JP2022111296A - 微小粒子の吸引条件の最適化方法及び微小粒子分取装置 - Google Patents

微小粒子の吸引条件の最適化方法及び微小粒子分取装置 Download PDF

Info

Publication number
JP2022111296A
JP2022111296A JP2022093381A JP2022093381A JP2022111296A JP 2022111296 A JP2022111296 A JP 2022111296A JP 2022093381 A JP2022093381 A JP 2022093381A JP 2022093381 A JP2022093381 A JP 2022093381A JP 2022111296 A JP2022111296 A JP 2022111296A
Authority
JP
Japan
Prior art keywords
suction
microparticles
microparticle
channel
suction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022093381A
Other languages
English (en)
Other versions
JP7367805B2 (ja
Inventor
学治 橋本
Gakuji Hashimoto
達巳 伊藤
Tatsumi Ito
和也 高橋
Kazuya Takahashi
淳志 梶原
Atsushi Kajiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Group Corp
Original Assignee
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Group Corp filed Critical Sony Group Corp
Publication of JP2022111296A publication Critical patent/JP2022111296A/ja
Application granted granted Critical
Publication of JP7367805B2 publication Critical patent/JP7367805B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1484Electro-optical investigation, e.g. flow cytometers microstructural devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1012Calibrating particle analysers; References therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N15/1436Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0439Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502776Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows
    • G01N15/149
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology

Abstract

【課題】微小粒子の吸引条件を最適化するための技術を提供すること。【解決手段】本技術は、微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点を検知し、微小粒子吸引流路により所定の吸引力で微小粒子を前記主流路から前記微小粒子吸引流路内に吸引し、前記微小粒子吸引流路内に吸引された微小粒子の数をカウントする粒子数カウント工程、及び微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間と前記カウントした微小粒子の数とに基づいて、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定する工程、を含む、微小粒子の吸引条件の最適化方法を提供する。【選択図】図2

Description

本技術は、微小粒子の吸引条件の最適化方法及び微小粒子分取装置に関する。より詳細には、微小粒子を含む液体が通流される主流路から微小粒子吸引流路へ微小粒子を吸引する技術における吸引条件の最適化方法及び当該最適化方法を実行する微小粒子分取装置に関する。
微小粒子を分取するために、これまで種々の装置が開発されてきている。例えばフローサイトメータにおいて用いられる微小粒子分取系において、フローセル又はマイクロチップに形成されたオリフィスから、細胞を含むサンプル液とシース液とから構成される層流が吐出される。吐出される際に所定の振動が当該層流に与えられて、液滴が形成される。当該形成された液滴の移動方向が、目的の微小粒子を含むか含まないかによって、電気的に制御されて、目的の微小粒子が分取されうる。
上記のように液滴を形成せずに、マイクロチップ内で目的の微小粒子を分取する技術も開発されている。
例えば、下記特許文献1には、「微小粒子を含むサンプル液が通流するサンプル液導入流路と、該サンプル液導入流路にその両側から合流し、前記サンプル液の周囲にシース液を導入する少なくとも1対のシース液導入流路と、前記サンプル液導入流路及びシース液導入流路に連通し、これらの流路を通流する液体が合流して通流する合流流路と、該合流流路に連通し、回収対象の微小粒子を吸引して引き込む負圧吸引部と、該負圧吸引部の両側に設けられ、前記合流流路に連通する少なくとも1対の廃棄用流路と、を有するマイクロチップ。」(請求項1)が記載されている。当該マイクロチップにおいて、目的の微小粒子は吸引によって負圧吸引部へと回収される。
また、下記特許文献2には、「主流路を通流する液体中の微小粒子を、前記主流路に連通する分岐流路内に負圧を発生させることにより該分岐流路内に取り込む手順を含み、該手順において、前記主流路と前記分岐流路との連通口に、前記分岐流路側から前記主流路側へ向かう液体の流れを形成させておく微小粒子分取方法。」(請求項1)が記載されている。当該分取方法において、当該主流路側へ向かう液体の流れによって、非分取動作時において非目的粒子又はこれを含むサンプル液及びシース液が分取流路に進入するのを抑制する。また、下記特許文献2には、当該微小粒子分取方法を実施可能な微小粒子分取用マイクロチップも記載されている(請求項9)。
このように、マイクロチップ内で目的の微小粒子を分取する技術では、主流路を流れる液体が目的の微小粒子を含まない場合には当該液体は例えば廃棄用流路へと流れ、主流路を流れる液体が目的の微小粒子を含む場合に当該液体が粒子分取流路内に導かれることで、目的の微小粒子が回収される。
特開2012-127922号公報 特開2014-36604号公報
マイクロチップ内で目的の微小粒子を分取する技術において、例えば負圧によって目的の微小粒子が上記粒子分取流路内に吸引されうる。液体が目的の微小粒子を含まない場合は、吸引は行われない。そこで、微小粒子の分取性能を高める為には、吸引が行われるタイミング及び/又は適用される吸引力の大きさが最適化される必要がある。
本技術は、目的の微小粒子を分取する技術において、微小粒子の分取性能を高めるために、吸引が行われるタイミング及び/又は適用される吸引力の大きさを最適化することを目的とする。
本発明者らは、特定の方法によって上記の課題を解決できることを見出した。
すなわち、本技術は、
微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点を検知し、
微小粒子吸引流路により所定の吸引力で微小粒子を前記主流路から前記微小粒子吸引流路内に吸引し、
前記微小粒子吸引流路内に吸引された微小粒子の数をカウントする粒子数カウント工程、及び
微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間と前記カウントした微小粒子の数とに基づいて、
前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定する工程、
を含む、微小粒子の吸引条件の最適化方法を提供する。
本技術の一つの実施態様において、前記方法は、微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間を変更して前記粒子数カウント工程を繰り返す繰り返し工程をさらに含みうる。
本技術の一つの実施態様において、前記方法は、前記吸引力を変更して前記粒子数カウント工程及び前記繰り返し工程を繰り返す第2の繰り返し工程をさらに含みうる。
本技術の一つの実施態様において、前記第2の繰り返し工程において、吸引力は所定の割合で段階的に減少され、且つ、前記第2の繰り返し工程は、前記微小粒子吸引流路内に吸引された微小粒子の数がいずれの経過時間の場合においても0となる結果が得られるまで行われうる。
本技術の一つの実施態様において、前記決定する工程において、いずれの経過時間の場合においても0となる結果が得られた場合の吸引力から所定の割合で増加させた吸引力が、微小粒子の吸引に適用されるべき吸引力として決定されうる。
本技術の一つの実施態様において、前記粒子数カウント工程において、微小粒子の数のカウントが、前記微小粒子吸引流路内の所定の位置で行われうる。
本技術の一つの実施態様において、前記粒子数カウント工程において、微小粒子の数は、前記微小粒子吸引流路内の所定の位置の通過を検知することによりカウントされうる。
本技術の一つの実施態様において、前記決定する工程において、前記粒子数カウント工程及び前記繰り返し工程においてカウントされた微小粒子の数に基づき微小粒子の前記微小粒子吸引流路への吸引の成功率が算出され、当該成功率に基づき、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間が決定されうる。
本技術の一つの実施態様において、前記最適化方法は、微小粒子を含む液体が通流される主流路と、前記主流路と同軸上にある微小粒子吸引流路と、前記主流路から分岐する分岐流路とを有するマイクロチップにおける微小粒子の吸引条件を最適化するために行われうる。
また、本技術は、
微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点を検知し、
微小粒子吸引流路により所定の吸引力で微小粒子を前記主流路から前記微小粒子吸引流路内に吸引し、
前記微小粒子吸引流路内に吸引された微小粒子の数をカウントする粒子数カウント工程、
を実行する制御部、
及び、
微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間と前記カウントした微小粒子の数とに基づいて、
前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定する決定部、
とを備えている微小粒子分取装置も提供する。
本技術によれば、目的の微小粒子を分取する技術において、吸引が行われるタイミング及び/又は適用される吸引力の大きさが最適化される。その結果、微小粒子の分取性能が高められる。
なお、本技術により奏される効果は、ここに記載された効果に必ずしも限定されるものではなく、本明細書中に記載されたいずれかの効果であってもよい。
微小粒子分取技術において用いられるマイクロチップの模式図である。 マイクロチップの分取部の拡大図である。 本技術の吸引条件最適化方法のフローチャートである。 微小粒子の通過を検出する位置を示す図である。 所定条件下で吸引を行った場合に微小粒子が微小粒子吸引流路内に吸引される領域を示す図である。 所定条件下で吸引を行った場合に微小粒子が微小粒子吸引流路内に吸引される領域を示す図及び当該条件下でのカウントされた粒子数を示すグラフである。 本技術の吸引条件最適化方法のフローチャートである。 所定条件下で吸引を行った場合に微小粒子が微小粒子吸引流路内に吸引される領域を示す図及び当該条件下でのカウントされた粒子数を示すグラフである。 所定条件下で吸引を行った場合に微小粒子が微小粒子吸引流路内に吸引される領域を示す図及び当該条件下でのカウントされた粒子数を示すグラフである。 光照射部及び検出部の例を示す図である。
以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
1.関連技術の説明
2.第1の実施形態(微小粒子の吸引条件の最適化方法)
3.第2の実施形態(微小粒子の吸引条件の最適化方法)
4.第3の実施形態(微小粒子分取装置)
1.関連技術の説明
目的の微小粒子を分取する技術を、図1を参照しながら以下に説明する。図1は、微小粒子の分取を行うためのマイクロチップの一例の模式図である。
図1に示されるとおり、マイクロチップ100には、サンプル液インレット101及びシース液インレット103が設けられている。これらインレットからサンプル液及びシース液が、それぞれサンプル液流路102及びシース液流路104に導入される。当該サンプル液に微小粒子が含まれている。
シース液導入流路104を流れるシース液は、サンプル液流路102を流れるサンプル液と合流して、サンプル液の周囲がシース液で囲まれた層流を形成する。当該層流は、主流路105を、分取部107に向かって流れる。
分取部107において、主流路105を流れてきた前記層流は、分岐流路108へと流れる。また、分岐部分107において、回収されるべき粒子が流れてきた場合にのみ、粒子分取流路109への流れが形成されて、当該粒子が回収される。当該粒子が粒子分取流路109へと吸い込まれる際には、前記層流を構成するサンプル液又は前記層流を構成するサンプル液及びシース液も、粒子分取流路へと流れうる。
回収されるべきでない粒子が粒子分取流路109へと入ることを防ぐために、ゲート流インレット112が備えられていてもよい。当該ゲート流インレット112からシース液が導入され、粒子分取流路109から主流路105への方向の流れが形成されることで、回収されるべきでない粒子が粒子分取流路109へと入ることが防がれる。
このようにして、微小粒子は、分取部107において分取される。
分取部107は、検出領域106を有する。検出領域106において、主流路105を流れる微小粒子に対して光が照射され、照射された結果生じた散乱光及び/又は蛍光によって、微小粒子が回収されるべきであるかどうかが判定されうる。
分取部107を拡大した図を図2に示す。図2に示されるとおり、主流路105と粒子分取流路109とは、主流路105と同軸上にあるオリフィス部201を介して連通されている。回収されるべき粒子は、オリフィス部201を通って、粒子分取流路109へと流れる。また、回収されるべきでない粒子がオリフィス部201を通って粒子分取流路109へと入ることを防ぐために、オリフィス部201付近にゲート流インレット112が備えられている。なお、ゲート流インレット112は、オリフィス部201内に備えられていてもよい。当該ゲート流インレット112からシース液が導入され、オリフィス部201から主流路105へ向かう流れが形成されることで、回収されるべきでない粒子が粒子分取流路109へと入ることが防がれる。粒子分取流路109に圧力室が連通されていてもよい。当該圧力室は粒子分取流路109に備えられていてもよく、又は、粒子分取流路自体が圧力室として機能してもよい。当該圧力室内の圧力は減少又は増加されうる。当該圧力室内の圧力を減少させることによって、微小粒子を粒子分取流路109内に導き、又は、当該圧力室内の圧力を増加又は維持させることによって、微小粒子の粒子分取流路109内への侵入を防ぐ。このように当該圧力室内の圧力の調節によって、回収されるべき粒子のみの分取が可能となりうる。
このような流路構造を有するマイクロチップにおいて、粒子が回収される場合に、主流路105からオリフィス部201を通って粒子分取流路109へと進む流れ(以下、「粒子回収時の流れ」ともいう)が形成される。粒子が回収される場合以外においては、当該流れは形成されない。粒子回収時の流れを形成するために、当該圧力室の圧力が減少されうる。当該圧力の減少によって、ゲート流により生じるオリフィス部から当該主流路への流れよりも強い流れが、主流路105から粒子分取流路109に向かって形成され、その結果、目的の粒子が粒子分取流路109内に分取されうる。
粒子回収時の流れは、粒子分取流路109を負圧にすることで形成されうる。すなわち、粒子分取流路109を負圧にすることで、粒子が粒子分取流路109内に吸引される。粒子の吸引は、検出領域106において検出された光に基づき粒子が回収されるべきであると判定された場合に、検出領域106を粒子が通過したときから所定の時間が経過した時点において行われる。より精度の高い粒子分取のためには、どの程度の時間が経過した時点において吸引が行われるべきかを最適化する必要がある。
当該吸引が行われるべき時間の調整方法として、例えば高速度カメラなどによって、粒子を分取する状況の動画を撮影し、当該動画に基づき当該吸引が行われるべき時間を調整することが考えられる。しかし、この方法は、高額な高速度カメラ及び当該方法を行うためのソフトウェアを必要とするので望ましくない。そこで、どの時点で吸引が行われるべきかを決定するための新たな方法を開発する必要がある。
また、当該調整が手動で行われた場合、作業者の工数を増やすことになる。そこで、作業者の工数を減らす為に、当該調整は自動で行われることが望ましい。
また、粒子を粒子分取流路109内に吸引する場合に、粒子と一緒にサンプル液及び/又はシース液が粒子分取流路109内に吸引される。適用される吸引力が大きすぎる場合、粒子と一緒に粒子分取流路109内に吸引されるサンプル液及び/又はシース液の量が多くなり、回収された粒子の密度が下がるため、望ましくない。一方で、適用される吸引力が小さすぎる場合、粒子が回収されない可能性が高まる。そのため、適用される吸引力についても最適化することが望ましい。
吸引力の最適化方法としても、上記高速度カメラを用いて粒子を分取する状況の動画を撮影し、当該動画に基づき吸引力を調整することが考えられる。しかし、やはり上記の理由によって、この方法は望ましくない。そこで、吸引力を最適化するための新たな方法を開発する必要がある。
また、マイクロチップ内で目的の微小粒子を分取する技術において、当該マイクロチップは微小粒子分取装置に搭載されて用いられうる。当該微小粒子分取装置において、マイクロチップは実験毎に又は分析されるべき試料毎に交換されうる。マイクロチップを交換することによって、試料間での汚染が回避されうる。しかし、マイクロチップを交換することで、検出領域106において光が照射される位置及び/又は流路の長さ等において変化が生じうる。そのため、新たにマイクロチップを搭載した場合、より精度の高い粒子分取のためには、微小粒子の吸引が行われるべき時点及び/又は適用されるべき吸引力を最適化する必要がある。また、このような最適化は、自動で行われることが望ましい。
以上のとおり、目的の微小粒子を分取する技術において、上記吸引に関するパラメータを最適化する新たな方法が必要である。本技術は、上記吸引に関するパラメータを最適化する新たな方法を提供する。
2.第1の実施形態(微小粒子の吸引条件の最適化方法)
本技術は、微小粒子の吸引条件の最適化方法を提供する。当該方法は、
微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点を検知し、微小粒子吸引流路により所定の吸引力で微小粒子を前記主流路から前記微小粒子吸引流路内に吸引し、前記微小粒子吸引流路内に吸引された微小粒子の数をカウントする粒子数カウント工程、
及び、
微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間と前記カウントした微小粒子の数とに基づいて、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定する工程
を含む。
前記方法は、例えば、微小粒子を含む液体が通流される主流路と、前記主流路と同軸上にある微小粒子吸引流路と、前記主流路から分岐する分岐流路とを有するマイクロチップにおける微小粒子の吸引条件を最適化するために行われうる。当該マイクロチップとして、例えば、上記「1.関連技術の説明」において説明したマイクロチップを挙げることができるが、これに限定されない。
上記方法の実施態様の一例を、以下で図3を参照しながら説明する。図3は、本技術の実施態様に従う吸引条件最適化方法のフローチャートを示す。
(1)粒子数カウント工程S301
図3の粒子数カウント工程S301では、微小粒子が前記主流路上の所定の位置を通過したときから所定の時間Tが経過した時点において前記微小粒子吸引流路による吸引を所定の吸引力Dにて行うという条件下で、微小粒子分取手順を前記マイクロチップにおいて実行し、当該分取手順を実行した結果前記微小粒子吸引流路内に吸引された微小粒子の数がカウントされる。
粒子数カウント工程S301において、微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点が検知されうる。前記主流路上の所定の位置は、微小粒子の通過を検知できる位置であればよい。当該所定の位置は、例えば主流路上の検出領域内にあってよく、例えば光の照射位置でありうる。
前記主流路上の所定の位置を、図4を参照して説明する。図4は、分取部107の拡大図である。図4に示されるとおり、検出領域において、粒子の進行方向に対して垂直に、例えば2つの光401及び402が照射されうる。2つの光401及び402の照射間隔は、例えば20~200μmであり、好ましくは30~150μmであり、より好ましくは40~120μmでありうる。これら2つの光の波長は異なるものであってよく、又は同じものであってもよい。前記所定の位置は、例えば、当該2つの光のうち、微小粒子吸引流路側の光402の照射位置であってよく、又は、他方の光401の照射位置であってもよい。光が照射されている部分を微小粒子が通過するときに、散乱光及び/又は蛍光が発生することで、微小粒子の通過が検知されうる。
粒子数カウント工程S301において、微小粒子吸引流路により所定の吸引力で、微小粒子が、前記主流路から前記微小粒子吸引流路内に吸引される。当該吸引は、前記所定の位置を通過したときから所定の時間Tが経過したときに行われうる。前記所定の位置を通過したときからの所定の時間Tは、当業者によって適宜設定されてよく、例えばマイクロチップのサイズ、特にはマイクロチップの主流路上の光照射領域から前記オリフィス部の入り口までの距離及び/又は粒子の流速を考慮して定められうる。当該距離は、例えば上記2つの光のうち微小粒子吸引流路側の光照射位置から前記オリフィス部の入り口までの距離でありうる。当該距離は、例えば300μm~1500μmであり、好ましくは400μm~1200μmであり、より好ましくは500μm~1000μmでありうる。
例えば、当該時間Tは、前記所定の位置を通過した時点から、吸引力Dにて吸引した場合に微小粒子吸引流路内に微小粒子が吸引される領域内のいずれかの位置に到達した時点までの時間でありうる。又は、前記所定の位置を通過した時点から当該領域に到達する前の時点までの時間であってもよい。
当該時間Tを、図5を参照してさらに説明する。図5は、分取部107の拡大図である。図5において、微小粒子吸引流路の入り口から照射領域に向かって楕円状に広がっている領域501が、吸引力Dにて吸引した場合に微小粒子吸引流路内に微小粒子が吸引される領域である。図5において、光照射位置から距離Yだけ進んだ位置に粒子がある。当該粒子は、当該領域内にまだ到達していない。光照射位置を通過した時点から上記距離Yを粒子が進んだ時点までの時間を、時間Tとして採用してもよい。又は、さらに時間が経過すると、粒子は当該領域内に到達する。光照射位置を通過した時点からこの領域内のいずれかの位置に粒子が到達する時点までの時間を、時間Tとして採用してもよい。
時間Tの設定において、粒子の流路内の速度が必要に応じて考慮されうる。当該速度は当業者に既知の手法により適宜測定されうる。例えば、上記図4に示されたとおり、2つの光照射位置401及び402が設けられている場合、当該2つの照射位置の間の距離と当該2つの照射位置の間を通過するのに要した時間とに基づき、粒子の流路内の速度が算出されうる。このような算出方法により、より精度よく、粒子の速度が算出されうる。また、精度よく粒子の速度が算出されることで、吸引条件の最適化がより良く行われうる。
また、当該速度と経過時間とから、前記所定の位置からの距離が算出されうる。本技術の他の実施態様において、時間Tの代わりに、前記所定の位置からの距離Yが、変数として用いられてもよい。すなわち、本技術の他の実施態様において、粒子数カウント工程において、微小粒子が前記主流路上の所定の位置から所定の距離Yだけ前記微小粒子吸引流路に向かって進行したときに前記微小粒子吸引流路による吸引を所定の吸引力Dにて行うという条件下で、微小粒子分取手順が前記マイクロチップにおいて実行され、当該分取手順を実行した結果前記微小粒子吸引流路内に吸引された微小粒子の数がカウントされうる。この実施態様において、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置からの距離が決定される。すなわち、本技術において、吸引が行われるべきタイミングの代わりに、吸引が行われるべき、前記所定の位置からの距離が最適化されうる。当該距離の最適化は、以下の第2及び第3の実施形態において行われてもよい。すなわち、第2及び第3の実施形態において、時間Tの代わりに、前記所定の位置からの距離Yが、変数として用いられてもよい。
所定の吸引力Dでの微小粒子吸引流路による吸引は、例えば、微小粒子吸引流路内を負圧にすることで行われうる。当該負圧にすることは、例えばピエゾ素子によって行われうる。吸引力Dとピエゾ素子の駆動電圧との間には所定の関係があるので、ピエゾ素子の駆動電圧を調節することで、吸引力Dが調節されうる。ピエゾ素子の駆動電圧の調節は当業者に既知の手段により行われてよい。
粒子数カウント工程S301において、微小粒子分取手順は、例えば上記1.で説明したマイクロチップを搭載した微小粒子分取装置を用いて実行されうる。当該微小粒子分取装置の構成については、以下4.にて詳述するので、そちらを参照されたい。微小粒子分取手順において、既知の数の微小粒子を含むサンプル液が用いられうる。微小粒子の数は、当業者により適宜設定されてよく、例えば10~1000、特には30~500、より特には50~300でありうる。微小粒子分取手順において、既知の数の微小粒子を含むサンプル液が、サンプル液インレット101から導入され、そして、サンプル液流路102中を進み、且つ、シース液が、シース液インレット103から導入され、そして、シース液流路104を進む。当該、サンプル液及びシース液は合流して層流を形成し、そして、層流は主流路105を分取部107に向かって流れる。当該層流に対して、検出領域106において、光が照射される。微小粒子が当該検出領域を通過することで、微小粒子から散乱光及び/又は蛍光が生じる。この散乱光及び/又は蛍光を検出した場合にのみ、当該微小粒子が、前記所定の位置を通過したときから所定の時間Tが経過した時点において、吸引力Dでの吸引が行われる。例えば100の微小粒子を含むサンプル液を用いた微小粒子分取手順では、夫々の微小粒子について吸引が行われ、すなわち100回吸引が行われうる。
粒子数カウント工程S301において、前記微小粒子吸引流路内に吸引された微小粒子の数がカウントされる。例えば、粒子数カウント工程S301において、既知の数の微小粒子に対して前記微小粒子手順を行った結果微小粒子吸引流路内に吸引された微小粒子の数がカウントされる。当該カウントは、当業者により既知の手段により行われてもよく、又は、微小粒子吸引流路内に設けられた検出領域において行われてもよい。当該微小粒子の数のカウントは、前記微小粒子吸引流路内の所定の位置で行われうる。例えば、微小粒子の数は、前記微小粒子吸引流路内の所定の位置の通過を検知することによりカウントされうる。微小粒子吸引流路内に設けられた検出領域の例は、例えば図2に示される光照射領域202である。図2に示されるとおり、微小粒子吸引流路内に設けられた光照射領域202を微小粒子が通過することで、当該微小粒子から散乱光及び/又は蛍光が発せられる。当該散乱光及び/又は蛍光を検出することで、微小粒子吸引流路内に吸引された微小粒子の数がカウントされうる。
本技術において、微小粒子は当業者により適宜選択されてよい。本技術において、微小粒子には、細胞、微生物、及びリポソームなどの生物学的微小粒子、並びに、ラテックス粒子、ゲル粒子、及び工業用粒子などの合成粒子などが包含されうる。本技術の方法において、好ましくは合成粒子、特には吸引条件最適化のためのビーズが、微小粒子として用いられうる。当該合成粒子は、生物学的微小粒子よりも入手が容易でありうるので、本技術の方法にとってより好ましい。
前記生物学的微小粒子には、各種細胞を構成する染色体、リポソーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれうる。前記細胞には、動物細胞(血球系細胞など)および植物細胞が含まれうる。前記微生物には、大腸菌などの細菌類、タバコモザイクウイルスなどのウイルス類、イースト菌などの菌類などが含まれうる。さらに、前記生物学的微小粒子には、核酸、タンパク質、これらの複合体などの生物学的高分子も包含されうる。また、前記合成粒子は、例えば有機若しくは無機高分子材料又は金属などからなる粒子でありうる。前記有機高分子材料には、ポリスチレン、スチレン・ジビニルベンゼン、及びポリメチルメタクリレートなどが含まれうる。前記無機高分子材料には、ガラス、シリカ、及び磁性体材料などが含まれうる。前記金属には、金コロイド及びアルミなどが含まれうる。微小粒子の形状は、一般には球形又は略球形であってよく、又は非球形であってもよい。微小粒子の大きさ及び質量は、マイクロチップの流路のサイズによって当業者により適宜選択されうる。マイクロチップの流路のサイズは、微小粒子の大きさ及び質量によって適宜選択されうる。本技術において、微小粒子には、必要に応じて化学的又は生物学的な標識、例えば蛍光色素など、が取り付けられうる。当該標識によって、当該微小粒子の検出がより容易になりうる。取り付けられるべき標識は、当業者により適宜選択されうる。
本技術の方法において用いられるマイクロチップは、当技術分野で既知の方法により製造されうる。例えば、本技術の方法において用いられるマイクロチップは、例えば、上記1.で述べたとおりの流路が形成された2枚の基板を貼り合わせることにより製造することができる。流路は、2枚の基板の両方に形成されていてもよく、又は、一方の基板にのみ形成されていてもよい。基板の貼り合わせ時の位置の調整をより容易にするために、流路は、一方の基板にのみ形成されうる。
本技術において用いられるマイクロチップを形成する材料として、当技術分野で既知の材料が用いられうる。例えば、ポリカーボネート、シクロオレフィンポリマー、ポリプロピレン、PDMS(polydimethylsiloxane)、ポリメタクリル酸メチル(PMMA)、ポリエチレン、ポリスチレン、ガラス、及びシリコンが挙げられるがこれらに限定されない。特に、加工性に優れており且つ成形装置を使用して安価にマイクロチップを製造することができることから、ポリカーボネート、シクロオレフィンポリマー、ポリプロピレン等の高分子材料が特に好ましい。
(2)粒子数カウント工程を繰り返す工程S302
図3の繰り返し工程S302では、微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間を変更して前記粒子数カウント工程が繰り返される。例えば、前記Tをより長い及び/又はより短い種々の時間Tに変更したこと以外は同じようにして、前記粒子数カウント工程が繰り返される。時間Tは、例えばマイクロチップのサイズ、所定の吸引力を適用した場合に当該吸引力が及ぶ領域、及び/又は公差などを考慮して、当業者により適宜設定されうる。繰り返し工程S302において、種々の時間Tのそれぞれについて粒子数カウント工程が行われることで、種々の時間Tのそれぞれについて粒子数カウント結果が得られる。
例えば、種々の時間Tは、前記Tを所定の割合で段階的に増加及び/又は減少させた時間のそれぞれでありうる。当該所定の割合は、例えば0.01%~5%、特には0.05~2%、より特には0.1~1%でありうる。前記Tを増加及び/又は減少させる段階の数は、例えば5~50段階、特には7~40段階、より特には10~30段階でありうる。例えば、種々の時間Tが前記Tを0.2%で20段階増加及び減少させたものである場合、種々の時間Tは、(T+T×0.2%)、(T+T×0.2%×2)、(T+T×0.2%×3)、・・・、及び(T+T×0.2%×20)、並びに、(T-T×0.2%)、(T-T×0.2%×2)、(T-T×0.2%×3)、・・・、及び(T-T×0.2%×20)である。この場合、前記Tも含め、合計で51(1+20+20)の経過時間のそれぞれにおいて、微小粒子分取手順が行われうる。
また、前記Tを増加させる段階の数及び前記Tを減少させる段階の数は、同じであってもよく、又は異なっていてもよい。また、種々の時間Tは、前記Tを増加させたものだけであってもよく、又は、前記Tを減少させたものだけであってもよい。前記Tを増加させる段階の数及び前記Tを減少させる段階の数は当業者により適宜設定されうる。また、種々の時間Tのそれぞれについて、粒子数カウント工程が複数回、例えば2~5回、特には2~3回行われてもよい。
前記繰り返し工程S302において行われる粒子数カウント工程は、前記Tをより長い及び/又はより短い種々の時間Tに変更したこと以外は同じである。そのため、粒子数カウント工程についての説明は、上記(1)を参照されたい。
(3)吸引が行われるべき時間を決定する工程S303
図3の吸引が行われるべき時間を決定する工程S303では、粒子数カウント工程S301において、又は、粒子数カウント工程S301及び繰り返し工程S302においてカウントされた微小粒子の数に基づいて、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間が決定される。その結果、微小粒子の吸引が行われるべき時点が最適化される。また、当該決定は、所定のプログラムを組み込んだ制御部などによって、自動的に行われうる。
決定する工程S303において、例えば粒子数カウント工程S301及び繰り返し工程S302においてカウントされた微小粒子の数が最も多い場合の時間Tが、前記吸引が行われるべき経過時間として決定されうる。あるいは、微小粒子の数が最も多い場合の時間が複数存在する場合は、それら複数の時間のうちから任意の時間が、前記吸引が行われるべき経過時間として決定されてよく、又は、それら複数の時間のうちの中央の値が、前記吸引が行われるべき経過時間として決定されてもよい。
前記吸引が行われるべき経過時間について、以下で図6を参照してより詳細に説明する。
図6は、微小粒子が前記主流路上の所定の位置を通過したときから所定の時間Tが経過した時点において前記微小粒子吸引流路による吸引を所定の吸引力Dにて行うという条件下で、微小粒子分取手順を行っている場合の流路内の状況を示す模式図である。図6において、微小粒子吸引流路の入り口から照射領域に向かって楕円状に広がっている領域601が、吸引力Dにて吸引した場合に微小粒子吸引流路内に微小粒子が吸引される領域である。図6において、前記所定の位置は、2つの光照射位置のうち、微小粒子吸引流路からより遠いほうのものである。前記所定の位置を通った微小粒子602は、所定の時間Tが経過することで、前記所定の位置から距離Yだけ進み、図6に示されるとおりの位置にいる。前記所定の位置を通過したときから前記所定の時間Tが経過した時点において前記微小粒子吸引流路による吸引を所定の吸引力Dにて行う場合、微小粒子602は、領域601内にいるので、微小粒子吸引流路内に吸い込まれる。
なお、図6に示されるとおり、微小粒子が前記所定の位置を通過後前記所定の時間Tが経過した時点において、当該微小粒子は理論的には領域601内にいる。しかしながら、例えば形成されている層流の状況、粒子の形状、及び/又は実際の吸引力などの要因によって、微小粒子吸引流路内に吸い込まれない場合もある。
図6において、時間Tを増加させたTにおいて吸引を行う場合、微小粒子は例えば位置603にいる。位置603にいる場合に吸引力Dにて吸引を行っても、微小粒子は領域601の外にいるので、微小粒子吸引流路内に吸い込まれない。
また、図6において、時間Tを減少させたTにおいて吸引を行う場合、微小粒子は例えば位置604にいる。位置604にいる場合に吸引力Dにて吸引を行っても、微小粒子は領域601の外にいるので、微小粒子吸引流路内に吸い込まれない。
なお、図6に示されるとおり、微小粒子が前期所定の一を通過後前記時間T又はTが経過した時点において、当該微小粒子は理論的には領域601の外にいる。しかしながら、例えば形成されている層流の状況、粒子の形状、及び/又は実際の吸引力などの要因によって、微小粒子吸引流路内に吸い込まれる場合もある。
前記Tを種々の時間に変更し、それぞれの時間においてカウントされた粒子数を時間に対してプロットしたグラフが、図6の右側に示されている。当該グラフに示されるとおり、カウントされる粒子数は、前記経過した時間が所定範囲内にある場合に、最も多くなる。当該所定範囲内のうちの任意の時間が、前記吸引が行われるべき経過時間として決定されてよく、又は、当該所定範囲内の中央の値が、前記吸引が行われるべき経過時間として決定されてもよい。
本技術の一つの実施態様に従い、前記決定する工程において、前記粒子数カウント工程及び前記繰り返し工程においてカウントされた微小粒子の数に基づき微小粒子の吸引流路への吸引の成功率が算出され、当該成功率に基づき、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間が決定されうる。例えば、当該成功率が最も高い場合の経過時間を、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間として決定してもよい。又は、当該成功率が所定の値以上である複数の経過時間のうちから、任意の時間が、前記吸引が行われるべき経過時間として決定されてもよく、又は、当該複数の経過時間のうちの中央の値が、前記吸引が行われるべき経過時間として決定されてもよい。
本技術により、微小粒子の吸引条件が最適化される。また、本技術の方法は自動で行われうるので、微小粒子の吸引条件の最適化が、自動で行われうる。これにより、微小粒子分取を行う作業者の工数及び分取条件に要する時間が削減されうる。
また、本技術の方法において、前記繰り返し工程において増加及び/又は減少される経過時間の段階を調整することで、微小粒子の吸引条件の最適化がより精度良く行われうる。
本技術の方法により微小粒子の吸引条件が最適化されることで、微小粒子分取装置における試料、例えば生物学的試料などの分取が、より高速に及びより効率的に行われうる。例えば、分取された生物学的試料の純度又は密度が向上されうる。
さらに、本技術の方法によって、微小粒子の吸引条件の最適化の為に従来用いられていた高速度カメラなどの高価な観察システムが不要となり、微小粒子分取装置の小型化及び/又は製造コストの削減が可能となりうる。
なお、これらの効果は、以下の第2及び第3の実施形態によっても奏されうる。
3.第2の実施形態(微小粒子の吸引条件の最適化方法)
本技術の微小粒子の吸引条件の最適化方法は、吸引力を変更して前記粒子数カウント工程及び/又は前記繰り返し工程を繰り返す第2の繰り返し工程をさらに含みうる。本技術の最適化方法が、当該第2の繰り返し工程を含む場合、前記決定する工程において、前記粒子数カウント工程及び/又は前記繰り返し工程並びに前記第2の繰り返し工程においてカウントされた微小粒子の数に基づき、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を微小粒子が通過したときからの経過時間及び微小粒子の吸引に適用されるべき吸引力が決定されうる。
当該本技術の最適化方法が当該第2の繰り返し工程を含む場合のフローチャートの一例を図7に示す。図7において、工程S401及びS402は、上記2.で説明した工程S301及びS302と同じである。そのため、これら工程についての説明は省略する。
(1)粒子数カウント工程を繰り返す第2の繰り返し工程S403
図7の第2の繰り返し工程S403では、前記吸引力Dをより大きい及び/又は小さい種々の吸引力Dに変更したこと以外は同じようにして、前記粒子数カウント工程及び/又は前記繰り返し工程が繰り返されうる。好ましくは、図7の第2の繰り返し工程S403では、前記吸引力Dを小さい種々の吸引力Dに変更したこと以外は同じようにして、粒子数カウント工程S401及び繰り返し工程S402が繰り返されうる。吸引力Dは、例えば微小粒子吸引流路に設けられる吸引手段の仕様、マイクロチップのサイズ、所定の吸引力を適用した場合に当該吸引力が及ぶ領域、及び/又は公差などの要因を考慮して、当業者により適宜設定されうる。繰り返し工程S403において、種々の吸引力Dのそれぞれについて粒子数カウント工程が行われることで、種々の吸引力Dのそれぞれについて粒子数カウント結果が得られる。
例えば、種々の吸引力Dは、前記Dを所定の割合で段階的に増加させた又は減少させた吸引力のそれぞれでありうる。当該所定の割合は、例えば0.01~30%、特には0.1%~25%、より特には1~20%、さらにより特には1~10%でありうる。前記Dを増加又は減少させる段階の数は、例えば3~20段階、特には4~15段階、より特には5~10段階でありうる。例えば、種々の吸引力Dが前記Dを20%で4段階減少させたものである場合、種々の吸引力Dは、(D-D×20%)、(D-D×20%×2)、(D-D×20%×3)、及び(T-T×20%×4)である。この場合、前記Dも含め、合計で5つの吸引力のそれぞれにおいて、微小粒子分取手順が行われうる。
また、前記Dを増加させる段階の数及び前記Dを減少させる段階の数は、同じであってもよく、又は異なっていてもよい。また、種々の吸引力Dは、前記Dを増加させたものだけであってもよく、又は、前記Dを減少させたものだけであってもよい。前記Dを増加させる段階の数及び前記Dを減少させる段階の数は、前記Dの値によって適宜設定されうる。また、種々の吸引力Dのそれぞれについて、粒子数カウント工程が複数回、例えば2~5回、特には2~3回行われてもよい。
前記第2の繰り返し工程S403において行われる粒子数カウント工程は、前記Dをより小さな吸引力又はより大きな吸引力Dに変更したこと以外は、上記2.で説明した工程S301及びS302と同じである。そのため、粒子数カウント工程についての説明は、上記2.(1)及び(2)を参照されたい。
(2)吸引が行われるべき時間及び/又は適用されるべき吸引力を決定する工程S404
図7の吸引が行なわれるべき時間及び/又は適用されるべき吸引力を決定する工程S404では、粒子数カウント工程S401、繰り返し工程S402、及び第2の繰り返し工程S403においてカウントされた微小粒子の数に基づいて、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間及び/又は微小粒子の吸引に適用されるべき吸引力が決定される。その結果、微小粒子の吸引が行われるべき時点及び適用されるべき吸引力が最適化される。また、当該決定は、例えば所定のプログラムを組み込んだ制御部などによって、自動的に行われうる。
決定する工程S404において、例えば粒子数カウント工程S401、繰り返し工程S402、及び第2の繰り返し工程S403においてカウントされた微小粒子の数が最も多く且つ吸引力が最も小さい場合の時間T及び吸引力Dが、前記吸引が行われるべき経過時間及び適用されるべき吸引力として決定されうる。
あるいは、所定の数以上微小粒子がカウントされる場合の時間T及び吸引力Dの組合せのうちから、吸引力が最小となる吸引力Dが適用されるべき吸引力として決定され、且つ、当該決定された吸引力において所定の数以上微小粒子がカウントされる複数の経過時間のうちの中央の値が、吸引が行われるべき経過時間として決定されてもよい。
あるいは、所定の数以上微小粒子がカウントされ且つ吸引力が最小となる時間及び吸引力の組合せが2以上ある場合は、これら組合せのうちから任意の時間及び吸引力の組合せを、前記吸引が行われるべき経過時間及び適用されるべき吸引力として決定してもよい。又は、所定の数以上微小粒子がカウントされ且つ吸引力が最小となる時間及び吸引力の組合せが2以上ある場合において、当該吸引力の最小値が適用されるべき吸引力として決定され、且つ、複数の時間のうち中央の値が、前記吸引が行われるべき経過時間として決定されてもよい。
前記吸引が行われるべき経過時間及び適用されるべき吸引力について、以下で図6及び8を参照してより詳細に説明する。
図6は、上記で説明したとおり、微小粒子分取手順を行っている場合の流路内の状況を示す模式図である。上記でも説明したとおり、前記所定の位置を通過したときから前記所定の時間Tが経過した時点において前記微小粒子吸引流路による吸引を所定の吸引力Dにて行う場合、微小粒子602は、領域601内にいるので、微小粒子吸引流路内に吸い込まれる。
図8は、微小粒子が前記主流路上の所定の位置を通過したときから所定の時間T又はTが経過した時点において前記微小粒子吸引流路による吸引を、吸引力Dよりも小さい吸引力Dにて行うという条件下で、微小粒子分取手順を行っている場合の流路内の状況を示す模式図である。図8において、微小粒子吸引流路の入り口から照射領域に向かって楕円状に広がっている領域801が、吸引力Dにて吸引した場合に微小粒子吸引流路内に微小粒子が吸引される領域である。図8において、前記所定の位置は、2つの光照射位置のうち、微小粒子吸引流路からより遠いほうのものである。
前記所定の位置を通った微小粒子802は、所定の時間Tが経過することで、前記所定の位置から粒子は距離Yだけ進み、図8に示されるとおりの位置にいる。微小粒子802がこの位置にいる時点で図6に示されるとおりの吸引力Dにて吸引が行われた場合は、微小粒子802は、領域601内にいるので、微小粒子吸引流路内に吸い込まれる。しかし、微小粒子802がこの位置にいる時点で図8に示されるとおりの吸引力Dにて吸引が行われた場合は、微小粒子802は、領域801の外にいるので、微小粒子吸引流路内に吸い込まれない。
また、前記所定の位置を通った微小粒子803は、所定の時間Tが経過することで、前記所定の位置から粒子は距離Yだけ進み、図8に示されるとおりの位置にいる。前記所定の位置を通過したときから前記所定の時間Tが経過した時点において前記微小粒子吸引流路による吸引を所定の吸引力Dにて行う場合、微小粒子803は、領域801内にいるので、微小粒子吸引流路内に吸い込まれる。
以上のとおり、吸引力が小さければ小さいほど、吸引力が及ぶ領域がより狭くなる。
前記Tを種々の時間に変更し、それぞれの時間においてカウントされた粒子数を時間に対してプロットしたグラフが、図8の右側に示されている。当該グラフに示されるとおり、カウント数が高くなる時間Tの範囲が、図6の右側に示されるグラフにおける範囲よりも狭い。このように、吸引力が小さければ小さいほど、カウント数が高くなる時間Tの範囲が狭くなる。より狭められた時間Tの範囲のうちから吸引が行われるべき経過時間を採用し、且つ、より小さい吸引力を適用されるべき吸引力として採用することで、微小粒子の吸引が行われるべき経過時間及び適用されるべき吸引力が最適化されうる。
本技術の一つの実施態様に従い、前記決定する工程において、前記粒子数カウント工程、前記繰り返し工程、及び前記第2の繰り返し工程においてカウントされた微小粒子の数に基づき微小粒子の吸引流路への吸引の成功率が算出され、当該成功率に基づき、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間及び/又は適用されるべき吸引力が決定されうる。
例えば、当該成功率が最も高く且つ吸引力が最も小さい場合の時間T及び吸引力Dが、前記吸引が行われるべき経過時間及び適用されるべき吸引力として決定されうる。
あるいは、所定の率以上の成功率の場合の時間Tn及び吸引力Dnの組合せのうちから、吸引力が最小となる時間T及び吸引力Dを、前記吸引が行われるべき経過時間及び適用されるべき吸引力として決定してもよい。
あるいは、所定の率以上の成功率を達成し且つ吸引力が最小となる時間及び吸引力の組合せが2以上ある場合は、これら組合せのうちから任意の時間及び吸引力の組合せを、前記吸引が行われるべき経過時間及び適用されるべき吸引力として決定してもよい。又は、所定の率以上の成功率を達成し且つ吸引力が最小となる時間及び吸引力の組合せが2以上ある場合において、当該吸引力の最小が適用されるべき吸引力として決定され、且つ、複数の時間のうち中央の値が、前記吸引が行われるべき経過時間として決定されてもよい。
(3)第2の繰り返し工程S404の好ましい実施態様
好ましい実施態様に従い、前記第2の繰り返し工程S404において、吸引力は前記吸引力Dから所定の割合で段階的に減少され、且つ、前記第2の繰り返し工程は、前記微小粒子吸引流路内に吸引された微小粒子の数がいずれの経過時間の場合においても0となる結果が得られるまで行われうる。この場合、前記決定する工程において、前記いずれの経過時間の場合においても0となる結果が得られた場合の吸引力から所定の割合で増加させた吸引力が、微小粒子の吸引に適用されるべき吸引力として決定されうる。これにより、吸引力の最適化が自動的に行われうる。
吸引力を前記吸引力Dから減少させた場合の流路内の状況の変化は、図6及び図8を参照して上記で説明したとおりである。前記所定の割合及び前記減少の段階の数は、上記(1)において説明したとおりである。
前記微小粒子吸引流路内に吸引された微小粒子の数がいずれの経過時間の場合においても0となる結果が得られる場合の流路内の状況を、図9を参照して、以下で説明する。図9において、流路内の実線及び点線が、微小粒子が通過する位置を示す。図9において、微小粒子吸引流路の入り口から照射領域に向かってわずかに広がっている領域901が、吸引力Dよりもさらに小さい吸引力Dにて吸引した場合に微小粒子吸引流路内に微小粒子が吸引される領域である。図9に示されるとおり、領域901は、微小粒子が通過する位置を示す実線及び点線のいずれとも重なっていない。そのため、いずれの経過時間の場合に吸引が行われても、微小粒子は吸引されない。前記Tを種々の時間に変更し、それぞれの時間においてカウントされた粒子数を時間に対してプロットしたグラフが、図9の右側に示されている。当該グラフに示されるとおり、いずれの経過時間の場合に吸引が行われても、カウント数は0である。
上記好ましい実施態様において、前記第2の繰り返し工程は、前記微小粒子吸引流路内に吸引された微小粒子の数がいずれの経過時間の場合においても0となる結果が得られるまで行われうる。すなわち、前記第2の繰り返し工程は、前記微小粒子吸引流路内に吸引された微小粒子の数がいずれの経過時間の場合においても0となる結果が得られた場合に終了されうる。そして、前記決定する工程において、前記いずれの経過時間の場合においても0となる結果が得られた場合の吸引力から所定の割合で増加させた吸引力が、微小粒子の吸引に適用されるべき吸引力として決定されうる。
前記いずれの経過時間の場合においても0となる結果が得られた場合の吸引力からどれだけ増加させた吸引力を微小粒子の吸引に適用されるべき吸引力として決定するかは、前記第2の繰り返し工程S404における前記吸引力の段階的な減少における前記所定の割合及び吸引力の減少の段階の数、前記工程401において採用されたDの値、及び/又は、流路のサイズなどの要因に基づき、当業者により適宜定められうる。例えば、Dを1~10%ずつ減少させる場合、いずれの経過時間の場合においても0となる結果が得られた吸引力から、例えば(当該減少割合(すなわち1~10%)×1)~(当該減少割合×5)の値を当該いずれの経過時間の場合においても0となる結果が得られた吸引力に足した値が、適用されるべき吸引力として決定されうる。例えば、Dを10%ずつ減少させ、吸引力がD-D×80%においていずれの経過時間の場合においても0となる結果が得られた場合、(D-D×80%)+D×20%、すなわちD-D×60%の値が、適用されるべき吸引力として決定されうる。
4.第3の実施形態(微小粒子分取装置)
本技術は、本技術の最適化方法を実行する微小粒子分取装置も提供する。当該微小粒子分取装置は、
微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点を検知し、
微小粒子吸引流路により所定の吸引力で微小粒子を前記主流路から前記微小粒子吸引流路内に吸引し、
前記微小粒子吸引流路内に吸引された微小粒子の数をカウントする粒子数カウント工程、
を実行する制御部、
及び、
微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間と前記カウントした微小粒子の数とに基づいて、
前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定する決定部、
を有する。
本技術に従う微小粒子分取装置は、本技術の最適化方法を実行する。当該最適化方法は、例えば、微小粒子を含む液体が通流される主流路と、前記主流路と同軸上にある微小粒子吸引流路と、前記主流路から分岐する分岐流路とを有するマイクロチップにおいて行われうる。すなわち、本技術に従う微小粒子分取装置は、当該マイクロチップを備えられているものでありうる。当該マイクロチップとして、例えば、上記「1.関連技術の説明」において説明したマイクロチップを挙げることができるが、これに限定されない。
前記制御部は、前記粒子数カウント工程を実行する。前記制御部はさらに、微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間を変更して前記粒子数カウント工程を繰り返す繰り返し工程も実行しうる。前記制御部はさらに、前記吸引力を変更して前記粒子数カウント工程及び/又は前記繰り返し工程を繰り返す第2の繰り返し工程を実行しうる。前記決定部は、前記粒子数カウント工程において、又は、前記粒子数カウント工程及び前記繰り返し工程において、又は、前記粒子数カウント工程及び前記繰り返し工程及び前記第2の繰り返し工程においてカウントされた微小粒子の数に基づき、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を微小粒子が通過したときからの経過時間及び/又は微小粒子の吸引に適用されるべき吸引力を決定しうる。
前記制御部によって実行される前記第2の繰り返し工程において、吸引力は前記吸引力Dから所定の割合で段階的に減少され、且つ、前記第2の繰り返し工程は、前記微小粒子吸引流路内に吸引された微小粒子の数がいずれの経過時間の場合においても0となる結果が得られるまで行われうる。この場合、前記決定部は、前記決定する工程において、前記いずれの経過時間の場合においても0となる結果が得られた場合の吸引力から所定の割合で増加させた吸引力を、微小粒子の吸引に適用されるべき吸引力として決定しうる。
本技術の微小粒子分取装置は、前記微小粒子吸引流路内に検出領域を有するものでありうる。当該検出領域において、前記微小粒子吸引流路内に吸引された微小粒子のカウントが行われうる。
前記決定部によって実行される前記決定する工程において、前記粒子数カウント工程及び前記繰り返し工程、並びに、必要に応じて前記第2の繰り返し工程、においてカウントされた微小粒子の数に基づき微小粒子の吸引流路への吸引の成功率が算出され、当該成功率に基づき、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間が決定されうる。
本技術の微小粒子分取装置はさらに、前記主流路を通流する微小粒子に光を照射する光照射部と、前記微小粒子から発せられた散乱光及び/又は蛍光を検出する検出部と、前記検出部で検出されたデータに基づいて、前記主流路を通流する微小粒子の進行方向を制御する進行方向制御部とを有しうる。以下、当該光照射部、当該検出部、及び当該進行方向制御部について説明する。
本技術において、前記光照射部は、前記主流路を通流する微小粒子に光(励起光)を照射する。当該光照射部は、励起光を出射する光源と、主流路を通流する微小粒子に対して励起光を集光する対物レンズとを含みうる。光源は、分析の目的に応じてレーザダイオード、SHGレーザ、固体レーザ、ガスレーザ、及び高輝度LEDなどから適宜選択されうる。光照射部は、光源及び対物レンズに加えて、必要に応じて他の光学素子を含んでいてもよい。
前記光照射部により、本技術の方法において、主流路上の検出領域内に光が照射されうる。当該光が照射される位置は、前記2.(1)において図4を参照して述べた光の照射位置でありうる。前記光照射部により照射される光は、1つであってもよく又は2以上であってもよい。前記光照射部により照射される光は例えば、波長の異なる2つの光であってよく、又は同一の波長の2つの光であってもよい。当該光の照射によって、微小粒子から散乱光及び/又は蛍光が発せられうる。当該発せられた散乱光及び/又は蛍光によって、微小粒子が回収されるべきかどうかが判別されうる。また、当該発せられた散乱光及び/又は蛍光によって、微小粒子の前記所定の位置の通過が検知されうる。
また、例えば2つの光が照射されることで、当該2つの光の間の距離と当該2つの光の間を微小粒子が通過に要した時間とから、当該微小粒子の流路内での速度が算出されうる。
本技術に従う微小粒子分取装置はさらに、第2の光照射部を含みうる。当該第2の光照射部によって、前記2.(1)において図2を参照して説明した、微小粒子吸引流路内の検出領域に光が照射されうる。当該光の照射によって、微小粒子から散乱光及び/又は蛍光が発せられうる。当該散乱光及び/又は蛍光を検出することで、微小粒子吸引流路内に吸引された微小粒子の数がカウントされうる。
また、本技術に従う微小粒子分取装置はさらに、分取された微小粒子の検出のための暗視野照明系、及び/又は、分取部を観察するためのカメラ観察系を有しうる。さらに、本技術に従う微小粒子分取装置は、当該カメラ観察系により観察される視野を照明する透過照明系を有しうる。
本技術において、前記検出部は、前記光照射部による光の照射によって前記微小粒子から発せられた散乱光及び/又は蛍光を検出する。当該検出部は、微小粒子から発生する蛍光及び/又は散乱光を集光する集光レンズと検出器とを含みうる。当該検出器として、PMT、フォトダイオード、CCD、及びCMOSなどが用いられうるがこれらに限定されない。当該検出部は、集光レンズ及び検出器に加えて、必要に応じて他の光学素子を含んでいてもよい。
また、本技術の微小粒子分取装置は、前記第2の光照射部から照射された光により生じた光を検出する為の第2の検出部をさらに含みうる。
前記検出部及び前記第2の検出部により検出される蛍光は、微小粒子そのものから発生する蛍光及び微小粒子に標識された物質、例えば蛍光物質など、から発生する蛍光でありうるがこれらに限定されない。前記検出部及び前記第2の検出部により検出される散乱光は、前方散乱光、側方散乱光、レイリー散乱、及び/又はミー散乱でありうるが、これらに限定されない。
図10に、本技術において用いられる光照射部(蛍光励起系)、第2の光照射部(分取励起系)、検出部(FSC検出系及び蛍光検出系)、及び第2の検出部(分取検出系)の例を示す。
前記光照射部は蛍光励起用の光を、マイクロチップ内を通流する微小粒子に照射する。前記第2の光照射部は、微小粒子が微小粒子分取流路内に分取されたことを検出する為の光を照射する。
前記検出部は、前方散乱光検出系及び蛍光検出系を有しうる。これら検出系によって、前記光照射部からの微小粒子への光の照射により生じた光の検出が行われうる。検出された光に基づき、微小粒子が分取されるべきかの判別が、以下で述べる進行方向制御部により行われうる。また、検出された光に基づき、微小粒子の前記所定の位置の通過が、上記制御部によって検出されうる。また、検出された光に基づき、微小粒子の通過速度の算出が、上記制御部によって行われうる。
前記第2の検出部は、前記第2の光照射部から微小粒子への光の照射により生じた光の検出が行われうる。当該光の検出によって、微小粒子が微小粒子吸引流路内に吸引されたことが検出されうる。当該第2の検出部により検出される光は、好ましくは前方散乱光であり、当該前方散乱光は好ましくは蛍光マーカーに依存しないものでありうる。
図10に示されるとおり、前記光照射部からのマイクロチップへの光の照射は、対物レンズを通って行われうる。当該対物レンズの開口数(NA)は好ましくは0.1~1.5、より好ましくは0.5~1.0でありうる。
また、前記光照射部による光の照射により生じた前方散乱光は、対物レンズを通った後に、前方散乱光検出系により検出されうる。当該対物レンズの開口数(NA)は好ましくは0.05~1.0、より好ましくは0.1~0.5でありうる。
また、これら対物レンズの視野内に、前記光照射位置があってよく、好ましくは前記光照射位置及び分岐部分の両方がありうる。
本技術において、前記進行方向制御部は、前記検出部で検出されたデータに基づいて、前記主流路を通流する微小粒子を分岐流路に進行させるか又は粒子分取流路内に吸い込むかを制御する。前記検出部により検出された蛍光及び散乱光は、電気信号に変換されうる。すなわち、本技術の微小粒子分取装置は、電気信号変換部を有しうる。当該電気信号変換部は、進行方向制御部に含まれていてもよく、進行方向制御部に含まれていなくてもよい。当該進行方向制御部は、当該電気信号を受け取り、当該電気信号に基づいて、微小粒子の光学特性を判定しうる。当該進行方向制御部は、当該判定の結果に基づき、微小粒子が回収されるべきものである場合は、微小粒子がオリフィス部を通って微小粒子分取流路に進行するように、流路内の流れを変更しうる。当該流れの変更は例えば、圧力室内の圧力を減少することにより行われうる。また、微小粒子の回収後は、当該進行方向制御部は、流路内の流れを再度変更しうる。当該流れの再度の変更は、圧力室内の圧力を増加することにより行われうる。すなわち、当該進行方向制御部は、前記検出部で検出されたデータに基づいて、前記オリフィス部に連通された圧力室内の圧力を制御するものでありうる。また、当該進行方向制御部は、前記オリフィス部から主流路に向かう液体の流れを形成する為に備えられている流路内の液体の流れ、例えばゲート流などを制御するものであってもよい。当該進行方向制御部は、特開2014-036604号公報に記載された駆動部と同様の機能を有しうる。
なお、本技術は、以下のような構成をとることもできる。
〔1〕微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点を検知し、
微小粒子吸引流路により所定の吸引力で微小粒子を前記主流路から前記微小粒子吸引流路内に吸引し、
前記微小粒子吸引流路内に吸引された微小粒子の数をカウントする粒子数カウント工程、及び
微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間と前記カウントした微小粒子の数とに基づいて、
前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定する工程、
を含む、微小粒子の吸引条件の最適化方法。
〔2〕微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間を変更して前記粒子数カウント工程を繰り返す繰り返し工程をさらに含む、〔1〕に記載の方法。
〔3〕前記吸引力を変更して前記粒子数カウント工程及び/又は前記繰り返し工程を繰り返す第2の繰り返し工程をさらに含む、〔1〕又は〔2〕に記載の方法。
〔4〕前記第2の繰り返し工程において、吸引力は所定の割合で段階的に減少され、且つ、前記第2の繰り返し工程は、前記微小粒子吸引流路内に吸引された微小粒子の数がいずれの経過時間の場合においても0となる結果が得られるまで行われる、〔3〕に記載の方法。
〔5〕前記決定する工程において、いずれの経過時間の場合においても0となる結果が得られた場合の吸引力から所定の割合で増加させた吸引力が、微小粒子の吸引に適用されるべき吸引力として決定される、〔4〕に記載の方法。
〔6〕前記粒子数カウント工程において、微小粒子の数のカウントが、前記微小粒子吸引流路内の所定の位置で行われる、〔1〕~〔5〕のいずれか一つに記載の方法。
〔7〕前記粒子数カウント工程において、微小粒子の数は、前記微小粒子吸引流路内の所定の位置の通過を検知することによりカウントされる、〔1〕~〔5〕のいずれか一つに記載の方法。
〔8〕前記決定する工程において、前記粒子数カウント工程及び前記繰り返し工程においてカウントされた微小粒子の数に基づき微小粒子の前記微小粒子吸引流路への吸引の成功率が算出され、当該成功率に基づき、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間が決定される、〔2〕に記載の方法。
〔9〕微小粒子を含む液体が通流される主流路と、前記主流路と同軸上にある微小粒子吸引流路と、前記主流路から分岐する分岐流路とを有するマイクロチップにおける微小粒子の吸引条件を最適化するために行われる、〔1〕~〔8〕のいずれか一つに記載の方法。
〔10〕微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点を検知し、
微小粒子吸引流路により所定の吸引力で微小粒子を前記主流路から前記微小粒子吸引流路内に吸引し、
前記微小粒子吸引流路内に吸引された微小粒子の数をカウントする粒子数カウント工程、
を実行する制御部、
及び、
微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間と前記カウントした微小粒子の数とに基づいて、
前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定する決定部、
とを備えている微小粒子分取装置。
100 マイクロチップ
101 サンプル液インレット
102 サンプル液流路
103 シース液インレット
104 シース液流路
105 主流路
106 検出領域
107 分取部
108 分岐流路(廃棄流路)
109 粒子分取流路
110 分岐流路末端
111 分取流路末端
112 ゲート流インレット
201 オリフィス部
202 カウント領域
601 吸引力Dにて吸引した場合に微小粒子吸引流路内に微小粒子が吸引される領域
602 微小粒子
801 吸引力Dにて吸引した場合に微小粒子吸引流路内に微小粒子が吸引される領域
802 微小粒子
901 吸引力Dにて吸引した場合に微小粒子吸引流路内に微小粒子が吸引される領域

また、本技術は、
微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点を検知し、
微小粒子吸引流路により所定の吸引力で微小粒子を前記主流路から前記微小粒子吸引流路内に吸引し、
前記微小粒子吸引流路内に吸引された微小粒子の数をカウントする粒子数カウント工程、
を実行する制御部、
及び、
微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間と前記カウントした微小粒子の数とに基づいて、
前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定する決定部、
とを備えている微小粒子分取装置も提供する。
また、本技術は、
微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点を検知し、
微小粒子吸引流路により所定の吸引力で微小粒子を前記主流路から前記微小粒子吸引流路内に吸引し、且つ
前記微小粒子吸引流路内に吸引された微小粒子の数をカウントする粒子数カウントするように構成されており、
前記微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間または距離と前記カウントした微小粒子の数とに基づいて、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定する制御部、
を含む微小粒子分取装置も提供する。
前記微小粒子分取装置は、前記微小粒子に2つの照射位置で光を照射する光照射部を具備しており、
前記制御部は、当該2つの照射位置の間の距離と当該2つの照射位置の間を通過するのに要した時間とに基づき、粒子の流路内の速度を算出しうる。
前記微小粒子分取装置は、前記微小粒子吸引流路による吸引を、微小粒子吸引流路内を負圧にするピエゾ素子を有しうる。
前記微小粒子分取装置は、
微小粒子が前記主流路上の所定の位置を通過したときから所定の時間T が経過した時点において前記微小粒子吸引流路による吸引を所定の吸引力D にて行うという条件下で、微小粒子分取手順を実行して、当該分取手順を実行した結果前記微小粒子吸引流路内に吸引された微小粒子の数がカウントし、
さらに、前記時間T をより長い及び/又はより短い種々の時間T に変更したこと以外は同じようにして、前記粒子数カウントを繰り返しうる。
前記時間T は、前記主流路が設けられたマイクロチップのサイズ、所定の吸引力を適用した場合に当該吸引力が及ぶ領域、及び公差のうちの1つ以上に基づき設定されてよい。
前記種々の時間T は、前記T を所定の割合で段階的に増加及び/又は減少させた時間のそれぞれであってよい。
前記所定の割合は、0.1~1%であってよい。
前記T を増加させる段階の数及び前記T を減少させる段階の数は同一または異なる数で設定されうる。
前記制御部は、繰り返された前記粒子数カウントのうち、カウントされた微小粒子の数が最も多い場合の時間を、前記吸引が行われるべき経過時間として決定しうる。
前記制御部は、前記微小粒子の数が最も多い場合の時間が複数存在する場合において、は、それら複数の時間のうちから任意の時間を前記吸引が行われるべき経過時間として決定し、又は、それら複数の時間のうちの中央の値を、前記吸引が行われるべき経過時間として決定しうる。
前記微小粒子分取装置は、
微小粒子が前記主流路上の所定の位置を通過したときから所定の時間T が経過した時点において前記微小粒子吸引流路による吸引を所定の吸引力D にて行うという条件下で、微小粒子分取手順を実行して、当該分取手順を実行した結果前記微小粒子吸引流路内に吸引された微小粒子の数がカウントし、
さらに、前記吸引力D をより大きい及び/又は小さい種々の吸引力D に変更したこと以外は同じようにして、前記粒子数カウントを繰り返しうる。
前記吸引力Dnは、前記微小粒子吸引流路に設けられる吸引手段の仕様、前記主流路が設けられたマイクロチップのサイズ、所定の吸引力を適用した場合に当該吸引力が及ぶ領域、及び公差のうちの1つ以上に基づき設定されうる。
前記種々の吸引力D は、前記D を所定の割合で段階的に増加させた又は減少させた吸引力のそれぞれであってよい。
前記所定の割合は1~10%でありうる。
前記D を増加させる段階の数及び前記D を減少させる段階の数は、同じであってよく又は異なってよい。
前記微小粒子分取装置は、
微小粒子が前記主流路上の所定の位置を通過したときから所定の時間T が経過した時点において前記微小粒子吸引流路による吸引を所定の吸引力D にて行うという条件下で、微小粒子分取手順を実行して、当該分取手順を実行した結果前記微小粒子吸引流路内に吸引された微小粒子の数がカウントし、
さらに、前記時間T をより長い及び/又はより短い種々の時間T に変更したこと以外は同じようにして、前記粒子数カウントを繰り返し、
さらに、前記吸引力D をより大きい及び/又は小さい種々の吸引力D に変更したこと以外は同じようにして、前記粒子数カウントを繰り返すように構成されており、
前記制御部は、カウントされた微小粒子の数が最も多く且つ吸引力が最も小さい場合の時間T及び吸引力Dを、前記吸引が行われるべき経過時間及び適用されるべき吸引力として決定しうる。
前記微小粒子分取装置は、
微小粒子が前記主流路上の所定の位置を通過したときから所定の時間T が経過した時点において前記微小粒子吸引流路による吸引を所定の吸引力D にて行うという条件下で、微小粒子分取手順を実行して、当該分取手順を実行した結果前記微小粒子吸引流路内に吸引された微小粒子の数がカウントし、
さらに、前記時間T をより長い及び/又はより短い種々の時間T に変更したこと以外は同じようにして、前記粒子数カウントを繰り返す、
さらに、前記吸引力D をより大きい及び/又は小さい種々の吸引力D に変更したこと以外は同じようにして、前記粒子数カウントを繰り返すように構成されており、
前記制御部は、所定の数以上微小粒子がカウントされる場合の時間Tn及び吸引力Dnの組合せのうちから、
吸引力が最小となる吸引力Dを、適用されるべき吸引力として決定し、且つ、
当該決定された吸引力において所定の数以上微小粒子がカウントされる複数の経過時間のうちの中央の値を、吸引が行われるべき経過時間として決定しうる。
前記制御部は、所定の数以上微小粒子がカウントされ且つ吸引力が最小となる時間及び吸引力の組合せが2以上ある場合において、これら組合せのうちから任意の時間及び吸引力の組合せを、前記吸引が行われるべき経過時間及び適用されるべき吸引力として決定しうる。
前記微小粒子分取装置は、
前記主流路を通流する微小粒子に光を照射する光照射部と、
前記微小粒子から発せられた散乱光及び/又は蛍光を検出する検出部と、
前記検出部で検出されたデータに基づいて、前記主流路を通流する微小粒子の進行方向を制御する分取部と
を有してよい。
前記光照射部により照射される光は、波長の異なる2つの光であり、又は、同一の波長の2つの光であってよい。
前記制御部は、前記2つの光の間の距離と当該2つの光の間を微小粒子が通過に要した時間とから、当該微小粒子の流路内での速度を算出しうる。
前記微小粒子分取装置は、分取部を観察するためのカメラ観察系、及び、当該カメラ観察系により観察される視野を照明する透過照明系を有しうる。
前記微小粒子分取装置は、微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間を変更して前記粒子数カウントを繰り返し実行しうる。
前記吸引力を変更して前記粒子数カウントを繰り返し実行する、請求項22に記載の微小粒子分取装置。
前記微小粒子分取装置は、前記制御部は、前記粒子数カウントを繰り返し実行するときに、吸引力を所定の割合で段階的に減少し、そして、前記微小粒子吸引流路内に吸引された微小粒子の数がいずれの経過時間の場合においても0となる結果が得られるまで前記粒子数カウントを繰り返し実行しうる。
前記制御部は、いずれの経過時間の場合においても0となる結果が得られた場合の吸引力から所定の割合で増加させた吸引力を、微小粒子の吸引に適用されるべき吸引力として決定しうる。
前記制御部は、前記粒子数カウントを繰り返し実行してカウントされた微小粒子の数に基づき微小粒子の前記微小粒子吸引流路への吸引の成功率を算出し、当該成功率に基づき、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定しうる。
また、本技術は、
微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点を検知し、
微小粒子吸引流路により所定の吸引力で微小粒子を前記主流路から前記微小粒子吸引流路内に吸引し、
前記微小粒子吸引流路内に吸引された微小粒子の数をカウントする粒子数カウントする粒子数カウント工程、及び
前記微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間または距離と前記カウントした微小粒子の数とに基づいて、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定する工程、
を含む、微小粒子の吸引条件の最適化方法も提供する。
また、本技術は、
微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点を検知し、
微小粒子吸引流路により所定の吸引力で微小粒子を前記主流路から前記微小粒子吸引流路内に吸引し、
前記微小粒子吸引流路内に吸引された微小粒子の数をカウントする粒子数カウントする粒子数カウント工程、及び
前記微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間または距離と前記カウントした微小粒子の数とに基づいて、前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定する工程、
を微小粒子分取装置に実行させるためのプログラムも提供する。

Claims (1)

  1. 微小粒子を含む液体が通流される主流路の所定の位置で、微小粒子が通過する時点を検知し、
    微小粒子吸引流路により所定の吸引力で微小粒子を前記主流路から前記微小粒子吸引流路内に吸引し、
    前記微小粒子吸引流路内に吸引された微小粒子の数をカウントする粒子数カウント工程、及び
    微小粒子が前記主流路の所定の位置を通過した時点から前記吸引が行われるまでの時間と前記カウントした微小粒子の数とに基づいて、
    前記微小粒子吸引流路による吸引が行われるべき、前記所定の位置を通過したときからの経過時間を決定する工程、
    を含む、微小粒子の吸引条件の最適化方法。

JP2022093381A 2017-05-24 2022-06-09 微小粒子の吸引条件の最適化方法及び微小粒子分取装置 Active JP7367805B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017102694 2017-05-24
JP2017102694 2017-05-24
JP2019519461A JP7088177B2 (ja) 2017-05-24 2018-02-14 微小粒子の吸引条件の最適化方法及び微小粒子分取装置
PCT/JP2018/004952 WO2018216269A1 (ja) 2017-05-24 2018-02-14 微小粒子の吸引条件の最適化方法及び微小粒子分取装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019519461A Division JP7088177B2 (ja) 2017-05-24 2018-02-14 微小粒子の吸引条件の最適化方法及び微小粒子分取装置

Publications (2)

Publication Number Publication Date
JP2022111296A true JP2022111296A (ja) 2022-07-29
JP7367805B2 JP7367805B2 (ja) 2023-10-24

Family

ID=64396523

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019519461A Active JP7088177B2 (ja) 2017-05-24 2018-02-14 微小粒子の吸引条件の最適化方法及び微小粒子分取装置
JP2022093381A Active JP7367805B2 (ja) 2017-05-24 2022-06-09 微小粒子の吸引条件の最適化方法及び微小粒子分取装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019519461A Active JP7088177B2 (ja) 2017-05-24 2018-02-14 微小粒子の吸引条件の最適化方法及び微小粒子分取装置

Country Status (4)

Country Link
US (2) US11525767B2 (ja)
EP (1) EP3633348A4 (ja)
JP (2) JP7088177B2 (ja)
WO (1) WO2018216269A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109073532B (zh) * 2016-05-17 2021-10-22 索尼公司 颗粒提取装置和颗粒提取方法
EP3633348A4 (en) 2017-05-24 2020-06-17 Sony Corporation METHOD FOR OPTIMIZING SUCTION CONDITIONS FOR MICROPARTICLES AND MICROPARTICLE SEPARATING DEVICE
JP7006688B2 (ja) * 2017-05-26 2022-01-24 ソニーグループ株式会社 微小粒子の吸引条件の最適化方法及び微小粒子分取装置
JP6761153B1 (ja) * 2019-03-20 2020-09-23 京セラ株式会社 粒子計測デバイスならびに粒子分離計測デバイスおよび粒子分離計測装置
WO2020189572A1 (ja) * 2019-03-20 2020-09-24 京セラ株式会社 粒子計測デバイスならびに粒子分離計測デバイスおよび粒子分離計測装置
JPWO2022201959A1 (ja) * 2021-03-26 2022-09-29
WO2023153297A1 (ja) * 2022-02-14 2023-08-17 ソニーグループ株式会社 微小粒子分取装置及び微小粒子分取方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521658A (ja) * 1998-07-20 2002-07-16 コールター インターナショナル コーポレイション フローサイトメータの小滴分離点制御装置及び方法
JP2007533971A (ja) * 2003-09-30 2007-11-22 シンギュレックス・インコーポレイテッド 粒子検出の分析精度を改善する方法
JP2012127922A (ja) * 2010-12-17 2012-07-05 Sony Corp マイクロチップ及び微小粒子分取装置
WO2012102833A2 (en) * 2011-01-24 2012-08-02 President & Fellows Of Harvard College Systems and methods for stimulated raman scattering flow-cytometry
WO2014013802A1 (ja) * 2012-07-18 2014-01-23 ソニー株式会社 微小粒子分取装置、微小粒子分取用マイクロチップ及び微小粒子分取方法
JP2014202573A (ja) * 2013-04-04 2014-10-27 ソニー株式会社 粒子分取装置及び粒子分取方法
JP2016057309A (ja) * 2010-01-15 2016-04-21 株式会社オンチップ・バイオテクノロジーズ 使い捨てチップ型フローセルとそれを用いたセルソーター
JP2017058375A (ja) * 2012-07-24 2017-03-23 ソニー株式会社 微小粒子分取方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH441233A (de) * 1966-08-31 1967-08-15 Ibm Trennvorrichtung für suspendierte Partikeln
DE602004024874D1 (de) * 2003-03-28 2010-02-11 Inguran Llc Eschlechts-sortierten tierspermien
JP5277222B2 (ja) 2010-09-14 2013-08-28 株式会社日立製作所 走査プローブ顕微鏡及びそれを用いた表面形状計測方法
US9087371B2 (en) * 2012-03-30 2015-07-21 Sony Corporation Microparticle sorting device and method of optimizing fluid stream therein
CN104487820B (zh) 2012-06-07 2018-03-09 生物辐射实验室股份有限公司 流式细胞计数的自动化且准确液滴延迟
JP5910412B2 (ja) 2012-08-16 2016-04-27 ソニー株式会社 微小粒子分取方法及び微小粒子分取用マイクロチップ
CN110579435B (zh) * 2012-10-15 2023-09-26 纳诺赛莱克特生物医药股份有限公司 颗粒分选的系统、设备和方法
JP2018523114A (ja) * 2015-06-23 2018-08-16 ナノセレクト バイオメディカル インコーポレイテッド 細胞選別およびフローサイトメトリのためのシステム、装置および方法
JP6911021B2 (ja) 2015-06-25 2021-07-28 サイトノーム/エスティー・エルエルシー 音響操作を用いるマイクロ流体デバイスおよびシステム
EP3633348A4 (en) 2017-05-24 2020-06-17 Sony Corporation METHOD FOR OPTIMIZING SUCTION CONDITIONS FOR MICROPARTICLES AND MICROPARTICLE SEPARATING DEVICE
JP7006688B2 (ja) * 2017-05-26 2022-01-24 ソニーグループ株式会社 微小粒子の吸引条件の最適化方法及び微小粒子分取装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521658A (ja) * 1998-07-20 2002-07-16 コールター インターナショナル コーポレイション フローサイトメータの小滴分離点制御装置及び方法
JP2007533971A (ja) * 2003-09-30 2007-11-22 シンギュレックス・インコーポレイテッド 粒子検出の分析精度を改善する方法
JP2016057309A (ja) * 2010-01-15 2016-04-21 株式会社オンチップ・バイオテクノロジーズ 使い捨てチップ型フローセルとそれを用いたセルソーター
JP2012127922A (ja) * 2010-12-17 2012-07-05 Sony Corp マイクロチップ及び微小粒子分取装置
WO2012102833A2 (en) * 2011-01-24 2012-08-02 President & Fellows Of Harvard College Systems and methods for stimulated raman scattering flow-cytometry
WO2014013802A1 (ja) * 2012-07-18 2014-01-23 ソニー株式会社 微小粒子分取装置、微小粒子分取用マイクロチップ及び微小粒子分取方法
JP2017058375A (ja) * 2012-07-24 2017-03-23 ソニー株式会社 微小粒子分取方法
JP2014202573A (ja) * 2013-04-04 2014-10-27 ソニー株式会社 粒子分取装置及び粒子分取方法

Also Published As

Publication number Publication date
US11525767B2 (en) 2022-12-13
JP7367805B2 (ja) 2023-10-24
EP3633348A4 (en) 2020-06-17
US11927524B2 (en) 2024-03-12
WO2018216269A1 (ja) 2018-11-29
US20230053597A1 (en) 2023-02-23
US20200072732A1 (en) 2020-03-05
JPWO2018216269A1 (ja) 2020-03-26
EP3633348A1 (en) 2020-04-08
JP7088177B2 (ja) 2022-06-21

Similar Documents

Publication Publication Date Title
JP7367805B2 (ja) 微小粒子の吸引条件の最適化方法及び微小粒子分取装置
JP7338336B2 (ja) 微小粒子分取装置、細胞治療薬製造装置、微小粒子分取方法、及びプログラム
JP7207394B2 (ja) 微小粒子の吸引条件の最適化方法、微小粒子分取用装置、微小粒子分取用システム及び微小粒子分取用プログラム
WO2015056516A1 (ja) 粒子分取装置、粒子分取方法及びプログラム
JP7188506B2 (ja) マイクロチップ及び微小粒子分取装置
JP7006688B2 (ja) 微小粒子の吸引条件の最適化方法及び微小粒子分取装置
JP2011064706A (ja) マイクロチップとその流路構造
JP5098650B2 (ja) 微小粒子の送流方法及び分析方法、並びに微小粒子分析用基板
JPWO2018198470A1 (ja) 撮像対象分析用装置、流路構造、撮像用部材、撮像方法、及び撮像対象分析用システム
Sugino et al. Integration in a multilayer microfluidic chip of 8 parallel cell sorters with flow control by sol–gel transition of thermoreversible gelation polymer
WO2023153297A1 (ja) 微小粒子分取装置及び微小粒子分取方法
WO2022201959A1 (ja) 生体粒子分取装置及び生体粒子分取装置における分取条件調整方法
JP6965953B2 (ja) マイクロチップ及び微小粒子分析装置
JPWO2020054196A1 (ja) 微小粒子分取用流路ユニット及び微小粒子分取装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R151 Written notification of patent or utility model registration

Ref document number: 7367805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151