JP2022096861A - Polyarylene sulfide resin composition - Google Patents

Polyarylene sulfide resin composition Download PDF

Info

Publication number
JP2022096861A
JP2022096861A JP2020210089A JP2020210089A JP2022096861A JP 2022096861 A JP2022096861 A JP 2022096861A JP 2020210089 A JP2020210089 A JP 2020210089A JP 2020210089 A JP2020210089 A JP 2020210089A JP 2022096861 A JP2022096861 A JP 2022096861A
Authority
JP
Japan
Prior art keywords
nanotubes
resin composition
parts
mass
polyarylene sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020210089A
Other languages
Japanese (ja)
Other versions
JP2022096861A5 (en
Inventor
秀和 出井
Hidekazu Idei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2020210089A priority Critical patent/JP2022096861A/en
Priority to CN202111506794.5A priority patent/CN114644830A/en
Priority to KR1020210177770A priority patent/KR20220088326A/en
Publication of JP2022096861A publication Critical patent/JP2022096861A/en
Publication of JP2022096861A5 publication Critical patent/JP2022096861A5/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a polyarylene sulfide resin composition with less occurrence of burrs.SOLUTION: The polyarylene sulfide resin composition contains 0.01 pt.mass or more and less than 10 pts.mass of inorganic nanotubes (limited to ones containing no carbon atoms) based on 100 pts.mass of a polyarylene sulfide resin having a melt viscosity of 5-500 Pa s as measured at a temperature of 310°C and a shear rate of 1,200 sec-1. The inorganic nanotubes are preferably one kind selected from the group consisting of aluminosilicate nanotubes, boron nitride nanotubes, titanium oxide nanotubes, metal sulfide nanotubes, and metal halide nanotubes.SELECTED DRAWING: None

Description

本発明は、ポリアリーレンサルファイド樹脂組成物に関する。 The present invention relates to a polyarylene sulfide resin composition.

ポリフェニレンサルファイド樹脂(以下「PPS樹脂」と呼ぶ場合がある)に代表されるポリアリーレンサルファイド樹脂(以下「PAS樹脂」と呼ぶ場合がある)は、高い耐熱性、機械的物性、耐化学薬品性、寸法安定性、難燃性を有していることから、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料等に広く使用されている。しかしながら、PAS樹脂は、結晶化速度が遅いため成形時のサイクル時間が長い、また成形時にバリの発生が多いという問題があった。 Polyphenylene sulfide resin (hereinafter sometimes referred to as "PAS resin") represented by polyphenylene sulfide resin (hereinafter sometimes referred to as "PPS resin") has high heat resistance, mechanical properties, and chemical resistance. Since it has dimensional stability and flame retardancy, it is widely used in electrical and electronic equipment parts materials, automobile equipment parts materials, chemical equipment parts materials, and the like. However, the PAS resin has a problem that the crystallization rate is slow, so that the cycle time at the time of molding is long, and that burrs are frequently generated at the time of molding.

バリの発生を低減する方法としては、各種アルコキシシラン化合物を添加することが知られている(特許文献1~2参照)。各種アルコキシシラン化合物とPAS樹脂は、反応性が高く、機械的物性の改良、バリ発生を抑制する効果等が認められている。しかし、バリ発生の抑制効果には限界があり、市場の要求を充分満足させるには至っておらず、また結晶化速度を速くする効果を併せ持っていない。 As a method for reducing the generation of burrs, it is known to add various alkoxysilane compounds (see Patent Documents 1 and 2). Various alkoxysilane compounds and PAS resins have high reactivity, and are recognized to have the effects of improving mechanical properties and suppressing the generation of burrs. However, there is a limit to the effect of suppressing the occurrence of burrs, the demands of the market are not fully satisfied, and the effect of increasing the crystallization rate is not achieved at the same time.

上記問題の解決を図るため、特定のPAS樹脂に特定のカーボンナノチューブ及び必要に応じて無機充填剤の各々特定量を配合した樹脂組成物が提案されている(特許文献3参照)。その他、溶融粘度が異なる2種のPPS樹脂と、所定の平均粒子径を有するカオリン、アタパルジャイト、又はその混合物とを含む樹脂組成物が提案されている(特許文献4参照)。 In order to solve the above problems, a resin composition in which a specific PAS resin is mixed with a specific amount of a specific carbon nanotube and, if necessary, an inorganic filler has been proposed (see Patent Document 3). In addition, a resin composition containing two types of PPS resins having different melt viscosities and kaolin, attapulsite, or a mixture thereof having a predetermined average particle size has been proposed (see Patent Document 4).

特公平6-21169号公報Special Fair 6-21169 Gazette 特開平1-146955号公報Japanese Unexamined Patent Publication No. 1-146955 特開2006-143827号公報Japanese Unexamined Patent Publication No. 2006-143827 特開平09-157525号公報Japanese Unexamined Patent Publication No. 09-157525

特許文献3に記載の樹脂組成物は、バリの発生を十分に抑えるには、カーボンナノチューブを比較的多量に添加する必要がある。そうすると、カーボンナノチューブの導電性により、樹脂組成物が導電性を有することとなる。そして、そのような樹脂組成物は、絶縁性が要求される成形品に用いることができない。また、特許文献4には、所定の平均粒子径を有するカオリン、アタパルジャイト、又はその混合物について、「材料に揺変性を付与する効果(溶融粘度のせん断速度依存性を高める効果)があると思われ、射出成形における保圧過程(せん断速度が小さくなる過程)で材料の溶融粘度が一気に上昇することによりバリの発生が大幅に低減されると思われる。」と記載されている。つまり、カオリン等の無機充填材は、射出成形における材料の溶融粘度を一気に高めることを目的に使用されることから一定量以上の量が必要と考えられ、実際にPPS樹脂組成物100重量部に対し、10~150重量部が好ましい旨記載されている。カオリン等の無機充填材を添加することでバリの発生を抑えることができるが、添加量を多いことにより成形性や強度低下など別の問題が発生することが危惧される。 In the resin composition described in Patent Document 3, it is necessary to add a relatively large amount of carbon nanotubes in order to sufficiently suppress the generation of burrs. Then, the resin composition has conductivity due to the conductivity of the carbon nanotubes. Further, such a resin composition cannot be used for a molded product that requires insulating properties. Further, Patent Document 4 seems to have "an effect of imparting sway modification to a material (an effect of increasing the shear rate dependence of the melt viscosity) for kaolin, attapulsite, or a mixture thereof having a predetermined average particle size. , It is thought that the generation of burrs is greatly reduced by the sudden increase in the melt viscosity of the material in the pressure holding process (the process in which the shear rate decreases) in injection molding. " That is, since an inorganic filler such as kaolin is used for the purpose of increasing the melt viscosity of the material in injection molding at once, it is considered that a certain amount or more is required, and the amount is actually 100 parts by weight of the PPS resin composition. On the other hand, it is stated that 10 to 150 parts by weight is preferable. Although the generation of burrs can be suppressed by adding an inorganic filler such as kaolin, there is a concern that a large amount of the addition may cause other problems such as formability and deterioration of strength.

本発明は、上記従来の問題点に鑑みなされたものであり、その課題は、バリの発生が少ないポリアリーレンサルファイド樹脂組成物を提供することにある。 The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a polyarylene sulfide resin composition with less generation of burrs.

前記課題を解決する本発明の一態様は以下の通りである。
(1)温度310℃及びせん断速度1200sec-1で測定した溶融粘度が5~500Pa・sのポリアリーレンサルファイド樹脂100質量部に対して、無機ナノチューブ(但し、炭素原子を含まないものに限る。)を0.01質量部以上10質量部未満含む、ポリアリーレンサルファイド樹脂組成物。
One aspect of the present invention that solves the above problems is as follows.
(1) Inorganic nanotubes (limited to those containing no carbon atom) with respect to 100 parts by mass of a polyarylene sulfide resin having a melt viscosity of 5 to 500 Pa · s measured at a temperature of 310 ° C. and a shear rate of 1200 sec -1 . A polyarylene sulfide resin composition containing 0.01 parts by mass or more and less than 10 parts by mass.

(2)前記無機ナノチューブが、アルミノシリケートナノチューブ、窒化ホウ素ナノチューブ、酸化チタンナノチューブ、金属硫化物ナノチューブ、及び金属ハロゲン化物ナノチューブからなる群より選ばれる1種である、前記(1)に記載のポリアリーレンサルファイド樹脂組成物。 (2) The polyarylene according to (1) above, wherein the inorganic nanotube is one selected from the group consisting of aluminosilicate nanotubes, boron nitride nanotubes, titanium oxide nanotubes, metal sulfide nanotubes, and metal halide nanotubes. Sulfide resin composition.

(3)前記アルミノシリケートナノチューブが、ハロイサイトナノチューブ又はメタハロイサイトナノチューブである、前記(2)に記載のポリアリーレンサルファイド樹脂組成物。 (3) The polyarylene sulfide resin composition according to (2) above, wherein the aluminosilicate nanotube is a halloysite nanotube or a meta halloysite nanotube.

(4)前記ポリアリーレンサルファイド樹脂100質量部に対して、非導電性無機充填剤(但し、前記無機ナノチューブを除く。)5~250質量部を更に含む、前記(1)~(3)のいずれかに記載のポリアリーレンサルファイド樹脂組成物。 (4) Any of the above (1) to (3), further containing 5 to 250 parts by mass of a non-conductive inorganic filler (excluding the inorganic nanotubes) with respect to 100 parts by mass of the polyarylene sulfide resin. The polyarylene sulfide resin composition described in Crab.

(5)前記非導電性無機充填剤が、ガラス繊維、ガラスビーズ、ガラスフレーク、炭酸カルシウム及びタルクからなる群より選ばれる1種又は2種以上である、前記(4)に記載のポリアリーレンサルファイド樹脂組成物。 (5) The polyarylene sulfide according to (4) above, wherein the non-conductive inorganic filler is one or more selected from the group consisting of glass fibers, glass beads, glass flakes, calcium carbonate and talc. Resin composition.

本発明によれば、バリの発生が少ないポリアリーレンサルファイド樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a polyarylene sulfide resin composition with less generation of burrs.

本実施形態のポリアリーレンサルファイド樹脂組成物は、温度310℃及びせん断速度1200sec-1で測定した溶融粘度が5~500Pa・sのポリアリーレンサルファイド樹脂100質量部に対して、無機ナノチューブ(但し、炭素原子を含まないものに限る。)を0.01質量部以上10質量部未満含む。 The polyarylene sulfide resin composition of the present embodiment has an inorganic nanotube (provided as carbon) with respect to 100 parts by mass of the polyarylene sulfide resin having a melt viscosity of 5 to 500 Pa · s measured at a temperature of 310 ° C. and a shear rate of 1200 sec -1 . (Limited to those containing no atoms)) is contained in an amount of 0.01 parts by mass or more and less than 10 parts by mass.

本実施形態のPAS樹脂組成物は、無機ナノチューブを含むことによりバリの発生を抑えている。無機ナノチューブの添加によりバリが抑制されるメカニズムは、結晶化速度の向上(核剤効果による固化速度向上)が寄与していると推定される。また、結晶化速度の向上により、成形サイクルの短縮化を図ることができる。更に、無機ナノチューブは、一般に絶縁性を有するものが多く、絶縁性を有する無機ナノチューブを用いればPAS樹脂組成物の絶縁性が低下することはない。その点においてカーボンナノチューブを用いるものとは異なる。
以下に、本実施形態のPAS樹脂組成物の各成分について説明する。
The PAS resin composition of the present embodiment suppresses the generation of burrs by containing inorganic nanotubes. It is presumed that the mechanism by which burrs are suppressed by the addition of inorganic nanotubes is due to the improvement in the crystallization rate (improvement in the solidification rate due to the effect of the nucleating agent). Further, by improving the crystallization rate, the molding cycle can be shortened. Further, most of the inorganic nanotubes generally have insulating properties, and if the inorganic nanotubes having insulating properties are used, the insulating properties of the PAS resin composition will not be deteriorated. In that respect, it differs from the one using carbon nanotubes.
Hereinafter, each component of the PAS resin composition of the present embodiment will be described.

[ポリアリーレンサルファイド樹脂]
PAS樹脂は、機械的性質、電気的性質、耐熱性その他物理的・化学的特性に優れ、且つ加工性が良好であるという特徴を有する。
PAS樹脂は、主として、繰返し単位として-(Ar-S)-(但しArはアリーレン基)で構成された高分子化合物であり、本実施形態では一般的に知られている分子構造のPAS樹脂を使用することができる。
[Polyarylene sulfide resin]
The PAS resin is characterized by being excellent in mechanical properties, electrical properties, heat resistance and other physical and chemical properties, and having good processability.
The PAS resin is a polymer compound mainly composed of-(Ar-S)-(where Ar is an arylene group) as a repeating unit, and is a PAS resin having a molecular structure generally known in the present embodiment. Can be used.

上記アリーレン基としては、例えば、p-フェニレン基、m-フェニレン基、o-フェニレン基、置換フェニレン基、p,p’-ジフェニレンスルフォン基、p,p’-ビフェニレン基、p,p’-ジフェニレンエーテル基、p,p’-ジフェニレンカルボニル基、ナフタレン基等が挙げられる。PAS樹脂は、上記繰返し単位のみからなるホモポリマーでもよいし、下記の異種繰返し単位を含んだコポリマーが加工性等の点から好ましい場合もある。 Examples of the arylene group include a p-phenylene group, an m-phenylene group, an o-phenylene group, a substituted phenylene group, a p, p'-diphenylene sulphon group, a p, p'-biphenylene group, p, p'-. Examples thereof include a diphenylene ether group, a p, p'-diphenylene carbonyl group and a naphthalene group. The PAS resin may be a homopolymer composed of only the above-mentioned repeating units, or a copolymer containing the following different kinds of repeating units may be preferable from the viewpoint of processability and the like.

ホモポリマーとしては、アリーレン基としてp-フェニレン基を用いた、p-フェニレンサルファイド基を繰返し単位とするポリフェニレンサルファイド樹脂が好ましく用いられる。また、コポリマーとしては、前記のアリーレン基からなるアリーレンサルファイド基の中で、相異なる2種以上の組み合わせが使用できるが、中でもp-フェニレンサルファイド基とm-フェニレンサルファイド基を含む組み合わせが特に好ましく用いられる。この中で、p-フェニレンサルファイド基を70モル%以上、好ましくは80モル%以上含むものが、耐熱性、成形性、機械的特性等の物性上の点から適当である。また、これらのPAS樹脂の中で、2官能性ハロゲン芳香族化合物を主体とするモノマーから縮重合によって得られる実質的に直鎖状構造の高分子量ポリマーが、特に好ましく使用できる。尚、本実施形態に用いるPAS樹脂は、異なる2種類以上の分子量のPAS樹脂を混合して用いてもよい。 As the homopolymer, a polyphenylene sulfide resin using a p-phenylene group as an arylene group and having a p-phenylene sulfide group as a repeating unit is preferably used. Further, as the copolymer, among the above-mentioned allylene sulfide groups consisting of allylene groups, two or more different combinations can be used, and among them, the combination containing the p-phenylene sulfide group and the m-phenylene sulfide group is particularly preferably used. Be done. Among these, those containing 70 mol% or more, preferably 80 mol% or more of the p-phenylene sulfide group are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties. Further, among these PAS resins, a high molecular weight polymer having a substantially linear structure obtained by polycondensation from a monomer mainly composed of a bifunctional halogen aromatic compound can be particularly preferably used. The PAS resin used in this embodiment may be a mixture of two or more different molecular weight PAS resins.

尚、直鎖状構造のPAS樹脂以外にも、縮重合させるときに、3個以上のハロゲン置換基を有するポリハロ芳香族化合物等のモノマーを少量用いて、部分的に分岐構造又は架橋構造を形成させたポリマーや、低分子量の直鎖状構造ポリマーを酸素等の存在下、高温で加熱して酸化架橋又は熱架橋により溶融粘度を上昇させ、成形加工性を改良したポリマーも挙げられる。 In addition to the linear PAS resin, a small amount of a monomer such as a polyhalo aromatic compound having three or more halogen substituents is used to partially form a branched structure or a crosslinked structure during polycondensation. Examples thereof include a polymer obtained by heating a low molecular weight linear structure polymer at a high temperature in the presence of oxygen and the like to increase the melt viscosity by oxidative crosslinking or thermal crosslinking to improve molding processability.

本実施形態に使用する基体樹脂としてのPAS樹脂の溶融粘度(310℃・せん断速度1200sec-1)は、上記混合系の場合も含め、機械的物性と流動性のバランスの観点から、5~500Pa・sのものを用いる。PAS樹脂の溶融粘度は、7~300Pa・sが好ましく、10~250Pa・sがより好ましく、13~200Pa・sが特に好ましい。 The melt viscosity (310 ° C., shear rate 1200 sec -1 ) of the PAS resin as the substrate resin used in this embodiment is 5 to 500 Pa from the viewpoint of the balance between mechanical physical properties and fluidity, including the case of the above mixed system. -Use the one of s. The melt viscosity of the PAS resin is preferably 7 to 300 Pa · s, more preferably 10 to 250 Pa · s, and particularly preferably 13 to 200 Pa · s.

尚、本実施形態のPAS樹脂組成物は、その効果を損なわない範囲で、樹脂成分として、PAS樹脂に加えて、その他の樹脂成分を含有してもよい。その他の樹脂成分としては、特に限定はなく、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリアセタール樹脂、変性ポリフェニレンエーテル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリサルフォン樹脂、ポリエーテルサルフォン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂、弗素樹脂、環状オレフィン系樹脂(環状オレフィンポリマー、環状オレフィンコポリマー等)、熱可塑性エラストマー、シリコーン系ポリマー、各種の生分解性樹脂等が挙げられる。また、2種類以上の樹脂成分を併用してもよい。その中でも、機械的性質、電気的性質、物理的・化学的特性、加工性等の観点から、ポリアミド樹脂、変性ポリフェニレンエーテル樹脂、液晶樹脂等が好ましく用いられる。 The PAS resin composition of the present embodiment may contain other resin components in addition to the PAS resin as the resin component as long as the effect is not impaired. The other resin components are not particularly limited, and are, for example, polyethylene resin, polypropylene resin, polyamide resin, polyacetal resin, modified polyphenylene ether resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polyimide resin, and polyamideimide. Resin, polyetherimide resin, polysulfone resin, polyether sulfone resin, polyether ketone resin, polyether ether ketone resin, liquid crystal resin, fluororesin, cyclic olefin resin (cyclic olefin polymer, cyclic olefin copolymer, etc.), thermoplasticity Examples thereof include elastomers, silicone-based polymers, and various biodegradable resins. Further, two or more kinds of resin components may be used in combination. Among them, polyamide resins, modified polyphenylene ether resins, liquid crystal resins and the like are preferably used from the viewpoints of mechanical properties, electrical properties, physical / chemical properties, processability and the like.

[無機ナノチューブ]
本実施形態において、無機ナノチューブはバリ発生の抑制を目的として使用される。無機ナノチューブによるバリ発生の抑制は、上述の通り、核剤効果による固化速度向上に起因すると考えられる。従って、比較的少量の添加であってもバリの発生を抑制することができる。なお、本実施形態において、無機ナノチューブは炭素原子を含まないものに限る。従って、無機ナノチューブにはカーボンナノチューブは含まない。尚、無機ナノチューブは、直径がナノメートルオーダーサイズのチューブ状の無機物質である。
[Inorganic nanotubes]
In this embodiment, the inorganic nanotubes are used for the purpose of suppressing the generation of burrs. As described above, the suppression of burr generation by the inorganic nanotubes is considered to be due to the improvement in the solidification rate due to the effect of the nucleating agent. Therefore, the generation of burrs can be suppressed even with a relatively small amount of addition. In the present embodiment, the inorganic nanotubes are limited to those that do not contain carbon atoms. Therefore, the inorganic nanotubes do not contain carbon nanotubes. The inorganic nanotube is a tubular inorganic substance having a diameter on the order of nanometers.

本実施形態において使用される無機ナノチューブは、アルミノシリケートナノチューブ、窒化ホウ素ナノチューブ、酸化チタンナノチューブ、金属硫化物ナノチューブ、金属ハロゲン化物ナノチューブ等が挙げられる。
アルミノシリケートナノチューブとしては、ハロイサイトナノチューブ又はメタハロイサイトナノチューブが好ましい。これらのうち、低コスト及び入手しやすさの観点からハロイサイトナノチューブが好ましい。
また、金属硫化物ナノチューブとしては、モリブデン、タングステン、又は銅硫化物ナノチューブ等が挙げられる。金属ハロゲン化物ナノチューブとしては、塩化ニッケル、塩化カドミウム、又はヨウ化カドミウムナノチューブ等が挙げられる。
Examples of the inorganic nanotubes used in the present embodiment include aluminosilicate nanotubes, boron nitride nanotubes, titanium oxide nanotubes, metal sulfide nanotubes, and metal halide nanotubes.
As the aluminosilicate nanotube, halloysite nanotube or meta halloysite nanotube is preferable. Of these, halloysite nanotubes are preferable from the viewpoint of low cost and availability.
Examples of the metal sulfide nanotubes include molybdenum, tungsten, and copper sulfide nanotubes. Examples of the metal halide nanotube include nickel chloride, cadmium chloride, cadmium iodide nanotube and the like.

本実施形態において、無機ナノチューブの平均長さは100nm~20μmであることが好ましく、500nm~15μmであることがより好ましく、1~10μmであることが更に好ましく、1~5μmであることが特に好ましい。また、無機ナノチューブの平均外径は、5~100nmであることが好ましく、10~80nmであることがより好ましく、30~70μmであることが更に好ましい。更に、無機ナノチューブのアスペクト比は、1~4000が好ましく、5~2000がより好ましい。
ここで、無機ナノチューブのアスペクト比は、無機ナノチューブの長さを無機ナノチューブの直径で除した数値であり、メーカー値(メーカーがカタログ等において公表している数値)を採用することができる。
In the present embodiment, the average length of the inorganic nanotubes is preferably 100 nm to 20 μm, more preferably 500 nm to 15 μm, further preferably 1 to 10 μm, and particularly preferably 1 to 5 μm. .. The average outer diameter of the inorganic nanotubes is preferably 5 to 100 nm, more preferably 10 to 80 nm, and even more preferably 30 to 70 μm. Further, the aspect ratio of the inorganic nanotubes is preferably 1 to 4000, more preferably 5 to 2000.
Here, the aspect ratio of the inorganic nanotube is a numerical value obtained by dividing the length of the inorganic nanotube by the diameter of the inorganic nanotube, and a manufacturer's value (a numerical value published by the manufacturer in a catalog or the like) can be adopted.

本実施形態のPAS樹脂組成物において、PAS樹脂100質量部に対して、無機ナノチューブを0.01質量部以上10質量部未満含み、0.01質量部未満であると、バリ発生の抑制効果が不十分となり、10質量部以上であると、例えばシャルピー衝撃強度等の機械物性が悪化しやすい。無機ナノチューブの含有量は、好ましくは0.5~9.9質量部であり、より好ましくは1.0~9.5質量部である。 In the PAS resin composition of the present embodiment, when the amount of the inorganic nanotube is 0.01 part by mass or more and less than 10 parts by mass and less than 0.01 part by mass with respect to 100 parts by mass of the PAS resin, the effect of suppressing the generation of burrs is obtained. If it is insufficient and the amount is 10 parts by mass or more, the mechanical properties such as the impact strength of Sharpy tend to deteriorate. The content of the inorganic nanotubes is preferably 0.5 to 9.9 parts by mass, and more preferably 1.0 to 9.5 parts by mass.

本実施形態に係る無機ナノチューブの中でもハロイサイトナノチューブは、上市品としては、アプライド・ミネラルズ社製、「ハロイサイト G(685445)」等が挙げられる。 Among the inorganic nanotubes according to the present embodiment, examples of the halloysite nanotubes on the market include "Haloysite G (685445)" manufactured by Applied Minerals.

[非導電性無機充填剤]
本実施形態においては、絶縁性を確保しつつ、機械的物性の向上を図る観点から、PAS樹脂組成物中に非導電性無機充填剤を含むことが好ましい。非導電性無機充填剤としては、繊維状無機充填剤、板状無機充填剤、粉粒状無機充填剤が挙げられ、これらのうち1種を単独で用いてもよいし、2種以上を併用してもよい。尚、本明細書において、「無機充填剤」と記載した場合、導電性充填剤であることを明記していない限り、非導電性無機充填剤を意味する。
[Non-conductive inorganic filler]
In the present embodiment, it is preferable to include a non-conductive inorganic filler in the PAS resin composition from the viewpoint of improving the mechanical properties while ensuring the insulating property. Examples of the non-conductive inorganic filler include fibrous inorganic fillers, plate-like inorganic fillers, and powder-granular inorganic fillers, one of which may be used alone or two or more thereof may be used in combination. You may. In addition, in this specification, the term "inorganic filler" means a non-conductive inorganic filler unless it is clearly stated that it is a conductive filler.

繊維状無機充填剤としては、ガラス繊維、ウィスカー、ウォラストナイト、酸化亜鉛繊維、酸化チタン繊維、シリカ繊維、シリカ-アルミナ繊維、窒化硼素繊維、窒化ケイ素繊維、硼素繊維、チタン酸カリ繊維、等の鉱物繊維、チタン繊維等の金属繊維状物質が挙げられ、これらを1種又は2種以上用いることができる。中でも、ガラス繊維が好ましい。 Examples of the fibrous inorganic filler include glass fiber, whisker, wollastonite, zinc oxide fiber, titanium oxide fiber, silica fiber, silica-alumina fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, etc. Examples thereof include metal fibrous substances such as mineral fibers and titanium fibers of the above, and one or more of these can be used. Of these, glass fiber is preferable.

ガラス繊維の上市品の例としては、日本電気硝子(株)製、チョップドガラス繊維(ECS03T-790DE、平均繊維径:6μm)、オーウェンス コーニング ジャパン 合同会社製、チョップドガラス繊維(CS03DE 416A、平均繊維径:6μm)、日本電気硝子(株)製、チョップドガラス繊維(ECS03T-747H、平均繊維径:10.5μm)、日本電気硝子(株)製、チョップドガラス繊維(ECS03T-747、平均繊維径:13μm)、日東紡績(株)製、異形断面チョップドストランド CSG 3PA-830(長径28μm、短径7μm)、日東紡績(株)製、異形断面チョップドストランド CSG 3PL-962(長径20μm、短径10μm)等が挙げられる。 Examples of marketed products of glass fiber are chopped glass fiber (ECS03T-790DE, average fiber diameter: 6 μm) manufactured by Nippon Denki Glass Co., Ltd., chopped glass fiber (CS03DE 416A, average fiber) manufactured by Owens Corning Japan GK. Diameter: 6 μm), manufactured by Nippon Electric Glass Co., Ltd., chopped glass fiber (ECS03T-747H, average fiber diameter: 10.5 μm), manufactured by Nippon Electric Glass Co., Ltd., chopped glass fiber (ECS03T-747, average fiber diameter:: 13 μm), Nitto Spinning Co., Ltd., modified cross section chopped strand CSG 3PA-830 (major axis 28 μm, minor axis 7 μm), Nitto Spinning Co., Ltd., modified cross section chopped strand CSG 3PL-962 (major axis 20 μm, minor axis 10 μm) And so on.

繊維状無機充填剤は、一般的に知られているエポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物、脂肪酸等の各種表面処理剤により表面処理されていてもよい。表面処理により、PAS樹脂との密着性を向上させることができる。表面処理剤は、材料調製の前に予め繊維状無機充填剤に適用して表面処理又は収束処理を施しておくか、又は材料調製の際に同時に添加してもよい。 The fibrous inorganic filler may be surface-treated with various surface treatment agents such as generally known epoxy-based compounds, isocyanate-based compounds, silane-based compounds, titanate-based compounds, and fatty acids. The surface treatment can improve the adhesion with the PAS resin. The surface treatment agent may be applied to the fibrous inorganic filler in advance for surface treatment or convergence treatment before material preparation, or may be added at the same time as material preparation.

繊維状無機充填剤の繊維径は、特に限定されないが、初期形状(溶融混練前の形状)において、例えば5μm以上30μm以下とすることができる。ここで、繊維状無機充填剤の繊維径とは、繊維状無機充填剤の繊維断面の長径をいう。 The fiber diameter of the fibrous inorganic filler is not particularly limited, but can be, for example, 5 μm or more and 30 μm or less in the initial shape (shape before melt-kneading). Here, the fiber diameter of the fibrous inorganic filler means the major axis of the fiber cross section of the fibrous inorganic filler.

粉粒状無機充填剤としては、タルク(粒状)、シリカ、石英粉末、ガラスビーズ、ガラス粉、ケイ酸カルシウム、ケイ酸アルミニウム、珪藻土等のケイ酸塩、酸化鉄、酸化亜鉛、アルミナ(粒状)等の導電性を有しない金属酸化物、炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩、硫酸カルシウム、硫酸バリウム等の金属硫酸塩、その他炭化ケイ素、窒化ケイ素、窒化ホウ素、窒化アルミニウム等の窒化物、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;半導体材料(Si、Ge、Se、Te等の元素半導体;酸化物半導体等の化合物半導体等)を用いた充填剤等が挙げられ、これらを1種又は2種以上用いることができる。中でも、ガラスビーズ、炭酸カルシウムが好ましい。
炭酸カルシウムの上市品の例としては、東洋ファインケミカル(株)製、ホワイトンP-30(平均粒子径(50%d):5μm)等が挙げられる。また、ガラスビーズの上市品の例としては、ポッターズ・バロティーニ(株)製、EGB731A(平均粒子径(50%d):20μm)、ポッターズ・バロティーニ(株)製、EMB-10(平均粒子径(50%d):5μm)等が挙げられる。
粉粒状無機充填剤も、繊維状無機充填剤と同様に表面処理されていてもよい。
Examples of the powder / granular inorganic filler include talc (granular), silica, quartz powder, glass beads, glass powder, calcium silicate, aluminum silicate, silicate such as diatomaceous earth, iron oxide, zinc oxide, alumina (granular) and the like. Non-conductive metal oxides, metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate, and other nitrides such as silicon carbide, silicon nitride, boron nitride and aluminum nitride, Examples thereof include poorly soluble ion crystal particles such as calcium dioxide and barium fluoride; fillers using semiconductor materials (elemental semiconductors such as Si, Ge, Se and Te; compound semiconductors such as oxide semiconductors), and the like. One kind or two or more kinds can be used. Of these, glass beads and calcium carbonate are preferable.
Examples of products on the market for calcium carbonate include Whiten P-30 (average particle size (50% d): 5 μm) manufactured by Toyo Fine Chemicals Co., Ltd. Examples of commercially available glass beads include Potters Barotini Co., Ltd., EGB731A (average particle size (50% d): 20 μm), Potters Barotini Co., Ltd., EMB-10 (average particles). Diameter (50% d): 5 μm) and the like can be mentioned.
The powdery granular inorganic filler may be surface-treated in the same manner as the fibrous inorganic filler.

板状無機充填剤としては、例えば、ガラスフレーク、タルク(板状)、マイカ、カオリン、クレイ、アルミナ(板状)等が挙げられ、これらを1種又は2種以上用いることができる。中でも、ガラスフレーク、タルクが好ましい。
ガラスフレークの上市品の例としては、日本板硝子(株)製、REFG-108(平均粒子径(50%d):623μm)、(日本板硝子(株)製、ファインフレーク(平均粒子径(50%d):169μm)、日本板硝子(株)製、REFG-301(平均粒子径(50%d):155μm)、日本板硝子(株)製、REFG-401(平均粒子径(50%d):310μm)等が挙げられる。
タルクの上市品の例としては、松村産業(株)製 クラウンタルクPP、林化成(株)製 タルカンパウダーPKNN等が挙げられる。
板状無機充填剤も、繊維状無機充填剤と同様に表面処理されていてもよい。
Examples of the plate-shaped inorganic filler include glass flakes, talc (plate-shaped), mica, kaolin, clay, alumina (plate-shaped), and the like, and one or more of these can be used. Of these, glass flakes and talc are preferable.
Examples of marketed glass flakes are Nippon Plate Glass Co., Ltd., REFG-108 (average particle size (50% d): 623 μm), (Nippon Plate Glass Co., Ltd., fine crack (average particle size (50%)). d): 169 μm), manufactured by Nippon Plate Glass Co., Ltd., REFG-301 (average particle diameter (50% d): 155 μm), manufactured by Nippon Plate Glass Co., Ltd., REFG-401 (average particle diameter (50% d): 310 μm) ) Etc. can be mentioned.
Examples of talc products on the market include Crown Talc PP manufactured by Matsumura Sangyo Co., Ltd. and Tarkhan Powder PKNN manufactured by Hayashi Kasei Co., Ltd.
The plate-shaped inorganic filler may also be surface-treated in the same manner as the fibrous inorganic filler.

本実施形態においては、以上の無機充填剤の中でも、ガラス繊維、ガラスビーズ、ガラスフレーク、炭酸カルシウム及びタルクからなる群より選ばれる1種又は2種以上であることが好ましい。また、機械的物性の向上の観点から、無機充填剤は、PAS樹脂100質量部に対して15~200質量部含むことが好ましく、25~150質量部含むことがより好ましく、30~110質量部含むことが更に好ましい。 In the present embodiment, among the above-mentioned inorganic fillers, one or more selected from the group consisting of glass fibers, glass beads, glass flakes, calcium carbonate and talc is preferable. Further, from the viewpoint of improving mechanical properties, the inorganic filler preferably contains 15 to 200 parts by mass, more preferably 25 to 150 parts by mass, and 30 to 110 parts by mass with respect to 100 parts by mass of the PAS resin. It is more preferable to include it.

以上のように、本実施形態のPAS樹脂組成物は非導電性無機充填剤を含むことが好ましいが、導電性無機充填剤であっても、本実施形態の効果を妨げない範囲で含んでいてもよい。本実施形態のPAS樹脂組成物が導電性無機充填剤を含む場合、導電性無機充填剤の含有量は、成形品が電気絶縁性を示し得る量、具体的には、IEC60093に準拠して測定される成形品の常温(23℃)における体積固有抵抗を1×1014Ω・cm以上に保持し得る量で用いることが好ましい。尚、「導電性無機充填剤」の用語は当業者にはよく知られているが、カーボン系充填剤(カーボンブラック、炭素繊維、黒鉛等)、金属系充填剤(SUS繊維等の導電性を有する金属繊維、導電性を有する金属又は金属酸化物粉末等)、金属表面コート充填剤等の導電性を有する無機充填剤を意味する。一実施形態では、これらの導電性無機充填剤の含有量が、例えば、本実施形態のPAS樹脂組成物全体の10質量%以下であり、6質量%以下が好ましく、4質量%以下が更に好ましい。尚、導電性無機充填剤が導電性を発現し得る含有量は、導電性無機充填剤の種類・形状・導電性によっても異なる場合があるため、上記の含有量以上であっても良い場合もある。 As described above, the PAS resin composition of the present embodiment preferably contains a non-conductive inorganic filler, but even a conductive inorganic filler is contained within a range that does not interfere with the effects of the present embodiment. May be good. When the PAS resin composition of the present embodiment contains a conductive inorganic filler, the content of the conductive inorganic filler is measured in accordance with an amount at which the molded product can exhibit electrical insulation, specifically, IEC60093. It is preferable to use an amount that can maintain the volume resistivity of the molded product at room temperature (23 ° C.) of 1 × 10 14 Ω · cm or more. Although the term "conductive inorganic filler" is well known to those skilled in the art, carbon-based fillers (carbon black, carbon fiber, graphite, etc.) and metal-based fillers (SUS fiber, etc.) have conductivity. It means an inorganic filler having conductivity such as a metal fiber having, a metal having conductivity or a metal oxide powder, etc.), a metal surface coating filler, and the like. In one embodiment, the content of these conductive inorganic fillers is, for example, 10% by mass or less, preferably 6% by mass or less, and further preferably 4% by mass or less, based on the total PAS resin composition of the present embodiment. .. Since the content at which the conductive inorganic filler can exhibit conductivity may differ depending on the type, shape, and conductivity of the conductive inorganic filler, the content may be higher than the above content. be.

[他の成分]
本実施形態においては、その効果を害さない範囲で、上記各成分の他、その目的に応じた所望の特性を付与するために、一般に熱可塑性樹脂及び熱硬化性樹脂に添加される公知の添加剤、即ち、エラストマー、離型剤、潤滑剤、可塑剤、難燃剤、染料や顔料等の着色剤、結晶化促進剤、結晶核剤、各種酸化防止剤、熱安定剤、耐候性安定剤、腐食防止剤等を配合してもよい。尚、本実施形態のPAS樹脂組成物によりバリの発生を抑えることができるが、必要に応じてアルコキシシラン化合物等のバリ抑制剤を併用してもよい。
[Other ingredients]
In the present embodiment, in addition to the above-mentioned components, known additions generally added to thermoplastic resins and thermosetting resins in order to impart desired properties according to the purpose, as long as the effects are not impaired. Agents, that is, elastomers, mold release agents, lubricants, plastics, flame retardants, colorants such as dyes and pigments, crystallization accelerators, crystal nucleating agents, various antioxidants, heat stabilizers, weather resistance stabilizers, A corrosion inhibitor or the like may be blended. Although the PAS resin composition of the present embodiment can suppress the generation of burrs, a burrs inhibitor such as an alkoxysilane compound may be used in combination if necessary.

本実施形態のPAS樹脂組成物を用いて成形品を作製する方法としては特に限定はなく、公知の方法を採用することができる。例えば、本実施形態のPAS樹脂組成物を押出機に投入して溶融混練してペレット化し、このペレットを所定の金型を装備した射出成形機に投入し、射出成形することで作製することができる。 The method for producing a molded product using the PAS resin composition of the present embodiment is not particularly limited, and a known method can be adopted. For example, the PAS resin composition of the present embodiment may be put into an extruder, melt-kneaded and pelletized, and the pellets may be put into an injection molding machine equipped with a predetermined mold and injection-molded. can.

本実施形態のPAS樹脂組成物を成形してなる成形品としては、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料、水廻り関連部品材料等が挙げられる。具体的には、自動車の各種冷却系部品、イグニッション関連部品、ディストリビューター部品、各種センサー部品、各種アクチュエーター部品、スロットル部品、パワーモジュール部品、ECU部品、各種コネクター部品、配管継手(管継手)、ジョイント等が挙げられる。
また、その他の用途として、例えば、LED、センサー、ソケット、端子台、プリント基板、モーター部品、ECUケース等の電気・電子部品、照明部品、テレビ部品、炊飯器部品、電子レンジ部品、アイロン部品、複写機関連部品、プリンター関連部品、ファクシミリ関連部品、ヒーター、エアコン用部品等の家庭・事務電気製品部品に用いることができる。
Examples of the molded product obtained by molding the PAS resin composition of the present embodiment include electrical / electronic equipment component materials, automobile equipment component materials, chemical equipment component materials, water-related component materials, and the like. Specifically, various cooling system parts of automobiles, ignition related parts, distributor parts, various sensor parts, various actuator parts, throttle parts, power module parts, ECU parts, various connector parts, piping joints (pipe fittings), joints. And so on.
Other uses include, for example, LEDs, sensors, sockets, terminal blocks, printed circuit boards, motor parts, electrical and electronic parts such as ECU cases, lighting parts, TV parts, rice cooker parts, microwave parts, iron parts, etc. It can be used for household and office electrical product parts such as copier-related parts, printer-related parts, facsimile-related parts, heaters, and air conditioner parts.

以下に、実施例により本実施形態を更に具体的に説明するが、本実施形態は以下の実施例に限定されるものではない。尚、特に断りがない限り、原料は市販品を用いた。 Hereinafter, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited to the following examples. Unless otherwise specified, commercially available raw materials were used.

[実施例1~7、比較例1~2]
各実施例・比較例において、表1に示す各原料成分をドライブレンドした後、シリンダー温度320℃の二軸押出機に投入して(ガラス繊維は押出機のサイドフィード部より別添加)、溶融混練し、ペレット化した。尚、表1において、各成分の数値は質量部を示す。
また、使用した各原料成分の詳細を以下に示す。
[Examples 1 to 7, Comparative Examples 1 to 2]
In each Example / Comparative Example, after each raw material component shown in Table 1 is dry-blended, it is put into a twin-screw extruder having a cylinder temperature of 320 ° C. (glass fiber is added separately from the side feed portion of the extruder) and melted. It was kneaded and pelletized. In Table 1, the numerical values of each component indicate parts by mass.
The details of each raw material component used are shown below.

(1)PAS樹脂
・PPS樹脂:(株)クレハ製、フォートロンKPS(溶融粘度:30Pa・s(せん断速度:1200sec-1、310℃))
(1) PAS resin / PPS resin: Kureha Corporation, Fortron KPS (melt viscosity: 30 Pa · s (shear velocity: 1200 sec -1 , 310 ° C))

(PPS樹脂の溶融粘度の測定)
上記PPS樹脂の溶融粘度は以下のようにして測定した。
(株)東洋精機製作所製キャピログラフを用い、キャピラリーとして1mmφ×20mmLのフラットダイを使用し、バレル温度310℃、せん断速度1200sec-1での溶融粘度を測定した。
(Measurement of melt viscosity of PPS resin)
The melt viscosity of the PPS resin was measured as follows.
Using a capillary graph manufactured by Toyo Seiki Seisakusho Co., Ltd., a flat die of 1 mmφ × 20 mmL was used as a capillary, and the melt viscosity was measured at a barrel temperature of 310 ° C. and a shear rate of 1200 sec -1 .

(2)無機ナノチューブ
・アプライド・ミネラルズ社製、「ハロイサイト G(685445)」(平均直径:50nm、平均内径:15nm)
(2) "Haloysite G (685445)" manufactured by Inorganic Nanotube Applied Minerals (average diameter: 50 nm, average inner diameter: 15 nm)

(3)非導電性無機充填剤
・ガラス繊維:オーウェンス コーニング ジャパン 合同会社製、チョップドストランド、繊維径:10.5μm、長さ3mm
(3) Non-conductive inorganic filler / glass fiber: Owens Corning Japan GK, chopped strand, fiber diameter: 10.5 μm, length 3 mm

[評価]
得られた各実施例・比較例のペレットを用いて以下の評価を行った。
(1)バリ長
一部に20μmの金型間隙を有するバリ測定部が外周に設けられている円盤状キャビティーの金型を用いて、シリンダー温度320℃、金型温度150℃で、キャビティーが完全に充填するのに必要な最小圧力で射出成形し、その部分に発生するバリ長さを写像投影機にて拡大して測定した。測定結果を表1に示す。
[evaluation]
The following evaluations were performed using the obtained pellets of each Example / Comparative Example.
(1) Burr length Using a disk-shaped cavity mold having a burr measuring part with a mold gap of 20 μm on the outer circumference, the cavity is at a cylinder temperature of 320 ° C and a mold temperature of 150 ° C. Was injection-molded at the minimum pressure required for complete filling, and the burr length generated in that portion was magnified and measured with a mapping projector. The measurement results are shown in Table 1.

(2)樹脂組成物の溶融粘度
(株)東洋精機製作所製キャピログラフを用い、キャピラリーとして1mmφ×20mmLのフラットダイを使用し、バレル温度310℃、せん断速度1000sec-1での溶融粘度(MV)を測定した。測定結果を表1に示す。溶融粘度が500Pa・s以下の場合に流動性が優れていると言える。
(2) Melt Viscosity of Resin Composition Using a capillary graph manufactured by Toyo Seiki Seisakusho Co., Ltd., using a flat die of 1 mmφ × 20 mmL as a capillary, melt viscosity (MV) at a barrel temperature of 310 ° C. and a shear rate of 1000 sec -1 . It was measured. The measurement results are shown in Table 1. It can be said that the fluidity is excellent when the melt viscosity is 500 Pa · s or less.

(3)シャルピー衝撃強度
射出成形にて、シリンダー温度320℃、金型温度150℃でISO3167に準じた試験片(幅10mm、厚み4mmt)を作製した。この試験片を用いて、ISO179/1eAに準じてシャルピー衝撃強度(kJ/m)を測定した。測定結果を表1に示す。
(3) Charpy impact strength A test piece (width 10 mm, thickness 4 mmt) conforming to ISO3167 was produced by injection molding at a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C. Using this test piece, the Charpy impact strength (kJ / m 2 ) was measured according to ISO179 / 1eA. The measurement results are shown in Table 1.

Figure 2022096861000001
Figure 2022096861000001

表1より、実施例1~7は比較例1と比較してバリの発生が抑制されていることが分かる。また、実施例1~7におけるシャルピー衝撃強度は、比較例1と比較すると若干の低下は見られるが許容範囲内である。一方、無機ナノチューブを過剰に添加した比較例2においては、バリの発生は抑制されたが、シャルピー衝撃強度が著しく低下していることが分かる。
以上より、PAS樹脂組成物に無機ナノチューブを所定量添加することにより、バリの発生を抑制可能であるとともに、シャルピー衝撃強度の低下を抑えられることが分かる。
From Table 1, it can be seen that the generation of burrs is suppressed in Examples 1 to 7 as compared with Comparative Example 1. Further, the Charpy impact strength in Examples 1 to 7 is within the permissible range, although a slight decrease is observed as compared with Comparative Example 1. On the other hand, in Comparative Example 2 in which the inorganic nanotubes were excessively added, it can be seen that the generation of burrs was suppressed, but the Charpy impact strength was significantly reduced.
From the above, it can be seen that by adding a predetermined amount of inorganic nanotubes to the PAS resin composition, it is possible to suppress the generation of burrs and suppress the decrease in Charpy impact strength.

Claims (5)

温度310℃及びせん断速度1200sec-1で測定した溶融粘度が5~500Pa・sのポリアリーレンサルファイド樹脂100質量部に対して、無機ナノチューブ(但し、炭素原子を含まないものに限る。)を0.01質量部以上10質量部未満含む、ポリアリーレンサルファイド樹脂組成物。 Inorganic nanotubes (limited to those containing no carbon atom) were added to 100 parts by mass of a polyarylene sulfide resin having a melt viscosity of 5 to 500 Pa · s measured at a temperature of 310 ° C. and a shear rate of 1200 sec -1 . A polyarylene sulfide resin composition containing 01 parts by mass or more and less than 10 parts by mass. 前記無機ナノチューブが、アルミノシリケートナノチューブ、窒化ホウ素ナノチューブ、酸化チタンナノチューブ、金属硫化物ナノチューブ、及び金属ハロゲン化物ナノチューブからなる群より選ばれる1種である、請求項1に記載のポリアリーレンサルファイド樹脂組成物。 The polyarylene sulfide resin composition according to claim 1, wherein the inorganic nanotube is one selected from the group consisting of aluminosilicate nanotubes, boron nitride nanotubes, titanium oxide nanotubes, metal sulfide nanotubes, and metal halide nanotubes. .. 前記アルミノシリケートナノチューブが、ハロイサイトナノチューブ又はメタハロイサイトナノチューブである、請求項2に記載のポリアリーレンサルファイド樹脂組成物。 The polyarylene sulfate resin composition according to claim 2, wherein the aluminosilicate nanotube is a halloysite nanotube or a meta halloysite nanotube. 前記ポリアリーレンサルファイド樹脂100質量部に対して、非導電性無機充填剤(但し、前記無機ナノチューブを除く。)5~250質量部を更に含む、請求項1~3のいずれか1項に記載のポリアリーレンサルファイド樹脂組成物。 The invention according to any one of claims 1 to 3, further comprising 5 to 250 parts by mass of a non-conductive inorganic filler (excluding the inorganic nanotubes) with respect to 100 parts by mass of the polyarylene sulfide resin. Polyallylensulfide resin composition. 前記非導電性無機充填剤が、ガラス繊維、ガラスビーズ、ガラスフレーク、炭酸カルシウム及びタルクからなる群より選ばれる1種又は2種以上である、請求項4に記載のポリアリーレンサルファイド樹脂組成物。 The polyarylene sulfide resin composition according to claim 4, wherein the non-conductive inorganic filler is one or more selected from the group consisting of glass fibers, glass beads, glass flakes, calcium carbonate and talc.
JP2020210089A 2020-12-18 2020-12-18 Polyarylene sulfide resin composition Pending JP2022096861A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020210089A JP2022096861A (en) 2020-12-18 2020-12-18 Polyarylene sulfide resin composition
CN202111506794.5A CN114644830A (en) 2020-12-18 2021-12-10 Polyarylene sulfide resin composition
KR1020210177770A KR20220088326A (en) 2020-12-18 2021-12-13 Polyarylene sulfide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020210089A JP2022096861A (en) 2020-12-18 2020-12-18 Polyarylene sulfide resin composition

Publications (2)

Publication Number Publication Date
JP2022096861A true JP2022096861A (en) 2022-06-30
JP2022096861A5 JP2022096861A5 (en) 2023-11-13

Family

ID=81992416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020210089A Pending JP2022096861A (en) 2020-12-18 2020-12-18 Polyarylene sulfide resin composition

Country Status (3)

Country Link
JP (1) JP2022096861A (en)
KR (1) KR20220088326A (en)
CN (1) CN114644830A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023008417A1 (en) * 2021-07-30 2023-02-02

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146955A (en) 1987-12-03 1989-06-08 Kureha Chem Ind Co Ltd Polyphenylene sulfide resin composition and its production
JPH0621169A (en) 1992-07-03 1994-01-28 Seiko Epson Corp Wafer prober, ic prober, and their probing methods
JP3157104B2 (en) 1995-10-06 2001-04-16 住友ベークライト株式会社 Polyphenylene sulfide resin composition for precision molding
JP4684629B2 (en) 2004-11-18 2011-05-18 ポリプラスチックス株式会社 Polyarylene sulfide resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023008417A1 (en) * 2021-07-30 2023-02-02
JP7382541B2 (en) 2021-07-30 2023-11-16 ポリプラスチックス株式会社 Polyarylene sulfide resin composition and insert molded products

Also Published As

Publication number Publication date
CN114644830A (en) 2022-06-21
KR20220088326A (en) 2022-06-27

Similar Documents

Publication Publication Date Title
KR101457016B1 (en) Thermal conductive thermoplastic resin composition having excellent water-resistance and article using the same
JP2005161693A (en) Insert molded product
WO2007052727A1 (en) Polyarylene sulfide composition
JP2008260830A (en) Heat-conductive resin composition
JP5618039B2 (en) Thermally conductive resin composition and molded body comprising the same
JP4744911B2 (en) High thermal conductive resin composition
JP2010116518A (en) Heat conductive resin composition and molded product formed thereof
JPWO2018066637A1 (en) Polyarylene sulfide resin composition, molded article and production method
JP6976366B2 (en) Polyarylene sulfide resin composition
JP2022096861A (en) Polyarylene sulfide resin composition
JP7122491B2 (en) Method for suppressing burrs in polyarylene sulfide resin composition
JP4777080B2 (en) Polyarylene sulfide resin composition for molded article having box shape and molded article having box shape
KR101355026B1 (en) Thermoplastic resin composition with excellent thermal conductivity and moldability
JPWO2007046451A1 (en) Polyarylene sulfide resin composition and polyarylene sulfide resin molded product in contact with organic solvent
JP2002179914A (en) Insert-molded product
JP2007106854A (en) Thermally conductive resin composition
JP2021105112A (en) Polyarylene sulfide resin composition for insert formation and insert molding
WO2013161844A1 (en) Resin composition having high thermal conductivity
JP2878921B2 (en) Polyarylene sulfide resin composition
JP7382541B2 (en) Polyarylene sulfide resin composition and insert molded products
JP2022003107A (en) Polyarylene sulfide resin composition
JP2005306955A (en) Method for producing highly heat-conductive resin composition
JP2020176243A (en) Heat-conductive resin composition and molded article formed of the same
KR102331612B1 (en) Polyarylene sulfide resin composition and molded article thereof
JP2021116352A (en) Onboard optical module component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231102