JP2022098353A - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP2022098353A
JP2022098353A JP2020211851A JP2020211851A JP2022098353A JP 2022098353 A JP2022098353 A JP 2022098353A JP 2020211851 A JP2020211851 A JP 2020211851A JP 2020211851 A JP2020211851 A JP 2020211851A JP 2022098353 A JP2022098353 A JP 2022098353A
Authority
JP
Japan
Prior art keywords
gas
space
shower head
plasma processing
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020211851A
Other languages
English (en)
Inventor
太郎 池田
Taro Ikeda
聡 川上
Satoshi Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2020211851A priority Critical patent/JP2022098353A/ja
Priority to PCT/JP2021/044877 priority patent/WO2022138130A1/ja
Priority to US18/256,683 priority patent/US20240038500A1/en
Priority to KR1020237023870A priority patent/KR20230118663A/ko
Publication of JP2022098353A publication Critical patent/JP2022098353A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32247Resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】プラズマプロセスの均一性の向上を図る。【解決手段】基板支持部の上方のシャワーヘッドと、チャンバの上方で鉛直方向に延在してシャワーヘッドの上部中央に接続されたガス供給管と、ガス供給管が貫通し、VHF波以上の電磁波を導入し、ガスを活性化させる導入部と、ガス供給管に接続された電磁波の供給路とを備え、導入部はシャワーヘッドの上流側に配置され、第1ガスを供給し、電磁波により第1ガスを解離させる第1解離空間を有し、前記チャンバは、基板支持部とシャワーヘッドとの間のプロセス空間であり第1解離空間にて解離した第1ガスとガス供給管からの第2ガスとをシャワーヘッドの下流側で合流させ、電磁波よりも周波数が低い高周波により第1ガス及び第2ガスを解離させる第2解離空間を有し、第1解離空間の略円筒形状の直径は、電磁波の真空中の実効波長をλgとしたときにλg/6よりも小さいプラズマ処理装置。【選択図】図1

Description

本開示は、プラズマ処理装置に関する。
特許文献1は、互いに平行な高周波印加電極とプラズマ分離用の中間メッシュプレート電極とで挟まれたプラズマ発生室と、プラズマ発生室外に位置し、中間メッシュプレート電極と平行に基板を設置する対向電極と、を有するプラズマCVD装置を提案する。特許文献1では、中間メッシュプレート電極が対向電極側および高周波印加電極側の双方向に移動可能であり、かつ対向電極に高周波が印加可能である。
特許文献2は、VHF波を導入し、VHF波によりガスからプラズマを生成するプラズマ処理装置を提案する。特許文献2では、上部電極及び下部電極は、それぞれ互いに対向する面に凹部を備え、上部電極及び下部電極それぞれの凹部内には、上部誘電体及び下部誘電体がそれぞれ設けられ、上部誘電体と下部誘電体との間の空間の横方向端部には、VHF波の導入部が設けられている。
特許文献3は、マイクロ波を導入し、マイクロ波によりガスからプラズマを生成するプラズマ処理装置を提案する。
特開平11-162957号公報 特開2020-92033号公報 特開平11-204295号公報
本開示は、プラズマプロセスの均一性の向上を図ることができるプラズマ処理装置を提供する。
本開示の一の態様によれば、チャンバと、前記チャンバの内部に設けられ、処理対象の基板が設置される基板支持部と、金属から形成され、前記チャンバの内部の空間に向けて開口した複数のガス孔を提供し、前記基板支持部の上方に設けられたシャワーヘッドと、金属から形成され、前記チャンバの上方で鉛直方向に延在して、前記シャワーヘッドの上部中央に接続されたガス供給管と、前記チャンバの上方にて前記ガス供給管が貫通し、VHF波以上の電磁波を導入し、ガスを活性化させるように構成された導入部と、前記ガス供給管に接続された電磁波の供給路と、を備え、前記導入部は、前記シャワーヘッドの上流側に配置され、第1ガスを供給し、前記電磁波により前記第1ガスを解離させる第1解離空間を有し、前記チャンバは、前記基板支持部と前記シャワーヘッドとの間のプロセス空間であって、前記第1解離空間にて解離した前記第1ガスと前記ガス供給管からの第2ガスとを前記シャワーヘッドの下流側で合流させ、前記電磁波よりも周波数が低い高周波により前記第1ガス及び前記第2ガスを解離させる第2解離空間を有し、前記第1解離空間の断面視形状は略円筒形状であり、前記第1解離空間の前記略円筒形状の直径は、電磁波の真空中の実効波長をλgとしたときにλg/6よりも小さい、プラズマ処理装置が提供される。
一の側面によれば、プラズマプロセスの均一性の向上を図ることができる。
第1実施形態に係るプラズマ処理装置の一例を示す断面模式図である。 図1のII-II線に沿って切断した断面図である。 第1実施形態に係る導入部の断面を拡大した図である。 第1実施形態に係るプラズマ処理装置の変形例1を示す断面斜視図である。 第1実施形態に係るプラズマ処理装置の変形例2を示す断面斜視図である。 第2実施形態に係るプラズマ処理装置の一例を示す断面模式図である。 図6のIII-III線に沿って切断した断面図である。 第2実施形態に係る導入部の断面を拡大した図である。 第2実施形態に係るプラズマ処理装置の変形例1を示す断面斜視図である。 第2実施形態に係るプラズマ処理装置の変形例2を示す断面斜視図である。
以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
一つの例示的実施形態において、プラズマ処理装置が提供される。プラズマ処理装置は、チャンバ、基板支持部、シャワーヘッド、ガス供給管、導入部、及び電磁波の供給路を備える。基板支持部は、チャンバの内部に設けられ、処理対象の基板が設置される。シャワーヘッドは、金属から形成されている。シャワーヘッドは、チャンバの内部の空間に向けて開口した複数のガス孔を提供し、基板支持部の上方に設けられている。ガス供給管は、金属から形成されている。ガス供給管は、チャンバの上方で鉛直方向に延在して、シャワーヘッドの上部中央に接続されている。
導入部は、チャンバの上蓋の上面に設けられ、ガス供給管が貫通する。導入部は、VHF波以上の周波数の電磁波を導入し、ガスを活性化させるように構成する。電磁波の供給路は、ガス供給管に接続されている。ガス供給管は、環状の鍔部を含む。電磁波の供給路は、鍔部に接続された導体を含む。
導入部は、第1解離空間を有する。第1解離空間は、シャワーヘッドの上流側に配置され、第1ガスを供給し、電磁波により第1ガスを解離させる。チャンバは、第2解離空間を有する。第2解離空間はチャンバ内のプロセス空間である。第2解離空間は、基板支持部とシャワーヘッドとの間のプロセス空間である。第1解離空間にて解離した第1ガスと、ガス供給管からの第2ガスとはシャワーヘッドの下面から第2解離空間に導入され、シャワーヘッドの下流側の第2解離空間にて合流する。第2解離空間においてVHF波以上の電磁波よりも周波数が低い高周波により第1ガス及び第2ガスを解離させる。
第1解離空間の断面視形状は略円筒形状であり、第1解離空間の略円筒形状の直径は、VHF波以上の電磁波の真空空間における実効波長をλgとしたときにλg/6よりも小さい寸法である。
以下、図面を参照して種々の例示的実施形態について詳細に説明する。プラズマ処理装置の性能を高めるための一手段として周波数を高くすることが考えられ、この場合、一般的な高周波(例:13.56MHz)よりも周波数の高いVHF波、UHF波の使用が考えられる。VHF波、UHF波は周波数が高いため、一般的な高周波では解離し難いガスの解離を高解離に制御でき、プラズマ処理装置1の性能を高めることができる。しかし、VHF波、UHF波をチャンバ内に印加すると、これらの電磁波の波長は一般的な高周波よりも短くなるためにプラズマの均一性が悪くなり、成膜、エッチング等のプロセスを均一にできない場合がある。
以下に説明するプラズマ処理装置では、VHF波、UHF波の電磁波でガスを解離させるときにプラズマの均一性が悪くならないように、チャンバ内のプロセス空間(第2解離空間)とは別にプラズマ生成部の一つとして第1解離空間をチャンバ上方に別途独立して設ける。これにより、VHF波以上の電磁波を用いたプラズマプロセスの均一性を図ることが可能なプラズマ処理装置を提供する。
<第1実施形態>
[プラズマ処理装置]
最初に、第1実施形態に係るプラズマ処理装置1について、図1~図3を参照して説明する。図1は、第1実施形態に係るプラズマ処理装置1の一例を示す断面模式図である。図2は、図1のII-II線に沿って切断した断面図である。図3は、第1実施形態に係る導入部の断面を拡大した図である。
図1に示すプラズマ処理装置1は、電磁波によりガスからプラズマを生成するように構成されている。電磁波の周波数は、VHF波以上であり、VHF波及びUHF波を含む。VHF波の帯域は30MHz~300MHzであり、UHF波の帯域は300MHz~3GHzである。電磁波は、より好ましくは、150MHz以上のVHF波又はUHF波である。
プラズマ処理装置1は、チャンバ10を備えている。チャンバ10は、内部空間を画成している。基板Wはチャンバ10の内部空間で処理される。チャンバ10は、その中心軸線として軸線AXを有している。軸線AXは、鉛直方向に延びる軸線である。
一実施形態においては、チャンバ10は、チャンバ本体12を含んでいてもよい。チャンバ本体12は、略円筒形状を有しており、その上部において開口されている。チャンバ本体12は、チャンバ10の側壁及び底部を提供している。チャンバ本体12は、アルミニウムのような金属から形成されている。チャンバ本体12は、接地されている。
チャンバ本体12の側壁は、通路12pを提供している。基板Wは、チャンバ10の内部と外部との間で搬送されるときに、通路12pを通過する。通路12pは、ゲートバルブ12vによって開閉可能である。ゲートバルブ12vは、チャンバ本体12の側壁に沿って設けられている。
チャンバ10は、上壁14を更に含んでもよい。上壁14は、アルミニウムのような金属から形成されている。上壁14は、チャンバ本体12の上部の開口を閉じている。上壁14は、チャンバ本体12と共に接地されている。
チャンバ10の底部は、排気口を提供している。排気口は、排気装置16に接続されている。排気装置16は、自動圧力制御弁のような圧力制御器及びターボ分子ポンプのような真空ポンプを含んでいる。
プラズマ処理装置1は、基板支持部18を更に備える。基板支持部18は、チャンバ10内に設けられている。基板支持部18は、その上に載置される基板Wを支持するように構成されている。基板Wは、略水平な状態で基板支持部18上に載置される。基板支持部18は、支持部材19によって支持されていてもよい。支持部材19は、チャンバ10の底部から上方に延びている。基板支持部18及び支持部材19は、窒化アルミニウム等の誘電体から形成され得る。
プラズマ処理装置1は、シャワーヘッド20を更に備える。シャワーヘッド20は、アルミニウムのような金属から形成されている。シャワーヘッド20は、略円盤形状を有しており、中空構造を有する。シャワーヘッド20は、その中心軸線として軸線AXを共有している。シャワーヘッド20は、基板支持部18の上方、且つ、上壁14の下部に設けられている。シャワーヘッド20は、チャンバ10の内部空間を画成する天部を構成し、上部が上壁14に嵌め込まれている。
シャワーヘッド20は、複数の第1ガス孔20h及び複数の第2ガス孔20iを提供している。複数の第1ガス孔20h及び複数の第2ガス孔20iは、シャワーヘッド20の下面に開口し、チャンバ10内のシャワーヘッド20と基板支持部18との間のプロセス空間に向けてガスが導入される。シャワーヘッド20と基板支持部18との間のプロセス空間を、「第2解離空間30e」ともいう。
シャワーヘッド20は、その中に第1拡散室30c及び第2拡散室30dを更に提供している。シャワーヘッド20は、シャワーヘッド20の上段を構成し、内部に第1拡散室30cを有する上段部20aと、シャワーヘッド20の下段を構成し、内部に第2拡散室30dを有する下段部20bとを有する。これにより、シャワーヘッド20は、第1ガスを上部の第1拡散室30cから複数の第1ガス孔20hに通してプロセス空間である第2解離空間30eに導入する第1ガス経路を形成する。また、シャワーヘッド20は、第2ガスを第2拡散室30dから複数の第2ガス孔20iに通して第2解離空間30eに導入する第2ガス経路を形成する。そして、第1ガス経路と第2ガス経路とを独立した経路とすることで、第2解離空間30eにガスを導入する前の経路では第1ガスと第2ガスとを合流させないように構成する。
プラズマ処理装置1は、導入部2を更に備える。導入部2は、アルミニウムのような金属から形成された略円筒形状の筐体46を有し、中空構造になっている。筐体46は、その中心軸線として軸線AXを共有している。導入部2の下端は、チャンバ10の上方の上壁14の上に固定されている。
導入部2の上端は、導入部2の外径と同一の直径を有する円盤状のカバー導体44により閉塞されている。カバー導体44は、アルミニウムのような金属から形成されている。導入部2の下方側の側壁には、ガス流路29が形成されている。ガス流路29は、ガスラインを介して第1ガス源28に接続されている。導入部2の構造及び機能の詳細については後述する。
ガス流路29は、導入部2の側壁に円周方向に均等にガス孔を有し、第1ガス源28からの第1ガスを導入部2の中空空間からシャワーヘッド20に供給する。第1ガスは、還元ガスであり、Nガス、Hガス、NHガス等であってもよい。第1ガスは、第1拡散室30cを介して、複数の第1ガス孔20hからチャンバ10内に導入される。複数の第1ガス孔20hは、第1拡散室30cから下方に延び、第2拡散室30dを貫通するガス管を介して第1拡散室30cと第2解離空間30eとを接続する。複数の第1ガス孔20hは第2拡散室30dと連通せず、第2拡散室30dに第1ガスを供給することなく、第2解離空間30eに第1ガスを供給する。よって、第1ガスは、第2拡散室30dに供給される第2ガスと第2拡散室30dにて合流することはない。
プラズマ処理装置1は、ガス供給管22を更に備える。ガス供給管22は、略円筒形状の管である。ガス供給管22は、アルミニウムのような金属から形成されている。ガス供給管22は、シャワーヘッド20の上方において、鉛直方向に延在している。ガス供給管22は、その中心軸線として軸線AXを共有している。ガス供給管22は、カバー導体44及び導入部2を貫通している。
ガス供給管22の下端は、シャワーヘッド20の上部中央に接続している。シャワーヘッド20の上部中央は、ガスの入口を提供している。入口は、第2拡散室30dに接続している。ガス供給管22は、第2ガスをシャワーヘッド20に供給する。複数の第2ガス孔20iは、第1拡散室30cに接続されておらず、第2拡散室30dに接続され、第2拡散室30dから下方に延び、第2解離空間30eにガスを供給する。ガス供給管22からの第2ガスは、シャワーヘッド20の入口及び第2拡散室30dを介して、複数の第2ガス孔20iからチャンバ10内に導入される。
一実施形態において、プラズマ処理装置1は、第2ガス源24、第3のガス源26、及びリモートプラズマ源27を更に備えていてもよい。ガス供給管22は、導入部2(共振器31)を貫通し、第2ガスを供給する配管又はリモートプラズマ用の配管として機能する。
第2ガス源24は、ガス供給管22に接続されている。第2ガス源24は、成膜ガスのガス源であり得る。成膜ガスは、第2ガスの一例であり、過度に解離させたくないガスである。成膜ガスとしては、シリコン含有ガスを含んでいてもよい。シリコン含有ガスは、例えばシランガス(SiH)を含む。成膜ガスは、他のガスを更に含んでいてもよい。例えば、成膜ガスは、NHガス、Nガス、Arのような希ガス等を更に含んでいてもよい。第2ガス源24からのガス(例えば成膜ガス)は、ガス供給管22を介してシャワーヘッド20からチャンバ10内の第2解離空間30eに導入される。
第3のガス源26は、リモートプラズマ源27を介して、ガス供給管22に接続されている。第3のガス源26は、クリーニングガスのガス源であり得る。クリーニングガスは、第3ガスの一例である。クリーニングガスは、ハロゲン含有ガスを含んでいてもよい。ハロゲン含有ガスは、例えばNF及び/又はClを含む。クリーニングガスは、他のガスを更に含んでいてもよい。クリーニングガスは、Arのような希ガスを更に含んでいてもよい。
リモートプラズマ源27は、チャンバ10から離れた場所で第3のガス源26からのガスを励起させてプラズマを生成する。一実施形態では、リモートプラズマ源27は、クリーニングガスからプラズマを生成する。リモートプラズマ源27は、如何なるタイプのプラズマ源であってもよい。リモートプラズマ源27としては、容量結合型のプラズマ源、誘導結合型のプラズマ源、又はマイクロ波によってプラズマを生成する型のプラズマ源が例示される。リモートプラズマ源27において生成されたプラズマ中のラジカルは、ガス供給管22を介してシャワーヘッド20から第2解離空間30eに導入される。ラジカルの失活を抑制するために、ガス供給管22は、比較的太い直径を有し得る。ガス供給管22の外径(直径)は、例えば40mm以上である。一例において、ガス供給管22の外径(直径)は80mmである。なお、ガス供給管22の外径(直径)は、鍔部22f以外の部分22aでのガス供給管22の外径である。このようにしてクリーニングガスは、予めリモートプラズマ源27で解離した状態でガス供給管22よりチャンバ10内の第2解離空間30eに供給される。このため、クリーニングガスは、チャンバ10内の第2解離空間30eで解離させることはない。
シャワーヘッド20の上段部20a及び下段部20bの外周は、酸化アルミニウムのような誘電体の部材33で覆われている。基板支持部18の外周は、酸化アルミニウムのような誘電体の部材34で覆われている。シャワーヘッド20に高周波を印可しない場合、誘電体の部材33はなくてもよい。ただし、基板支持部18の対向電極として機能させるシャワーヘッド20の領域を確定するために誘電体の部材33は配置した方がよい。また、電極のアノード及びカソード比をなるべく均等にするためにも誘電体の部材33は配置した方がよい。
基板支持部18には、整合器61を介して高周波電源60が接続されている。整合器61は、インピーダンス整合回路を有する。インピーダンス整合回路は、高周波電源60の負荷のインピーダンスを、高周波電源60の出力インピーダンスに整合させるように構成される。高周波電源60から供給される高周波の周波数は、VHF電源50から供給されるVHF波の周波数よりも低く、60MHz以下の周波数である。高周波の周波数の一例としては、酸化膜と窒化膜の多層膜成膜プロセス等のイオンエネルギーの影響を然程考慮しなくてもよいプロセスでは13.56MHzの周波数であってもよい。
[導入部]
次に、図1と共に、図2を参照して導入部2の構成について説明する。図2は、図1のII-II線に沿って切断した断面図である。ガス供給管22は、その長手方向の一部において、環状の鍔部22fを含んでいる。鍔部22fは、ガス供給管22の他の部分22aから径方向に突き出している。
プラズマ処理装置1は、電磁波の供給路36を更に備える。供給路36は、導体36cを含んでいる。供給路36の導体36cは、ガス供給管22に接続されている。具体的に、導体36cの一端は、鍔部22fに接続されている。
導体36cの他端は、整合器40を介してVHF電源50に接続されている。VHF電源50は、電磁波の発生器である。本明細書では、VHF電源50から出力される電磁波としてVHF波を例に挙げて説明するが、UHF波であってもよい。
整合器40は、インピーダンス整合回路を有する。インピーダンス整合回路は、VHF電源50の負荷のインピーダンスを、VHF電源50の出力インピーダンスに整合させるように構成される。インピーダンス整合回路は、可変インピーダンスを有する。インピーダンス整合回路は、例えばπ型の回路で有り得る。
電磁波の供給路36から導入部2に導入されたVHF波は、筐体46の内部の、鍔部22fの上部の共振器31にて共振し、鍔部22fの下方の第1解離空間30bに高いエネルギー効率で供給される。共振器31の内部は、誘電体31aで充填されている。誘電体31aは、VHF波の波長を短縮するために設けられている。
誘電体31aは、例えばポリテトラフルオロエチレン(PTFE)から形成されている。誘電体31aの下端の鉛直方向における位置は、鍔部22fの下面22bの鉛直方向における位置と同一であってもよい。一実施形態においては、図1に示すように、ガス供給管22とカバー導体44との間の空間のうち鍔部22fの下面22bとカバー導体44との間の領域が、誘電体31aで埋められていてもよい。加えて、共振器31の直下の空間30aが誘電体31aで埋められていてもよい。
共振器31内は大気圧である。鍔部22fの下方には、共振器31と第1解離空間30bとの間を仕切る誘電体の仕切板32が設けられ、仕切板32と共振器31との間に空間30aを有する。空間30aはなくてもよいし、空間30aの長手方向の長さをより短くしてもよい。これにより、導入部2を小さくすることができる。仕切板32は、環状であり、酸化アルミニウム等の誘電体から形成され得る。仕切板32の下は第1解離空間30bになっている。第1解離空間30bは、仕切板32により仕切られており、真空である。
第1解離空間30bの断面視形状は略円筒形状であり、ここで生成されるプラズマの分布が許容される範囲での凹凸や変形等は許容される。第1解離空間30bは、共振器31の外径とほぼ同一の直径を有する。
図3の矢印に示すように、VHF波は、電磁波の供給路36から共振器31内を伝播し、共振器31内で共振し、鍔部22fの下の仕切板32を透過して第1解離空間30bまで伝播する。共振器31内で共振したVHF波は、高いエネルギー効率で第1解離空間30bに供給され、ガス流路29から供給された第1ガスを解離させる。これにより、第1解離空間30bにおいて第1ガスのプラズマが生成される。VHF波をシャワーヘッド20に直接供給し、シャワーヘッド20内でガスを解離させるとプラズマが不均一になり易い。これに対して、第1解離空間をプラズマ生成空間にして第1解離空間で表面波プラズマを生成し、一般的な高周波よりも高い周波数のVHF波のパワーにより、第1ガスを高解離させる。
これによれば、第1解離空間30bをプラズマ生成空間として機能させ、シャワーヘッド20に供給される前の段階で第1ガスを効率よく十分に解離させた後、解離したHラジカル、Nラジカル等の第1ガスのラジカルをシャワーヘッド20に導入する。
第2解離空間30eは、第1解離空間30bにて解離した第1ガスと、ガス供給管22に通される第2ガスとを合流させ、これらのガスのプラズマを生成する空間である。第2解離空間30eでは、高周波電源60から供給されるVHF波よりも周波数が低い高周波により第1ガス及び第2ガスを解離させる。
導入部2の拡大図を図3に示す。第1解離空間30bの略円筒形状の直径Rは、VHF波の真空中の実効波長をλgとしたときにλg/6よりも小さい。第1解離空間30bは、できるだけ小さい略円筒形状の空間にすることが好ましい。よって、第1解離空間30bの略円筒形状の直径Rは、VHF波の真空中の実効波長をλgとしたときにλg/8よりも小さいことが更に好ましい。
通常の真空空間では、VHF波の節ができないためには、略円筒形状の直径Rをλg/2以下にする必要がある。これに対して、VHF波はプラズマ中では通常の真空中の実効波長λgの1/3程度に短縮される。第1解離空間30bはプラズマ生成空間であるため、第1解離空間30bにおいて径方向にVHF波の節ができないためには、略円筒形状の直径Rを(λg/2)の1/3、つまり、λg/6よりも小さくする。これにより、腹又は節の影響を無くした上でVHF波のエネルギーを効率的に伝達できる。
第1解離空間30bを伝播するVHF波の電界強度が高いとクーロン力が働き、ガスがクーロン力に拘束され、ガスの拡散が阻害される。よって、第1解離空間30bに到達したVHF波の電界が、ガスの拡散に影響を及ぼさないために、第1解離空間30bの下端30b1(図3の仮想線)から上端(仕切板32の下面)までの距離Gは、10mm程度であることが好ましい。ただし、10mmは一例であり、供給されるVHF波、UHF波の周波数によって距離Gの適正値は異なる。これにより、シャワーヘッド20へのガスの拡散が阻害されず、第1解離空間30bからシャワーヘッド20に第1ガスのラジカルを拡散させていくことができる。
第2解離空間30eであるシャワーヘッド20と基板支持部18とのギャップは、3mm~30mmであることが好ましい。
第1ガスのラジカルの生成効率を上げるためには第1ガスの解離を促進させるために高周波及び電磁波の周波数を高くすることが考えられる。そこで、プラズマ処理装置1はVHF波を使用し、一般的な高周波よりも高い周波数の電磁波により第1ガスの解離を促進させる。しかし、周波数を高くすると波長が短くなるため、チャンバ10のサイズとの関係からプラズマ生成空間である第1解離空間30bにVHF波の腹又は節が存在することになる。そうすると、VHF波の腹又は節により第1解離空間30bにおいてプラズマ分布に濃淡が出てしまう。
一方、本実施形態に係るプラズマ処理装置1では、第1段階のプラズマ生成空間である第1解離空間30bの直径Rをλg/6よりも小さくする。これにより、第1解離空間30bにおいてVHF波の腹及び節ができない。これにより、第1解離空間30bにおいて生成された第1ガスのプラズマ分布に濃淡ができない。一例として、860MHzの電磁波の場合、電磁波の真空空間における実効波長λgが360mmであるので、λg/6=60mm以下であることが第1解離空間30bの直径Rの条件になる。
係る構成により、VHF波の帯域以上の電磁波を供給し、共振器31を用いて効率よく第1解離空間30b内で第1ガスを解離させる。このようにして第1実施形態に係るプラズマ処理装置1によれば、シャワーヘッド20に供給する前の導入部2の第1解離空間30bにおいて、事前にプラズマを着火させ、第1ガスのプラズマを生成する。このとき、一般的な高周波よりも周波数の高いVHF波の電磁波により第1ガスを高解離させ、第1ガスのラジカルを効率よく生成する。
図1に戻り、第1解離空間30bは、シャワーヘッド20の第1拡散室30cに連通する。第1解離空間30bにて生成された第1ガスのラジカルは、シャワーヘッド20の第1ガス孔20hを介してプロセス空間である第2解離空間30eに供給される。この第1ガス経路により、第1ガスのラジカルを、シャワーヘッド20を介して基板Wの面内に均一に供給することができる。
ガス供給管22から供給された第2ガスは、第2拡散室30dを通り、シャワーヘッド20の第2ガス孔20iを介して第2解離空間30eに供給される。この第2ガス経路により、第2ガスを、シャワーヘッド20を介して基板Wの面内に均一に供給することができる。第1ガス経路と第2ガス経路とは別のガス経路であるため、特にALD(atomic layer deposition)を実行する場合、ガス経路内で処理ガスと還元ガスとが合流せず、パーティクルが出にくい構造になっている。
例えば第2ガスとしてSiHガスを使用するプロセスでは、低解離状態であるSiHの状態を第2解離空間30eで生成し、基板W上に供給することで、成膜に寄与させることが好ましく、高解離のSiH等の状態で基板W上に供給されるのは好ましくない。よって、第2解離空間30eでは、周波数がVHF波よりも低い高周波のパワーにより第2ガスを解離させる。
一方、第1ガスである還元ガスはできるだけ高解離の状態で成膜に寄与させることが好ましい。これに対して、第1ガスはシャワーヘッド20に供給される前に、第1解離空間30bにて一般的な高周波よりも周波数の高いVHF波によって十分に解離され、ラジカルとなった状態で第2解離空間30eに供給される。特に、第1解離空間30bはドーナツ状のプラズマ生成空間であり、プラズマの均一性を担保し易い。
このようにプラズマ生成の第1段階では、第1解離空間30bにおいてVHF波を用いて第1ガスを十分に解離させ、生成させるラジカルの量を増やす。プラズマ生成の第2段階では、すでに解離させた第1ガスのラジカルと第2ガスを第2解離空間30eに供給し、VHF波よりも低い周波数の高周波を用いて第2ガスが高解離することを抑制しつつ、第1ガス及び第2ガスのプラズマにより成膜を実行する。
第1段階で解離した第1ガスの単原子のラジカル(例えばNラジカル)は、第1ガス経路に通される間に再結合して分子ガス(例えばNガス)又は分子ラジカル(例えばNラジカル)になるものがある。
しかしながら、第2解離空間30eに供給される第1ガスの状態は、第1段階で活性化及び/又は解離させているため、再結合励起状態となっている。つまり、第1解離空間30bでは、VHF波よりも周波数の低い高周波では高解離しない第1ガスであっても、第2解離空間30eに供給されるときの分子ガス又はラジカルの状態は、VHF波よりも周波数の低い高周波で再度解離可能な状態になっている。例えば、第1ガスがN分子の場合、一度解離したN分子は、基底状態よりもエネルギー準位が高い、励起している状態、すなわち再結合励起状態になっている確率が高く、再解離し易い状態である。よって、第1ガスが再結合励起状態となっているため、一般的な高周波である13.56MHz、27MHz等の高周波によっても、VHF波によって第1ガスのプラズマを生成した場合と同等の第1ガスのラジカルを生成することができる。
ただし、第1段階で解離させた第1ガスのラジカルを、再結合せずにそのまま効率的に基板W上に到達させることがより好ましい。これについては、第1ガスを周波数の高いVHF波で解離させることと、第1解離空間30bとシャワーヘッド20との間の距離S(つまり、第1拡散室30cの高さ)を小さくする等してシャワーヘッド20を薄くすること、の両方の条件を満足することで達成できる。これにより、基板Wに到達するラジカルの量を増やすことができる。
Hラジカル、Nラジカル等のラジカルは寿命が短い。第1解離空間30bで生成されたラジカルが第2解離空間30eに到達するまでの距離が長いほど、単原子のラジカル同士が衝突する確率が高くなり、H、N等の分子に戻る確率が上がる。一方、単原子のラジカル同士が衝突する確率を低下させるために、第1解離空間30bで生成されたプラズマのスキンデプスの5~10倍の位置にシャワーヘッド20の第1拡散室30cの底部が位置するようにギャップSを設ける。
第1解離空間30bで生成されたプラズマのスキンデプスから5~10倍離れている位置では、プラズマの電界が十分に減衰しているので、ガスの拡散及びラジカルの拡散がクーロン力よりも上回り、拡散が十分に行われる。よって、プラズマ処理装置1では、VHF以上の帯域の電磁波を用いても第1解離空間30bであるプラズマ生成空間の電磁波の分布の影響を受けず、ラジカルを第2解離空間30eまで到達させ易い構造になっている。
生成プラズマのスキンデプスは、(1)周波数、(2)電子密度、(3)電子及び中性粒子の衝突周波数により値が変化する。ここで、(3)の電子及び中性粒子の衝突周波数についてはガス種及び電子温度により決定される。例えば、(2)の電子密度が1010(cm-3)、(3)の電子及び中性粒子の衝突周波数が3.6×10(sec-1)において、100MHz、200MHzの周波数の高周波又は電磁波を印加したとき、スキンデプスはそれぞれ5.7mm、4mmとなる。スキンデプスが小さくなると、つまり、電磁波の周波数が高くなるほど表面に電流が集中することになる。
スキンデプスδは、(1)式により算出される。
スキンデプスδ=[2/(ωμσdc)]1/2・・・(1)
ここで、ωは電源周波数、μは真空の透磁率、σdcはプラズマ導電率である。プラズマ導電率は(2)式により算出される。
プラズマ導電率σdc=e/(mν)・・・(2)
ここでeは素電荷、nは電子密度、mは電子の質量、νは電子-中性粒子の衝突周波数である。
以上から、第1解離空間30bの下端(図3の30b1)とシャワーヘッド20内の第1拡散室30cの底部との距離Sは、スキンデプスδの10倍以内であることが好ましく、範囲としては5~10倍がより好ましい。これにより、ガス及びラジカルの拡散をクーロン力により拘束させずに第2解離空間30eに到達する第1ガスのラジカルの量を増やすことができる。
以上により、プラズマ処理装置1は、事前のプラズマ生成空間である第1解離空間30bからスキンデプスの5~10倍離れている位置にシャワーヘッド20が存在する。このため、VHF以上の帯域の電磁波を用いても第1解離空間30bの電磁波分布の影響を受けない構造となっている。
なお、シャワーヘッド20の第1ガス孔20h及び第2ガス孔20iの直径は1mm程度にすることが好ましい。これ以下の直径では、第1ガス孔20h及び第2ガス孔20i内でのラジカル同士の衝突頻度が高くなる。これにより、Nラジカル又はNラジカルが、第2解離空間30eに到達する前に第1ガスのN分子に戻る確率を低減させることができる。以上により、プラズマプロセスの均一性の向上を図ることができる。
以上説明したプラズマ処理装置1では、シャワーヘッド20の上流側にプラズマ生成空間としての第1解離空間30bを設け、第1解離空間30bにおいてNガス等の第1ガスを解離させ、Nの単原子、Nラジカル等を生成する。生成されたラジカル等は、シャワーヘッド20を通って第2解離空間30eに到達するときに一部はラジカルから分子に戻り、一部は単原子ラジカルから分子ラジカルの状態になる。しかしながら、第2解離空間30eに到達した第1ガスは再結合励起状態にあるため、VHF波よりも周波数の低い高周波のエネルギーにより更に分子及び分子ラジカルを単原子ラジカルに再解離させることができる。また、プロセスガスである第2ガスは、第1ガスの第1ガス経路とは別の第2ガス経路を用いてシャワーヘッド20を通って第2解離空間30eに供給される。供給された第2ガスは、第2解離空間30eにおいてVHF波よりも周波数の低い高周波のエネルギーにより低解離の状態に解離させることができる。これによりプラズマプロセスの均一性の向上を図ることができる。
<第1実施形態の変形例>
次に、第1実施形態に係るプラズマ処理装置1の変形例1,2について、図4及び図5を参照して説明する。図4は、第1実施形態に係るプラズマ処理装置1の変形例1を示す断面斜視図である。図5は、第1実施形態に係るプラズマ処理装置1の変形例2を示す断面斜視図である。
[第1実施形態の変形例1]
図4に示す変形例1のプラズマ処理装置1では、シャワーヘッド20へ高周波を印加し、基板支持部18はグランド電位である点で、図1のプラズマ処理装置1と異なる。変形例1では、基板支持部18には、高周波電源60は接続されず、グランドに接続されている。
また、変形例1のプラズマ処理装置1では、チャンバ10の上壁14の上部に中空構造の円盤状の連結部15が設けられている。導入部2は連結部15を貫通し、上壁14に固定されている。連結部15の内部には、シャワーヘッド20に接触する接続部37が設けられている。
高周波電源62は、整合器63を介して連結部15の上部のコネクタ64の内部を通り接続部37を介してシャワーヘッド20に接続されている。これにより、シャワーヘッド20には、接続部37を介してVHF波よりも周波数の低い高周波が印加される。他の構成については、図1に示すプラズマ処理装置1と同一である。
[第1実施形態の変形例2]
図5に示す変形例2のプラズマ処理装置1では、シャワーヘッド20と基板支持部18との両方に高周波を印加する点で、図1のプラズマ処理装置1と異なる。変形例2では、基板支持部18には、整合器61を介して高周波電源60が接続されている。
また、高周波電源62は、整合器63及び接続部37を介してシャワーヘッド20に接続されている。これにより、基板支持部18及びシャワーヘッド20には、VHF波よりも周波数の低い高周波が印加される。
第1実施形態に係るプラズマ処理装置1の変形例1、2によっても第1解離空間30bにおいて事前に第1ガスのプラズマが生成され、第1ガスのラジカルが再結合励起状態で第2解離空間30eに到達する。これにより、第2解離空間30eにおいてVHF波よりも周波数の低い高周波でも第1ガスを解離させることができ、かつ、第2ガスを低解離させることができる。これにより、プラズマプロセスの均一性の向上を図ることができる。
<第2実施形態>
[プラズマ処理装置]
次に、第2実施形態に係るプラズマ処理装置1について、図6~図8を用いて説明する。図6は、第2実施形態に係るプラズマ処理装置1の一例を示す断面模式図である。図7は、図6のIII-III線に沿って切断した断面図である。図8は、第2実施形態に係る導入部の断面を拡大した図である。
第2実施形態に係るプラズマ処理装置1は、導入部2の構成が第1実施形態に係るプラズマ処理装置1と異なり、その他の構成は同一である。よって、以下では導入部2の構成について説明する。
本実施形態に係る導入部2では、VHF波を伝播させる共振器31の内部は真空であり、第1解離空間としても機能する。第2実施形態では、導入部2の内部の全体が第1解離空間である。つまり、鍔部22fの上部の共振器31の内部空間及び鍔部22fの下部の空間30bが第1解離空間であり、プラズマ生成空間となる。
共振器31の上端は、VHF波の電界が最小になるように構成され、共振器31の上端に第1ガスを供給するガス供給管35を設ける。つまり、共振器31の上壁であるカバー導体44はプラズマ着火時にグランド電位(ショート)になるように構成する。これにより、共振器31の上壁(カバー導体44)におけるVHF波の電界が0又は最小になるため、第1解離空間の上壁に第1ガスの供給口を設けても、ガスの異常放電を防止することができる構成になっている。
第1解離空間(共振器31及び空間30b)の内部にはアンテナ25が存在し、アンテナ25には複数の貫通孔38aが形成されている。アンテナ25では電界が高くなるため、鍔部22fの表面を酸化アルミニウム等の誘電体38により被覆し、アンテナ25を保護し、金属汚染を防止するように構成されている。
図6のIII-III線に沿って切断した断面を示す図7及び図6の導入部2の拡大図である図8を参照すると、アンテナ25の外周と、導入部2の内壁(第1解離空間(共振器31及び空間30b)の内面)との間に隙間Dを有する。
更にアンテナ25(鍔部22f)の周りの隙間Dだけでは第1ガスを通流させる際のコンダクタンスが十分でないため、アンテナ25の内部に貫通孔38aを有している。複数の貫通孔38aは、アンテナ25の外周よりも内側に形成され、誘電体38と鍔部22fとを貫通している。複数の貫通孔38aは、軸線AXに対して点対称の位置に設けられる。複数の貫通孔38aは、円周方向に均等に配置されている。
隙間D及び複数の貫通孔38aは、第1ガス及び第1ガスのラジカルを通し、拡散させるとともに、VHF波の電磁波の放射特性及び共振特性を管理するために設けられる。複数の貫通孔38aに露出する鍔部22fはグランド電位であり、イオンや電子をトラップし、ラジカルを通すように構成されている。
貫通孔38aの直径は、真空空間における自由空間の波長をλとして、λ/50程度の寸法を有する。複数の貫通孔38aの穴の合計面積は、アンテナ25の鍔部22fの水平方向の面の面積に対して1/2以下になるように形成されている。また、複数の貫通孔38aを鍔部22fの外周に係らないように配置する。これにより、鍔部22fの外周を円周状に形成し、VHF波の放射特性を良好に管理することができる。
以上に説明したように、第2実施形態に係るプラズマ処理装置1によれば、第1実施形態に係るプラズマ処理装置1と同様にプラズマプロセスの均一性の向上を図ることができる。シャワーヘッド20の上流側にプラズマ生成空間としての第1解離空間(共振器31及び空間30b)を設け、第1解離空間において第1ガスを解離させ、第1ガスのラジカルを生成する。生成されたラジカルは、シャワーヘッド20を通って第2解離空間30eに到達するときに一部は分子に戻り、一部は分子ラジカルの状態になる。しかしながら、第2解離空間30eに到達した第1ガスは再結合励起状態にあるため、VHF波よりも周波数の低い高周波のエネルギーにより分子及び分子ラジカルを単原子ラジカルに再解離させることができる。また、プロセスガス等は、第1ガスの第1ガス経路とは別の第2ガス経路を用いてシャワーヘッド20を通って第2解離空間30eに供給される。第2ガスは、第2解離空間30eにおいてVHF波よりも低い高周波のエネルギーにより低解離の状態まで解離させる。これによりプラズマプロセスの均一性の向上を図ることができる。
更に、第2実施形態に係るプラズマ処理装置1では、第1ガスを第1解離空間の上端から供給するため、第1ガスの供給口からシャワーヘッド20までの距離を長くでき、第1ガスのラジカルを拡散させ易いという利点がある。
<第2実施形態の変形例>
次に、第2実施形態に係るプラズマ処理装置1の変形例1,2について、図9及び図10を参照して説明する。図9は、第2実施形態に係るプラズマ処理装置1の変形例1を示す断面斜視図である。図10は、第2実施形態に係るプラズマ処理装置1の変形例2を示す断面斜視図である。
[第2実施形態の変形例1]
図9に示す変形例1のプラズマ処理装置1では、シャワーヘッド20へ高周波を印加し、基板支持部18はグランド電位である点で、図6のプラズマ処理装置1と異なる。変形例1では、基板支持部18には、高周波電源60は接続されず、グランドに接続されている。
また、変形例1のプラズマ処理装置1では、チャンバ10の上壁14の上部に中空構造の円盤状の連結部15が設けられている。導入部2は連結部15を貫通し、上壁14に固定されている。連結部15の内部には、シャワーヘッド20に接触する接続部37が設けられている。
高周波電源62は、整合器63を介して連結部15の上部のコネクタ64の内部を通り接続部37を介してシャワーヘッド20に接続されている。これにより、シャワーヘッド20には、接続部37を介してVHF波よりも周波数の低い高周波が印加される。他の構成については、図6に示すプラズマ処理装置1と同一である。
[第2実施形態の変形例2]
図10に示す変形例2のプラズマ処理装置1では、シャワーヘッド20と基板支持部18の両方に高周波を印加する点で、図6のプラズマ処理装置1と異なる。変形例2では、基板支持部18には、整合器61を介して高周波電源60が接続されている。
また、高周波電源62は、整合器63及び接続部37を介してシャワーヘッド20に接続されている。これにより、基板支持部18及びシャワーヘッド20には、VHF波よりも周波数の低い高周波が印加される。
第2実施形態に係るプラズマ処理装置1の変形例1、2によっても第1解離空間(共振器31及び空間30b)において事前に第1ガスのプラズマが生成され、第1ガスのラジカルが再結合励起状態で第2解離空間30eに到達する。これにより、第2解離空間30eにおいてVHF波よりも周波数の低い高周波でも第1ガスを解離させることができ、かつ、第2ガスを低解離させることができる。これにより、プラズマプロセスの均一性の向上を図ることができる。
以上、第1及び第2実施形態に係るプラズマ処理装置1について説明した、第1及び第2実施形態に係るプラズマ処理装置1は、ALD装置として機能させることができる。ALDのプロセスでは、第1ガス及び第2ガスを交互に供給する。シャワーヘッド20の内部やその上流に存在する第1ガス及び第2ガスを、それぞれのオン・オフのタイミングで置換する必要がある。つまり、プロセス空間(第2解離空間30e)だけでなく、シャワーヘッド20の内部、シャワーヘッド20の上流に存在する導入部2及びガス供給管内等、ガスを置換すべき範囲は広い。しかしながら、第1及び第2実施形態に係るプラズマ処理装置1では、プロセス空間(第2解離空間30e)のギャップが、3~30mm程度と狭い。これに対して、CVD装置の場合、シャワーヘッド20と基板支持部18とのギャップ(プロセス空間のギャップ)は、30mm程度と広い。
以上から、第1及び第2実施形態に係るプラズマ処理装置1をALD装置として使用する場合、プロセス空間が狭いため、ガスの置換を素早く行うことができる。加えて、第1及び第2実施形態に係るプラズマ処理装置1は、第1解離空間、シャワーヘッド20内の拡散空間(第1拡散室30c、第2拡散室30d)も狭く、装置全体も小型化することができる。また、VHF以上の周波数を用いて第1ガスを解離させつつ、シャワーヘッド20を介して均一に第1ガスをプロセス空間(第2解離空間30e)に供給するようにしているので、電磁波の腹又は節に起因する不均一性には影響されずに、ギャップの短いプロセス空間を実現できる。これにより、ガスの置換を素早く行うことができ、スループットを高め、かつ、プラズマプロセスの均一性の向上を図ることができる。
今回開示された実施形態に係るプラズマ処理装置は、すべての点において例示であって制限的なものではないと考えられるべきである。実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で変形及び改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で他の構成も取り得ることができ、また、矛盾しない範囲で組み合わせることができる。
なお、第1解離空間ではガスの解離に高エネルギーの電子を必要とし、VHF帯以上の周波数を用いることが好ましい。且つ、第1解離空間はプロセス空間(第2解離空間)とできるだけ近いことが好ましい。構造については、第1解離空間を有する導入部におけるPre-activation機能(成膜に寄与)とリモートクリーニング機能は、コンタミネーション及びパーティクルの観点から別供給部とした方が良い。つまり、実施形態に係るプラズマ処理装置では、導入部における還元ガスの供給部とクリーニングガスの供給部とは別系統にされているため、コンタミネーション及びパーティクルの発生を抑制できる。第2解離空間ではRFを印加することでRF単独では解離の難しいNガス等の高結合エネルギーの分子ガスを第1解離空間でのPre-activation機能を経ることで解離可能としている。
1…プラズマ処理装置、2…導入部、10…チャンバ、18…基板支持部、20…シャワーヘッド、22…ガス供給管、22f…鍔部、25…アンテナ、30b…第1解離空間、30c…第1拡散室、30d…第2拡散室、30e…第2解離空間、31…共振器、32…仕切板、36…供給路、36c…導体、50…VHF電源。

Claims (18)

  1. チャンバと、
    前記チャンバの内部に設けられ、処理対象の基板が設置される基板支持部と、
    金属から形成され、前記チャンバの内部の空間に向けて開口した複数のガス孔を提供し、前記基板支持部の上方に設けられたシャワーヘッドと、
    金属から形成され、前記チャンバの上方で鉛直方向に延在して、前記シャワーヘッドの上部中央に接続されたガス供給管と、
    前記チャンバの上方にて前記ガス供給管が貫通し、VHF波以上の電磁波を導入し、ガスを活性化させるように構成された導入部と、
    前記ガス供給管に接続された電磁波の供給路と、
    を備え、
    前記導入部は、前記シャワーヘッドの上流側に配置され、第1ガスを供給し、前記電磁波により前記第1ガスを解離させる第1解離空間を有し、
    前記チャンバは、前記基板支持部と前記シャワーヘッドとの間のプロセス空間であって、前記第1解離空間にて解離した前記第1ガスと前記ガス供給管からの第2ガスとを前記シャワーヘッドの下流側で合流させ、前記電磁波よりも周波数が低い高周波により前記第1ガス及び前記第2ガスを解離させる第2解離空間を有し、
    前記第1解離空間の断面視形状は略円筒形状であり、
    前記第1解離空間の前記略円筒形状の直径は、電磁波の真空中の実効波長をλgとしたときにλg/6よりも小さい、
    プラズマ処理装置。
  2. 前記第1解離空間は、
    前記電磁波を伝送するための共振器の内部又は前記共振器よりも前記シャワーヘッド側に設けられている、
    請求項1に記載のプラズマ処理装置。
  3. 前記ガス供給管は、前記共振器内を貫通しており、前記第2ガスを供給する配管又はリモートプラズマ用の配管として機能する、
    請求項2に記載のプラズマ処理装置。
  4. 前記第1解離空間は、前記共振器と前記シャワーヘッドとの間に設けられ、
    前記導入部は、前記共振器と前記第1解離空間との間を仕切る誘電体の仕切板を有する、
    請求項2又は3に記載のプラズマ処理装置。
  5. 前記第1解離空間の下端と前記シャワーヘッド内の第1拡散室の底部との距離は、スキンデプスの10倍以内である、
    請求項1~4のいずれか一項に記載のプラズマ処理装置。
  6. 前記第1解離空間では、前記第1ガスである還元ガスが解離される、
    請求項1~5のいずれか一項に記載のプラズマ処理装置。
  7. 前記第2解離空間を形成する前記シャワーヘッドと前記基板支持部とのギャップは、3mm~30mmである、
    請求項1~6のいずれか一項に記載のプラズマ処理装置。
  8. 前記第1解離空間から前記シャワーヘッドの第1ガス孔を介して前記第2解離空間に前記第1ガスを供給する経路と、前記ガス供給管から前記シャワーヘッドの第2ガス孔を介して前記第2解離空間に前記第2ガスを供給する経路とは、別経路である、
    請求項1~7のいずれか一項に記載のプラズマ処理装置。
  9. 前記シャワーヘッド及び前記基板支持部の少なくともいずれかに高周波を印加する、
    請求項1~8のいずれか一項に記載のプラズマ処理装置。
  10. 前記共振器の内部は、大気圧であり、前記第1解離空間は、真空圧であり、
    前記第1解離空間は、前記共振器よりも前記シャワーヘッド側に設けられ、プラズマを生成するための空間である、
    請求項2に記載のプラズマ処理装置。
  11. 前記共振器には、誘電体が埋め込まれている、
    請求項2~4及び10のいずれか一項に記載のプラズマ処理装置。
  12. 前記共振器の内部は真空圧であり、プラズマを生成するための前記第1解離空間である、
    請求項2に記載のプラズマ処理装置。
  13. 前記第1解離空間の内部にはアンテナが存在し、
    前記アンテナには複数の貫通孔が形成されている、
    請求項1~3、5~9、及び12のいずれか一項に記載のプラズマ処理装置。
  14. 前記アンテナは、鍔部を有し
    複数の前記貫通孔は、鍔部に形成され、
    複数の前記貫通孔の穴の合計面積は、前記鍔部の水平方向の面の面積に対して1/2以下になるように形成される、
    請求項13に記載のプラズマ処理装置。
  15. 複数の前記貫通孔は、前記鍔部の外周よりも内側に形成される、
    請求項14に記載のプラズマ処理装置。
  16. 前記鍔部の外周と、前記導入部の内壁との間に、隙間を有する、
    請求項14又は15に記載のプラズマ処理装置。
  17. 前記共振器の上壁は、前記電磁波の電界が最小になるように構成され、
    前記共振器の上壁に前記第1ガスを供給するガス供給管を設ける、
    請求項2、3、及び12のいずれか一項に記載のプラズマ処理装置。
  18. 前記シャワーヘッド及び前記基板支持部の外周は、誘電体の部材で覆われている、
    請求項1~17のいずれか一項に記載のプラズマ処理装置。
JP2020211851A 2020-12-21 2020-12-21 プラズマ処理装置 Pending JP2022098353A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020211851A JP2022098353A (ja) 2020-12-21 2020-12-21 プラズマ処理装置
PCT/JP2021/044877 WO2022138130A1 (ja) 2020-12-21 2021-12-07 プラズマ処理装置
US18/256,683 US20240038500A1 (en) 2020-12-21 2021-12-07 Plasma processing apparatus
KR1020237023870A KR20230118663A (ko) 2020-12-21 2021-12-07 플라스마 처리 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020211851A JP2022098353A (ja) 2020-12-21 2020-12-21 プラズマ処理装置

Publications (1)

Publication Number Publication Date
JP2022098353A true JP2022098353A (ja) 2022-07-01

Family

ID=82159630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020211851A Pending JP2022098353A (ja) 2020-12-21 2020-12-21 プラズマ処理装置

Country Status (4)

Country Link
US (1) US20240038500A1 (ja)
JP (1) JP2022098353A (ja)
KR (1) KR20230118663A (ja)
WO (1) WO2022138130A1 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204295A (ja) 1998-01-12 1999-07-30 Sumitomo Metal Ind Ltd マイクロ波プラズマ処理装置
JP3161392B2 (ja) 1997-11-28 2001-04-25 日本電気株式会社 プラズマcvd装置とそのドライクリーニング方法
US7695633B2 (en) * 2005-10-18 2010-04-13 Applied Materials, Inc. Independent control of ion density, ion energy distribution and ion dissociation in a plasma reactor
US8652297B2 (en) * 2010-08-03 2014-02-18 Applied Materials, Inc. Symmetric VHF plasma power coupler with active uniformity steering
US9666414B2 (en) * 2011-10-27 2017-05-30 Applied Materials, Inc. Process chamber for etching low k and other dielectric films
JP7026498B2 (ja) * 2017-12-12 2022-02-28 東京エレクトロン株式会社 アンテナ及びプラズマ成膜装置
JP7079718B2 (ja) * 2018-11-27 2022-06-02 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP2020092033A (ja) 2018-12-06 2020-06-11 東京エレクトロン株式会社 プラズマ処理装置

Also Published As

Publication number Publication date
US20240038500A1 (en) 2024-02-01
KR20230118663A (ko) 2023-08-11
WO2022138130A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
US10443130B2 (en) Plasma processing apparatus with shower plate having protrusion for suppressing film formation in gas holes of shower plate
US8039772B2 (en) Microwave resonance plasma generating apparatus and plasma processing system having the same
US6499425B1 (en) Quasi-remote plasma processing method and apparatus
KR101659594B1 (ko) 고효율 플라즈마 소스
US6851384B2 (en) Remote plasma apparatus for processing substrate with two types of gases
JPH09167762A (ja) プラズマ強化化学処理反応装置とその方法
KR20110074912A (ko) 챔버 세정을 위한 플라즈마 소오스 및 챔버 세정 방법
EP0914496B1 (en) Microwave applicator for an electron cyclotron resonance plasma source
JPWO2005094140A1 (ja) プラズマ発生装置
US7828927B2 (en) Plasma processing device
EP1895565A1 (en) Plasma processing apparatus and method
US20230386791A1 (en) Plasma processing apparatus
WO2021124898A1 (ja) プラズマ処理装置及びプラズマ処理方法
WO2022138130A1 (ja) プラズマ処理装置
JP2000357683A (ja) プラズマ処理装置及びプラズマ処理方法
JP4426632B2 (ja) プラズマ処理装置
JP3053105B2 (ja) プラズマcvd装置及びその方法
JP2000073175A (ja) 表面処理装置
US20210407766A1 (en) Plasma processing apparatus
JPH0368771A (ja) マイクロ波プラズマ処理装置
WO2023243540A1 (ja) プラズマ処理装置
US20230031447A1 (en) Plasma processing apparatus
JP2022011432A (ja) 整合器及びプラズマ処理装置
KR100731993B1 (ko) 내부 방전 브리지를 갖는 플라즈마 소오스
KR20230039536A (ko) 플라스마원 및 플라스마 처리 장치