JP2022107290A - Additional mass type vibration control device - Google Patents

Additional mass type vibration control device Download PDF

Info

Publication number
JP2022107290A
JP2022107290A JP2021002149A JP2021002149A JP2022107290A JP 2022107290 A JP2022107290 A JP 2022107290A JP 2021002149 A JP2021002149 A JP 2021002149A JP 2021002149 A JP2021002149 A JP 2021002149A JP 2022107290 A JP2022107290 A JP 2022107290A
Authority
JP
Japan
Prior art keywords
building
additional mass
mass
vibration damping
damping device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021002149A
Other languages
Japanese (ja)
Inventor
玄 荒川
Gen Arakawa
和之 大原
Kazuyuki Ohara
大真 寺村
Daima Teramura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Building Structure Institute
Kawakin Core Tech Co Ltd
Original Assignee
Building Structure Institute
Kawakin Core Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Building Structure Institute, Kawakin Core Tech Co Ltd filed Critical Building Structure Institute
Priority to JP2021002149A priority Critical patent/JP2022107290A/en
Publication of JP2022107290A publication Critical patent/JP2022107290A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

To provide an additional mass type vibration control device that does not need to adjust its period and is easily maintained without necessary to synchronize its natural period with building's natural period.SOLUTION: An additional mass type vibration control device 10 placed at a top part of a building 11 comprises: an additional mass 12 having 5 to 50% mass of the mass of the building 11; bearing members 13 placed at the top part of the building 11, supporting the additional mass 12 in a vertical direction, and permitting a displacement in a horizontal direction; and attenuation members 14 absorbing seismic energy of the building 11 and restricting the displacement of the additional mass 12. Its natural period is set to be 2.0 to 10.0 times of the natural period of the building 11.SELECTED DRAWING: Figure 2

Description

この発明は、付加質量型制振装置に関し、より詳細には、建物の頂部に設置されて地震等の際に建物の揺れを抑える制振装置に関する。 The present invention relates to an additional mass type vibration damping device, and more particularly to a vibration damping device installed at the top of a building to suppress the shaking of the building in the event of an earthquake or the like.

都心の緊急幹線輸送道路沿いには、耐震診断義務があり狭小敷地に建つアスペクト比が大きい建物が多い。耐震診断の結果、「要補強」となった場合でも、高価な補強コストとなる、居住者への負担が大きい補強内容となる、構造計算上補強設計が不可能となる等の理由で補強工事に進展しない建物が多く残されている。 Along the emergency highway in the city center, there are many buildings with a large aspect ratio that are built on a small site because of the obligation to make a seismic diagnosis. Even if the result of the seismic diagnosis shows that "reinforcement is required", the reinforcement work will be expensive, the burden on the resident will be heavy, and the reinforcement design will be impossible due to structural calculation. There are many buildings left that do not progress to.

アスペクト比が大きな建物の各層に、例えば、制振ダンパーを配置しても、ダンパーを連層配置するためエネルギー吸収効率が大きく下がり、補強困難となる。また、ダンパーを連層配置すると、その力を負担するための杭工事が必要となってしまうが、狭小敷地に建つ建物が多く、杭工事に要する負荷が大きい。 Even if vibration damping dampers are arranged in each layer of a building having a large aspect ratio, for example, the energy absorption efficiency is greatly reduced because the dampers are arranged in multiple layers, which makes it difficult to reinforce. In addition, if the dampers are arranged in multiple layers, pile construction is required to bear the force, but many buildings are built on a small site, and the load required for pile construction is large.

地震時の建物の揺れ対策用制振装置として、建物の頂部にバネ等を介して連結された質量を設置する付加質量型のもの、TMD(同調質量ダンパー、Tuned Mass Damper)が知られている(例えば特許文献1参照)。上記のようにアスペクト比が大きな建物に、このTMDを適用することも考えられるが、TMDは以下に記すような問題点がある。 As a vibration damping device for measures against shaking of a building during an earthquake, a TMD (Tuned Mass Damper), which is an additional mass type that installs a mass connected to the top of the building via a spring or the like, is known. (See, for example, Patent Document 1). It is conceivable to apply this TMD to a building having a large aspect ratio as described above, but the TMD has the following problems.

・バネ等を調整してTMDの固有周期を地震時の建物の固有周期(損傷時含む)に同調(一致)させるため、調整が難しい。
・等定常波に対する応答制御(床振動等)の場合は有効な方法であるが、地震動のような非定常波の場合は効きが悪い。
・建物の経年劣化(躯体のひび割れ等)や積載重量の変化、外装材による剛性の変化等を原因とする建物の固有周期の変化に対して、メンテナンスとしてTMDの周期調整が必要となる。
-Adjustment is difficult because the natural period of TMD is synchronized (matched) with the natural period (including damage) of the building at the time of an earthquake by adjusting springs and the like.
・ It is an effective method for response control to iso-standing waves (floor vibration, etc.), but it is not effective for non-standing waves such as seismic motion.
-TMD cycle adjustment is required for maintenance against changes in the building's natural cycle due to aging deterioration of the building (cracking of the frame, etc.), changes in the load weight, and changes in the rigidity of the exterior material.

・地震時に建物が非線形領域(ひび割れ発生~部材降伏)まで変形した場合、それによって生じる建物の固有周期変動に対してTMDの周期調整が必要となるが、パッシブな調整技術がない。
・AMD(アクティブマスダンパー、Active Mass Damper)のように、非定常波応答に対応する技術はあるが、高価なシステムとなる。
・建物の固有周期変動に対応するために複数のTMDを同じ層に設け、システムに冗長性を付与することが考えられるが、コストアップとなるだけでなく、この場合もやはりTMDの設置時や地震時に周期調整が必要となる。
-When a building is deformed to a non-linear region (cracking to member yield) during an earthquake, it is necessary to adjust the TMD cycle for the natural period fluctuation of the building caused by it, but there is no passive adjustment technique.
-Although there is a technology that supports non-standing wave response such as AMD (Active Mass Damper), it is an expensive system.
-It is conceivable to install multiple TMDs on the same layer to cope with the natural period fluctuation of the building to add redundancy to the system, but it not only increases the cost, but also in this case, when installing the TMDs, Period adjustment is required during an earthquake.

特開2016-223233号公報Japanese Unexamined Patent Publication No. 2016-223233

この発明は上記のような技術的背景に基づいてなされたものであって、次の目的を達成するものである。
この発明の目的は、制振装置の固有周期を建物の固有周期と同調させる必要がなく、したがって周期調整が不要でメンテナンスが容易な、付加質量型制振装置を提供することにある。
The present invention has been made based on the above technical background, and achieves the following object.
An object of the present invention is to provide an additional mass type vibration damping device which does not need to synchronize the natural period of the vibration damping device with the natural period of the building, and therefore does not require cycle adjustment and is easy to maintain.

この発明の発明者は、上記課題を解決するために鋭意検討を重ねたところ、以下に記すような知見を得ることができた。すなわち、建物の頂部にTMDと同じ部材構成を有する制振装置(ただし、付加質量の質量は建物質量の20%)を設置した場合を想定し、建物の固有周期に対する制振装置の固有周期を種々変化させて地震時の建物の揺れをコンピューターによりシミュレートしてみたところ、図5に示すような結果が得られた。 The inventor of the present invention has obtained the following findings as a result of repeated diligent studies in order to solve the above problems. That is, assuming that a vibration damping device having the same member structure as the TMD (however, the mass of the additional mass is 20% of the building mass) is installed at the top of the building, the natural period of the vibration damping device is set with respect to the natural period of the building. When the shaking of the building during an earthquake was simulated by a computer with various changes, the results shown in FIG. 5 were obtained.

図5において制振装置の固有周期を建物の固有周期の1.0倍にしたケースが、TMD本来の周期設定である(同調)。そして、制振装置の固有周期を建物の固有周期に一致させずに、それよりも小さい1.0倍未満あるいは制振装置なしの場合は、同調させた場合よりも建物の揺れが大きいことが分かる。 In FIG. 5, the case where the natural period of the vibration damping device is 1.0 times the natural period of the building is the original period setting of TMD (synchronization). If the natural period of the vibration damping device does not match the natural period of the building and is less than 1.0 times smaller than that, or if there is no vibration damping device, the shaking of the building may be larger than that in the case of tuning. I understand.

一方、制振装置の固有周期を建物固有周期と一致させずに、それよりも大きい、建物固有周期の2.0倍、5.0倍あるいは10.0倍とした場合は、同調(1.0倍)させた場合よりも建物の揺れが遙かに小さくなることが判明した。 On the other hand, if the natural period of the vibration damping device does not match the natural period of the building and is set to 2.0 times, 5.0 times, or 10.0 times the natural period of the building, which is larger than that, tuning (1. It was found that the shaking of the building was much smaller than when it was made to (0 times).

さらに、制振装置の固有周期を建物の固有周期の2.0倍、5.0倍に固定し、制振装置の付加質量の質量を種々変化させて、上記と同様に、地震時の建物の揺れをコンピューターによりシミュレートしてみたところ、図6(周期比2.0倍)、図7(周期比5.0倍)に示すような結果が得られた。 Furthermore, the natural period of the vibration damping device is fixed to 2.0 times or 5.0 times the natural period of the building, and the mass of the additional mass of the vibration damping device is variously changed. When the shaking was simulated by a computer, the results shown in FIGS. 6 (period ratio 2.0 times) and FIG. 7 (period ratio 5.0 times) were obtained.

シミュレーションによれば、周期比2.0倍、5.0倍のいずれの場合も、付加質量の質量を建物の質量の5%以上とすると、制振装置を設置しない場合よりも地震時の建物の揺れが軽減されることが判明した。 According to the simulation, in both cases of the periodic ratio of 2.0 times and 5.0 times, if the mass of the additional mass is 5% or more of the mass of the building, the building at the time of an earthquake is more than the case where the vibration damping device is not installed. It turned out that the shaking of the was reduced.

この発明は上記のような知見に基づくもので、次のような手段を採用している。
すなわち、この発明は、建物の頂部に設置される付加質量型制振装置であって、
前記建物の質量の5~50%の質量を有する付加質量と、前記建物の頂部に設置され、前記付加質量を鉛直方向に支持するとともに水平方向の変位を許容する支承部材と、前記建物の地震エネルギーを吸収し、前記付加質量の変位を制限する減衰部材とを備え、
固有周期が前記建物の固有周期の2.0~10.0倍に設定されていることを特徴とする付加質量型制振装置にある。
The present invention is based on the above findings and employs the following means.
That is, the present invention is an additional mass type vibration damping device installed at the top of a building.
An additional mass having a mass of 5 to 50% of the mass of the building, a support member installed at the top of the building that supports the additional mass in the vertical direction and allows horizontal displacement, and an earthquake in the building. It is equipped with a damping member that absorbs energy and limits the displacement of the added mass.
The additional mass type vibration damping device is characterized in that the natural period is set to 2.0 to 10.0 times the natural period of the building.

この発明による制振装置は、その固有周期を建物の固有周期の2.0倍から10.0倍に設定するので、大地震時の建物の固有周期に都度合わせる必要がない。すなわち、同調させる必要がない。 Since the vibration damping device according to the present invention sets its natural period to 2.0 to 10.0 times the natural period of the building, it is not necessary to adjust the natural period of the building each time during a large earthquake. That is, there is no need to synchronize.

建物の質量とは、例えば、固定荷重、積載荷重、積雪荷重等を含む総重量によって規定される質量である。 The mass of a building is, for example, a mass defined by a total weight including a fixed load, a load, a snow load, and the like.

付加質量は、例えば、コンクリートや鋼材等によって形成することができる。 The additional mass can be formed of, for example, concrete, steel, or the like.

付加質量の質量を建物の質量の5~50%と設定するのは、地震に対して有効な制御力を発揮させるためである。この発明による制振装置は、その固有周期を建物の固有周期よりも2.0~10.0倍と長く設定され、建物と制振装置は互いに関係なく振動するため、制振装置の付加質量が建物に与える反力として作用している。 The mass of the additional mass is set to 5 to 50% of the mass of the building in order to exert an effective control force against an earthquake. The vibration damping device according to the present invention has its natural period set to be 2.0 to 10.0 times longer than the natural period of the building, and the building and the vibration damping device vibrate independently of each other. Acts as a reaction force to the building.

付加質量の質量が小さすぎると反力としての機能を十分に得ることができず、それゆえ、この発明では付加質量の質量を建物の質量の5%以上と設定することとしている。他方、付加質量の質量が大きすぎると建物重量の増加と地震時応答制御のバランスが悪くなり、また建物頂部への制振装置の設置が困難になる。それゆえ、この発明では付加質量の質量を建物の質量の50%以下と設定することとしている。 If the mass of the additional mass is too small, the function as a reaction force cannot be sufficiently obtained. Therefore, in the present invention, the mass of the additional mass is set to 5% or more of the mass of the building. On the other hand, if the mass of the added mass is too large, the balance between the increase in the building weight and the response control at the time of an earthquake becomes unbalanced, and it becomes difficult to install the vibration damping device on the top of the building. Therefore, in the present invention, the mass of the additional mass is set to 50% or less of the mass of the building.

制振装置の固有周期を建物の固有周期の2.0~10.0倍と長周期化させることにより、付加質量の質量を建物の質量の5~50%というように大きくしても、その付加質量が地震時重量として作用するのが抑止される。 By extending the natural period of the vibration damping device to 2.0 to 10.0 times the natural period of the building, even if the mass of the additional mass is increased to 5 to 50% of the mass of the building, the period is increased. The additional mass is suppressed from acting as the weight during an earthquake.

建物の固有周期は、周知の手法である固有値解析に基づき、算出することができる。算出された固有周期に2.0~10.0の数値を乗じて、設定すべき制振装置の固有周期を算出することができる。そして、算出された制振装置の周期となるように、付加質量の質量及び支承部材の仕様(ばね定数等)を決定する。 The natural period of a building can be calculated based on the well-known method of eigenvalue analysis. The calculated natural period can be multiplied by a numerical value of 2.0 to 10.0 to calculate the natural period of the vibration damping device to be set. Then, the mass of the additional mass and the specifications of the bearing member (spring constant, etc.) are determined so as to have the calculated period of the vibration damping device.

支承部材としては、例えば円柱形の積層ゴム支承を使用することができる。積層ゴム支承は、複数の鋼板とゴム層とを積層したもので、付加質量の鉛直方向の荷重を支持するとともに、水平方向に弾性せん断変形して同方向の変位を許容する。水平方向にせん断変形する際の剛性(バネ定数)が付加質量の固有周期を決定するパラメータの1つとなる。 As the bearing member, for example, a cylindrical laminated rubber bearing can be used. Laminated rubber bearings are made by laminating a plurality of steel plates and rubber layers, and support a load of additional mass in the vertical direction and allow displacement in the same direction by elastic shear deformation in the horizontal direction. The rigidity (spring constant) at the time of shear deformation in the horizontal direction is one of the parameters that determine the natural period of the added mass.

積層ゴム支承は、その複数を鉛直方向に直列に配置してもよい。このようにすることにより、ゴムの材料を変更せずに制振装置の長周期化を図ることができるという利点が得られる。 A plurality of laminated rubber bearings may be arranged in series in the vertical direction. By doing so, it is possible to obtain an advantage that the period of the vibration damping device can be extended without changing the rubber material.

支承部材としては、積層ゴム支承以外にも球面式支承を使用してもよい。球面式支承は、鉛直方向に互いに対向する1対の面間にすべり材又は球体を挟み込んで形成され、前記1対の面の少なくとも一方が凹状球面となっているもので、付加質量の鉛直荷重を支持するとともに、付加質量が振り子運動をしてその水平方向の変位を許容する。球面の曲率半径が付加質量の固有周期を決定するパラメータの1つとなる。 As the bearing member, a spherical bearing may be used in addition to the laminated rubber bearing. The spherical support is formed by sandwiching a sliding material or a sphere between a pair of faces facing each other in the vertical direction, and at least one of the pair of faces is a concave spherical surface. And the additional mass makes a pendulum motion to allow its horizontal displacement. The radius of curvature of the sphere is one of the parameters that determines the natural period of the added mass.

このような振り子運動をする支承部材は、制振装置の固有周期を決定するパラメータとして付加質量の質量を含まないので、実際に設置される付加質量の質量が設計値と多少の変動があっても、得られる固有周期に影響を及ぼさない。また、制振装置の固有周期は付加質量の質量に左右されないので、仮に付加質量の上に機器等が偏って積載されていたとしても、想定する所望の固有周期が得られる。 Since the bearing member that performs such a pendulum motion does not include the mass of the additional mass as a parameter that determines the natural period of the vibration damping device, the mass of the additional mass that is actually installed has a slight variation from the design value. Also does not affect the resulting natural period. Further, since the natural period of the vibration damping device is not affected by the mass of the added mass, even if the equipment or the like is unbalancedly loaded on the added mass, a desired natural period to be assumed can be obtained.

支承部材として、球面式支承と積層ゴム支承とを鉛直方向に直列に配置したものを使用してもよい。このような支承部材を用いることにより、次のような利点が得られる。 As the bearing member, a spherical bearing and a laminated rubber bearing may be arranged in series in the vertical direction. By using such a bearing member, the following advantages can be obtained.

すなわち、付加質量を支持する支承部材は通常複数箇所に設置されるが、支承部材を球面式支承のみで構成した場合、各球面式支承のすべり部表面の摩擦性状の違いにより、各支承がすべり出す水平力にバラツキが生じる。また、各箇所の球面式支承に加わる付加質量による荷重の偏りによっても、すべり出す水平力にバラツキが生じる。 That is, the bearing members that support the additional mass are usually installed at a plurality of places, but when the bearing members are composed of only spherical bearings, each bearing slips due to the difference in frictional properties on the surface of the sliding portion of each spherical bearing. There will be variations in the horizontal force to be exerted. In addition, the horizontal force that slides out also varies due to the bias of the load due to the additional mass applied to the spherical bearings at each location.

このようなことから、例えば、すべり部表面の摩擦係数が大きい場合には、大きな水平力が作用しない限り水平方向にすべり出すことができず、制振装置に想定される固有周期が発揮できないことも考えられる。 For this reason, for example, when the friction coefficient on the surface of the sliding portion is large, it cannot slide in the horizontal direction unless a large horizontal force is applied, and the natural period expected for the vibration damping device cannot be exhibited. Is also possible.

このような支承部材として球面式支承のみを用いた場合の初期始動の問題は、球面式支承と積層ゴム支承とを鉛直方向に直列に配列することにより解消することができる。図8は、球面式支承と積層ゴム支承とを直列に配列した支承部材に、繰り返し水平荷重を加えた場合の水平変位の履歴ループを示している。 The problem of initial starting when only a spherical bearing is used as such a bearing member can be solved by arranging the spherical bearing and the laminated rubber bearing in series in the vertical direction. FIG. 8 shows a history loop of horizontal displacement when a horizontal load is repeatedly applied to a bearing member in which a spherical bearing and a laminated rubber bearing are arranged in series.

図中、破線で示す部分は球面式支承のみの場合の載荷初期時の変位を示し、所要の荷重(図示の例は50kN)に達するまでは水平変位が生じない。これに対し、球面式支承と積層ゴム支承とを直列に配列した場合は、実線で示されるように載荷初期から水平変位を生じさせることができる。これにより、支承部材の水平変位のすべり出しに対する初期始動を改善して長周期化させることができ、冗長性を向上させることができる。 In the figure, the part shown by the broken line shows the displacement at the initial stage of loading in the case of only the spherical bearing, and the horizontal displacement does not occur until the required load (50 kN in the illustrated example) is reached. On the other hand, when the spherical bearing and the laminated rubber bearing are arranged in series, horizontal displacement can be generated from the initial stage of loading as shown by the solid line. As a result, the initial start with respect to the sliding of the horizontal displacement of the bearing member can be improved to prolong the period, and the redundancy can be improved.

支承部材をこのような構成とする場合、制振装置に作用する水平変位が積層ゴムに集中することはなく、球面式支承部に所定の水平力が作用する水平変位に到達した時点から、球面式支承がすべり出すことになるため、直列配置する積層ゴムには制振装置に作用する変形(大変形)に追随する変形能力は必要ない。 When the bearing member has such a configuration, the horizontal displacement acting on the vibration damping device is not concentrated on the laminated rubber, and the spherical surface is formed from the time when a predetermined horizontal force acts on the spherical bearing portion. Since the type bearings will slide out, the laminated rubbers arranged in series do not need to have the deformation ability to follow the deformation (large deformation) acting on the vibration damping device.

このような球面式支承と積層ゴム支承との直列配置による利点を得るためには、積層ゴム支承の水平剛性については、球面式支承の初期剛性(図8の破線で示される部分)よりも小さく設定すればよい。 In order to obtain the advantage of the serial arrangement of the spherical bearing and the laminated rubber bearing, the horizontal rigidity of the laminated rubber bearing is smaller than the initial rigidity of the spherical bearing (the portion shown by the broken line in FIG. 8). Just set it.

減衰部材としては、粘性系ダンパー、例えばオイルダンパーを使用することができる。このような減衰部材を設けることにより、地震時に付加質量に加わるエネルギーを吸収し、付加質量の応答変位が抑制される。 As the damping member, a viscous damper, for example, an oil damper can be used. By providing such a damping member, the energy applied to the additional mass at the time of an earthquake is absorbed, and the response displacement of the additional mass is suppressed.

この発明による制振装置は、建物の質量の5~50%という大きな質量をもつ付加質量を建物の頂部に設置するので、狭小敷地等に建つアスペクト比が大きな中低層建物(S造、RC造、SRC造、木造)の補強に好適であるが、既設建物の補強に限らず新築の建物にも有効である。 Since the vibration damping device according to the present invention installs an additional mass having a large mass of 5 to 50% of the mass of the building at the top of the building, it is a medium-low-rise building (S structure, RC structure) with a large aspect ratio built on a narrow site or the like. , SRC structure, wooden structure), but it is also effective not only for reinforcement of existing buildings but also for newly built buildings.

この発明の制振装置によれば、付加質量の固有周期を建物の固有周期と同調させる必要がなく、したがって周期調整が不要でメンテナンスが容易となる。 According to the vibration damping device of the present invention, it is not necessary to synchronize the natural period of the added mass with the natural period of the building, and therefore no period adjustment is required and maintenance is facilitated.

この発明による制振装置の実施形態を模式的に示す正面図である。It is a front view which shows typically the embodiment of the vibration damping device by this invention. 制振装置の具体的な構成を示し、支承部材を積層ゴム支承で構成した実施形態を示す正面図である。It is a front view which shows the specific structure of the vibration damping device, and shows the Embodiment which made up the support member by the laminated rubber bearing. 制振装置の具体的な構成を示し、支承部材を球面式支承で構成した実施形態を示す正面図である。It is a front view which shows the specific structure of the vibration damping device, and shows the Embodiment which configured the support member by a spherical bearing. 制振装置の具体的な構成を示し、支承部材を直列配置した球面式支承と積層ゴム支承とで構成した実施形態を示す正面図である。It is a front view which shows the specific structure of the vibration damping device, and shows the embodiment which was composed of a spherical bearing and a laminated rubber bearing in which bearing members were arranged in series. 質量比を20%として、建物の固有周期に対する制振装置の固有周期比を種々変化させた場合の地震時最大応答変位を示すグラフである。It is a graph which shows the maximum response displacement at the time of an earthquake when the mass ratio is 20%, and the natural period ratio of the vibration damping device with respect to the natural period of a building is changed variously. 周期比2.0倍として、建物の質量に対する付加質量の質量比を種々変化させた場合の地震時最大応答変位を示すグラフである。It is a graph which shows the maximum response displacement at the time of an earthquake when the mass ratio of the additional mass to the mass of a building is changed variously with a periodic ratio of 2.0 times. 周期比5.0倍として、建物の質量に対する付加質量の質量比を種々変化させた場合の地震時最大応答変位を示すグラフである。It is a graph which shows the maximum response displacement at the time of an earthquake when the mass ratio of the additional mass to the mass of a building is changed variously with a periodic ratio of 5.0 times. 支承部材を直列配置した球面式支承と積層ゴム支承とで構成した場合の繰り返し水平荷重による水平変位の履歴ループを示すグラフである。It is a graph which shows the history loop of the horizontal displacement by a repeated horizontal load in the case of having a spherical bearing and a laminated rubber bearing in which bearing members are arranged in series.

この発明の実施形態を図面を参照しながら以下に説明する。図1は、この発明の実施形態の全体を模式的に示す正面図である。この発明による付加質量型制振装置(以下、単に制振装置)10は、従来のTMDと同様に建物11の通常屋上と称されている頂部に設置される。制振装置10の設置対象となる建物11は、S造、RC造、SRC造、木造等いずれでもよく、また既設及び新設のいずれでもよいが、狭小敷地等に建つアスペクト比が大きな中低層建物に適している。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a front view schematically showing an entire embodiment of the present invention. The additional mass type vibration damping device (hereinafter, simply vibration damping device) 10 according to the present invention is installed on the top of the building 11 which is usually called the roof, like the conventional TMD. The building 11 to which the vibration damping device 10 is installed may be an S structure, an RC structure, an SRC structure, a wooden structure, etc., or may be an existing structure or a new structure, but is a medium-low-rise building having a large aspect ratio built on a small site or the like. Suitable for.

制振装置10は、付加質量12と、建物11の頂部に設置され、付加質量12を鉛直方向に支持するとともに、水平方向の変位を許容する複数の支承部材13と、建物の地震エネルギーを吸収し、付加質量12の変位を制限する減衰部材14を備えている。従来のTMDもこれらの部材12、13、14を備え、その点ではこの発明の制振装置10もTMDも同様である。 The vibration damping device 10 is installed at the top of the building 11 and the additional mass 12, and absorbs the seismic energy of the building and the plurality of support members 13 that support the additional mass 12 in the vertical direction and allow the displacement in the horizontal direction. It also includes a damping member 14 that limits the displacement of the additional mass 12. The conventional TMD also includes these members 12, 13, and 14, and in that respect, the vibration damping device 10 and the TMD of the present invention are similar.

しかしながら、従来のTMDは、建物の固有周期と一致するように固有周期が設定されるのに対し、この発明による制振装置10は、建物11の固有周期の2.0~10.0倍となるように固有周期が設定されている。また、従来のTMDの付加質量と比較して、この発明による制振装置10は付加質量12の質量が建物11の質量の5~50%と大きく設定されている。 However, in the conventional TMD, the natural period is set so as to match the natural period of the building, whereas in the vibration damping device 10 according to the present invention, it is 2.0 to 10.0 times the natural period of the building 11. The natural period is set so as to be. Further, the mass of the additional mass 12 of the vibration damping device 10 according to the present invention is set to be as large as 5 to 50% of the mass of the building 11 as compared with the additional mass of the conventional TMD.

制振装置10の固有周期及び付加質量12の質量を、このようにすることにより、地震時に建物の揺れを従来のTMDよりも抑えることができ、また制振装置10の固有周期を建物11の固有周期と同調させる必要がないので、メンテナンスが容易となる。 By setting the natural period of the vibration damping device 10 and the mass of the additional mass 12 in this way, the shaking of the building during an earthquake can be suppressed as compared with the conventional TMD, and the natural period of the vibration damping device 10 can be set to that of the building 11. Maintenance is easy because it is not necessary to synchronize with the natural period.

図2~図4は、制振装置10の具体的な構成を示す正面図である。図2は、支承部材13として、円柱形の積層ゴム支承13aを用いた実施形態である。積層ゴム支承13aは、複数の鋼板とゴム層とを積層したもので、水平方向にせん断変形して付加質量12の水平方向の変位を許容する。 2 to 4 are front views showing a specific configuration of the vibration damping device 10. FIG. 2 shows an embodiment in which a cylindrical laminated rubber bearing 13a is used as the bearing member 13. The laminated rubber bearing 13a is formed by laminating a plurality of steel plates and rubber layers, and is shear-deformed in the horizontal direction to allow a horizontal displacement of the additional mass 12.

支承部材13を設置するために、建物11の頂部に矩形のフレーム15が設置されている。このフレーム15上の複数箇所(四隅部)に支承部材13が設置されている(図3、図4の実施形態も同様)。 A rectangular frame 15 is installed at the top of the building 11 to install the bearing member 13. Support members 13 are installed at a plurality of locations (four corners) on the frame 15 (the same applies to the embodiments of FIGS. 3 and 4).

この実施形態では各箇所の支承部材13は、積層ゴム支承13aを2つ鉛直方向に直列に配置したものからなっている。フレーム15と付加質量12との間に中間フレーム16が配置され、この中間フレーム16とフレーム15との間に下段の積層ゴム支承13aが、また中間フレーム16と付加質量12との間に上段の積層ゴム支承13aがそれぞれ配置され、それぞれ上下フランジを介して固定されている。 In this embodiment, the support members 13 at each location are formed by arranging two laminated rubber support 13a in series in the vertical direction. An intermediate frame 16 is arranged between the frame 15 and the additional mass 12, a lower laminated rubber bearing 13a is arranged between the intermediate frame 16 and the frame 15, and an upper layer is provided between the intermediate frame 16 and the additional mass 12. Laminated rubber bearings 13a are arranged and fixed via upper and lower flanges, respectively.

減衰部材14は、実施形態ではオイルダンパーからなり、積層ゴム支承13aと同様に上下2段に配置されている。中間フレーム16とフレーム15との間に下段のオイルダンパー14が、また中間フレーム16と付加質量12との間に上段のオイルダンパー14がそれぞれブラケット17を介して取り付けられている。 In the embodiment, the damping member 14 is composed of an oil damper, and is arranged in two upper and lower stages like the laminated rubber bearing 13a. A lower oil damper 14 is attached between the intermediate frame 16 and the frame 15, and an upper oil damper 14 is attached between the intermediate frame 16 and the additional mass 12 via the bracket 17.

地震時には積層ゴム支承13aが水平方向にせん断変形し、付加質量12が制振装置10に設定された固有周期で水平方向に変位して、建物11の揺れを抑制する。また、減衰部材14が作動して地震エネルギーを吸収する。 At the time of an earthquake, the laminated rubber bearing 13a is sheared and deformed in the horizontal direction, and the additional mass 12 is displaced in the horizontal direction at a natural period set in the vibration damping device 10 to suppress the shaking of the building 11. In addition, the damping member 14 operates to absorb seismic energy.

図3は、複数の支承部材13として球面式支承13bを用いた実施形態である。図示の球面式支承13bは、鉛直方向に対向する上下1対の凹状球面18、18間に球体19を挟み込んで形成される支承である。球面式支承13bはフレーム15と付加質量12との間に配置され、上下フランジを介して固定されている。球面式支承13bは付加質量12を鉛直方向に支持するとともに、上下の凹状球面18、18が水平方向に相対変位することにより付加質量12の水平方向の変位を許容する。 FIG. 3 shows an embodiment in which spherical bearings 13b are used as the plurality of bearing members 13. The illustrated spherical bearing 13b is a bearing formed by sandwiching a sphere 19 between a pair of upper and lower concave spherical surfaces 18 and 18 facing in the vertical direction. The spherical bearing 13b is arranged between the frame 15 and the additional mass 12, and is fixed via the upper and lower flanges. The spherical support 13b supports the additional mass 12 in the vertical direction, and allows the additional mass 12 to be displaced in the horizontal direction by the upper and lower concave spherical surfaces 18 and 18 being displaced relative to each other in the horizontal direction.

減衰部材14は、図2に示した実施形態と同様にオイルダンパーからなり、付加質量12とフレーム15との間にブラケット17を介して取り付けられている。 The damping member 14 is made of an oil damper as in the embodiment shown in FIG. 2, and is attached between the additional mass 12 and the frame 15 via a bracket 17.

地震時には球面式支承13bの上下の凹状球面18、18間に水平方向の相対変位が生じ、付加質量12が制振装置10に設定された固有周期で水平方向に変位して、建物11の揺れを抑制する。また、減衰部材14が作動して地震エネルギーを吸収する。 At the time of an earthquake, a relative displacement in the horizontal direction occurs between the upper and lower concave spherical surfaces 18 and 18 of the spherical support 13b, and the additional mass 12 is displaced in the horizontal direction at a natural period set in the vibration damping device 10 to cause the building 11 to shake. Suppress. In addition, the damping member 14 operates to absorb seismic energy.

図4は、複数の支承部材13として、鉛直方向に直列に配置された積層ゴム支承13aと球面式支承13bとを用いた実施形態である。積層ゴム支承13a及び球面式支承13bは、それぞれ図2及び図3の実施形態で示したものと同様であり、これら支承13a、13bはフランジを介して互いに固定されている。 FIG. 4 shows an embodiment in which laminated rubber bearings 13a and spherical bearings 13b arranged in series in the vertical direction are used as the plurality of bearing members 13. The laminated rubber bearings 13a and the spherical bearings 13b are the same as those shown in the embodiments of FIGS. 2 and 3, respectively, and these bearings 13a and 13b are fixed to each other via flanges.

減衰部材14は、図2及び図3に示した実施形態と同様にオイルダンパーからなり、付加質量12とフレーム15との間にブラケット17を介して取り付けられている。 The damping member 14 is composed of an oil damper as in the embodiment shown in FIGS. 2 and 3, and is attached between the additional mass 12 and the frame 15 via a bracket 17.

この実施形態の場合、地震時には、積層ゴム支承13aが作動した後、球面式支承13作動する。すなわち、積層ゴム支承13aと球面式支承13bとで構成された支承部材13は図8に実線で示した履歴ループを描くように作動し、付加質量12が制振装置10に設定された固有周期で水平方向に変位して、建物11の揺れを抑制する。また、減衰部材14が作動して地震エネルギーを吸収する。 In the case of this embodiment, in the event of an earthquake, the laminated rubber bearing 13a is activated, and then the spherical bearing 13 is activated. That is, the support member 13 composed of the laminated rubber bearing 13a and the spherical bearing 13b operates so as to draw a history loop shown by a solid line in FIG. 8, and the additional mass 12 is set in the vibration damping device 10 for a natural period. Displaces in the horizontal direction with, and suppresses the shaking of the building 11. In addition, the damping member 14 operates to absorb seismic energy.

球面式支承13bとしては、図3及び図4に示した例に限らず、凹状球面18、18間にすべり材を挟み込んだものを用いることもできる。また、球体又はすべり材を挟み込む上下1対の面のうち、一方のみが凹状球面となっているものを用いることもできる。 The spherical bearing 13b is not limited to the examples shown in FIGS. 3 and 4, and a sliding member having a sliding material sandwiched between the concave spherical surfaces 18 and 18 can also be used. It is also possible to use a pair of upper and lower surfaces that sandwich the sphere or the sliding material, and only one of them has a concave spherical surface.

10:付加質量型制振装置
11:建物
12:付加質量
13:支承部材
13a:積層ゴム支承
13b:球面式支承
14:減衰部材
15:フレーム
16:中間フレーム
17:ブラケット
18:凹状球面
19:球体
10: Additional mass type vibration damping device 11: Building 12: Additional mass 13: Support member 13a: Laminated rubber bearing 13b: Spherical bearing 14: Damping member 15: Frame 16: Intermediate frame 17: Bracket 18: Concave spherical surface 19: Sphere

Claims (5)

建物の頂部に設置される付加質量型制振装置であって、
前記建物の質量の5~50%の質量を有する付加質量と、前記建物の頂部に設置され、前記付加質量を鉛直方向に支持するとともに水平方向の変位を許容する支承部材と、前記建物の地震エネルギーを吸収し、前記付加質量の変位を制限する減衰部材とを備え、
固有周期が前記建物の固有周期の2.0~10.0倍に設定されていることを特徴とする付加質量型制振装置。
An additional mass type vibration damping device installed at the top of the building.
An additional mass having a mass of 5 to 50% of the mass of the building, a support member installed at the top of the building that supports the additional mass in the vertical direction and allows horizontal displacement, and an earthquake in the building. It is equipped with a damping member that absorbs energy and limits the displacement of the added mass.
An additional mass type vibration damping device characterized in that the natural period is set to 2.0 to 10.0 times the natural period of the building.
前記支承部材は、積層ゴム支承からなることを特徴とする請求項1記載の付加質量型制振装置 The additional mass type vibration damping device according to claim 1, wherein the bearing member is made of a laminated rubber bearing. 前記積層ゴム支承は鉛直方向に直列に複数配置されていることを特徴とする請求項2記載の付加質量型制振装置。 The additional mass type vibration damping device according to claim 2, wherein a plurality of laminated rubber bearings are arranged in series in the vertical direction. 前記支承部材は、鉛直方向に互いに対向する1対の面間にすべり材又は球体を挟み込んで形成され、前記1対の面の少なくとも一方が凹状球面となっている球面式支承からなることを特徴とする請求項1記載の付加質量型制振装置。 The bearing member is formed by sandwiching a sliding material or a sphere between a pair of faces facing each other in the vertical direction, and is characterized by being a spherical bearing in which at least one of the pair of faces is a concave spherical surface. The additional mass type vibration damping device according to claim 1. 前記支承部材は、鉛直方向に互いに対向する1対の面間にすべり材又は球体を挟み込んで形成され、前記1対の面の少なくとも一方が凹状球面となっている球面式支承と、積層ゴム支承とを鉛直方向に直列に配置してなる請求項1記載の付加質量型制振装置。 The bearing member is formed by sandwiching a sliding material or a sphere between a pair of faces facing each other in the vertical direction, and has a spherical bearing in which at least one of the pair of faces is a concave spherical surface, and a laminated rubber bearing. The additional mass type vibration damping device according to claim 1, wherein the and are arranged in series in the vertical direction.
JP2021002149A 2021-01-08 2021-01-08 Additional mass type vibration control device Pending JP2022107290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021002149A JP2022107290A (en) 2021-01-08 2021-01-08 Additional mass type vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021002149A JP2022107290A (en) 2021-01-08 2021-01-08 Additional mass type vibration control device

Publications (1)

Publication Number Publication Date
JP2022107290A true JP2022107290A (en) 2022-07-21

Family

ID=82457462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021002149A Pending JP2022107290A (en) 2021-01-08 2021-01-08 Additional mass type vibration control device

Country Status (1)

Country Link
JP (1) JP2022107290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106352A1 (en) * 2022-11-14 2024-05-23 国立研究開発法人量子科学技術研究開発機構 Vibration damping device, and vibration damping method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106352A1 (en) * 2022-11-14 2024-05-23 国立研究開発法人量子科学技術研究開発機構 Vibration damping device, and vibration damping method

Similar Documents

Publication Publication Date Title
Monir et al. A modified friction damper for diagonal bracing of structures
Ebrahimpour et al. A review of vibration serviceability criteria for floor structures
JP5570605B2 (en) Method and structure for dampening motion in a building
US11199017B2 (en) Dynamic vibration damping system for high-rise buildings
Mottier et al. Seismic retrofit of low‐rise steel buildings in Canada using rocking steel braced frames
JP5872091B1 (en) Deformation limiting device for seismic isolation structures
JP6472598B2 (en) Vibration control device
JP2022107290A (en) Additional mass type vibration control device
Villaverde Aseismic roof isolation system: Feasibility study with 13-story building
JP2009007916A (en) Vibration damping structure and its specification setting method
JP5901348B2 (en) Seismic isolation structure
JP2012007307A (en) Structure of truss beam
Park et al. A seismic mass damper system using scrap tire pads: Loading tests on mechanical properties and numerical assessment of the response control effects
JPH08158697A (en) Base isolation method and base isolation device applied to same method
JP2010070908A (en) Seismic control structure
Rogers et al. Impact of diaphragm behavior on the seismic design of low-rise steel buildings
Bagherinejad et al. Cost Viability of a Base Isolation System for the Seismic Protection of mid-rise reinforced concrete moment frames
JP2009155801A (en) Vibration control structure
JP5327647B2 (en) Damping structure
JP3463085B2 (en) Seismic building
Siepe et al. Retrofitting of a hospital using a tuned mass control system
JPH10266620A (en) Vibration damping frame structure and construction method therefor
Palve et al. Application of tuned mass damper for vibration control of RC frame structure
JP3218529B2 (en) Damping structure
TWI435019B (en) Piping support structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240626