JP2022090261A - 自動皮膚刺激装置 - Google Patents

自動皮膚刺激装置 Download PDF

Info

Publication number
JP2022090261A
JP2022090261A JP2020202534A JP2020202534A JP2022090261A JP 2022090261 A JP2022090261 A JP 2022090261A JP 2020202534 A JP2020202534 A JP 2020202534A JP 2020202534 A JP2020202534 A JP 2020202534A JP 2022090261 A JP2022090261 A JP 2022090261A
Authority
JP
Japan
Prior art keywords
skin
phase
unit
control unit
stimulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020202534A
Other languages
English (en)
Inventor
一志 渡辺
Kazushi Watanabe
和彦 山下
Kazuhiko Yamashita
哲夫 辻岡
Tetsuo Tsujioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University Public Corporation Osaka
Original Assignee
University Public Corporation Osaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Public Corporation Osaka filed Critical University Public Corporation Osaka
Priority to JP2020202534A priority Critical patent/JP2022090261A/ja
Publication of JP2022090261A publication Critical patent/JP2022090261A/ja
Pending legal-status Critical Current

Links

Images

Abstract

Figure 2022090261000001
【課題】自律神経を整える装置の汎用性をより高める技術を提供する。
【解決手段】自動皮膚刺激装置1は、対象者の呼吸が呼気相であることを判定する呼気判定部90と、対象者の皮膚の所定位置に非侵襲の機械的刺激を付与する刺激部60と、呼気相において刺激部60を動作させる制御部92と、を備える。刺激部60は、皮膚に当接する当接面と、当接面を進退させて皮膚に押圧力を作用させる押圧機構62と、を含んでもよい。制御部92は、呼気相への移行に連動して押圧機構62を駆動し、呼気相において皮膚に押圧力を付与してもよい。
【選択図】図3

Description

本発明は、対象者の副交感神経賦活に供される装置に関する。
ストレスや加齢による自律神経系の乱れが心身に弊害をもたらすことはよく知られている。周知のとおり、自律神経には交感神経と副交感神経がある。交感神経は身体の状態を活発にする作用があり、副交感神経は身体を休ませてエネルギーを蓄える作用がある。基本的に両者は同時にはたらき、状況に応じて交感神経が優位になったり、副交感神経が優位になったりしながら自律神経としてのバランスをとっている。
現代社会はストレス社会ともいわれ、自律神経系の乱れが生じやすい環境にある。こうした中、自律神経を外部から人為的に整えるための様々な研究がなされている。例えば、患者に経皮的刺激を与えることで副交感神経活動と交感神経活動のバランスを選択的に調整する装置なども提案されている(特許文献1参照)。
特表2020-525252号公報
特許文献1に記載の装置は、予め設定された経皮的刺激を患者に自動的に付与でき、理学療法士のような熟達した技能を要することなく扱える点で好ましい。一方、副交感神経活動と交感神経活動とのバランスを調整するための操作が必要であり、使用に際して依然として高い専門知識が要求される点で改善の余地がある。こうした中、発明者らは、特に副交感神経賦活に重点をおいて皮膚刺激のタイミングを効果的に設定することで、より汎用性の高い装置を提供できるとの認識に到った。
本発明はこのような課題に鑑みてなされたものであり、その目的の一つは、自律神経を整える装置の汎用性をより高める技術を提供することにある。
本発明のある態様は、自動皮膚刺激装置である。この装置は、対象者の呼吸が呼気相であることを検出する呼気判定部と、対象者の皮膚の所定位置に非侵襲の機械的刺激を付与する刺激部と、呼気相において刺激部を動作させる制御部と、を備える。
本発明によれば、自律神経を整える装置の汎用性をより高める技術を提供できる。
自動皮膚刺激装置の構成および使用態様を表す模式図である。 自動皮膚刺激装置の電気的構成を概略的に表す図である。 自動皮膚刺激装置の機能ブロック図である。 呼気相の判定処理を模式的に表す図である。 振動刺激処理を表すタイミングチャートである。 皮膚刺激処理の流れを示すフローチャートである。 振動刺激部位による効果の違いを表す図である。 振動刺激周波数による効果の違いを表す図である。 鼻腔内温度を測定することで呼気相と吸気相の判定を行う処理を模式的に表す図である。
以下、本発明の実施形態を、図面を参照して詳細に説明する。
本実施形態では、対象者の呼気相に同期させるように非侵襲の皮膚刺激(経皮的刺激)を与える自動皮膚刺激装置を提供する。これはいわゆる「促通」と呼ばれる自律神経刺激法に基づくものである。皮膚に適度な刺激を与えることにより、自律神経の調整機能を高めることができる。後述の実験例に示されるように、その皮膚刺激を呼気に連動させることにより、副交感神経亢進を効果的に実現できる。以下、その装置の具体的構成について説明する。
図1は、実施形態に係る自動皮膚刺激装置の構成および使用態様を表す模式図である。
自動皮膚刺激装置1は、対象者Mの呼気相を検出するためのセンサ2,7と、対象者Mの皮膚に振動刺激を付与するアクチュエータ4と、呼気相に連動してアクチュエータ4を駆動する制御装置6を備える。センサ2,7およびアクチュエータ4は、本実施形態では制御装置6に対して有線接続されるが、無線接続されてもよい。
センサ2は、本実施形態では加速度センサ(傾斜角センサ)であり、対象者Mの腹部に着脱可能に装着される。一方、アクチュエータ4は、対象者Mの皮膚表面に装着可能な圧電素子からなり、通電により振動荷重を発生する。アクチュエータ4は、対象者Mの外関や指先などに着脱可能に装着される。「外関」は自律神経に関わるツボとして知られ、その刺激により自律神経の働きが整えられる。制御装置6は、センサ2の出力に基づき、対象者Mの呼吸が呼気相にあるのか又は吸気相にあるのかを判定する。そして、呼気相に合わせてアクチュエータ4を駆動する。詳細については後述する。
センサ7は、本実施形態では温度センサであり、対象者Mの鼻腔に着脱可能に装着される。温度センサは鼻腔内温度(呼気および吸気の温度)を測定するため、鼻腔内に固定するためのアタッチメントに取り付けられている。測定した温度は制御装置6に伝えられる。鼻腔内温度を測定することでも呼気判定できる(詳細後述)。なお、センサ2とセンサ7は、併用して呼気判定してもよいし、どちらか一方だけで呼気判定をしてもよい。
図2は、自動皮膚刺激装置1の電気的構成を概略的に表す図である。
センサ2は、3軸加速度センサであり、対象者の腹部表面の変位加速度を検出する。この変位加速度に基づいて、腹部が膨らむ吸気状態と縮む呼気状態を判別できる(詳細後述)。センサ7は、呼気判定の一手段として制御装置6に接続可能であるが、本実施形態では特に使用しない。これについては変形例に関連して後述する。
アクチュエータ4は、振動機構26および圧力センサ28を含む。振動機構26は、図示しない磁石と、その磁石の周囲に巻回されたコイルと、そのコイルの先端に固定された振動板を有する。コイルに通電することにより振動板を振動させることができる。振動板の先端面が皮膚への「当接面」となる。振動板の振動周波数は、コイルに供給される駆動信号(駆動電流)の周波数に応じて変化する。振動板による皮膚への押圧力は、その駆動電流の大きさに応じて変化する。
圧力センサ28は、図示しないロードセル(圧電素子)からなる。圧力センサ28は、振動機構26の振動板と一体に振動し、その振動板が皮膚に付与する圧力を検出する。圧力センサ28の検出信号は、信号線を介して制御装置6に入力される。
制御装置6は、制御演算回路30を中心に構成される。制御演算回路30には、操作ボタン32、表示装置34、駆動回路36、計時用タイマ(図示せず)等が接続されている。操作ボタン32は、ユーザの操作入力を受け付ける。表示装置34は、例えば液晶ディスプレイからなり、ユーザによる設定情報、各センサによる検出結果、制御演算回路30による演算結果などを表示する。駆動回路36は、任意周波数発生回路38、フィルタ40、セレクタ42および駆動アンプ44を含み、振動機構26を駆動する。
任意周波数発生回路38により、振動機構26の駆動信号(電流波形)を任意に設定変更できる。フィルタ40は、複数のローパスフィルタLPF1~3を有し、任意周波数発生回路38にて生成された駆動信号のうち選択された周波数の信号を抽出する。ローパスフィルタLPF1~3はバンドパスフィルタであってもよい。セレクタ42は、フィルタ40にて抽出する駆動信号の周波数を設定する。駆動アンプ44は、駆動信号を増幅して振動機構26のコイルに供給する。なお、簡略化のため、フィルタ40とセレクタ42を省略し、任意周波数発生回路38の出力を駆動アンプ44に接続してもよい。
振動機構26の駆動電圧を把握するために、駆動アンプ44から出力された駆動信号は制御演算回路30にも入力される。各センサの検出信号は、図示略のA/D変換器を介して制御演算回路30に入力される。
制御演算回路30は、センサ2の出力に基づき、対象者の呼吸状態が呼気相であるか否かを判定し、呼気相において振動機構26を駆動する。このとき、制御演算回路30は、圧力センサ28の出力に基づき、振動機構26による振動荷重(皮膚への押圧力)が予め設定した値に維持されるようフィードバック制御を実行する。
図3は、自動皮膚刺激装置1の機能ブロック図である。
自動皮膚刺激装置1の各構成要素は、CPUおよび各種コプロセッサなどの演算器、メモリやストレージといった記憶装置、それらを連結する通信ラインを含むハードウェアと、記憶装置に格納され、演算器に処理命令を供給するソフトウェアによって実現される。以下に説明する各ブロックは、ハードウェア単位の構成ではなく、機能単位のブロックを示している。
自動皮膚刺激装置1は、通信部50、データ処理部52、データ格納部54、入出力インタフェース部56、検出部58および刺激部60を含む。通信部50は、図示しない外部端末とのデータの送受信処理を担当する。データ格納部54は、各種プログラムやデータを格納する。入出力インタフェース部56は、入力部70および出力部72を含む。入力部70は、ユーザによる操作ボタン32を介した設定情報等の各種入力を受け付ける。出力部72は、データ処理部52による処理結果を表示装置34に出力する。
データ処理部52は、制御演算回路30を含み、通信部50により取得されたデータ、入出力インタフェース部56を介して入力された情報、およびデータ格納部54に格納されているデータに基づいて各種処理を実行する。データ処理部52は、通信部50、データ格納部54、入出力インタフェース部56、検出部58および刺激部60のインタフェースとしても機能する。
刺激部60は、対象者の皮膚の所定位置に非侵襲の機械的刺激を付与する。刺激部位としては指、前腕、肩などが考えられるが、第2指先(人差し指)や前腕(特に外関)が副交感神経亢進に優位である点で好ましい(詳細後述)。刺激部60は、対象者の皮膚に押圧力を付与する押圧機構62を含む。非侵襲の機械的刺激としては、適度な圧力による押圧刺激の繰り返しが好ましい。押圧機構62は、上述した振動板の当接面を進退させて対象者の皮膚に押圧力を作用させる。より詳細には、押圧機構62が上述した振動機構26を含む。振動機構26は、振動板の当接面を振動させて対象者の皮膚に所定周波数の振動刺激を付与する。
検出部58は、加速度検出部80および圧力検出部82を含む。加速度検出部80はセンサ2を含み、対象者の腹部表面の変位加速度(3軸加速度情報)を検出する。この加速度情報に基づいて呼気相の判定がなされるが、その詳細については後述する。圧力検出部82は圧力センサ28を含み、振動機構26による皮膚への押圧力を検出する。
データ処理部52は、呼気判定部90および制御部92を含む。呼気判定部90は、加速度検出部80の検出情報に基づいて呼気相であるか否かの判定を行うが、その詳細については後述する。制御部92は、呼気相において振動機構26を駆動し、振動板を所定周波数で振動させる。このとき、制御部92は、圧力検出部82の検出情報に基づき、振動機構26による押圧力が設定押圧力となるように制御する。なお、計測される圧力は振動による変化を伴うので、本実施形態ではその二乗平均値の平方根(RMS値)あるいは振幅の大きさに基づいて圧力を調整する。制御部92は、また、ユーザの操作入力に応じて任意周波数発生回路38やセレクタ42の設定を変更し、振動板の振幅や振動周波数を適宜調整する。
次に、自動皮膚刺激方法について詳細に説明する。
上述のように、制御部92は、対象者の呼吸が呼気相へ移行したことに連動して振動機構26を駆動し、皮膚に振動刺激を付与する。本実施形態では、この呼気相の判定に主成分分析を用いる。
図4は、呼気相の判定処理を模式的に表す図である。図4(A)は判定に用いられる主成分分析の概要を示し、図4(B)は主成分軸の設定方法を示す。
呼吸時には、腹部表面の角度が変化する。そこで、本実施形態では、対象者の腹部にセンサ2を装着し、その傾斜角の変化を検出する(図1参照)。
図4(A)は、所定のサンプリング期間においてセンサ2により検出された重力加速度ベクトルの分布を示す。3軸方向に示される数値の単位は「G(地球の重力加速度)」である。各サンプリング点における座標成分の二乗和の平方根が1Gとなる。本実施形態では、このサンプリング期間を8秒とし、サンプリング周期を0.1秒としたが、対象者の年齢や性別等の属性に応じて適切な期間や周期を設定してよい。
呼気判定部90は、これらのサンプリングデータに主成分分析を施し、重心Gを通る主成分軸Lを算出する。この主成分軸Lは、慣性モーメントのアナロジーから求めることができる。具体的には、サンプリングデータ点の慣性モーメントの合計が最小になる軸として求めることができる。
呼気判定部90は、その主成分軸Lの方向に沿って重心Gを境とする一方の側を「呼気領域」、他方の側を「吸気領域」として判定基準を設定する。この判定基準および主成分軸Lと重心Gは逐次更新される。呼気判定部90は、センサ2による検出値がその判定基準のどちら側にあるかに基づき、対象者の現在の呼吸状態が呼気相又は吸気相のいずれであるかを判定する。
あるいは、図4(A)に示すように、腹部が膨らむ方向に「吸気方向」、腹部が縮む方向に「呼気方向」を定め、変位加速度の測定点の移動方向を求め、呼気方向と吸気方向を判定してもよい。なお、主成分軸Lの演算効率を高めるために、図4(B)に示すように、予め所定数の代表軸L1~Ln(例えばn=12など)を定めておき、主成分分析にて算出される主成分軸が最も近似する代表軸を主成分軸Lとして設定してもよい。
図5は、振動刺激処理を表すタイミングチャートである。同図の横軸は時間の経過を示す。同図上段は呼吸判定結果を示し、下段は振動刺激タイミングを示す。
制御部92は、吸気相から呼気相への移行をトリガとして振動機構26の駆動を開始し、呼気相から吸気相への移行をトリガとして振動機構26の駆動を停止させる。制御部92は、呼気相の終始にわたり継続的に振動機構26を駆動し、振動板を設定された周波数で振動させる。
図示の例では、時間t1において呼気相への移行を判定したため振動機構26を駆動し(刺激をオン)、時間t2において吸気相への移行を判定したため振動機構26の駆動を停止している(刺激をオフ)。また、時間t3において再び呼気相への移行を判定したため振動機構26を駆動し、時間t4において再び吸気相への移行を判定したため振動機構26の駆動を停止している。
次に、自動皮膚刺激装置1が実行する具体的処理の流れについて説明する。
図6は、皮膚刺激処理の流れを示すフローチャートである。この処理は、所定の処理周期(制御周期)で繰り返し実行される。
呼気判定部90は、加速度検出部80による検出情報を取得する(S10)。続いて、その検出情報(サンプリングデータ)に基づく重力加速度ベクトルの分布から主成分軸を設定し(S12)、呼気相を判定するための判定基準を設定する(S14)。呼気判定部90は、今回の検出情報を用いてその判定基準を参照し、対象者の呼吸が呼気相にあるか吸気相にあるかを判定する(S16)。
このとき呼気相であると判定されると(S18のY)、制御部92は、皮膚刺激が開始済でなければ(S20のN)、振動機構26を駆動して皮膚刺激を開始する(S22)。既に皮膚刺激が開始済であれば(S20のY)、S22の処理をスキップする。
制御部92は、また、圧力検出部82の検出情報に基づき、振動刺激による圧力(圧力検出部82の測定値のRMS値、あるいは、振動機構26の駆動電圧から推定した値)が設定圧力に維持されているか否かを判定する。設定圧力でなければ(S24のN)、駆動アンプ44の増幅率を変更し、振動機構26の駆動電圧を変更するなどして振動機構26による押圧力を調整する(フィードバック制御)。設定圧力であれば(S24のY)、S26の処理をスキップする。
一方、呼気相ではなく(S18のN)、吸気相であると判定されると(S28のY)、制御部92は、振動機構26の駆動を停止する(S30)。吸気相でもなければ(S28のN)、S30の処理をスキップする。
ユーザの操作入力による終了指示がなされれば(S32のY)、それまでの状態をデータとして格納するなどの予め定める終了処理を実行する(S34のY)。終了指示がなければ(S32のN)、S34の処理をスキップする。
次に、呼気相に同期した振動刺激処理による効果について説明する。
本実施形態では、上述した振動刺激処理による効果を検証するために、副交感神経亢進の評価の指標となる3つのパラメータについての変化の有無を測定する実験を行った。この3つのパラメータには、心拍数、HF、α波の値が含まれる。
本実験では、振動刺激開始前の安静期間(before)、振動刺激による刺激期間(stim)、および振動刺激終了後の安静期間(after)においてこれらの値を測定した。刺激期間を2分、各安静期間を3分とした。
ここで、「心拍数」および「HF」は、心電図の測定により算出できる。「心拍数」については、心電図をサンプリング周波数1kHzで取り込み、R-R間隔から瞬時心拍数を算出した。周知のとおり、心電図の波形にはQRS波が含まれる。QRS波の幅は、全ての心室筋が脱分極を完了するまでの時間に相当する。「R-R間隔」は、QRS波から次のQRS波までの時間間隔、つまり心室の興奮周期を示し、これに基づいて心拍数を算出できる。
「HF」については、R-R間隔時系列データを用いて心拍変動スペクトル解析を行い、その高周波成分(High-Frequency)として取得した。副交感神経が高まると、心拍数が顕著に下がることが知られている。また、副交感神経が優位にある場合にHF成分が現れるため、HF成分の数値が副交感神経の活性度として評価されることも当業者には周知である。
(刺激部位による効果検証)
図7は、振動刺激部位による効果の違いを表す図である。
本実験では、アクチュエータ4の装着部位を第2指先、外関、肩(僧帽筋)とした場合の各パラメータの変化について検証した。振動刺激における振動板の振動周波数は250Hzで一定とした。図7(A)は心拍数(拍/分)、図7(B)はHF(ms)、図7(C)はα波の変化率を示す。ここでいう「変化率」は、振動刺激前(before)の値に対する比率を示す。各図の横軸は測定タイミングを示す。各図の「C」は比較例として振動刺激を付与しない場合(Control)を示す。
本実験結果によれば、いずれの部位についても、呼気相に同期した振動刺激による刺激中に心拍数が顕著に低下し(図7(A))、HFが高まっている(図7(B))。また、α波については、第2指先と外関についてその刺激中に周波数解析のパワー値が大きくなり、振動刺激後もある程度それが維持されている(図7(C))。リラックス効果という観点では、第2指先と外関について高い効果が得られていることが分かる。
(振動刺激周波数による効果検証)
図8は、振動刺激周波数による効果の違いを表す図である。
本実験では、アクチュエータ4の装着部位を第2指先に設定し、振動板の振動周波数を変化させた場合の効果を検証した。振動周波数を150Hz、250Hz、350Hzとした場合について実験を行った。図8(A)は心拍数の変化率、図8(B)はHFの変化率、図8(C)はα波の変化率を示す。各図の横軸は測定タイミングを示す。各図の「C」は比較例として振動刺激を付与しない場合(Control)を示す。
本実験結果によれば、呼気相に同期した振動刺激により、心拍数、HF、α波のいずれのパラメータについても、副交感神経亢進を示す良好な効果が得られたことが分かる。これは図7に示した実験結果と共通する。そしてさらに、心拍数については振動周波数が高いほど大きく低下することが分かる(図8(A))。HFについては、350Hzの場合に顕著に高まっている(図8(B))。α波については、振動刺激による刺激中はいずれの振動周波数についても大きくなっているが、振動刺激終了後は150Hzの場合について他の周波数よりも持続性が認められる。
以上の実験結果より、振動周波数を100~500Hzの範囲内に設定することで、呼気相に同期した振動刺激による副交感神経亢進に良好な効果が得られることが分かる。特に350Hz程度とすることで、対象者の自律神経を整えつつリラックス効果を与えられることが分かる。なお、振動周波数が500Hzを超えると、振動板の振動音が高くなり、対象者がこれを不快に感じるなど、副交感神経亢進を妨げる別の問題を生じさせる可能性がある。
以上説明したように、本実施形態の自動皮膚刺激装置1によれば、対象者の呼気相が自動的に検知され、自動的に振動刺激が付与されるため、ユーザがその装置の使用について高い専門知識を有していなくとも良好な効果が得られる。皮膚の表面で振動板を振動させるのみであり非侵襲であるため、対象者の年齢等を問わず利用できる。このため、副交感神経亢進ひいては自律神経を整える装置としての汎用性も高いものとなり得る。
また、ユーザの操作入力により振動の振幅や周波数を適宜設定変更できるため、対象者の属性や好みに応じて刺激の強さや触感を調整できる。このため、対象者に応じた心地よさ(リラックス効果)を個別に追求することもでき、その対象者の副交感神経亢進を効果的に促すことができる。
以上、本発明の好適な実施例について説明したが、本発明はその特定の実施例に限定されるものではなく、本発明の技術思想の範囲内で種々の変形が可能であることはいうまでもない。
上記実施形態では、呼気相の判定を腹部の挙動(3軸加速度)に基づいて判定する構成を例示した。変形例においては、対象者の鼻腔内温度の変化に基づいて呼気相を判定してもよい。具体的には、鼻腔内温度を検出可能なサーミスタや熱電対(図2のセンサ7参照)を利用できる。鼻腔内温度が呼気相において吸気相よりも高くなる知見を利用するものである。
図9は、鼻腔内温度を測定することで呼気相と吸気相の判定を行う処理を模式的に表す図である。
本変形例では、鼻腔内温度を測定し、時間平均による平均温度Tを求める。測定期間は直近の30~60秒程度を想定している。2個の判定温度を設ける。吸気相から呼気相に遷移したと判定する判定温度をT+Δt1(第1閾値)、呼気相から吸気相に遷移したと判定する判定温度をT-Δt2(第2閾値)とする。Δt1とΔt2は適切に設定される。図9上段の測定温度に基づいて判定した結果を図9下段に示している。呼気判定部は、検出される鼻腔内温度が第1閾値よりも高ければ呼気相であると判定し、第2閾値よりも低ければ吸気相であると判定する。設定温度Δt1とΔt2を適切に定めることで、鼻腔内温度の測定誤差の影響を受けにくくなる。なお、Δt1とΔt2の値については1℃程度を想定している。このように呼気相と吸気相の各判定閾値の間に不感帯(閾値の幅:Δt1+Δt2)を設けることで、閾値周辺で制御が不安定になることを防止又は抑制している。
このようにしても呼気相を判定できるが、サーミスタ等の温度センサを鼻腔内に挿入し続ける必要があり、対象者によっては心理的負荷が大きくなることも想定される。その点では、上記実施形態のような加速度センサを利用する構成のほうが好ましい。
他の変形例として、サーモグラフィカメラにより鼻腔内温度を検出してもよい。あるいは、圧力センサや長さセンサを用いて対象者の胸囲の変化を検出してもよい。胸郭の動きに着目し、吸気相において胸囲が大きくなり、呼気相において胸囲が小さくなる知見を利用するものである。
上記実施形態では、呼気相に同期させて設定周波数(一定振幅)の振動刺激を付与した。つまり、非侵襲の機械的刺激として振動刺激を付与する構成を例示した。変形例においては、振動しない一定圧力(一定エネルギー)の刺激を、呼気相において連続的に付与してもよい。アクチュエータに押圧板を設け、押圧機構により呼気相に連動して押圧板を皮膚表面に押し付けてもよい。振動刺激の周波数を極小することで、これに類似した押圧力を付与してもよい。あるいは、押圧刺激と振動刺激を含めた刺激パターンにより機械的刺激を付与してもよい。
上記実施形態では述べなかったが、アクチュエータの当接面として刷毛を用いた刺激装置を構成し、呼気相に同期させながら刷毛を駆動してもよい。その場合、その当接面を回転駆動式としてもよい。また、刷毛に限らず当接面を有する回転体を設け、一定の回転周期ごとに皮膚に押圧力を付与する構成を採用してもよい。
上記実施形態では、呼気相の終始にわたり振動板を一定周期で継続的に振動させる構成を例示した。変形例においては、振動板の振動周期を可変とし、所定の振動パターンにて振動させてもよい。呼気相において、振動板を間欠的に振動させてもよい。
なお、本発明は上記実施例や変形例に限定されるものではなく、要旨を逸脱しない範囲で構成要素を変形して具体化することができる。上記実施例や変形例に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成してもよい。また、上記実施例や変形例に示される全構成要素からいくつかの構成要素を削除してもよい。
1 自動皮膚刺激装置、2 センサ、4 アクチュエータ、6 制御装置、7 センサ、26 振動機構、28 圧力センサ、30 制御演算回路、32 操作ボタン、34 表示装置、36 駆動回路、50 通信部、52 データ処理部、54 データ格納部、56 入出力インタフェース部、58 検出部、60 刺激部、62 押圧機構、80 加速度検出部、82 圧力検出部、90 呼気判定部、92 制御部、G 重心、L 主成分軸、M 対象者。

Claims (10)

  1. 対象者の呼吸が呼気相であることを判定する呼気判定部と、
    前記対象者の皮膚の所定位置に非侵襲の機械的刺激を付与する刺激部と、
    前記呼気相において前記刺激部を動作させる制御部と、
    を備えることを特徴とする自動皮膚刺激装置。
  2. 前記刺激部は、
    皮膚に当接する当接面と、
    前記当接面を振動させる振動機構と、
    を含み、
    前記制御部は、前記呼気相において前記振動機構を駆動し、前記当接面を所定周波数で振動させることを特徴とする請求項1に記載の自動皮膚刺激装置。
  3. 前記制御部は、前記呼気相の終始にわたり前記当接面を継続的に振動させることを特徴とする請求項2に記載の自動皮膚刺激装置。
  4. 前記制御部は、前記当接面を100~500Hzの範囲内の周波数で振動させることを特徴とする請求項2又は3に記載の自動皮膚刺激装置。
  5. ユーザの操作入力を受け付ける入力部をさらに備え、
    前記制御部は、ユーザの操作入力に応じて前記当接面の振動の振幅および周波数の少なくとも一方を設定変更することにより、前記刺激部の動作を変化させることを特徴とする請求項2~4のいずれかに記載の自動皮膚刺激装置。
  6. 前記刺激部は、
    皮膚に当接する当接面と、
    前記当接面を進退させて前記皮膚に押圧力を作用させる押圧機構と、
    を含み、
    前記制御部は、前記呼気相への移行に連動して前記押圧機構を駆動し、前記呼気相において前記皮膚に押圧力を付与することを特徴とする請求項1又は2に記載の自動皮膚刺激装置。
  7. 前記押圧力を検出する圧力検出部をさらに備え、
    前記制御部は、前記押圧機構による押圧力が設定押圧力となるように制御することを特徴とする請求項6に記載の自動皮膚刺激装置。
  8. 前記制御部は、前記呼気相の終始にわたり前記押圧力を連続的に付与することを特徴とする請求項6又は7に記載の自動皮膚刺激装置。
  9. 前記対象者の胴部に装着させるための加速度センサをさらに備え、
    前記呼気判定部は、前記加速度センサの出力情報に基づいて前記呼気相を判定することを特徴とする請求項1~8のいずれかに記載の自動皮膚刺激装置。
  10. 鼻腔内温度を検出するための温度センサをさらに備え、
    前記呼気判定部は、検出された鼻腔内温度が予め定める判定基準値よりも高いときに前記呼気相であると判定することを特徴とする請求項1~8のいずれかに記載の自動皮膚刺激装置。
JP2020202534A 2020-12-07 2020-12-07 自動皮膚刺激装置 Pending JP2022090261A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020202534A JP2022090261A (ja) 2020-12-07 2020-12-07 自動皮膚刺激装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020202534A JP2022090261A (ja) 2020-12-07 2020-12-07 自動皮膚刺激装置

Publications (1)

Publication Number Publication Date
JP2022090261A true JP2022090261A (ja) 2022-06-17

Family

ID=81990414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020202534A Pending JP2022090261A (ja) 2020-12-07 2020-12-07 自動皮膚刺激装置

Country Status (1)

Country Link
JP (1) JP2022090261A (ja)

Similar Documents

Publication Publication Date Title
JP6949874B2 (ja) 睡眠呼吸障害(sdb)のケアのための加速度計に基づく感知
JP5231418B2 (ja) 呼吸障害中の神経性刺激のためのシステム
JP5389650B2 (ja) 呼吸によるフィードバックを用いた神経性刺激のためのシステム
US10632040B2 (en) Systems, devices, components and methods for triggering or inducing resonance or high amplitude oscillations in a cardiovascular system of a patient
US8588919B2 (en) Method and apparatus of breathing-controlled electrical stimulation for skeletal muscles
JP2000342690A (ja) 麻酔深度監視装置
JPWO2007063900A1 (ja) 身体表面刺激治療装置ならびに身体表面刺激治療プログラムおよびこれを記録したコンピュータ読み取り可能な記録媒体
JPH08224318A (ja) 上部気道障害を処理するための医療用装置
JP2004504922A (ja) Fes制御システムへのインターフェイス
JP2009233024A (ja) 迷走神経刺激システム
JP2022542117A (ja) 呼吸検出
US11696868B2 (en) Systems, devices, components and methods for triggering or inducing resonance or high amplitude oscillations in a cardiovascular system of a patient
JP2007510447A (ja) 人間または哺乳動物を治療するためのカウンタパルセーション電気治療装置
US9943461B1 (en) Systems, devices, components and methods for triggering or inducing resonance or high amplitude oscillations in a cardiovascular system of a patient
JP7333402B2 (ja) 睡眠位置治療及びペース調整された呼吸を提供するためのシステム及び方法
WO2019077304A1 (en) DEVICE AND METHOD FOR GUIDING BREATHING OF A USER
US10098810B1 (en) Systems, devices, components and methods for triggering or inducing resonance or high amplitude oscillations in a cardiovascular system of a patient
JP2022090261A (ja) 自動皮膚刺激装置
US20220387793A1 (en) Electrical stimulation synchronized with patient breathing
JP4493229B2 (ja) 浴槽設備
EP4299098A1 (en) A sleep aid apparatus and control thereof
EP4298999A1 (en) A sleep aid apparatus and control thereof
US20240001069A1 (en) Sleep aid apparatus and control thereof
JP3843467B2 (ja) 治療器制御装置
US20240001070A1 (en) Sleep aid apparatus and control thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20210108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210108