JP2005151720A - Cell balance correcting device, secondary battery, method of correcting cell balance and cell balance correcting program - Google Patents

Cell balance correcting device, secondary battery, method of correcting cell balance and cell balance correcting program Download PDF

Info

Publication number
JP2005151720A
JP2005151720A JP2003387000A JP2003387000A JP2005151720A JP 2005151720 A JP2005151720 A JP 2005151720A JP 2003387000 A JP2003387000 A JP 2003387000A JP 2003387000 A JP2003387000 A JP 2003387000A JP 2005151720 A JP2005151720 A JP 2005151720A
Authority
JP
Japan
Prior art keywords
voltage
battery
batteries
current
current source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003387000A
Other languages
Japanese (ja)
Inventor
Takehiko Nishida
健彦 西田
Yuichi Fujioka
祐一 藤岡
Tsutomu Hashimoto
勉 橋本
Hidehiko Tajima
英彦 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003387000A priority Critical patent/JP2005151720A/en
Publication of JP2005151720A publication Critical patent/JP2005151720A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell balance correcting device which can correct a cell balance at a secondary battery charging/discharging time and to provide a secondary battery, a method of correcting the cell balance and a cell balance correcting program. <P>SOLUTION: The cell balance correcting device includes a constant current source 20 for supplying an extrapolating current for extrapolating the charging/discharging current of a plurality of batteries 10 for constituting a series battery 100, and a plurality of voltage sensors 30 for measuring the voltage values of the plurality of the batteries 10. A voltage monitor 40 for inputting the voltage values of the plurality of the batteries 10 from the plurality of the voltage sensors 30, comparing the voltage values of the plurality of the batteries 10, and starting the constant current source 20, thereby correcting the cell balance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電力貯蔵装置、UPS(uninterruptible
power supplies;無停電装置)等の非常用電源向け二次電池やHEV(Hybrid Electric
Vehicles;ハイブリッド電気自動車)、電動フォークリフト等の移動体向け二次電池において用いられるセルバランス補正装置、二次電池、セルバランス補正方法及びセルバランス補正プログラムに関する。
The present invention relates to a power storage device, UPS (uninterruptible
Rechargeable batteries for emergency power supplies such as power supplies (uninterruptible power supplies) and HEV (Hybrid Electric)
The present invention relates to a cell balance correction device, a secondary battery, a cell balance correction method, and a cell balance correction program used in a secondary battery for a mobile object such as a vehicle (hybrid electric vehicle) and an electric forklift.

二次電池は過充電状態、過放電状態になると、寿命劣化や安全上の問題が起こる。直列電池システムでは、個々の電池の容量のバラツキにより、同じ電力を充放電しても、過充電/過放電となる電池が出てくるため、各電池の電圧のバランスを補正する機構が必要となる。
セルバランス補正の方式として、従来、コンデンサを利用して直列電池の電圧バランスを補正することが知られている。例えば特許文献1には、コンデンサを利用した充放電制御装置が開示されている。この発明によれば、複数の単位キャパシタをセルとして直列に接続して組電源を構成するとともに、組電源の各セルに対して充放電可能な調整用セルと、調整用セルを個別に組電源の各セルに接続する接続手段とを設けて、調整用セルが順番に組電源の各セルに接続するように接続手段を制御する(図7を参照)。
このように構成することで、調整用セルと各セル間の充放電によって、各セルの電圧が均一化され、セルの容量バラツキによる過放電および過充電を防止する。
特開2003−189495号公報
When a secondary battery is overcharged or overdischarged, life deterioration and safety problems occur. In series battery systems, due to variations in the capacity of individual batteries, even if the same power is charged / discharged, some batteries will be overcharged / overdischarged, so a mechanism to correct the voltage balance of each battery is required. Become.
As a cell balance correction method, it is conventionally known to correct the voltage balance of a series battery using a capacitor. For example, Patent Literature 1 discloses a charge / discharge control device using a capacitor. According to the present invention, a plurality of unit capacitors are connected in series as a cell to form a combined power source, and an adjustment cell that can be charged / discharged with respect to each cell of the combined power source and the adjustment cell individually And connecting means for controlling the connecting means so that the adjustment cell is connected to each cell of the assembled power supply in order (see FIG. 7).
By comprising in this way, the voltage of each cell is equalized by charging / discharging between the cell for adjustment and each cell, and the overdischarge and the overcharge by the capacity variation of a cell are prevented.
JP 2003-189495 A

上述した発明によれば、バランス回路を低コストで構成することができる。しかし、この方式を大容量の電池に適用する場合、調整セルとして大型のコンデンサが必要となるため小型化が難しいという問題点があった。   According to the above-described invention, the balance circuit can be configured at low cost. However, when this method is applied to a large-capacity battery, there is a problem that it is difficult to reduce the size because a large capacitor is required as the adjustment cell.

本発明は、このような事情を考慮してなされたものであり、第1の目的は、二次電池の充放電時においてセルバランスを補正することができるセルバランス補正装置、セルバランス補正方法及びセルバランス補正プログラムを提供することにある。
また、第2の目的は、大容量の直列電池のセルバランスの補正を小型の回路で実現することができるセルバランス補正装置、セルバランス補正方法及びセルバランス補正プログラムを提供することにある。
The present invention has been made in view of such circumstances, and a first object is to provide a cell balance correction apparatus, a cell balance correction method, and a cell balance correction method capable of correcting cell balance during charging and discharging of a secondary battery. It is to provide a cell balance correction program.
A second object is to provide a cell balance correction device, a cell balance correction method, and a cell balance correction program capable of realizing cell balance correction of a large-capacity series battery with a small circuit.

この発明は上記の課題を解決すべくなされたもので、本発明は、直列電池を構成する複数の電池の充放電電流を補完する補完電流を供給する定電流源と、前記複数の電池の電圧値を計測する複数の電圧センサと、前記複数の電圧センサから前記複数の電池それぞれの電圧値を入力し、前記複数の電池それぞれの電圧値を比較して、前記定電流源を起動する電圧監視手段とを具備することを特徴とする。   The present invention has been made to solve the above problems, and the present invention provides a constant current source that supplies a complementary current that complements charging / discharging currents of a plurality of batteries constituting a series battery, and voltages of the plurality of batteries. A plurality of voltage sensors for measuring values, and voltage monitoring for inputting the voltage values of the plurality of batteries from the plurality of voltage sensors, comparing the voltage values of the plurality of batteries, and starting the constant current source Means.

また、本発明は、前記定電流源は、前記直列電池を構成する電池1つに対応して1つ設けられ、前記電圧監視手段は、前記複数の電圧センサから前記複数の電池それぞれの電圧値を入力し、前記複数の電池それぞれの電圧値を比較して、最高電圧の電池より電圧値が設定値以上低い電池に対応する定電流源を起動することを特徴とする。   Further, according to the present invention, one constant current source is provided corresponding to one battery constituting the series battery, and the voltage monitoring unit is configured to output voltage values of the plurality of batteries from the plurality of voltage sensors. And a voltage value of each of the plurality of batteries is compared, and a constant current source corresponding to a battery whose voltage value is lower than a set value by a value higher than the highest voltage battery is started.

また、本発明は前記定電流源は、前記直列電池を構成する全電池のうちの複数の電池からなるグループに対応して1つ設けられ、前記電圧監視手段によって切替制御される切替手段を介して、前記グループを構成する複数の電池のうち、1の電池の充放電電流を補完する補完電流を供給し、前記電圧監視手段は、前記複数の電圧センサから前記グループを構成する複数の電池それぞれの電圧値を入力し、前記複数の電池それぞれの電圧値を比較して、最高電圧の電池より電圧値が設定値以上低い電池の中で、最も電圧値が低い電池に対応する定電流源を起動することを特徴とする。   According to the present invention, one constant current source is provided corresponding to a group consisting of a plurality of batteries among all the batteries constituting the series battery, and the switching means is controlled by the voltage monitoring means. Supplying a complementary current that complements the charging / discharging current of one battery among the plurality of batteries constituting the group, and the voltage monitoring means includes a plurality of batteries constituting the group from the plurality of voltage sensors, respectively. A constant current source corresponding to the battery with the lowest voltage value among the batteries whose voltage value is lower than the highest voltage by a set value or more. It is characterized by starting.

また、本発明は、前記電圧監視手段は、さらに、最も電圧値が高い電池と定電流源を起動する電池との電圧差に応じた電流指令を前記起動した定電流源に出力することを特徴とする。   In the present invention, the voltage monitoring means further outputs a current command corresponding to a voltage difference between a battery having the highest voltage value and a battery that activates the constant current source to the activated constant current source. And

また、本発明は、前記電圧監視手段は、前記最も電圧値が高い電池と定電流源を起動する電池との電圧差が閾値よりも大きい場合、前記電圧差に応じた電流指令よりも低い電流値を示す電流指令を前記起動した定電流源に出力することを特徴とする。   Further, according to the present invention, the voltage monitoring unit is configured such that when the voltage difference between the battery having the highest voltage value and the battery that activates the constant current source is larger than a threshold, the current is lower than the current command corresponding to the voltage difference A current command indicating a value is output to the activated constant current source.

また、本発明は、前記直列電池を構成する複数の電池の充放電電流を計測する1又は複数の電流センサをさらに設け、前記電圧監視手段は、前記電流センサが計測した前記充放電電流値を入力して、前記電圧差と前記充放電電流値とに応じた電流指令を前記起動した定電流源に出力することを特徴とする。   Further, the present invention further includes one or a plurality of current sensors for measuring charge / discharge currents of a plurality of batteries constituting the series battery, and the voltage monitoring unit uses the charge / discharge current values measured by the current sensors. It is input, and a current command corresponding to the voltage difference and the charge / discharge current value is output to the activated constant current source.

また、本発明は、前記定電流源は、前記直列電池から駆動電流の供給を受けることを特徴とする。   In the invention, it is preferable that the constant current source is supplied with a driving current from the series battery.

また、本発明は、前記定電流源は、所定の外部電源装置から駆動電流の供給を受けることを特徴とする。   Further, the present invention is characterized in that the constant current source is supplied with a drive current from a predetermined external power supply device.

また、本発明の二次電池は、上記セルバランス補正装置を備えることを特徴とする。   Moreover, the secondary battery of this invention is equipped with the said cell balance correction apparatus, It is characterized by the above-mentioned.

また、本発明は、複数の電圧センサが、直列電池を構成する複数の電池それぞれの電圧値を計測し、前記計測した複数の電池それぞれの電圧値を入力し、前記複数の電池それぞれの電圧値を比較して、前記直列電池を構成する複数の電池の充放電電流を補完する補完電流を供給する定電流源を起動することを特徴とする。   Further, according to the present invention, the plurality of voltage sensors measure the voltage value of each of the plurality of batteries constituting the series battery, input the voltage value of each of the plurality of measured batteries, and the voltage value of each of the plurality of batteries. And starting a constant current source for supplying a complementary current that complements the charging / discharging currents of a plurality of batteries constituting the series battery.

また、本発明は、直列電池を構成する複数の電池それぞれに設けられた複数の電圧センサよりそれぞれの電圧値を入力する処理と、前記入力した複数の電池それぞれの電圧値を比較して、前記直列電池を構成する複数の電池の充放電電流を補完する補完電流を供給する定電流源を起動する処理とをコンピュータに実行させるためのセルバランス補正プログラムである。   Further, the present invention compares the process of inputting each voltage value from a plurality of voltage sensors provided in each of a plurality of batteries constituting a series battery, and the voltage value of each of the input plurality of batteries, It is a cell balance correction program for making a computer perform the process which starts the constant current source which supplies the complementary current which supplements the charging / discharging current of the some battery which comprises a series battery.

以上説明したように、本発明によれば、複数の電圧センサが、直列電池を構成する複数の電池それぞれの電圧値を計測し、複数の電池それぞれの電圧値を比較して、直列電池を構成する複数の電池の充放電電流を補完する補完電流を供給する定電流源を起動する。
このように構成することで、充放電時に直列電池を構成する複数の電池それぞれの電圧値に基づいて、電池の充放電電流を補完する補完電流が供給される。
したがって、充電時には、充電器からの充電電流のほかに定電流源からの補完電流が該当する電池に流れるため他の複数の電池との電圧差が解消される効果が得られる。
また、放電時には、該当する電池に接続する定電流源から負荷へ電流が流れることで、電池自身の放電電流が減少し電圧差が解消される効果が得られる。
また、このように構成することで、定電流源の損失のみで直列電池の電圧を均一化させるため、充放電時におけるセルバランス効率を向上させることができる効果が獲られる。
また、このように構成することで、コンデンサの代わりに定電流源及び定電流源を制御する制御回路のみで直列電池の電圧を均一化させるため、装置の小型化を図ることができる効果が得られる。
As described above, according to the present invention, a plurality of voltage sensors measure a voltage value of each of a plurality of batteries constituting a series battery, and a voltage value of each of the plurality of batteries is compared to constitute a series battery. A constant current source that supplies a complementary current that supplements the charging / discharging currents of a plurality of batteries is activated.
By comprising in this way, the supplementary electric current which complements the charging / discharging electric current of a battery is supplied based on the voltage value of each of the some battery which comprises a series battery at the time of charging / discharging.
Therefore, at the time of charging, in addition to the charging current from the charger, the complementary current from the constant current source flows to the corresponding battery, so that an effect of eliminating the voltage difference from other batteries can be obtained.
Further, at the time of discharging, the current flows from the constant current source connected to the corresponding battery to the load, so that the discharge current of the battery itself is reduced and the voltage difference is eliminated.
Moreover, since the voltage of a series battery is equalized only by the loss of a constant current source by comprising in this way, the effect which can improve the cell balance efficiency at the time of charging / discharging is acquired.
Also, with this configuration, the voltage of the series battery is equalized only by the constant current source and the control circuit that controls the constant current source instead of the capacitor, so that the effect of reducing the size of the device can be obtained. It is done.

また、本発明によれば、定電流源は、直列電池を構成する全電池のうちの複数の電池からなるグループに対応して1つ設けることも可能で、この場合は電圧監視手段によって切替制御される切替手段を介して、グループを構成する複数の電池のうち1の電池の充放電電流を補完する補完電流を供給する。
したがって、定電流源回路の数を減らすことができるため、製造コストを大幅に削減することができる効果が得られる。
According to the present invention, it is also possible to provide one constant current source corresponding to a group consisting of a plurality of batteries among all the batteries constituting the series battery. In this case, switching control is performed by the voltage monitoring means. The supplementary electric current which supplements the charging / discharging electric current of one battery among the some batteries which comprise a group is supplied through the switching means to be performed.
Therefore, since the number of constant current source circuits can be reduced, an effect that the manufacturing cost can be greatly reduced is obtained.

また、本発明によれば、電圧監視手段は、最も電圧値が高い電池と定電流源を起動する電池との電圧差が閾値よりも大きい場合、電圧差に応じた電流指令よりも低い電流値を示す電流指令を起動した定電流源に出力する。
このように構成することで、電圧差が大きい場合であっても大電流が電池を流れない。
したがって、定電流源回路に用いる電子素子には電流値が小さい低コストのものが使用可能であり、大電流が流れることによる充放電効率の低下を防止することができる効果も得られる。
Further, according to the present invention, the voltage monitoring means has a current value lower than the current command corresponding to the voltage difference when the voltage difference between the battery having the highest voltage value and the battery that activates the constant current source is larger than the threshold value. Is output to the activated constant current source.
With this configuration, a large current does not flow through the battery even when the voltage difference is large.
Therefore, an electronic element used in the constant current source circuit can be a low-cost electronic element having a small current value, and an effect of preventing a decrease in charge / discharge efficiency due to a large current flowing can be obtained.

また、本発明によれば、直列電池を構成する複数の電池の充放電電流を計測する1又は複数の電流センサをさらに設け、電圧監視手段は、電流センサが計測した充放電電流値を入力して、電圧差と充放電電流値とに応じた電流指令を起動した定電流源に出力する。
したがって、放電時において低い負荷に応じた低い補完電流を供給することができるため、負荷が低い場合であっても、効率的に直列電池の電圧を均一化させることができる効果が得られる。
Further, according to the present invention, one or more current sensors for measuring charge / discharge currents of a plurality of batteries constituting the series battery are further provided, and the voltage monitoring means inputs the charge / discharge current values measured by the current sensors. The current command corresponding to the voltage difference and the charge / discharge current value is output to the activated constant current source.
Therefore, since a low complementary current corresponding to a low load can be supplied at the time of discharging, an effect of efficiently equalizing the voltage of the series battery can be obtained even when the load is low.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

<第1の実施形態>
以下、図面を参照して、本発明のセルバランス補正装置の一実施形態について説明する。図1は、本実施形態のセルバランス補正装置の構成図である。
図1に示すように、本実施形態のセルバランス補正装置は、複数のセル(電池)10を直列に接続した直列電池100に対して、充放電時に充電電流、放電電流を補完する補完電流を供給することでセルバランスを調整する。
本実施形態のセルバランス補正装置は、具体的には、複数の定電流源20、複数の電圧センサ30、電圧監視部40、絶縁型DC/DCコンバータ50とから構成される。
定電流源20は、直列電池100を構成する電池10すべてに対応して、つまり、1つの電池10に対して1つ設けられ、この対応する電池10の充放電電流を補完する補完電流を供給する。定電流源20は、たとえば、図2、3に示すようにアンプ、定電圧素子、トランジスタ等を用いて構成され、補完電流の電流値を一定に制御して電池10に出力する。なお、定電流源20の具体的な構成例については、これ以外にもたとえば、電池充電制御用の専用ICを用いて構成することも考えられるものであり、実装に応じて当業者が適宜設計することができるものである。また、定電流源20は、絶縁型DC/DCコンバータ50を介して直列電池100と接続され、この直列電池100から駆動電流の供給を受ける。
<First Embodiment>
Hereinafter, an embodiment of a cell balance correction apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of the cell balance correction apparatus of the present embodiment.
As shown in FIG. 1, the cell balance correction apparatus of the present embodiment provides a complementary current that complements a charging current and a discharging current during charging / discharging with respect to a series battery 100 in which a plurality of cells (batteries) 10 are connected in series. The cell balance is adjusted by supplying.
Specifically, the cell balance correction apparatus according to the present embodiment includes a plurality of constant current sources 20, a plurality of voltage sensors 30, a voltage monitoring unit 40, and an insulation type DC / DC converter 50.
The constant current source 20 corresponds to all the batteries 10 constituting the series battery 100, that is, one constant current source 20 is provided for one battery 10 and supplies a complementary current that complements the charge / discharge current of the corresponding battery 10. To do. The constant current source 20 is configured using, for example, an amplifier, a constant voltage element, a transistor, and the like as shown in FIGS. 2 and 3, and controls the current value of the complementary current to be output to the battery 10. In addition to the above, a specific configuration example of the constant current source 20 may be configured by using a dedicated IC for battery charging control, for example. Is something that can be done. The constant current source 20 is connected to the series battery 100 via the insulation type DC / DC converter 50, and receives a drive current from the series battery 100.

電圧センサ30は、定電流源20と同様に直列電池100を構成する電池10すべてに対応して、つまり、1つの電池10に対して1つ設けられ、この対応する電池10の電圧値を計測し、電圧監視部40に出力する。
電圧監視部40は、CPUや他の電圧比較回路を持つ1または複数の論理回路で構成され、すべての電圧センサ30からすべての電池10それぞれの電圧値を入力し、すべての電池10それぞれの電圧値を比較して、充放電時に設定された条件に従って定電流源20を起動する起動信号を出力する。具体的には、電圧監視部40は、入力するそれぞれの電圧値を比較して、最高電圧の電池より電圧値が設定値以上低い電池に対応する定電流源20を起動する起動信号を出力する。たとえば、充電時において、電圧監視部40は直列電池100の中の最高電圧の電池10より25mV(ミリボルト)以上低い電圧の電池10に対応する定電流源20を起動する起動信号を出力する。一方、放電時において、電圧監視部40は直列電池100の中の最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10に対応する定電流源20を起動する起動信号を出力する。
絶縁型DC/DCコンバータ50は、直列電池100から入力する電池総電圧を降圧して定電流源20に供給する。
Similarly to the constant current source 20, the voltage sensor 30 corresponds to all the batteries 10 constituting the series battery 100, that is, one voltage sensor 30 is provided for one battery 10 and measures the voltage value of the corresponding battery 10. And output to the voltage monitoring unit 40.
The voltage monitoring unit 40 is composed of one or a plurality of logic circuits having a CPU and other voltage comparison circuits. The voltage monitoring unit 40 inputs the voltage values of all the batteries 10 from all the voltage sensors 30, and the voltages of all the batteries 10. The values are compared, and an activation signal for activating the constant current source 20 is output according to the conditions set at the time of charging / discharging. Specifically, the voltage monitoring unit 40 compares the input voltage values, and outputs an activation signal for activating the constant current source 20 corresponding to a battery whose voltage value is lower than a set value by a value higher than the highest voltage battery. . For example, at the time of charging, the voltage monitoring unit 40 outputs an activation signal for activating the constant current source 20 corresponding to the battery 10 having a voltage 25 mV (millivolt) or more lower than the highest voltage battery 10 in the series battery 100. On the other hand, at the time of discharging, the voltage monitoring unit 40 outputs an activation signal for activating the constant current source 20 corresponding to the battery 10 whose voltage is 25 mV (millivolt) or lower than the highest voltage battery 10 in the series battery 100.
The insulated DC / DC converter 50 steps down the total battery voltage input from the series battery 100 and supplies it to the constant current source 20.

次に、本実施形態のセルバランス補正装置の動作について説明する。
まず充電時において、直列電池100は充電器と接続されて、すべての電池10に対して充電電流が供給される。このとき、すべての電圧センサ30から電圧監視部40に測定した電圧値が常時出力され、電圧監視部40が入力するそれぞれの電圧値を比較する。そして、電圧監視部40は、入力した電圧値の中で最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10を選択する。
最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10が複数存在する場合でも、電圧監視部40は、該当する全ての電池に対応する定電流源を起動する。
なお、起動する定電流源の数の制限が予め設定されている場合は、電圧値が低い方から制限数分の電池に対応する定電流源20を起動する起動信号を出力する。
定電流源20を起動すると、該当する電池10には、充電器から供給される充電電流のほかに定電流源20から供給される補完電流が流れることで他の補完電流が供給されていない電池10に比べて充電が加速され、電圧差が解消していく。
電圧差が15mV以下になった時点で、当該電池に対応する定電流源20を停止する。起動する定電流源の数が制限されていた場合は、停止した定電流源に代わって、最高電圧の電池より25mV(ミリボルト)以上電圧値の低い電池の中で、次に電圧値が低い電池10と対応する定電流源20を順次起動する。
なお、起動・停止電圧にヒステリシスを持たせることで、切り替えが頻発することを防止する。
Next, the operation of the cell balance correction apparatus of this embodiment will be described.
First, at the time of charging, the series battery 100 is connected to a charger, and charging current is supplied to all the batteries 10. At this time, the voltage values measured from all the voltage sensors 30 to the voltage monitoring unit 40 are constantly output, and the voltage values input by the voltage monitoring unit 40 are compared. And the voltage monitoring part 40 selects the battery 10 whose voltage is 25 mV (millivolt) or more lower than the battery 10 of the highest voltage among the input voltage values.
Even when there are a plurality of batteries 10 whose voltages are 25 mV (millivolt) or more lower than the highest voltage battery 10, the voltage monitoring unit 40 activates the constant current sources corresponding to all the corresponding batteries.
When a limit on the number of constant current sources to be activated is set in advance, an activation signal for activating the constant current sources 20 corresponding to the limited number of batteries is output from the lowest voltage value.
When the constant current source 20 is activated, the supplementary current supplied from the constant current source 20 flows to the corresponding battery 10 in addition to the charging current supplied from the charger, so that no other supplemental current is supplied. Charging is accelerated compared to 10, and the voltage difference is eliminated.
When the voltage difference becomes 15 mV or less, the constant current source 20 corresponding to the battery is stopped. When the number of constant current sources to be started is limited, instead of the stopped constant current source, the battery with the next lowest voltage value among the batteries whose voltage value is 25 mV (millivolt) or more lower than the highest voltage battery The constant current sources 20 corresponding to 10 are sequentially activated.
Note that frequent switching is prevented by providing hysteresis to the start / stop voltage.

一方、放電時において、直列電池100は負荷と接続されて、放電電流を供給する。このときも同様に、すべての電圧センサ30から電圧監視部40に測定した電圧値が常時出力され、電圧監視部40が入力するそれぞれの電圧値を比較する。そして、電圧監視部40は、入力した電圧値の中で最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10を選択する。
最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10が複数存在する場合でも、電圧監視部40は、該当する全ての電池に対応する定電流源を起動する。
起動する定電流源の数を制限が予め設定されている場合は、電圧値が低い方から制限数分の電池と対応する定電流源20を起動する起動信号を出力する。定電流源20を起動すると、該当する電池10に接続した定電流源20から負荷へ補完電流が流れることで他の補完電流が供給されていない電池10に比べて電池10自身の放電電流が減少し、電圧差が解消していく。
電圧差が15mV以下になった時点で、当該電池に対応する定電流源20を停止する。起動する定電流源の数が制限されていた場合は、停止した定電流源に代わって、最高電圧の電池より25mV(ミリボルト)以上電圧値の低い電池の中で、次に電圧値が低い電池10と対応する定電流源20を順次起動する。
起動・停止電圧にヒステリシスを持たせることで、充電時と同様に切り替えが頻発することを防止する。
On the other hand, at the time of discharging, series battery 100 is connected to a load and supplies a discharging current. Similarly, the voltage values measured from all the voltage sensors 30 to the voltage monitoring unit 40 are always output at this time, and the voltage values input by the voltage monitoring unit 40 are compared. And the voltage monitoring part 40 selects the battery 10 whose voltage is 25 mV (millivolt) or more lower than the battery 10 of the highest voltage among the input voltage values.
Even when there are a plurality of batteries 10 whose voltages are 25 mV (millivolt) or more lower than the highest voltage battery 10, the voltage monitoring unit 40 activates the constant current sources corresponding to all the corresponding batteries.
When a limit is set in advance for the number of constant current sources to be activated, an activation signal for activating the constant current sources 20 corresponding to the limited number of batteries is output from the lowest voltage value. When the constant current source 20 is activated, a complementary current flows from the constant current source 20 connected to the corresponding battery 10 to the load, so that the discharge current of the battery 10 itself is reduced compared to the battery 10 to which no other complementary current is supplied. However, the voltage difference will disappear.
When the voltage difference becomes 15 mV or less, the constant current source 20 corresponding to the battery is stopped. When the number of constant current sources to be started is limited, instead of the stopped constant current source, the battery with the next lowest voltage value among the batteries whose voltage value is 25 mV (millivolt) or more lower than the highest voltage battery The constant current sources 20 corresponding to 10 are sequentially activated.
By giving hysteresis to the start / stop voltage, frequent switching is prevented in the same way as during charging.

以上説明したように、本実施形態のセルバランス補正装置によれば、複数の電圧センサ30が、直列電池100を構成する複数の電池10それぞれの電圧値を計測し、複数の電池10それぞれの電圧値を比較して、充放電電流を補完する補完電流を供給する定電流源20を起動する起動信号を出力する。
このように構成することで、充放電時に直列電池100を構成する複数の電池10それぞれの電圧値に基づいて、電池10の充放電電流を補完する補完電流が供給される。したがって、充電時には、充電器からの充電電流のほかに定電流源20からの補完電流が該当する電池10に流れるため他の複数の電池10との電圧差が解消される効果が得られる。また、放電時には、該当する電池10に接続する定電流源20から負荷へ電流が流れることで、電池自身の放電電流が減少し電圧差が解消される効果が得られる。
また、このように構成することで、定電流源20の損失のみで直列電池100の電圧を均一化させるため、充放電時におけるセルバランス効率を向上させることができる効果が獲られる。
また、このように構成することで、コンデンサの代わりに定電流源20と定電流源20を制御する電圧監視回路40のみで直列電池100の電圧を均一化させるため、装置の小型化を図ることができる効果が得られる。
更に、起動する定電流源の数を制限することにより、定電流源の損失による効率悪化や装置内の温度上昇を抑えることができる。
As described above, according to the cell balance correction apparatus of the present embodiment, the plurality of voltage sensors 30 measure the voltage values of the plurality of batteries 10 constituting the series battery 100, and the voltages of the plurality of batteries 10 respectively. The values are compared, and an activation signal for activating the constant current source 20 that supplies a complementary current that complements the charge / discharge current is output.
By comprising in this way, the supplementary electric current which supplements the charging / discharging electric current of the battery 10 is supplied based on each voltage value of the some battery 10 which comprises the series battery 100 at the time of charging / discharging. Therefore, at the time of charging, in addition to the charging current from the charger, the complementary current from the constant current source 20 flows to the corresponding battery 10, so that the effect of eliminating the voltage difference from the other batteries 10 can be obtained. Further, at the time of discharging, the current flows from the constant current source 20 connected to the corresponding battery 10 to the load, so that the discharge current of the battery itself is reduced and the voltage difference is eliminated.
Moreover, since the voltage of the series battery 100 is equalized only by the loss of the constant current source 20 by comprising in this way, the effect which can improve the cell balance efficiency at the time of charging / discharging is acquired.
Further, with this configuration, the voltage of the series battery 100 is equalized only by the constant current source 20 and the voltage monitoring circuit 40 that controls the constant current source 20 instead of the capacitor, so that the size of the device can be reduced. The effect that can be obtained.
Furthermore, by limiting the number of constant current sources to be activated, it is possible to suppress deterioration in efficiency and temperature rise in the apparatus due to loss of the constant current source.

<第2の実施形態>
以下、図面を参照して、本発明のセルバランス補正装置の第2の実施形態について説明する。図4は、本実施形態のセルバランス補正装置の構成図である。本実施形態のセルバランス補正装置が第1の実施形態と異なる点は、定電流源20がすべての電池10に対して設けられるのではなく、直列電池100を構成する全電池を複数の電池10からなるグループに区分して、このグループに属する複数の電池10に対して1つの定電流源20を設ける点である。以下、本実施形態のセルバランス補正装置について、第1の実施形態と共通する点については説明を省略し、異なる点についてのみ説明する。
本実施形態のセルバランス補正装置は、図4に示すように、直列電池100を複数のグループNに区分し(図4では一例としてグループKとK+1についてのみ示す)、各グループに属する複数の電池10について各グループごとにセルバランスを補正する。すなわち、定電流源20は、直列電池100を構成する全電池のうちの複数の電池10からなるグループに対応して1つ設けられる。各定電流源20は、グループ内の複数の電池10とスイッチ60を介して接続される。スイッチ60は、電圧監視部40によって切替制御され、定電流源20から入力する補完電流をグループ内の複数の電池10のうちの1の電池10に対して供給する。
電圧監視部40は、グループ内のすべての電圧センサ30からグループ内のすべての電池10それぞれの電圧値を入力し、それぞれの電圧値を比較して、充放電時に設定された条件に従ってグループ内のいずれかの定電流源20を起動する起動信号を出力する。なお、電圧監視部40は実装に応じて適宜所定数設けられるものであり、具体的には、各グループに対応して設けるか、すべてのグループの電圧を集中して監視制御すべく当該装置に1つ設けることが考えられる。
<Second Embodiment>
Hereinafter, a second embodiment of the cell balance correction apparatus of the present invention will be described with reference to the drawings. FIG. 4 is a configuration diagram of the cell balance correction apparatus of the present embodiment. The cell balance correction apparatus of this embodiment is different from the first embodiment in that the constant current source 20 is not provided for all the batteries 10, but all the batteries constituting the series battery 100 are replaced by a plurality of batteries 10. And a single constant current source 20 is provided for a plurality of batteries 10 belonging to this group. Hereinafter, regarding the cell balance correction apparatus of the present embodiment, description of points that are common to the first embodiment will be omitted, and only differences will be described.
As shown in FIG. 4, the cell balance correction apparatus of this embodiment divides the series battery 100 into a plurality of groups N (in FIG. 4, only the groups K and K + 1 are shown as an example), and a plurality of batteries belonging to each group. For 10, the cell balance is corrected for each group. That is, one constant current source 20 is provided corresponding to a group consisting of a plurality of batteries 10 among all the batteries constituting the series battery 100. Each constant current source 20 is connected to a plurality of batteries 10 in the group via a switch 60. The switch 60 is switch-controlled by the voltage monitoring unit 40 and supplies a complementary current input from the constant current source 20 to one of the batteries 10 in the group.
The voltage monitoring unit 40 inputs the voltage values of all the batteries 10 in the group from all the voltage sensors 30 in the group, compares the respective voltage values, and according to the conditions set at the time of charging / discharging. An activation signal for activating any constant current source 20 is output. Note that a predetermined number of voltage monitoring units 40 are appropriately provided depending on the implementation. Specifically, the voltage monitoring units 40 are provided corresponding to each group, or the voltage monitoring unit 40 is provided in the apparatus to centrally monitor and control the voltages of all groups. It is conceivable to provide one.

次に、本実施形態のセルバランス補正装置の動作について説明する。
まず充電時において、直列電池100は充電器と接続されて、すべての電池10に対して充電電流が供給される。このとき、各グループ1〜Nにおいて、グループ内のすべての電圧センサ30から各グループの電圧監視部40に測定した電圧値が常時出力され、電圧監視部40が入力するそれぞれの電圧値を比較する。そして、電圧監視部40は、入力した電圧値の中で最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10を各グループの中から選択する。
最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10が各グループ内で1つであれば、電圧監視部40は、この電池10に対応する定電流源20を起動する起動信号及びスイッチ60の切替信号を出力する。一方、最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10が各グループ内で複数存在する場合、電圧監視部40は、各グループ内で順次最も電圧値が低い電池10に対応する定電流源20を起動する起動信号及びスイッチ60の切替信号を出力する。各グループ内で最も電圧値が低い電池10に対応する定電流源20を起動すると、該当する電池10には、充電器から供給される充電電流の他にスイッチ60を介して定電流源20から供給される補完電流が流れることでグループ内の補完電流が供給されていない他の電池10に比べて充電が加速され、電圧差が解消していく。そして、電圧差が15mV以下になった時点で、各グループ内で当該定電流源20を停止し、各グループ内で次に電圧値が低い電池10と対応する定電流源20を順次起動することで、起動電圧に対してヒステリシスを持たせる。このように構成することで、各グループ内で切り替えが頻発することを防止する。
Next, the operation of the cell balance correction apparatus of this embodiment will be described.
First, at the time of charging, the series battery 100 is connected to a charger, and charging current is supplied to all the batteries 10. At this time, in each of the groups 1 to N, the voltage values measured from all the voltage sensors 30 in the group to the voltage monitoring unit 40 of each group are always output, and the voltage values input by the voltage monitoring unit 40 are compared. . And the voltage monitoring part 40 selects the battery 10 whose voltage is 25 mV (millivolt) lower than the battery 10 of the highest voltage among the input voltage values from each group.
If there is one battery 10 in each group whose voltage is 25 mV (millivolt) or more lower than the highest voltage battery 10, the voltage monitoring unit 40 activates the constant current source 20 corresponding to this battery 10 and a switch 60 switching signals are output. On the other hand, when there are a plurality of batteries 10 having a voltage of 25 mV (millivolt) or more lower than that of the highest voltage battery 10 in each group, the voltage monitoring unit 40 sequentially determines the voltage corresponding to the battery 10 having the lowest voltage value in each group. An activation signal for activating the current source 20 and a switching signal for the switch 60 are output. When the constant current source 20 corresponding to the battery 10 having the lowest voltage value in each group is activated, the corresponding battery 10 is supplied from the constant current source 20 via the switch 60 in addition to the charging current supplied from the charger. When the supplied complementary current flows, charging is accelerated compared to other batteries 10 to which no complementary current in the group is supplied, and the voltage difference is eliminated. Then, when the voltage difference becomes 15 mV or less, the constant current source 20 is stopped in each group, and the constant current source 20 corresponding to the battery 10 having the next lowest voltage value is sequentially started in each group. Thus, hysteresis is given to the starting voltage. With this configuration, frequent switching within each group is prevented.

一方、放電時において、直列電池100は負荷と接続されて、放電電流を供給する。このときも同様に、グループ内のすべての電圧センサ30から電圧監視部40に測定した電圧値が常時出力され、電圧監視部40が入力するそれぞれの電圧値を比較する。そして、電圧監視部40は、入力した電圧値の中で最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10を各グループで選択する。
最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10が1つであれば、電圧監視部40は、この電池10に対応する定電流源20を起動する起動信号及びスイッチ60の切替信号を出力する。一方、最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10が複数存在する場合、電圧監視部40は、順次最も電圧値が低い電池10に対応する定電流源20を起動する起動信号及びスイッチ60の切替信号を出力する。最も電圧値が低い電池10に対応する定電流源20を起動すると、スイッチ60を介して該当する電池10に接続した定電流源20から負荷へ補完電流が流れることでグループ内の補完電流が供給されていない他の電池10に比べて電池10自身の放電電流が減少し、電圧差が解消していく。そして、電圧差が15mV以下になった時点で、当該定電流源20を停止し、各グループで次に電圧値が低い電池10に対応する定電流源20を順次起動することで、起動電圧に対してヒステリシスを持たせる。このように構成することで、充電時と同様に切り替えが頻発することを防止する。
On the other hand, at the time of discharging, series battery 100 is connected to a load and supplies a discharging current. At this time, similarly, the voltage values measured from all the voltage sensors 30 in the group are constantly output to the voltage monitoring unit 40, and the voltage values input by the voltage monitoring unit 40 are compared. And the voltage monitoring part 40 selects the battery 10 whose voltage is 25 mV (millivolt) lower than the battery 10 of the highest voltage among the input voltage values in each group.
If there is one battery 10 whose voltage is 25 mV (millivolt) or more lower than the highest voltage battery 10, the voltage monitoring unit 40 activates the constant current source 20 corresponding to this battery 10 and the switch 60 switching signal. Is output. On the other hand, when there are a plurality of batteries 10 whose voltage is 25 mV (millivolt) or more lower than the highest voltage battery 10, the voltage monitoring unit 40 sequentially activates the constant current source 20 corresponding to the battery 10 having the lowest voltage value. And a switching signal of the switch 60 is output. When the constant current source 20 corresponding to the battery 10 having the lowest voltage value is activated, the complementary current in the group is supplied by the complementary current flowing from the constant current source 20 connected to the corresponding battery 10 via the switch 60 to the load. The discharge current of the battery 10 itself is reduced as compared with other batteries 10 that are not, and the voltage difference is eliminated. When the voltage difference becomes 15 mV or less, the constant current source 20 is stopped, and the constant current source 20 corresponding to the battery 10 having the next lowest voltage value is sequentially started in each group, so that the starting voltage is obtained. Give hysteresis to it. Such a configuration prevents frequent switching as in the case of charging.

以上説明したように、本実施形態のセルバランス補正装置によれば、定電流源20は、直列電池100を構成する全電池10のうちの複数の電池10からなるグループ1〜Nに対応して1つ設けられ、電圧監視部40によって切替制御されるスイッチ60を介して、グループを構成する複数の電池10のうち1の電池10の充放電電流を補完する補完電流を供給する。
したがって、直列電池100のグループごとの電池電圧のセルバランスを補正することができる効果が獲られる。また、直列電池全体を制御するための定電流源20の回路数を減らすことができるため、製造コストを大幅に削減することができる効果が得られる。
As described above, according to the cell balance correction apparatus of the present embodiment, the constant current source 20 corresponds to the groups 1 to N including the plurality of batteries 10 among all the batteries 10 constituting the series battery 100. One supplemental current that complements the charge / discharge current of one battery 10 among the plurality of batteries 10 constituting the group is supplied via one switch 60 that is provided and controlled to be switched by the voltage monitoring unit 40.
Therefore, the effect that the cell balance of the battery voltage for each group of series batteries 100 can be corrected is obtained. Moreover, since the number of circuits of the constant current source 20 for controlling the entire series battery can be reduced, an effect that the manufacturing cost can be significantly reduced is obtained.

<第3の実施形態>
以下、図面を参照して、本発明のセルバランス補正装置の第3の実施形態について説明する。図5は、本実施形態のセルバランス補正装置の構成図である。本実施形態のセルバランス補正装置が第2の実施形態と異なる点は、定電流源20に代えて電流値が可変である電流源21を設けるとともに、各グループを流れる充放電電流を測定する電流センサ70を設け、さらに、電圧監視部40に代えて電圧・電流を監視する電圧・電流監視部41を設けた点である。以下、本実施形態のセルバランス補正装置について、第1、2の実施形態と共通する点については説明を省略し、異なる点についてのみ説明する。
電流源21は、電圧・電流監視部41から起動信号を入力して起動し、電圧・電流監視部41から最も電圧値が高い電池と定電流源を起動する電池との電圧差に応じた電流指令を入力して、電池10に補完電流を供給する。
たとえば、電圧差25mV〜100mVで電流源出力の25%〜100%の電流指令を入力し、電圧差が100mVを超えた場合は、以後、100%の固定出力とし、これ以上供給する補完電流を増大させないようにする。
また、電流源21は、放電時において、負荷に供給する放電電流が電圧差と対応する補完電流よりも小さい場合には、電流センサ70が測定した充放電電流に応じた電流指令を入力して、電池に補完電流10を供給する。たとえば、指令値として、充放電電流の10%程度と設定された場合、電流源21は、充放電電流の10%程度の補完電流を電池10に出力する。
電圧・電流監視部41は、最も電圧値が高い電池10と定電流源を起動する電池10との電圧差が閾値よりも大きい場合、電圧差に応じた電流指令よりも低い電流値を示す電流指令を起動した電流源21に出力する。さらに、電圧・電流監視部41は、電流センサ70が計測した充放電電流値を入力して、上述した電圧差と、充放電電流値とに応じた電流指令を起動した電流源21に出力する。
電流センサ70は、各グループごと(図5)又は全グループ共通で1つに設けられ、直列電池100の充放電電流を計測する。
<Third Embodiment>
Hereinafter, a third embodiment of the cell balance correction apparatus of the present invention will be described with reference to the drawings. FIG. 5 is a configuration diagram of the cell balance correction apparatus of the present embodiment. The cell balance correction apparatus of this embodiment is different from the second embodiment in that a current source 21 having a variable current value is provided in place of the constant current source 20, and a current for measuring a charge / discharge current flowing through each group. The sensor 70 is provided, and a voltage / current monitoring unit 41 for monitoring the voltage / current is provided in place of the voltage monitoring unit 40. Hereinafter, the cell balance correction apparatus according to the present embodiment will not be described for points that are common to the first and second embodiments, and only different points will be described.
The current source 21 is activated by receiving an activation signal from the voltage / current monitoring unit 41, and a current corresponding to the voltage difference between the battery having the highest voltage value from the voltage / current monitoring unit 41 and the battery that activates the constant current source. A command is input to supply a complementary current to the battery 10.
For example, if a current command of 25% to 100% of the current source output is input at a voltage difference of 25 mV to 100 mV, and the voltage difference exceeds 100 mV, then a fixed output of 100% is set and the supplementary current to be supplied beyond this is supplied Do not increase.
The current source 21 inputs a current command corresponding to the charge / discharge current measured by the current sensor 70 when the discharge current supplied to the load is smaller than the complementary current corresponding to the voltage difference during discharge. The supplementary current 10 is supplied to the battery. For example, when the command value is set to about 10% of the charge / discharge current, the current source 21 outputs a complementary current of about 10% of the charge / discharge current to the battery 10.
When the voltage difference between the battery 10 having the highest voltage value and the battery 10 that activates the constant current source is larger than the threshold value, the voltage / current monitoring unit 41 shows a current value lower than the current command corresponding to the voltage difference. The command is output to the activated current source 21. Further, the voltage / current monitoring unit 41 inputs the charge / discharge current value measured by the current sensor 70 and outputs the current command according to the voltage difference and the charge / discharge current value described above to the activated current source 21. .
The current sensor 70 is provided for each group (FIG. 5) or in common for all groups, and measures the charge / discharge current of the series battery 100.

次に、本実施形態のセルバランス補正装置の動作について説明する。
まず充電時において、直列電池100は充電器と接続されて、すべての電池10に対して充電電流が供給される。このとき、各グループ1〜Nにおいて、グループ内のすべての電圧センサ30及び各グループごと又は全グループ共通で1つ用意した電流センサ70から各グループの電圧・電流監視部41に測定した電圧値及び充放電電流値が常時出力され、電圧・電流監視部41がまず入力するそれぞれの電圧値を比較する。そして、電圧・電流監視部41は、入力した電圧値の中で最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10を各グループの中から選択する。
最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10が各グループ内で1つであれば、電圧・電流監視部41は、この電池に対応する電流源21を起動する起動信号及びスイッチ60の切替信号を出力する。一方、最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10が各グループ内で複数存在する場合、電圧・電流監視部41は、電池毎に電流源21を配置する構成では該当する全電池10又は電圧の最も低い方から順に、制限された起動台数分の電池10に対応する電流源21を起動する起動信号を出力する。また、グループ毎に電流源21を1つ設置する構成では、各グループ内で順次最も電圧値が低い電池10に対応する電流源21を起動する起動信号を出力する。また電流源の起動信号出力と同時に電圧・電流監視部41は、最も電圧値が高い電池10と定電流源を起動する電池10との電圧差に応じた電流指令及びスイッチ60の切替信号を出力する。
Next, the operation of the cell balance correction apparatus of this embodiment will be described.
First, at the time of charging, the series battery 100 is connected to a charger, and charging current is supplied to all the batteries 10. At this time, in each of the groups 1 to N, the voltage value measured by the voltage / current monitoring unit 41 of each group from all the voltage sensors 30 in the group and the current sensor 70 prepared for each group or common to all groups, and The charge / discharge current value is always output, and the voltage / current monitoring unit 41 first compares each voltage value input. Then, the voltage / current monitoring unit 41 selects, from each group, a battery 10 whose voltage is lower by 25 mV (millivolt) than the battery 10 having the highest voltage among the input voltage values.
If there is one battery 10 in each group whose voltage is 25 mV (millivolt) or more lower than the highest voltage battery 10, the voltage / current monitoring unit 41 activates the current signal 21 corresponding to this battery and a switch 60 switching signals are output. On the other hand, when there are a plurality of batteries 10 in each group whose voltage is 25 mV (millivolt) or more lower than that of the highest voltage battery 10, the voltage / current monitoring unit 41 is all applicable in the configuration in which the current source 21 is arranged for each battery. In order from the battery 10 or the lowest voltage, start signals for starting the current sources 21 corresponding to the limited number of batteries 10 are output. In the configuration in which one current source 21 is installed for each group, an activation signal for activating the current source 21 corresponding to the battery 10 having the lowest voltage value in each group is sequentially output. Simultaneously with the activation signal output of the current source, the voltage / current monitoring unit 41 outputs a current command corresponding to the voltage difference between the battery 10 having the highest voltage value and the battery 10 that activates the constant current source, and a switch 60 switching signal. To do.

各グループ内で電池10に対応する電流源21を起動すると、該当する電池10には、充電器から供給される充電電流のほかに、スイッチ60を介して電流源21から最も電圧値が高い電池10と当該電池10との電圧差に応じた補完電流が供給される。これにより、グループ内の補完電流が供給されていない他の電池10に比べて充電が加速され、電圧差が除々に解消される。
ただし、充放電電流が、最も電圧値が高い電池10と当該電池10との電圧差に応じた補完電流を下回るような場合においては、電圧・電流監視部41は、充放電電流に応じた電流指令を電流源21に出力する。
例えば、充放電電流に対して一定の割合の電流指令を入力すると、電流源21は、最も電圧値が高い電池10と当該電池10との電圧差に応じた補完電流よりも小さい充放電電流に対して一定の割合の補完電流をスイッチ60を介して電池10に供給する。これにより、グループ内の補完電流が供給されていない他の電池10に比べて充電が加速され、電圧差が除々に解消される。
When the current source 21 corresponding to the battery 10 is activated in each group, the corresponding battery 10 includes a battery having the highest voltage value from the current source 21 via the switch 60 in addition to the charging current supplied from the charger. A complementary current corresponding to the voltage difference between the battery 10 and the battery 10 is supplied. Thereby, charge is accelerated compared with the other battery 10 to which the complementary current in the group is not supplied, and the voltage difference is gradually eliminated.
However, in the case where the charging / discharging current is lower than the complementary current corresponding to the voltage difference between the battery 10 having the highest voltage value and the battery 10, the voltage / current monitoring unit 41 has a current corresponding to the charging / discharging current. The command is output to the current source 21.
For example, when a current command at a constant ratio is input to the charge / discharge current, the current source 21 sets the charge / discharge current smaller than the complementary current corresponding to the voltage difference between the battery 10 having the highest voltage value and the battery 10. On the other hand, a complementary current of a certain ratio is supplied to the battery 10 via the switch 60. Thereby, charge is accelerated compared with the other battery 10 to which the complementary current in the group is not supplied, and the voltage difference is gradually eliminated.

一方、放電時において、直列電池100は負荷と接続されて、放電電流を供給する。このときも同様に、各グループ1〜Nにおいて、グループ内のすべての電圧センサ30及び各グループごと又は全グループ共通で1つ用意した電流センサ70から各グループの電圧・電流監視部41に測定した電圧値及び充放電電流値が常時出力され、電圧・電流監視部41がまず入力するそれぞれの電圧値を比較する。そして、電圧・電流監視部41は、入力した電圧値の中で最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10を各グループの中から選択する。
最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10が各グループ内で1つであれば、電圧・電流監視部41は、この電池に対応する電流源21を起動する起動信号、及び、最も電圧値が高い電池10と最も電圧値が低い電池10との電圧差に応じた電流指令、並びに、スイッチ60の切替信号を出力する。一方、最高電圧の電池10より25mV(ミリボルト)以上電圧が低い電池10が各グループ内で複数存在する場合、電圧・電流監視部41は、電池毎に電流源21を配置する構成では該当する全電池10又は電圧の最も低い方から順次に制限された起動台数分の電池10に対応する電流源21を起動する起動信号を出力し、一方、グループ毎に電流源21を1つ設置する構成では、各グループ内で順次最も電圧値が低い電池10と対応する電流源21を起動する起動信号を出力する。
また電流源21の起動信号出力と同時に、電圧・電流監視部41は、最も電圧値が高い電池10と定電流源を起動する電池10との電圧差に応じた電流指令、及びスイッチ60の切替信号を出力する。
On the other hand, at the time of discharging, series battery 100 is connected to a load and supplies a discharging current. Similarly, in each of the groups 1 to N, the voltage / current monitoring unit 41 of each group is measured from all voltage sensors 30 in the group and one current sensor 70 prepared for each group or common to all groups. The voltage value and the charge / discharge current value are always output, and the voltage / current monitoring unit 41 first compares the respective voltage values input. Then, the voltage / current monitoring unit 41 selects, from each group, a battery 10 whose voltage is lower by 25 mV (millivolt) than the battery 10 having the highest voltage among the input voltage values.
If there is one battery 10 in each group whose voltage is 25 mV (millivolt) or more lower than that of the highest voltage battery 10, the voltage / current monitoring unit 41 activates the current source 21 corresponding to this battery, and The current command according to the voltage difference between the battery 10 having the highest voltage value and the battery 10 having the lowest voltage value, and the switching signal of the switch 60 are output. On the other hand, when there are a plurality of batteries 10 in each group whose voltage is 25 mV (millivolt) or more lower than that of the highest voltage battery 10, the voltage / current monitoring unit 41 is all applicable in the configuration in which the current source 21 is arranged for each battery. In the configuration in which the activation signal for activating the current sources 21 corresponding to the batteries 10 corresponding to the number of activations sequentially limited from the battery 10 or the lowest voltage is output, while one current source 21 is installed for each group. The activation signal for activating the current source 21 corresponding to the battery 10 having the lowest voltage value in sequence in each group is output.
Simultaneously with the activation signal output of the current source 21, the voltage / current monitoring unit 41 switches the switch 60 and the current command according to the voltage difference between the battery 10 having the highest voltage value and the battery 10 that activates the constant current source. Output a signal.

各グループ内で電池10と対応する電流源21を起動すると、スイッチ60を介して負荷へ最も電圧値が高い電池10と当該電池10との電圧差に応じた補完電流が流れることでグループ内の補完電流が供給されていない他の電池10に比べて電池10自身の放電電流が減少し、電圧差が解消していく。
ただし、充放電電流が最も電圧値が高い電池10と当該電池10との電圧差に応じた補完電流を下回るような場合においては、電圧・電流監視部41は、充放電電流に応じた電流指令を電流源21に出力する。
例えば、充放電電流に対して一定の割合の電流指令を入力すると、電流源21は、最も電圧値が高い電池10と当該電池10との電圧差に応じた補完電流よりも小さい充放電電流に対して一定の割合の補完電流をスイッチ60を介して負荷に供給する。これにより、グループ内の補完電流が供給されていない他の電池10に比べて電池10自身の放電電流が減少し、電圧差が除々に解消される。
When the current source 21 corresponding to the battery 10 is activated in each group, a complementary current corresponding to the voltage difference between the battery 10 having the highest voltage value and the battery 10 flows to the load via the switch 60, so that Compared with other batteries 10 to which no supplemental current is supplied, the discharge current of the battery 10 itself decreases, and the voltage difference is eliminated.
However, in the case where the charge / discharge current is less than the complementary current corresponding to the voltage difference between the battery 10 having the highest voltage value and the battery 10, the voltage / current monitoring unit 41 determines the current command according to the charge / discharge current. Is output to the current source 21.
For example, when a current command at a constant ratio is input to the charge / discharge current, the current source 21 sets the charge / discharge current smaller than the complementary current corresponding to the voltage difference between the battery 10 having the highest voltage value and the battery 10. On the other hand, a certain amount of complementary current is supplied to the load via the switch 60. As a result, the discharge current of the battery 10 itself is reduced as compared with other batteries 10 to which no complementary current is supplied in the group, and the voltage difference is gradually eliminated.

以上説明したように、本実施形態のセルバランス補正装置によれば、電圧・電流監視部41は、最も電圧値が高い電池10と当該電池10との電圧差が閾値よりも大きい場合、電圧差に応じた電流指令よりも低い電流値を示す電流指令を起動した電流源21に出力する。このように構成することで、電圧差が大きい場合であっても大電流が電池10を流れない。したがって、大電流が流れることによる充放電効率の低下を防止することができる効果が得られる。   As described above, according to the cell balance correction apparatus of the present embodiment, the voltage / current monitoring unit 41 determines that the voltage difference when the voltage difference between the battery 10 having the highest voltage value and the battery 10 is larger than the threshold value. A current command indicating a current value lower than the current command corresponding to is output to the activated current source 21. With this configuration, a large current does not flow through the battery 10 even when the voltage difference is large. Therefore, an effect of preventing a decrease in charge / discharge efficiency due to a large current flowing can be obtained.

また、本実施形態のセルバランス補正装置によれば、直列電池100を構成する複数の電池10の充放電電流を計測する複数の電流センサ70をさらに設け、電圧・電流監視部41は、電流センサ70が計測した充放電電流値を入力して、電圧差と充放電電流値とに応じた電流指令を起動した定電流源に出力する。
したがって、放電時において低い負荷に応じた低い補完電流を供給することができるため、負荷が低い場合であっても、効率的に直列電池100の電圧を均一化させることができる効果が得られる。
In addition, according to the cell balance correction apparatus of the present embodiment, a plurality of current sensors 70 for measuring charge / discharge currents of the plurality of batteries 10 constituting the series battery 100 are further provided, and the voltage / current monitoring unit 41 includes the current sensor. The charge / discharge current value measured by 70 is input, and a current command corresponding to the voltage difference and the charge / discharge current value is output to the activated constant current source.
Therefore, since a low complementary current corresponding to a low load can be supplied during discharge, an effect of efficiently equalizing the voltage of the series battery 100 can be obtained even when the load is low.

<第4の実施形態>
以下、図面を参照して、本発明のセルバランス補正装置の第4の実施形態について説明する。図6は、本実施形態のセルバランス補正装置の構成図である。本実施形態のセルバランス補正装置が第1の実施形態と異なる点は、電流源21は、直列電池100ではなく、所定の外部電源装置200から駆動電流の供給を受ける点である。以下、本実施形態のセルバランス補正装置について、第1、2の実施形態と共通する点については説明を省略し、異なる点についてのみ説明する。
図6に示すように、各グループ1〜Nを流れる放電電流に対して順方向に双方向インバータ300を介して、商用系統の外部電源装置200が接続される。外部電源装置200は、AC/DCコンバータ400を介して各グループの電流源21と接続され、駆動電流を供給する。
したがって、直列電池100を駆動電源の供給元とする場合に比較して、直列電池100の電源供給負荷を減少させることができる効果が得られる。
<Fourth embodiment>
Hereinafter, a fourth embodiment of the cell balance correction apparatus of the present invention will be described with reference to the drawings. FIG. 6 is a configuration diagram of the cell balance correction apparatus of the present embodiment. The difference between the cell balance correction apparatus of this embodiment and the first embodiment is that the current source 21 is supplied with a drive current from a predetermined external power supply apparatus 200 instead of the series battery 100. Hereinafter, the cell balance correction apparatus according to the present embodiment will not be described for points that are common to the first and second embodiments, and only different points will be described.
As shown in FIG. 6, an external power supply device 200 of a commercial system is connected via a bidirectional inverter 300 in the forward direction with respect to the discharge currents flowing through the groups 1 to N. The external power supply apparatus 200 is connected to the current source 21 of each group via the AC / DC converter 400 and supplies a drive current.
Therefore, an effect of reducing the power supply load of the series battery 100 can be obtained as compared with the case where the series battery 100 is used as a drive power supply source.

なお、上記実施形態においては、具体的な補完電流の数値については、特に限定しなかったが、たとえば、充放電電流を電圧値に応じて0.1A(アンペア)、または1アンペア変動させることが考えられる。たとえば、充放電電流が10Aであれば、出力100%で1Aの補完電流を供給するものとし、出力25%では0.25Aの補完電流を供給することが考えられる。   In the above embodiment, the specific value of the complementary current is not particularly limited. For example, the charge / discharge current may be changed by 0.1 A (ampere) or 1 ampere according to the voltage value. Conceivable. For example, if the charging / discharging current is 10 A, it is assumed that a supplementary current of 1 A is supplied at an output of 100%, and a supplementary current of 0.25 A is supplied at an output of 25%.

上述のセルバランス補正装置は、内部に、コンピュータシステムを有している。
そして、上述したセルバランス補正処理に関する一連の処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。
すなわち、セルバランス補正装置における、各処理手段、処理部は、CPU等の中央演算処理装置がROMやRAM等の主記憶装置に上記プログラムを読み出して、情報の加工・演算処理を実行することにより、実現されるものである。
ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
The cell balance correction apparatus described above has a computer system inside.
A series of processes related to the cell balance correction process described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing this program.
That is, each processing means and processing unit in the cell balance correction device is performed by a central processing unit such as a CPU reading the above program into a main storage device such as a ROM or RAM and executing information processing / calculation processing. Is realized.
Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記第1から第4の実施形態において、絶縁型DC/DCコンバータ50に代わって、AC/DCコンバータを用いるようにしても良い。
また、AC/DCコンバータ400に代わって、トランスを用いるようにしても良い。
In the first to fourth embodiments, an AC / DC converter may be used instead of the insulated DC / DC converter 50.
Further, a transformer may be used instead of the AC / DC converter 400.

第1の実施形態のセルバランス補正装置の構成図。The lineblock diagram of the cell balance amendment device of a 1st embodiment. 定電流源20の構成図。The block diagram of the constant current source 20. FIG. 定電流源20の他の構成図。FIG. 6 is another configuration diagram of the constant current source 20. 第2の実施形態のセルバランス補正装置の構成図。The block diagram of the cell balance correction apparatus of 2nd Embodiment. 第3の実施形態のセルバランス補正装置の構成図。The block diagram of the cell balance correction apparatus of 3rd Embodiment. 第4の実施形態のセルバランス補正装置の構成図。The block diagram of the cell balance correction apparatus of 4th Embodiment. 従来の充放電制御装置の構成図。The block diagram of the conventional charging / discharging control apparatus.

符号の説明Explanation of symbols

10…電池
20…定電流源
21…電流源
30…電圧センサ
40…電圧監視部
41…電圧・電流監視部
50…絶縁型DC/DCコンバータ
60…スイッチ
70…電流センサ
100…直列電池
200…外部電源
300…双方向インバータ
400…AC/DCコンバータ
DESCRIPTION OF SYMBOLS 10 ... Battery 20 ... Constant current source 21 ... Current source 30 ... Voltage sensor 40 ... Voltage monitoring part 41 ... Voltage / current monitoring part 50 ... Insulation type DC / DC converter 60 ... Switch 70 ... Current sensor 100 ... Series battery 200 ... External Power supply 300 ... Bidirectional inverter 400 ... AC / DC converter

Claims (11)

直列電池を構成する複数の電池の充放電電流を補完する補完電流を供給する定電流源と、
前記複数の電池の電圧値を計測する複数の電圧センサと、
前記複数の電圧センサから前記複数の電池それぞれの電圧値を入力し、前記複数の電池それぞれの電圧値を比較して、前記定電流源を起動する電圧監視手段と
を具備することを特徴とするセルバランス補正装置。
A constant current source for supplying a complementary current that complements the charging / discharging current of a plurality of batteries constituting the series battery;
A plurality of voltage sensors for measuring voltage values of the plurality of batteries;
Voltage monitoring means for inputting a voltage value of each of the plurality of batteries from the plurality of voltage sensors, comparing the voltage values of the plurality of batteries, and starting the constant current source. Cell balance correction device.
前記定電流源は、前記直列電池を構成する電池1つに対応して1つ設けられ、
前記電圧監視手段は、前記複数の電圧センサから前記複数の電池それぞれの電圧値を入力し、前記複数の電池それぞれの電圧値を比較して、最高電圧の電池より電圧値が設定値以上低い電池に対応する定電流源を起動する
ことを特徴とする請求項1に記載のセルバランス補正装置。
The constant current source is provided corresponding to one battery constituting the series battery,
The voltage monitoring means inputs the voltage value of each of the plurality of batteries from the plurality of voltage sensors, compares the voltage value of each of the plurality of batteries, and has a voltage value lower than a maximum voltage battery by a set value or more. The cell balance correction apparatus according to claim 1, wherein a constant current source corresponding to is activated.
前記定電流源は、前記直列電池を構成する全電池のうちの複数の電池からなるグループに対応して1つ設けられ、前記電圧監視手段によって切替制御される切替手段を介して、前記グループを構成する複数の電池のうち、1の電池の充放電電流を補完する補完電流を供給し、
前記電圧監視手段は、前記複数の電圧センサから前記グループを構成する複数の電池それぞれの電圧値を入力し、前記複数の電池それぞれの電圧値を比較して、最高電圧の電池より電圧値が設定値以上低い電池の中で、最も電圧値が低い電池に対応する定電流源を起動する
ことを特徴とする請求項1に記載のセルバランス補正装置。
The constant current source is provided in correspondence with a group consisting of a plurality of batteries among all the batteries constituting the series battery, and the group is connected via a switching means that is controlled by the voltage monitoring means. Supplying a complementary current that complements the charge / discharge current of one battery among the plurality of batteries constituting the battery,
The voltage monitoring means inputs the voltage value of each of the plurality of batteries constituting the group from the plurality of voltage sensors, compares the voltage value of each of the plurality of batteries, and sets the voltage value from the highest voltage battery. 2. The cell balance correction device according to claim 1, wherein a constant current source corresponding to a battery having the lowest voltage value among the batteries having a value lower than the value is started.
前記電圧監視手段は、さらに、最も電圧値が高い電池と定電流源を起動する電池との電圧差に応じた電流指令を前記起動した定電流源に出力する
ことを特徴とする請求項1から請求項3のいずれかの項に記載のセルバランス補正装置。
The voltage monitoring means further outputs a current command according to a voltage difference between a battery having the highest voltage value and a battery that activates the constant current source to the activated constant current source. The cell balance correction apparatus according to claim 3.
前記電圧監視手段は、前記最も電圧値が高い電池と定電流源を起動する電池との電圧差が閾値よりも大きい場合、前記電圧差に応じた電流指令よりも低い電流値を示す電流指令を前記起動した定電流源に出力する
ことを特徴とする請求項4に記載のセルバランス補正装置。
When the voltage difference between the battery having the highest voltage value and the battery that activates the constant current source is greater than a threshold value, the voltage monitoring means outputs a current command indicating a current value lower than a current command corresponding to the voltage difference. The cell balance correction apparatus according to claim 4, wherein the cell balance correction apparatus outputs to the activated constant current source.
前記直列電池を構成する複数の電池の充放電電流を計測する1又は複数の電流センサをさらに設け、
前記電圧監視手段は、前記電流センサが計測した前記充放電電流値を入力して、前記電圧差と前記充放電電流値とに応じた電流指令を前記起動した定電流源に出力する
ことを特徴とする請求項4又は請求項5に記載のセルバランス補正装置。
One or more current sensors for measuring charge / discharge currents of a plurality of batteries constituting the series battery are further provided,
The voltage monitoring means inputs the charge / discharge current value measured by the current sensor, and outputs a current command according to the voltage difference and the charge / discharge current value to the activated constant current source. The cell balance correction apparatus according to claim 4 or 5.
前記定電流源は、前記直列電池から駆動電流の供給を受ける
ことを特徴とする請求項1から請求項6のいずれかの項に記載のセルバランス補正装置。
The cell constant correction apparatus according to any one of claims 1 to 6, wherein the constant current source is supplied with a drive current from the series battery.
前記定電流源は、所定の外部電源装置から駆動電流の供給を受ける
ことを特徴とする請求項1から請求項6のいずれかの項に記載のセルバランス補正装置。
The cell balance correction apparatus according to any one of claims 1 to 6, wherein the constant current source is supplied with a drive current from a predetermined external power supply device.
請求項1から請求項8のいずれかの項に記載のセルバランス補正装置を備えることを特徴とする二次電池。   A secondary battery comprising the cell balance correction device according to any one of claims 1 to 8. 複数の電圧センサが、直列電池を構成する複数の電池それぞれの電圧値を計測し、
前記計測した複数の電池それぞれの電圧値を入力し、前記複数の電池それぞれの電圧値を比較して、前記直列電池を構成する複数の電池の充放電電流を補完する補完電流を供給する定電流源を起動する
ことを特徴とするセルバランス補正方法。
A plurality of voltage sensors measure the voltage value of each of the plurality of batteries constituting the series battery,
A constant current that inputs a voltage value of each of the measured plurality of batteries, compares a voltage value of each of the plurality of batteries, and supplies a complementary current that complements charge / discharge currents of the plurality of batteries constituting the series battery. A cell balance correction method characterized by starting a source.
直列電池を構成する複数の電池それぞれに設けられた複数の電圧センサよりそれぞれの電圧値を入力する処理と、
前記入力した複数の電池それぞれの電圧値を比較して、前記直列電池を構成する複数の電池の充放電電流を補完する補完電流を供給する定電流源を起動する処理と
をコンピュータに実行させるためのセルバランス補正プログラム。
A process of inputting each voltage value from a plurality of voltage sensors provided in each of a plurality of batteries constituting the series battery;
And comparing the input voltage values of the plurality of batteries to start a constant current source that supplies a complementary current that complements the charge / discharge currents of the plurality of batteries constituting the series battery. Cell balance correction program.
JP2003387000A 2003-11-17 2003-11-17 Cell balance correcting device, secondary battery, method of correcting cell balance and cell balance correcting program Pending JP2005151720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387000A JP2005151720A (en) 2003-11-17 2003-11-17 Cell balance correcting device, secondary battery, method of correcting cell balance and cell balance correcting program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387000A JP2005151720A (en) 2003-11-17 2003-11-17 Cell balance correcting device, secondary battery, method of correcting cell balance and cell balance correcting program

Publications (1)

Publication Number Publication Date
JP2005151720A true JP2005151720A (en) 2005-06-09

Family

ID=34694524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387000A Pending JP2005151720A (en) 2003-11-17 2003-11-17 Cell balance correcting device, secondary battery, method of correcting cell balance and cell balance correcting program

Country Status (1)

Country Link
JP (1) JP2005151720A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905663B1 (en) 2006-07-13 2009-06-30 주식회사 엘지화학 Circuit current balancing method and apparatus for battery apparatus
JP2009201345A (en) * 2007-12-27 2009-09-03 O2 Micro Inc Battery cell balancing system using current regulator
WO2009084821A3 (en) * 2007-12-31 2009-09-03 Sk Energy Co., Ltd. Method for balancing of high voltage battery pack
JP2011501639A (en) * 2007-10-16 2011-01-06 エスケー エナジー カンパニー リミテッド Two-stage equal charge method and apparatus for series connected battery strings
WO2012090473A1 (en) 2010-12-29 2012-07-05 川崎重工業株式会社 Battery module charging system
WO2013031934A1 (en) * 2011-08-31 2013-03-07 三洋電機株式会社 Interconnected power system
JP2013517755A (en) * 2010-01-14 2013-05-16 日本テキサス・インスツルメンツ株式会社 Battery cell tab monitor and method
WO2013132731A1 (en) * 2012-03-05 2013-09-12 日本電気株式会社 Electricity storage device and method for controlling electricity storage device
CN103837829A (en) * 2012-11-27 2014-06-04 上海航天有线电厂 Intelligent compensating two-wire typed power lithium-ion battery measuring system
JP2015519865A (en) * 2012-05-15 2015-07-09 ルノー エス.ア.エス. Battery charge balance
US9515508B2 (en) 2013-01-24 2016-12-06 O2Micro Inc Battery management system
JP2017022968A (en) * 2015-04-13 2017-01-26 ベドロック・オートメーション・プラットフォームズ・インコーポレーテッド Safety power supply for industrial control system
JP2017063520A (en) * 2015-09-24 2017-03-30 アイシン精機株式会社 Power storage device
CN109728577A (en) * 2017-10-27 2019-05-07 致茂电子(苏州)有限公司 The control method of power system and power system
JP2019514332A (en) * 2016-04-16 2019-05-30 リチウム バランス エー/エス Cell balancing method and system
US10824711B2 (en) 2013-08-06 2020-11-03 Bedrock Automation Platforms Inc. Secure industrial control system
US10834820B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Industrial control system cable
US10833872B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Industrial control system redundant communication/control modules authentication
US10832861B2 (en) 2011-12-30 2020-11-10 Bedrock Automation Platforms Inc. Electromagnetic connector for an industrial control system
US10834094B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Operator action authentication in an industrial control system
US10848012B2 (en) 2011-12-30 2020-11-24 Bedrock Automation Platforms Inc. Electromagnetic connectors for an industrial control system
US10896145B2 (en) 2011-12-30 2021-01-19 Bedrock Automation Platforms Inc. Communications control system with a serial communications interface and a parallel communications interface
KR20210039189A (en) * 2019-10-01 2021-04-09 현대오트론 주식회사 Battery monitoring system with overcurrent and undercurrent protection circuit and protection method for overcurrent and undercurrent thereof
US11055246B2 (en) 2011-12-30 2021-07-06 Bedrock Automation Platforms Inc. Input-output module with multi-channel switching capability
US11093427B2 (en) 2011-12-30 2021-08-17 Bedrock Automation Platforms Inc. Switch fabric having a serial communications interface and a parallel communications interface
US11144630B2 (en) 2011-12-30 2021-10-12 Bedrock Automation Platforms Inc. Image capture devices for a secure industrial control system
US11314854B2 (en) 2011-12-30 2022-04-26 Bedrock Automation Platforms Inc. Image capture devices for a secure industrial control system
US11537157B2 (en) 2013-08-06 2022-12-27 Bedrock Automation Platforms, Inc. Secure power supply for an industrial control system
US11967839B2 (en) 2023-05-04 2024-04-23 Analog Devices, Inc. Electromagnetic connector for an industrial control system

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100905663B1 (en) 2006-07-13 2009-06-30 주식회사 엘지화학 Circuit current balancing method and apparatus for battery apparatus
US8283895B2 (en) 2006-07-13 2012-10-09 Lg Chem, Ltd. Circuit current balancing method and apparatus for battery apparatus
JP2011501639A (en) * 2007-10-16 2011-01-06 エスケー エナジー カンパニー リミテッド Two-stage equal charge method and apparatus for series connected battery strings
JP2009201345A (en) * 2007-12-27 2009-09-03 O2 Micro Inc Battery cell balancing system using current regulator
US8648570B2 (en) 2007-12-31 2014-02-11 Sk Innovation Co., Ltd. Method for balancing of high voltage battery pack
WO2009084821A3 (en) * 2007-12-31 2009-09-03 Sk Energy Co., Ltd. Method for balancing of high voltage battery pack
JP2013517755A (en) * 2010-01-14 2013-05-16 日本テキサス・インスツルメンツ株式会社 Battery cell tab monitor and method
WO2012090473A1 (en) 2010-12-29 2012-07-05 川崎重工業株式会社 Battery module charging system
WO2013031934A1 (en) * 2011-08-31 2013-03-07 三洋電機株式会社 Interconnected power system
US11899604B2 (en) 2011-12-30 2024-02-13 Bedrock Automation Platforms Inc. Input/output module with multi-channel switching capability
US10848012B2 (en) 2011-12-30 2020-11-24 Bedrock Automation Platforms Inc. Electromagnetic connectors for an industrial control system
US11688549B2 (en) 2011-12-30 2023-06-27 Bedrock Automation Platforms Inc. Electromagnetic connector for an industrial control system
US11658519B2 (en) 2011-12-30 2023-05-23 Bedrock Automation Platforms Inc. Electromagnetic connector for an Industrial Control System
US11314854B2 (en) 2011-12-30 2022-04-26 Bedrock Automation Platforms Inc. Image capture devices for a secure industrial control system
US11144630B2 (en) 2011-12-30 2021-10-12 Bedrock Automation Platforms Inc. Image capture devices for a secure industrial control system
US11093427B2 (en) 2011-12-30 2021-08-17 Bedrock Automation Platforms Inc. Switch fabric having a serial communications interface and a parallel communications interface
US11055246B2 (en) 2011-12-30 2021-07-06 Bedrock Automation Platforms Inc. Input-output module with multi-channel switching capability
US10896145B2 (en) 2011-12-30 2021-01-19 Bedrock Automation Platforms Inc. Communications control system with a serial communications interface and a parallel communications interface
US10832861B2 (en) 2011-12-30 2020-11-10 Bedrock Automation Platforms Inc. Electromagnetic connector for an industrial control system
WO2013132731A1 (en) * 2012-03-05 2013-09-12 日本電気株式会社 Electricity storage device and method for controlling electricity storage device
JP2015519865A (en) * 2012-05-15 2015-07-09 ルノー エス.ア.エス. Battery charge balance
CN103837829A (en) * 2012-11-27 2014-06-04 上海航天有线电厂 Intelligent compensating two-wire typed power lithium-ion battery measuring system
US9515508B2 (en) 2013-01-24 2016-12-06 O2Micro Inc Battery management system
US11700691B2 (en) 2013-08-06 2023-07-11 Bedrock Automation Platforms Inc. Industrial control system cable
US11537157B2 (en) 2013-08-06 2022-12-27 Bedrock Automation Platforms, Inc. Secure power supply for an industrial control system
US20210195742A1 (en) 2013-08-06 2021-06-24 Bedrock Automation Platforms Inc. Industrial control system cable
US10834820B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Industrial control system cable
US10824711B2 (en) 2013-08-06 2020-11-03 Bedrock Automation Platforms Inc. Secure industrial control system
US10833872B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Industrial control system redundant communication/control modules authentication
US11722495B2 (en) 2013-08-06 2023-08-08 Bedrock Automation Platforms Inc. Operator action authentication in an industrial control system
US11429710B2 (en) 2013-08-06 2022-08-30 Bedrock Automation Platforms, Inc. Secure industrial control system
US10834094B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Operator action authentication in an industrial control system
US11960312B2 (en) 2013-08-06 2024-04-16 Analog Devices, Inc. Secure power supply for an industrial control system
JP2017022968A (en) * 2015-04-13 2017-01-26 ベドロック・オートメーション・プラットフォームズ・インコーポレーテッド Safety power supply for industrial control system
JP7050409B2 (en) 2015-04-13 2022-04-08 ベドロック・オートメーション・プラットフォームズ・インコーポレーテッド Safe power supply for industrial control systems
JP2017063520A (en) * 2015-09-24 2017-03-30 アイシン精機株式会社 Power storage device
JP2019514332A (en) * 2016-04-16 2019-05-30 リチウム バランス エー/エス Cell balancing method and system
JP7123807B2 (en) 2016-04-16 2022-08-23 リチウム バランス エー/エス Cell balancing method and system
CN109728577A (en) * 2017-10-27 2019-05-07 致茂电子(苏州)有限公司 The control method of power system and power system
KR20210039189A (en) * 2019-10-01 2021-04-09 현대오트론 주식회사 Battery monitoring system with overcurrent and undercurrent protection circuit and protection method for overcurrent and undercurrent thereof
KR102317074B1 (en) 2019-10-01 2021-10-25 현대모비스 주식회사 Battery monitoring system with overcurrent and undercurrent protection circuit and protection method for overcurrent and undercurrent thereof
US11966349B2 (en) 2023-05-04 2024-04-23 Analog Devices, Inc. Electromagnetic connector for for an industrial control system
US11967839B2 (en) 2023-05-04 2024-04-23 Analog Devices, Inc. Electromagnetic connector for an industrial control system

Similar Documents

Publication Publication Date Title
JP2005151720A (en) Cell balance correcting device, secondary battery, method of correcting cell balance and cell balance correcting program
US10427547B2 (en) Quick charging device
US10756548B2 (en) Quick charging device with switching unit for individual battery module discharging
US6781343B1 (en) Hybrid power supply device
JP4572850B2 (en) Power control device
EP2186181B1 (en) Apparatus and method for balancing of battery cell&#39;s charge capacity
US8497661B2 (en) Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
JP4967162B2 (en) Secondary battery pack
EP2418751B1 (en) Battery charger and battery charging method
US20140103859A1 (en) Electric storage system
JP2006149068A (en) Battery pack management device
US9413037B2 (en) Cell capacity adjusting device
JP5187406B2 (en) Auxiliary battery charger
JP2009216447A (en) Monitoring device of battery pack and failure diagnostic method
JP2008189065A (en) Electric source device for vehicle
KR20090092890A (en) Battery Equalizing-charge Device of Battery System
JP5489779B2 (en) Lithium-ion battery charging system and charging method
US20100327808A1 (en) Control unit
JP6221697B2 (en) Voltage difference correction apparatus, voltage difference correction program and method
US11581747B2 (en) Power supply device
JP2009219336A (en) Dc power system and its charging method
JPH0928042A (en) Device for controlling charging of battery assembly
KR20210047750A (en) Battery management system and balancing method
JP6485871B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115