it is possible to reduce the size of the charging cable that connects the charger Ch, the positive charging input section Tip, and the negative charging input section Tin, thereby improving the charging workability.

また、制御部2は、二次電池B2、B3のみを充電させる場合、二次電池B2、B3のみを互いに直列接続させる。制御部2は、二次電池B2、B3のみを互いに直列接続させる場合、第1出力部スイッチS11、S12を導通させるとともに、第1出力部スイッチS13及び第2出力部スイッチS21~S23を遮断させる。このとき、充電器Chから二次電池システム1に電力が供給されると、充電器Chのプラス端子から正極側充電入力部Tip、第1出力部スイッチS11、第1出力部スイッチS12、二次電池B2、直列接続用素子Ss2、二次電池B3、及び負極側充電入力部Tinを介して充電器Chのマイナス端子に電流が流れる。 Further, when charging only the secondary batteries B2 and B3, the control unit 2 connects only the secondary batteries B2 and B3 in series with each other. When only the secondary batteries B2 and B3 are connected in series, the control unit 2 turns on the first output unit switches S11 and S12 and cuts off the first output unit switch S13 and the second output unit switches S21 to S23. . At this time, when power is supplied from the charger Ch to the secondary battery system 1, the positive terminal of the charger Ch is connected to the positive terminal Tip, the first output switch S11, the first output switch S12, the secondary A current flows to the negative terminal of the charger Ch through the battery B2, the series connection element Ss2, the secondary battery B3, and the negative charging input section Tin.

また、制御部2は、二次電池B3のみを充電させる場合、第1出力部スイッチS11、S13を導通させるとともに、第1出力部スイッチS12及び第2出力部スイッチS21~S23を遮断させる。このとき、充電器Chから二次電池システム1に電力が供給されると、充電器Chのプラス端子から正極側充電入力部Tip、第1出力部スイッチS11、第1出力部スイッチS13、二次電池B3、及び負極側充電入力部Tinを介して充電器Chのマイナス端子に電流が流れる。 When only the secondary battery B3 is to be charged, the control section 2 turns on the first output section switches S11 and S13 and cuts off the first output section switch S12 and the second output section switches S21 to S23. At this time, when power is supplied from the charger Ch to the secondary battery system 1, from the positive terminal of the charger Ch, the positive electrode side charging input Tip, the first output switch S11, the first output switch S13, the secondary A current flows to the negative terminal of the charger Ch via the battery B3 and the negative charging input Tin.

なお、充電器Chから二次電池システム1に供給される電力は負荷Loに直接供給されないものとする。 It is assumed that the power supplied from the charger Ch to the secondary battery system 1 is not directly supplied to the load Lo.

また、制御部2は、二次電池B1~B3を放電させる場合、二次電池B1~B3を並列接続させる。制御部2は、二次電池B1~B3を互いに並列接続させる場合、第1出力部スイッチS11~S13及び第2出力部スイッチS21~S23を導通させる。このとき、二次電池システム1から負荷Loに電力が供給されると、負荷Loのマイナス端子から負極側放電出力部Ton、第2出力部スイッチS21、二次電池B1、第1出力部スイッチS11、及び正極側放電出力部Topを介して負荷Loのプラス端子に電流が流れる。また、負荷Loのマイナス端子から負極側放電出力部Ton、第2出力部スイッチS22、二次電池B2、第1出力部スイッチS12、及び正極側放電出力部Topを介して負荷Loのプラス端子に電流が流れる。また、負荷Loのマイナス端子から負極側放電出力部Ton、第2出力部スイッチS23、二次電池B3、第1出力部スイッチS13、及び正極側放電出力部Topを介して負荷Loのプラス端子に電流が流れる。このように、二次電池B1~B3を放電させる場合、二次電池B1~B3を並列接続することにより、二次電池B全体の容量を増加させることができる。 Further, when the secondary batteries B1 to B3 are to be discharged, the control unit 2 connects the secondary batteries B1 to B3 in parallel. When the secondary batteries B1 to B3 are connected in parallel, the control section 2 turns on the first output section switches S11 to S13 and the second output section switches S21 to S23. At this time, when power is supplied from the secondary battery system 1 to the load Lo, the negative terminal of the load Lo is connected to the negative electrode side discharge output section Ton, the second output section switch S21, the secondary battery B1, and the first output section switch S11. , and the positive electrode discharge output portion Top to the positive terminal of the load Lo. Also, from the negative terminal of the load Lo to the positive terminal of the load Lo through the negative discharge output section Ton, the second output section switch S22, the secondary battery B2, the first output section switch S12, and the positive discharge output section Top. current flows. Also, from the negative terminal of the load Lo to the positive terminal of the load Lo via the negative discharge output section Ton, the second output section switch S23, the secondary battery B3, the first output section switch S13, and the positive discharge output section Top. current flows. Thus, when the secondary batteries B1 to B3 are discharged, the capacity of the entire secondary battery B can be increased by connecting the secondary batteries B1 to B3 in parallel.

<実施例1の充電方式>
制御部2は、二次電池B1~B3を充電する場合、二次電池B1~B3が互いに直列接続されるように接続回路の動作を制御するとともに二次電池Bに一定電流を流し、二次電池B1~B3のうちの所定の二次電池B(例えば、充電器Chのプラス端子に接続される二次電池B)の電圧が閾値電圧Vth以上になると、所定の二次電池Bの電圧を閾値電圧Vthに保ちつつ二次電池Bに流れる電流を徐々に低下させ、二次電池Bに流れる電流が終止電流以下になると、所定の二次電池Bが、互いに直列接続される二次電池B1~B3から外れるように、接続回路の動作を制御することを、すべての二次電池Bの充電が終了するまで繰り返す。なお、閾値電圧Vthは、満充電状態の二次電池Bの電圧により設定されているものとする。
<Charging Method of Embodiment 1>
When charging the secondary batteries B1 to B3, the control unit 2 controls the operation of the connection circuit so that the secondary batteries B1 to B3 are connected in series with each other, and supplies a constant current to the secondary battery B to charge the secondary batteries B1 to B3. When the voltage of a predetermined secondary battery B (for example, a secondary battery B connected to the positive terminal of the charger Ch) among the batteries B1 to B3 reaches or exceeds the threshold voltage Vth, the voltage of the predetermined secondary battery B is increased. The current flowing through the secondary battery B is gradually reduced while maintaining the threshold voltage Vth, and when the current flowing through the secondary battery B becomes equal to or less than the final current, the predetermined secondary batteries B are connected in series with each other as the secondary battery B1. The control of the operation of the connection circuit is repeated until charging of all the secondary batteries B is completed. It is assumed that the threshold voltage Vth is set by the voltage of the secondary battery B in a fully charged state.

図2は、実施例1の充電方式により二次電池B1~B3を充電する場合の二次電池B1~B3のそれぞれの電圧の変化を示す図である。なお、図2に示す2次元座標の横軸は時間を示し、縦軸は電圧を示している。また、図2に示す実線は二次電池B1の電圧の変化を示し、図2に示す破線は二次電池B2の電圧の変化を示し、図2に示す一点鎖線は二次電池B3の電圧の変換を示している。 FIG. 2 is a diagram showing voltage changes of the secondary batteries B1 to B3 when the secondary batteries B1 to B3 are charged by the charging method of the first embodiment. Note that the horizontal axis of the two-dimensional coordinates shown in FIG. 2 indicates time, and the vertical axis indicates voltage. The solid line shown in FIG. 2 indicates changes in the voltage of the secondary battery B1, the dashed line shown in FIG. 2 indicates changes in the voltage of the secondary battery B2, and the dashed-dotted line shown in FIG. shows the conversion.

まず、制御部2は、時刻t0において、第1出力部スイッチS11~S13及び第2出力部スイッチS21~S23を遮断させることで、二次電池B1~B3を互いに直列接続させる。 First, at time t0, the control unit 2 connects the secondary batteries B1 to B3 in series by turning off the first output unit switches S11 to S13 and the second output unit switches S21 to S23.

次に、制御部2は、充電器Chから二次電池システム1に一定電流が流れるように充電器Chに指示を送り、二次電池B1~B3の定電流充電制御を開始する。すると、二次電池B1~B3に一定電流が流れ、二次電池B1~B3のそれぞれの電圧が徐々に上昇する。 Next, the control unit 2 sends an instruction to the charger Ch so that a constant current flows from the charger Ch to the secondary battery system 1, and starts constant current charging control of the secondary batteries B1 to B3. Then, a constant current flows through the secondary batteries B1 to B3, and the voltage of each of the secondary batteries B1 to B3 gradually increases.

次に、制御部2は、時刻t1において、二次電池B1の電圧が閾値電圧Vth以上になると、二次電池B1の電圧を閾値電圧Vthに保ちつつ二次電池B1~B3に流れる電流が徐々に低下するように充電器Chに指示を送り、二次電池B1~B3の定電流充電制御を終了して二次電池B1~B3の定電圧充電制御を開始する。なお、時刻t1において、二次電池B1~B3の製造ばらつきや劣化のばらつきなどにより、二次電池B1の電圧が最も高くなり、二次電池B2の電圧が2番目に高くなり、二次電池B3の電圧が最も低くなるものとする。 Next, at time t1, when the voltage of the secondary battery B1 becomes equal to or higher than the threshold voltage Vth, the control unit 2 keeps the voltage of the secondary battery B1 at the threshold voltage Vth and gradually increases the current flowing through the secondary batteries B1 to B3. , the constant current charging control of the secondary batteries B1 to B3 is terminated, and the constant voltage charging control of the secondary batteries B1 to B3 is started. At time t1, the secondary battery B1 has the highest voltage, the secondary battery B2 has the second highest voltage and the secondary battery B3 shall have the lowest voltage.

次に、制御部2は、時刻t2において、二次電池B1~B3に流れる電流が終止電流以下になると、第1出力部スイッチS11、S12を導通させるとともに、第1出力部スイッチS13及び第2出力部スイッチS21~S23を遮断させることで、所定の二次電池Bである二次電池B1を、互いに直列接続される二次電池B1~B3から外す(二次電池B1の定電圧充電制御の終了)。また、制御部2は、充電器Chから二次電池システム1に一定電流が流れるように充電器Chに指示を送り、二次電池B2、B3の定電圧充電制御を終了して二次電池B2、B3の定電流充電制御を開始する。すると、二次電池B2、B3に一定電流が流れ、二次電池B2、B3のそれぞれの電圧が徐々に上昇する。なお、二次電池B1の充電が終了したとき、二次電池B2の電圧は閾値電圧Vthより小さく、二次電池B3の電圧は二次電池B2の電圧より小さいものとする。また、二次電池B1に電流が流れなくなると、二次電池B1の内部抵抗や分極の影響により、二次電池B1の電圧が所定電圧V1の近くまで減少するものとする。閾値電圧Vth>所定電圧V1。 Next, at time t2, when the current flowing through the secondary batteries B1 to B3 becomes equal to or less than the final current, the control unit 2 turns on the first output unit switches S11 and S12, and the first output unit switch S13 and the second output unit switch By turning off the output unit switches S21 to S23, the secondary battery B1, which is a predetermined secondary battery B, is removed from the secondary batteries B1 to B3 connected in series with each other (the constant voltage charging control of the secondary battery B1 is performed). end). Further, the control unit 2 sends an instruction to the charger Ch to cause a constant current to flow from the charger Ch to the secondary battery system 1, terminates the constant voltage charging control of the secondary batteries B2 and B3, and controls the secondary battery B2. , B3 start the constant current charging control. Then, a constant current flows through the secondary batteries B2 and B3, and the voltages of the secondary batteries B2 and B3 gradually rise. It is assumed that when the charging of the secondary battery B1 is completed, the voltage of the secondary battery B2 is lower than the threshold voltage Vth, and the voltage of the secondary battery B3 is lower than the voltage of the secondary battery B2. It is also assumed that when the current stops flowing through the secondary battery B1, the voltage of the secondary battery B1 decreases to near the predetermined voltage V1 due to the influence of the internal resistance and polarization of the secondary battery B1. Threshold voltage Vth>predetermined voltage V1.

次に、制御部2は、時刻t3において、二次電池B2の電圧が閾値電圧Vth以上になると、二次電池B2の電圧を閾値電圧Vthに保ちつつ二次電池B2、B3に流れる電流が徐々に低下するように充電器Chに指示を送り、二次電池B2、B3の定電流充電制御を終了して二次電池B2、B3の定電圧充電制御を開始する。なお、時刻t3において、二次電池B2、B3の製造ばらつきや劣化のばらつきなどにより、二次電池B2の電圧が二次電池B3の電圧より高くなるものとする。 Next, when the voltage of the secondary battery B2 becomes equal to or higher than the threshold voltage Vth at time t3, the control unit 2 keeps the voltage of the secondary battery B2 at the threshold voltage Vth and gradually increases the current flowing through the secondary batteries B2 and B3. , the constant current charging control of the secondary batteries B2 and B3 is terminated, and the constant voltage charging control of the secondary batteries B2 and B3 is started. It is assumed that at time t3, the voltage of secondary battery B2 becomes higher than the voltage of secondary battery B3 due to manufacturing variations and deterioration variations of secondary batteries B2 and B3.

次に、制御部2は、時刻t4において、二次電池B2、B3に流れる電流が終止電流以下になると、第1出力部スイッチS11、S13を導通させるとともに、第1出力部スイッチS12及び第2出力部スイッチS21~S23を遮断させることで、所定の二次電池Bである二次電池B2を、互いに直列接続される二次電池B2、B3から外す(二次電池B2の定電圧充電制御の終了)。また、制御部2は、充電器Chから二次電池システム1に一定電流が流れるように充電器Chに指示を送り、二次電池B3の定電圧充電制御を終了して二次電池B3の定電流充電制御を開始する。すると、二次電池B3に一定電流が流れ、二次電池B3の電圧が徐々に上昇する。なお、二次電池B2の充電が終了したとき、二次電池B3の電圧は閾値電圧Vthより小さいものとする。また、二次電池B2に電流が流れなくなると、二次電池B2の内部抵抗や分極の影響により、二次電池B2の電圧が所定電圧V1の近くまで減少するものとする。 Next, at time t4, when the current flowing through the secondary batteries B2 and B3 becomes equal to or less than the final current, the control unit 2 turns on the first output unit switches S11 and S13, By shutting off the output unit switches S21 to S23, the secondary battery B2, which is a predetermined secondary battery B, is removed from the secondary batteries B2 and B3 connected in series (the constant voltage charging control of the secondary battery B2). end). Further, the control unit 2 sends an instruction to the charger Ch to cause a constant current to flow from the charger Ch to the secondary battery system 1, terminates the constant voltage charging control of the secondary battery B3, and controls the constant voltage of the secondary battery B3. Start current charge control. Then, a constant current flows through the secondary battery B3, and the voltage of the secondary battery B3 gradually increases. It is assumed that the voltage of the secondary battery B3 is lower than the threshold voltage Vth when the charging of the secondary battery B2 is completed. It is also assumed that when the current stops flowing through the secondary battery B2, the voltage of the secondary battery B2 decreases to near the predetermined voltage V1 due to the influence of the internal resistance and polarization of the secondary battery B2.

次に、制御部2は、時刻t5において、二次電池B3の電圧が閾値電圧Vth以上になると、二次電池B3の電圧を閾値電圧Vthに保ちつつ二次電池B3に流れる電流が徐々に低下するように充電器Chに指示を送り、二次電池B3の定電流充電制御を終了して二次電池B3の定電圧充電制御を開始する。 Next, when the voltage of the secondary battery B3 becomes equal to or higher than the threshold voltage Vth at time t5, the control unit 2 keeps the voltage of the secondary battery B3 at the threshold voltage Vth while the current flowing through the secondary battery B3 gradually decreases. Then, the constant current charging control of the secondary battery B3 is terminated and the constant voltage charging control of the secondary battery B3 is started.

そして、制御部2は、時刻t6において、二次電池B3に流れる電流が終止電流以下になると、充電器Chから二次電池システム1に流れる電流がゼロになるように充電器Chに指示を送り、二次電池B3の定電圧充電制御を終了する。なお、二次電池B3に電流が流れなくなると、二次電池B3の内部抵抗や分極の影響により、二次電池B3の電圧が所定電圧V1の近くまで減少するものとする。 At time t6, when the current flowing through the secondary battery B3 becomes equal to or less than the final current, the control unit 2 sends an instruction to the charger Ch so that the current flowing from the charger Ch to the secondary battery system 1 becomes zero. , terminates the constant voltage charging control of the secondary battery B3. It is assumed that when the current stops flowing through the secondary battery B3, the voltage of the secondary battery B3 decreases to near the predetermined voltage V1 due to the influence of the internal resistance and polarization of the secondary battery B3.

これにより、二次電池B3の定電流充電制御が終了した後、二次電池B1~B3のそれぞれの電圧を所定電圧V2に近づけることができる。すなわち、二次電池B1~B3の充電後、二次電池B1~B3のそれぞれの電圧を均一化させることができる。そのため、二次電池B1~B3の直列接続から並列接続への切り替え時に二次電池B間に還流電流が流れることを抑制することができる。 As a result, after the constant current charging control of the secondary battery B3 is completed, the voltage of each of the secondary batteries B1 to B3 can be brought close to the predetermined voltage V2. That is, after charging the secondary batteries B1 to B3, the voltages of the secondary batteries B1 to B3 can be equalized. Therefore, it is possible to suppress the return current from flowing between the secondary batteries B when switching from the series connection of the secondary batteries B1 to B3 to the parallel connection.

また、実施例1の充電方式は、二次電池B1~B3の充電後、二次電池B1~B3をそれぞれ満充電状態にさせることができる。このように、実施例1の充電方式は、二次電池B1~B3をそれぞれ満充電状態にさせることができるため、満充電状態以外で検出される電圧の誤差が比較的大きくなり、満充電状態で検出される電圧の誤差が比較的小さくなるLFPなどで二次電池B1~B3を構成する場合に好適である。 Further, the charging method of the first embodiment can fully charge the secondary batteries B1 to B3 after charging the secondary batteries B1 to B3. As described above, the charging method of the first embodiment can fully charge each of the secondary batteries B1 to B3, so that the error in the voltage detected in a state other than the fully charged state becomes relatively large. This is suitable when the secondary batteries B1 to B3 are configured with LFPs or the like in which the error in the voltage detected by is relatively small.

<実施例2の充電方式>
制御部2は、二次電池B1~B3を充電する場合、二次電池B1~B3が互いに直列接続されるように接続回路の動作を制御するとともに二次電池B1~B3に一定電流を流し、二次電池B1~B3のうちの所定の二次電池B(例えば、充電器Chのプラス端子に接続される二次電池B)の電圧が閾値電圧Vth以上になる度に、所定の二次電池Bが、互いに直列接続される二次電池Bから外れるように、接続回路の動作を制御し、充電が終了していない最後の二次電池Bの電圧が閾値電圧Vth以上になると、二次電池B1~B3が互いに直列接続されるように接続回路の動作を制御するとともに二次電池B1~B3のそれぞれの電圧を閾値電圧Vthに保ちつつ二次電池B1~B3に流れる電流を徐々に低下させ、二次電池B1~B3に流れる電流が終止電流以下になると、二次電池B1~B3に流れる電流をゼロにさせる。
<Charging Method of Embodiment 2>
When charging the secondary batteries B1 to B3, the control unit 2 controls the operation of the connection circuit so that the secondary batteries B1 to B3 are connected in series with each other, and supplies a constant current to the secondary batteries B1 to B3, Each time the voltage of a predetermined secondary battery B among the secondary batteries B1 to B3 (for example, the secondary battery B connected to the positive terminal of the charger Ch) reaches or exceeds the threshold voltage Vth, the predetermined secondary battery B controls the operation of the connection circuit so that the secondary battery B is disconnected from the secondary batteries B connected in series with each other, and when the voltage of the last secondary battery B that has not been charged reaches the threshold voltage Vth or higher, the secondary battery The operation of the connection circuit is controlled so that B1 to B3 are connected in series with each other, and the current flowing through the secondary batteries B1 to B3 is gradually reduced while maintaining the voltage of each of the secondary batteries B1 to B3 at the threshold voltage Vth. , the current flowing through the secondary batteries B1-B3 becomes zero when the current flowing through the secondary batteries B1-B3 becomes equal to or less than the final current.

図3は、実施例2の充電方式により二次電池B1~B3を充電する場合の二次電池B1~B3のそれぞれの電圧の変化を示す図である。なお、図3に示す2次元座標の横軸は時間を示し、縦軸は電圧を示している。また、図3に示す実線は二次電池B1の電圧の変化を示し、図3に示す破線は二次電池B2の電圧の変化を示し、図3に示す一点鎖線は二次電池B3の電圧の変換を示している。 FIG. 3 is a diagram showing voltage changes of the secondary batteries B1 to B3 when the secondary batteries B1 to B3 are charged by the charging method of the second embodiment. Note that the horizontal axis of the two-dimensional coordinates shown in FIG. 3 indicates time, and the vertical axis indicates voltage. Further, the solid line shown in FIG. 3 indicates changes in the voltage of the secondary battery B1, the dashed line shown in FIG. 3 indicates changes in the voltage of the secondary battery B2, and the dashed-dotted line shown in FIG. shows the conversion.

まず、制御部2は、時刻t0において、第1出力部スイッチS11~S13及び第2出力部スイッチS21~S23を遮断させることで、二次電池B1~B3を互いに直列接続させる。 First, at time t0, the control unit 2 connects the secondary batteries B1 to B3 in series by turning off the first output unit switches S11 to S13 and the second output unit switches S21 to S23.

次に、制御部2は、充電器Chから二次電池システム1に一定電流が流れるように充電器Chに指示を送り、二次電池B1~B3の定電流充電制御を開始する。すると、二次電池B1~B3に一定電流が流れ、二次電池B1~B3のそれぞれの電圧が徐々に上昇する。 Next, the control unit 2 sends an instruction to the charger Ch so that a constant current flows from the charger Ch to the secondary battery system 1, and starts constant current charging control of the secondary batteries B1 to B3. Then, a constant current flows through the secondary batteries B1 to B3, and the voltage of each of the secondary batteries B1 to B3 gradually increases.

次に、制御部2は、時刻t1において、二次電池B1の電圧が閾値電圧Vth以上になると、第1出力部スイッチS11、S12を導通させるとともに、第1出力部スイッチS13及び第2出力部スイッチS21~S23を遮断させることで、所定の二次電池Bである二次電池B1を、互いに直列接続される二次電池B1~B3から外す(二次電池B1の定電流充電制御の終了)。すると、二次電池B2、B3のみに一定電流が流れ、二次電池B2、B3のそれぞれの電圧が徐々に上昇する。なお、二次電池B1の電圧が閾値電圧Vth以上になったとき、二次電池B2の電圧は閾値電圧Vthより小さく、二次電池B3の電圧は二次電池B2の電圧より小さいものとする。また、二次電池B1に電流が流れなくなると、二次電池B1の内部抵抗や分極の影響により、二次電池B1の電圧が減少するものとする。 Next, at time t1, when the voltage of the secondary battery B1 becomes equal to or higher than the threshold voltage Vth, the control section 2 turns on the first output section switches S11 and S12, and switches the first output section switch S13 and the second output section switch S13 to the second output section switch. By disconnecting the switches S21 to S23, the secondary battery B1, which is a predetermined secondary battery B, is disconnected from the secondary batteries B1 to B3 connected in series (end of constant current charging control of the secondary battery B1). . Then, a constant current flows only through the secondary batteries B2 and B3, and the respective voltages of the secondary batteries B2 and B3 gradually rise. It is assumed that when the voltage of the secondary battery B1 becomes equal to or higher than the threshold voltage Vth, the voltage of the secondary battery B2 is lower than the threshold voltage Vth, and the voltage of the secondary battery B3 is lower than the voltage of the secondary battery B2. It is also assumed that when the current stops flowing through the secondary battery B1, the voltage of the secondary battery B1 decreases due to the influence of the internal resistance and polarization of the secondary battery B1.

次に、制御部2は、時刻t2において、二次電池B2の電圧が閾値電圧Vth以上になると、第1出力部スイッチS11、S13を導通させるとともに、第1出力部スイッチS12及び第2出力部スイッチS21~S23を遮断させることで、所定の二次電池Bである二次電池B2を、互いに直列接続される二次電池B2、B3から外す(二次電池B2の定電流充電制御の終了)。すると、二次電池B3のみに一定電流が流れ、二次電池B3の電圧が徐々に上昇する。なお、二次電池B2の電圧が閾値電圧Vth以上になったとき、二次電池B3の電圧は閾値電圧Vthより小さいものとする。また、二次電池B2に電流が流れなくなると、二次電池B2の内部抵抗や分極の影響により、二次電池B2の電圧が減少するものとする。 Next, at time t2, when the voltage of the secondary battery B2 becomes equal to or higher than the threshold voltage Vth, the control unit 2 turns on the first output unit switches S11 and S13, and switches the first output unit switch S12 and the second output unit switch S12 to the second output unit. By disconnecting the switches S21 to S23, the secondary battery B2, which is a predetermined secondary battery B, is disconnected from the secondary batteries B2 and B3 connected in series (end of constant current charging control of the secondary battery B2). . Then, a constant current flows only through the secondary battery B3, and the voltage of the secondary battery B3 gradually increases. It is assumed that when the voltage of the secondary battery B2 becomes equal to or higher than the threshold voltage Vth, the voltage of the secondary battery B3 is lower than the threshold voltage Vth. It is also assumed that when the current stops flowing through the secondary battery B2, the voltage of the secondary battery B2 decreases due to the influence of the internal resistance and polarization of the secondary battery B2.

次に、制御部2は、時刻t3において、二次電池B3の電圧が閾値電圧Vth以上になると、第1出力部スイッチS11~S13及び第2出力部スイッチS21~S23を遮断させることで、二次電池B1~B3を互いに直列接続させるとともに、二次電池B1~B3の電圧を閾値電圧Vthに保ちつつ二次電池B1~B3に流れる電流が徐々に低下するように充電器Chに指示を送り、二次電池B3の定電流充電制御を終了して二次電池B1~B3の定電圧充電制御を開始する。 Next, when the voltage of the secondary battery B3 becomes equal to or higher than the threshold voltage Vth at time t3, the control unit 2 cuts off the first output unit switches S11 to S13 and the second output unit switches S21 to S23. An instruction is sent to the charger Ch so that the secondary batteries B1 to B3 are connected in series with each other, and the current flowing through the secondary batteries B1 to B3 is gradually decreased while the voltage of the secondary batteries B1 to B3 is maintained at the threshold voltage Vth. , the constant current charging control of the secondary battery B3 is terminated and the constant voltage charging control of the secondary batteries B1 to B3 is started.

そして、制御部2は、時刻t4において、二次電池B1~B3に流れる電流が終止電流以下になると、充電器Chから二次電池システム1に流れる電流がゼロになるように充電器Chに指示を送り、二次電池B1~B3の定電圧充電制御を終了する。なお、二次電池B1~B3に電流が流れなくなると、二次電池B1~B3の内部抵抗や分極の影響により、二次電池B1~B3の電圧がそれぞれ所定電圧V2の近くまで減少するものとする。 Then, at time t4, when the current flowing through the secondary batteries B1 to B3 becomes equal to or less than the final current, the control unit 2 instructs the charger Ch so that the current flowing from the charger Ch to the secondary battery system 1 becomes zero. is sent to terminate the constant voltage charging control of the secondary batteries B1 to B3. It should be noted that when the current stops flowing through the secondary batteries B1 to B3, the voltages of the secondary batteries B1 to B3 decrease to near the predetermined voltage V2 due to the influence of the internal resistance and polarization of the secondary batteries B1 to B3. do.

これにより、二次電池B1~B3の定電圧充電制御が終了した後、二次電池B1~B3のそれぞれの電圧を所定電圧V2に近づけることができる。すなわち、二次電池B1~B3の充電後、二次電池B1~B3のそれぞれの電圧を均一化させることができる。そのため、二次電池B1~B3の直列接続から並列接続への切り替え時に二次電池B間に還流電流が流れることを抑制することができる。なお、実施例2の充電方式は、定電圧充電制御において二次電池B1~B3の電圧を閾値電圧Vthに保つことができるため、実施例1の充電方式に比べて、充電後の二次電池B1~B3のそれぞれの電圧をさらに均一化させることができ、二次電池B1~B3の直列接続から並列接続への切り替え時に二次電池B間に還流電流が流れることをさらに抑制することができる。 As a result, after the constant voltage charging control of the secondary batteries B1 to B3 is completed, the voltage of each of the secondary batteries B1 to B3 can be brought close to the predetermined voltage V2. That is, after charging the secondary batteries B1 to B3, the voltages of the secondary batteries B1 to B3 can be equalized. Therefore, it is possible to suppress the return current from flowing between the secondary batteries B when switching from the series connection of the secondary batteries B1 to B3 to the parallel connection. In the charging method of the second embodiment, the voltage of the secondary batteries B1 to B3 can be maintained at the threshold voltage Vth in the constant voltage charging control. The voltages of B1 to B3 can be further uniformed, and the flow of return current between the secondary batteries B can be further suppressed when the secondary batteries B1 to B3 are switched from series connection to parallel connection. .

また、実施例2の充電方式は、二次電池B1~B3の充電後、二次電池B1~B3をそれぞれ満充電状態にさせることができる。このように、実施例2の充電方式は、二次電池B1~B3をそれぞれ満充電状態にさせることができるため、LFPなどで二次電池B1~B3を構成する場合に好適である。 Further, the charging method of the second embodiment can fully charge the secondary batteries B1 to B3 after charging the secondary batteries B1 to B3. As described above, the charging method of the second embodiment can fully charge each of the secondary batteries B1 to B3, and is suitable when the secondary batteries B1 to B3 are configured by LFPs or the like.

また、実施例2の充電方式は、二次電池B1~B3の定電圧充電制御を同時に行うことができるため、実施例1の充電方式に比べて、二次電池B1~B3の全体の充電時間を短縮することができる。このように、実施例2の充電方式は、二次電池B1~B3の全体の充電時間を比較的短くすることができるため、充電時間があまり取れない産業車両Veに対して好適である。 In addition, since the charging method of the second embodiment can perform constant voltage charging control of the secondary batteries B1 to B3 at the same time, compared to the charging method of the first embodiment, the total charging time of the secondary batteries B1 to B3 is longer. can be shortened. As described above, the charging method of the second embodiment can relatively shorten the overall charging time of the secondary batteries B1 to B3, and is suitable for the industrial vehicle Ve, which does not have much charging time.

<実施例3の充電方式>
制御部2は、二次電池B1~B3を充電する場合、二次電池B1~B3のうちの所定の二次電池B(例えば、充電器Chのプラス端子に接続される二次電池B)の電圧が閾値電圧Vth以上になる度に、所定の二次電池Bが、互いに直列接続される二次電池B1から外れるように、接続回路の動作を制御する。
<Charging Method of Embodiment 3>
When charging the secondary batteries B1 to B3, the control unit 2 charges a predetermined secondary battery B (for example, the secondary battery B connected to the positive terminal of the charger Ch) among the secondary batteries B1 to B3. The operation of the connection circuit is controlled so that the predetermined secondary battery B is separated from the secondary battery B1 connected in series each time the voltage becomes equal to or higher than the threshold voltage Vth.

図4は、実施例3の充電方式により二次電池B1~B3を充電する場合の二次電池B1~B3のそれぞれの電圧の変化を示す図である。なお、図4に示す2次元座標の横軸は時間を示し、縦軸は電圧を示している。また、図4に示す実線は二次電池B1の電圧の変化を示し、図4に示す破線は二次電池B2の電圧の変化を示し、図4に示す一点鎖線は二次電池B3の電圧の変換を示している。 FIG. 4 is a diagram showing voltage changes of the secondary batteries B1 to B3 when the secondary batteries B1 to B3 are charged by the charging method of the third embodiment. Note that the horizontal axis of the two-dimensional coordinates shown in FIG. 4 indicates time, and the vertical axis indicates voltage. Further, the solid line shown in FIG. 4 indicates changes in the voltage of the secondary battery B1, the dashed line shown in FIG. 4 indicates changes in the voltage of the secondary battery B2, and the dashed-dotted line shown in FIG. shows the conversion.

まず、制御部2は、時刻t0において、第1出力部スイッチS11~S13及び第2出力部スイッチS21~S23を遮断させることで、二次電池B1~B3を互いに直列接続させる。 First, at time t0, the control unit 2 connects the secondary batteries B1 to B3 in series by turning off the first output unit switches S11 to S13 and the second output unit switches S21 to S23.

次に、制御部2は、充電器Chから二次電池システム1に一定電流が流れるように充電器Chに指示を送り、二次電池B1~B3の定電流充電制御を開始する。すると、二次電池B1~B3に一定電流が流れ、二次電池B1~B3のそれぞれの電圧が徐々に上昇する。 Next, the control unit 2 sends an instruction to the charger Ch so that a constant current flows from the charger Ch to the secondary battery system 1, and starts constant current charging control of the secondary batteries B1 to B3. Then, a constant current flows through the secondary batteries B1 to B3, and the voltage of each of the secondary batteries B1 to B3 gradually increases.

次に、制御部2は、時刻t1において、二次電池B1の電圧が閾値電圧Vth以上になると、第1出力部スイッチS11、S12を導通させるとともに、第1出力部スイッチS13及び第2出力部スイッチS21~S23を遮断させることで、所定の二次電池Bである二次電池B1を、互いに直列接続される二次電池B1~B3から外す(二次電池B1の定電流充電制御の終了)。すると、二次電池B2、B3のみに一定電流が流れ、二次電池B2、B3のそれぞれの電圧が徐々に上昇する。なお、二次電池B1の電圧が閾値電圧Vth以上になったとき、二次電池B2の電圧は閾値電圧Vthより小さく、二次電池B3の電圧は二次電池B2の電圧より小さいものとする。また、二次電池B1に電流が流れなくなると、二次電池B1の内部抵抗や分極の影響により、二次電池B1の電圧が所定電圧V3の近くまで減少するものとする。 Next, at time t1, when the voltage of the secondary battery B1 becomes equal to or higher than the threshold voltage Vth, the control section 2 turns on the first output section switches S11 and S12, and switches the first output section switch S13 and the second output section switch S13 to the second output section switch. By disconnecting the switches S21 to S23, the secondary battery B1, which is a predetermined secondary battery B, is disconnected from the secondary batteries B1 to B3 connected in series (end of constant current charging control of the secondary battery B1). . Then, a constant current flows only through the secondary batteries B2 and B3, and the respective voltages of the secondary batteries B2 and B3 gradually rise. It is assumed that when the voltage of the secondary battery B1 becomes equal to or higher than the threshold voltage Vth, the voltage of the secondary battery B2 is lower than the threshold voltage Vth, and the voltage of the secondary battery B3 is lower than the voltage of the secondary battery B2. It is also assumed that when the current stops flowing through the secondary battery B1, the voltage of the secondary battery B1 decreases to near the predetermined voltage V3 due to the influence of the internal resistance and polarization of the secondary battery B1.

次に、制御部2は、時刻t2において、二次電池B2の電圧が閾値電圧Vth以上になると、第1出力部スイッチS11、S13を導通させるとともに、第1出力部スイッチS12及び第2出力部スイッチS21~S23を遮断させることで、所定の二次電池Bである二次電池B2を、互いに直列接続される二次電池B2、B3から外す(二次電池B2の定電流充電制御の終了)。すると、二次電池B3のみに一定電流が流れ、二次電池B3の電圧が徐々に上昇する。なお、二次電池B2の電圧が閾値電圧Vth以上になったとき、二次電池B3の電圧は閾値電圧Vthより小さいものとする。また、二次電池B2に電流が流れなくなると、二次電池B2の内部抵抗や分極の影響により、二次電池B2の電圧が所定電圧V3の近くまで減少するものとする。 Next, at time t2, when the voltage of the secondary battery B2 becomes equal to or higher than the threshold voltage Vth, the control unit 2 turns on the first output unit switches S11 and S13, and switches the first output unit switch S12 and the second output unit switch S12 to the second output unit. By disconnecting the switches S21 to S23, the secondary battery B2, which is a predetermined secondary battery B, is disconnected from the secondary batteries B2 and B3 connected in series (end of constant current charging control of the secondary battery B2). . Then, a constant current flows only through the secondary battery B3, and the voltage of the secondary battery B3 gradually increases. It is assumed that when the voltage of the secondary battery B2 becomes equal to or higher than the threshold voltage Vth, the voltage of the secondary battery B3 is lower than the threshold voltage Vth. It is also assumed that when the current stops flowing through the secondary battery B2, the voltage of the secondary battery B2 decreases to near the predetermined voltage V3 due to the influence of the internal resistance and polarization of the secondary battery B2.

そして、制御部2は、時刻t3において、二次電池B2の電圧が閾値電圧Vth以上になると、充電器Chから二次電池システム1に一定電流が流れなくなるように充電器Chに指示を送り、二次電池B3の定電流充電制御を終了する。なお、二次電池B3に電流が流れなくなると、二次電池B3の内部抵抗や分極の影響により、二次電池B3の電圧が所定電圧V3の近くまで減少するものとする。 Then, when the voltage of the secondary battery B2 reaches or exceeds the threshold voltage Vth at time t3, the control unit 2 sends an instruction to the charger Ch so that the constant current does not flow from the charger Ch to the secondary battery system 1, The constant current charging control of the secondary battery B3 is terminated. It is assumed that when the current stops flowing through the secondary battery B3, the voltage of the secondary battery B3 decreases to near the predetermined voltage V3 due to the influence of the internal resistance and polarization of the secondary battery B3.

これにより、二次電池B3の定電流充電制御が終了した後、二次電池B1~B3のそれぞれの電圧を所定電圧V3に近づけることができる。すなわち、二次電池B1~B3の充電後、二次電池B1~B3のそれぞれの電圧を均一化させることができる。そのため、二次電池B1~B3の直列接続から並列接続への切り替え時に二次電池B間に還流電流が流れることを抑制することができる。 As a result, after the constant current charging control of the secondary battery B3 is completed, the voltage of each of the secondary batteries B1 to B3 can be brought close to the predetermined voltage V3. That is, after charging the secondary batteries B1 to B3, the voltages of the secondary batteries B1 to B3 can be equalized. Therefore, it is possible to suppress the return current from flowing between the secondary batteries B when switching from the series connection of the secondary batteries B1 to B3 to the parallel connection.

また、実施例3の充電方式は、二次電池B1~B3の定電圧充電制御を行っていないため、実施例2の充電方式に比べて、二次電池B1~B3の全体の充電時間をさらに短縮することができる。このように、実施例3の充電方式は、実施例2の充電方式と同様に、二次電池B1~B3の全体の充電時間を比較的短くすることができるため、産業車両Veに対して好適である。 In addition, since the charging method of Example 3 does not perform constant voltage charging control of the secondary batteries B1 to B3, compared to the charging method of Example 2, the charging time of the entire secondary batteries B1 to B3 is longer. can be shortened. As described above, the charging method of the third embodiment, like the charging method of the second embodiment, can relatively shorten the overall charging time of the secondary batteries B1 to B3, and is therefore suitable for the industrial vehicle Ve. is.

すなわち、実施形態の二次電池システム1の制御部2は、二次電池B1~B3を充電する場合、二次電池B1~B3のうちの所定の二次電池Bの充電が終了する度に、所定の二次電池Bが、互いに直列接続される二次電池B1~B3から外れるように、接続回路の動作を制御する。 That is, when charging the secondary batteries B1 to B3, the control unit 2 of the secondary battery system 1 of the embodiment, whenever charging of a predetermined secondary battery B among the secondary batteries B1 to B3 is completed, The operation of the connection circuit is controlled so that a predetermined secondary battery B is separated from the secondary batteries B1 to B3 connected in series with each other.

これにより、二次電池B1~B3のそれぞれの電圧が閾値電圧Vthになるまで二次電池B1~B3を充電させることができるため、二次電池B1~B3の充電後、二次電池B1~B3のそれぞれの電圧を均一化させることができる。そのため、二次電池B1~B3の充電後、二次電池B1~B3を放電させるために二次電池B1~B3を互いに並列接続させても、二次電池B1~B3の間に比較的大きな還流電流が流れることを抑制することができる。 As a result, the secondary batteries B1 to B3 can be charged until the voltage of each of the secondary batteries B1 to B3 reaches the threshold voltage Vth. can be equalized. Therefore, after charging the secondary batteries B1 to B3, even if the secondary batteries B1 to B3 are connected in parallel to discharge the secondary batteries B1 to B3, a relatively large current flow is generated between the secondary batteries B1 to B3. It is possible to suppress the flow of current.

また、本発明は、以上の実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。 Moreover, the present invention is not limited to the above embodiments, and various improvements and modifications are possible without departing from the gist of the present invention.

1 二次電池システム
2 制御部
Tip 正極側充電入力部
Tin 負極側充電入力部
Top 正極側放電出力部
Ton 負極側放電出力部
Tp 正極側入出力部
Tn 負極側入出力部
S11~S13 第1出力部スイッチ
S21~S23 第2出力部スイッチ
Ss1、Ss2 直列接続用素子
B1~B3 二次電池
Lo 負荷
Ch 充電器
1 Secondary battery system 2 Control unit Tip Positive electrode side charging input portion Tin Negative electrode side charging input portion Top Positive electrode side discharge output portion Ton Negative electrode side discharge output portion Tp Positive electrode side input/output portion Tn Negative electrode side input/output portions S11 to S13 First output Section switches S21 to S23 Second output section switches Ss1 and Ss2 Series connection elements B1 to B3 Secondary battery Lo Load Ch Charger

Claims (4)

複数の二次電池を互いに直列接続または並列接続させる接続回路と、
前記複数の二次電池を充電する場合、前記複数の二次電池が互いに直列接続されるように前記接続回路の動作を制御し、前記複数の二次電池を放電する場合、前記複数の二次電池が互いに並列接続されるように前記接続回路の動作を制御する制御部と、
を備え、
前記制御部は、前記複数の二次電池を充電する場合、前記複数の二次電池のうちの所定の二次電池の充電が終了する度に、前記所定の二次電池が、互いに直列接続される前記複数の二次電池から外れるように、前記接続回路の動作を制御し、
前記接続回路は、
前記複数の二次電池の正極端子にそれぞれの一方端子が接続される複数の第1出力部スイッチと、
前記複数の二次電池の負極端子にそれぞれの一方端子が接続される複数の第2出力部スイッチと、
隣り合う前記二次電池のうちの一方の二次電池の負極端子と他方の二次電池の正極端子との間にそれぞれ接続される複数の直列接続用素子と、
前記複数の第1出力部スイッチの他方端子に接続される正極側放電出力部と、
前記複数の第2出力部スイッチの他方端子に接続される負極側放電出力部と、
前記複数の直列接続用素子を介して直列接続される前記複数の二次電池のうちの一方端に設けられている前記二次電池の正極端子と前記第1出力部スイッチの一方端子との間に接続される正極側充電入力部と、
前記複数の直列接続用素子を介して直列接続される前記複数の二次電池のうちの他方端に設けられている前記二次電池の負極端子と前記第2出力部スイッチの一方端子との間に接続される負極側充電入力部と、
を備え、
前記制御部は、前記複数の二次電池を互いに直列接続させる場合、前記複数の第1出力部スイッチ及び前記複数の第2出力部スイッチを遮断させ、前記複数の二次電池を互いに並列接続させる場合、前記複数の第1出力部スイッチ及び前記複数の第2出力部スイッチを導通させる
ことを特徴とする二次電池システム。
a connection circuit for connecting a plurality of secondary batteries in series or in parallel;
When charging the plurality of secondary batteries, controlling the operation of the connection circuit so that the plurality of secondary batteries are connected in series with each other; a controller for controlling the operation of the connection circuit so that the batteries are connected in parallel;
with
When charging the plurality of secondary batteries, the control unit causes the predetermined secondary batteries to be connected in series each time charging of a predetermined secondary battery among the plurality of secondary batteries is completed. controlling the operation of the connection circuit so as to disconnect from the plurality of secondary batteries ,
The connection circuit is
a plurality of first output switches each having one terminal connected to the positive terminal of each of the plurality of secondary batteries;
a plurality of second output switches each having one terminal connected to a negative terminal of each of the plurality of secondary batteries;
a plurality of series connection elements respectively connected between the negative terminal of one of the adjacent secondary batteries and the positive terminal of the other secondary battery;
a positive discharge output section connected to the other terminal of the plurality of first output section switches;
a negative discharge output section connected to the other terminal of the plurality of second output section switches;
Between the positive terminal of the secondary battery provided at one end of the plurality of secondary batteries connected in series via the plurality of series connection elements and one terminal of the first output section switch a positive charging input connected to the
Between the negative terminal of the secondary battery provided at the other end of the plurality of secondary batteries connected in series via the plurality of series connection elements and one terminal of the second output section switch a negative charging input connected to the
with
When the plurality of secondary batteries are connected in series, the controller cuts off the plurality of first output section switches and the plurality of second output section switches, and connects the plurality of secondary batteries in parallel with each other. , the plurality of first output section switches and the plurality of second output section switches are rendered conductive
A secondary battery system characterized by:
請求項1に記載の二次電池システムであって、
前記制御部は、前記複数の二次電池を充電する場合、前記複数の二次電池が互いに直列接続されるように前記接続回路の動作を制御するとともに前記複数の二次電池に一定電流を流し、前記複数の二次電池のうちの所定の二次電池の電圧が閾値電圧以上になると、前記所定の二次電池の電圧を前記閾値電圧に保ちつつ前記複数の二次電池に流れる電流を徐々に低下させ、前記複数の二次電池に流れる電流が終止電流以下になると、前記所定の二次電池が、互いに直列接続される前記複数の二次電池から外れるように、前記接続回路の動作を制御することを、すべての前記二次電池の充電が終了するまで繰り返す
ことを特徴とする二次電池システム。
The secondary battery system according to claim 1,
When charging the plurality of secondary batteries, the control unit controls the operation of the connection circuit so that the plurality of secondary batteries are connected in series with each other and supplies a constant current to the plurality of secondary batteries. and when the voltage of a predetermined secondary battery among the plurality of secondary batteries reaches a threshold voltage or higher, the current flowing through the plurality of secondary batteries is gradually reduced while the voltage of the predetermined secondary battery is maintained at the threshold voltage. and when the current flowing through the plurality of secondary batteries becomes equal to or less than the final current, the operation of the connection circuit is operated such that the predetermined secondary battery is disconnected from the plurality of secondary batteries connected in series with each other. A secondary battery system, characterized in that the control is repeated until charging of all the secondary batteries is completed.
請求項1に記載の二次電池システムであって、
前記制御部は、前記複数の二次電池を充電する場合、前記複数の二次電池が互いに直列接続されるように前記接続回路の動作を制御するとともに前記複数の二次電池に一定電流を流し、前記複数の二次電池のうちの所定の二次電池の電圧が閾値電圧以上になる度に、前記所定の二次電池が、互いに直列接続される前記複数の二次電池から外れるように、前記接続回路の動作を制御し、充電が終了していない最後の二次電池の電圧が前記閾値電圧以上になると、前記複数の二次電池が互いに直列接続されるように前記接続回路の動作を制御するとともに前記複数の二次電池のそれぞれの電圧を前記閾値電圧に保ちつつ前記複数の二次電池に流れる電流を徐々に低下させ、前記複数の二次電池に流れる電流が終止電流以下になると、前記複数の二次電池に流れる電流をゼロにする
ことを特徴とする二次電池システム。
The secondary battery system according to claim 1,
When charging the plurality of secondary batteries, the control unit controls the operation of the connection circuit so that the plurality of secondary batteries are connected in series with each other and supplies a constant current to the plurality of secondary batteries. , so that each time the voltage of a predetermined secondary battery among the plurality of secondary batteries becomes equal to or higher than a threshold voltage, the predetermined secondary battery is disconnected from the plurality of secondary batteries connected in series with each other; The operation of the connection circuit is controlled, and when the voltage of the last rechargeable battery that has not been charged reaches the threshold voltage or higher, the operation of the connection circuit is controlled so that the plurality of secondary batteries are connected in series with each other. While controlling and maintaining the voltage of each of the plurality of secondary batteries at the threshold voltage, the current flowing through the plurality of secondary batteries is gradually reduced, and when the current flowing through the plurality of secondary batteries becomes equal to or less than the final current , a secondary battery system characterized in that the current flowing through the plurality of secondary batteries is set to zero.
請求項1~の何れか1項に記載の二次電池システムを備える産業車両。 An industrial vehicle comprising the secondary battery system according to any one of claims 1 to 3 .
JP2020015730A 2020-01-31 2020-01-31 Secondary battery system and industrial vehicle Active JP7318548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020015730A JP7318548B2 (en) 2020-01-31 2020-01-31 Secondary battery system and industrial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020015730A JP7318548B2 (en) 2020-01-31 2020-01-31 Secondary battery system and industrial vehicle

Publications (2)

Publication Number Publication Date
JP2021125901A JP2021125901A (en) 2021-08-30
JP7318548B2 true JP7318548B2 (en) 2023-08-01

Family

ID=77460244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020015730A Active JP7318548B2 (en) 2020-01-31 2020-01-31 Secondary battery system and industrial vehicle

Country Status (1)

Country Link
JP (1) JP7318548B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125158A (en) 2006-11-08 2008-05-29 Matsushita Electric Ind Co Ltd Charging system, battery pack, and charging method thereof
JP2018026972A (en) 2016-08-11 2018-02-15 トヨタ自動車株式会社 Voltage adjustment device
JP2018161000A (en) 2017-03-23 2018-10-11 株式会社豊田自動織機 Charge control device and charge control method for battery pack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125158A (en) 2006-11-08 2008-05-29 Matsushita Electric Ind Co Ltd Charging system, battery pack, and charging method thereof
JP2018026972A (en) 2016-08-11 2018-02-15 トヨタ自動車株式会社 Voltage adjustment device
JP2018161000A (en) 2017-03-23 2018-10-11 株式会社豊田自動織機 Charge control device and charge control method for battery pack

Also Published As

Publication number Publication date
JP2021125901A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
JP5121345B2 (en) Voltage equalization controller
US8872476B2 (en) Charging management system and charger with the same
JP7347048B2 (en) Connection circuit and secondary battery system
JP6970136B2 (en) Battery control unit and battery system
US20080174274A1 (en) Battery unit
JP7096193B2 (en) Battery control unit and battery system
WO2013055414A2 (en) Apparatus for bi-directional power switching in low voltage vehicle power distribution systems
JP5744598B2 (en) Balance correction device and power storage system
KR20180035080A (en) Battery cell balancing circuit
JP7318548B2 (en) Secondary battery system and industrial vehicle
JP2013162540A (en) Battery equalization device and method
CN209767182U (en) Battery protection circuit
JP7463921B2 (en) Secondary Battery System
JP2016213947A (en) Power source device
CN111146769A (en) Power circuit protection device
KR20210012224A (en) Power system
JP2022113030A (en) Secondary battery system
CN113767541B (en) Pre-charging circuit and battery system having the same
EP4152616A1 (en) Relay drive circuit and battery system comprising same
KR102399471B1 (en) Pre-charge switching device and battery management system
KR20230081153A (en) Battery apparatus and balancing method
JP2021145442A (en) Battery module
CN115986863A (en) Energy storage device, energy storage system, control method, and precharge circuit
JP2023026313A (en) Battery balance circuit and operation method thereof
CN116325425A (en) Relay control device, battery pack, and electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R151 Written notification of patent or utility model registration

Ref document number: 7318548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151