JP2022085740A - Planar heating element - Google Patents

Planar heating element Download PDF

Info

Publication number
JP2022085740A
JP2022085740A JP2020197569A JP2020197569A JP2022085740A JP 2022085740 A JP2022085740 A JP 2022085740A JP 2020197569 A JP2020197569 A JP 2020197569A JP 2020197569 A JP2020197569 A JP 2020197569A JP 2022085740 A JP2022085740 A JP 2022085740A
Authority
JP
Japan
Prior art keywords
planar heating
resin
heating element
layer
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020197569A
Other languages
Japanese (ja)
Other versions
JP7514174B2 (en
Inventor
雄一 近藤
Yuichi Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP2020197569A priority Critical patent/JP7514174B2/en
Publication of JP2022085740A publication Critical patent/JP2022085740A/en
Application granted granted Critical
Publication of JP7514174B2 publication Critical patent/JP7514174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

To provide a planar heating element which is thin and is excellent in flexibility.SOLUTION: A planar heating element has: an electrically insulating film base material 1 composed of a polyurethane resin; a planar heating layer 3 that is provided on the electrically insulating film base material, and contains a carbon material selected from carbon nanomaterials such as a carbon nanotube, a graphene platelet and a carbon nanofiber, and a resin; a pair of electrode layers 2 arranged so as to be connected to the planar heating layer; and an electrically insulating coating layer 4 coating the planer heating layer.SELECTED DRAWING: Figure 1

Description

本発明は、面状発熱体に関するものである。 The present invention relates to a planar heating element.

面状発熱体は、薄く形成でき、また可撓性をもたせることができることから、様々な分野で使用され、各分野の用途に応じた構成が提案されている。例えば暖房用の熱源として使用され、可撓性が求められる用途では、布や樹脂からなる基材上に、発熱体と電極が形成され、被覆材で被覆された構成を有する面状発熱体が提案されている。 Since the planar heating element can be formed thin and can be made flexible, it is used in various fields, and configurations according to the applications in each field have been proposed. For example, in applications where flexibility is required, which is used as a heat source for heating, a heating element and an electrode are formed on a base material made of cloth or resin, and a planar heating element having a structure covered with a covering material is used. Proposed.

例えば、特許文献1には、布基材と、布基材の少なくとも一面に形成された導電性エラストマ層と、導電性エラストマに対して配設された電極と、これらの表面に対して配設された絶縁層を有する面状発熱体が開示されている。 For example, in Patent Document 1, a cloth base material, a conductive elastomer layer formed on at least one surface of the cloth base material, electrodes arranged for the conductive elastomer, and arrangements for the surfaces thereof. A planar heating element having an insulating layer is disclosed.

また、特許文献2には、柔軟性基材と、柔軟性基材上に接合された柔軟性樹脂フィルムと、柔軟性樹脂フィルム上に導電性ペーストにより印刷形成された櫛形電極と、高分子抵抗体インクにより印刷形成された高分子抵抗体と、これらを被覆する柔軟性被覆材を有し、さらに柔軟性基材の一面または両面に、応力に対する伸び規制部として配設された織布を有する面状発熱体が開示されている。 Further, Patent Document 2 describes a flexible base material, a flexible resin film bonded on the flexible base material, a comb-shaped electrode printed and formed on the flexible resin film by a conductive paste, and a polymer resistance. It has a polymer resistor printed and formed by body ink, a flexible coating material that covers them, and a woven fabric that is disposed on one or both sides of a flexible base material as an elongation restricting portion against stress. A planar heating element is disclosed.

特開昭63-236283号公報Japanese Unexamined Patent Publication No. 63-236283 特開2007-179776号公報Japanese Unexamined Patent Publication No. 2007-179767

しかしながら、特許文献1では、布基材および導電性エラストマ層がいずれも厚いため、薄型化、柔軟性、重量の点で課題がある。
また、特許文献2では、製造時の印刷工程の強度を確保するため伸び規制部として不織布を設けているため、その分だけ厚くなる。また、櫛形電極が使用され、発熱面の領域にも電極(枝電極)が設けられているため、柔軟性が低下する。
本発明の目的は、薄く、柔軟性に優れた面状発熱体を提供することにある。
However, in Patent Document 1, since the cloth base material and the conductive elastomer layer are both thick, there are problems in terms of thinning, flexibility, and weight.
Further, in Patent Document 2, since the non-woven fabric is provided as the elongation restricting portion in order to secure the strength of the printing process at the time of manufacturing, the thickness is increased by that amount. Further, since the comb-shaped electrode is used and the electrode (branch electrode) is also provided in the region of the heat generating surface, the flexibility is reduced.
An object of the present invention is to provide a thin, flexible planar heating element.

(1)ポリウレタン樹脂からなる電気絶縁性フィルム基材と、
前記電気絶縁性フィルム基材上に設けられ、カーボン材料と樹脂を含む面状発熱層と、
前記面状発熱層に接続して配置された一対の電極層と、
前記面状発熱層を覆う電気絶縁性被覆層と、を有する面状発熱体。
(2)前記面状発熱層の厚みが10~100μmの範囲にある、(1)に記載の面状発熱体。
(3)前記面状発熱層の体積抵抗率が300~500μΩmの範囲にある、(1)又は(2)に記載の面状発熱体。
(4)前記面状発熱層の樹脂がポリウレタン樹脂である、(1)から(3)のいずれかに記載の面状発熱体。
(5)前記面状発熱層は、前記カーボン材料としてカーボンナノ材料を含む、(1)から(4)のいずれかに記載の面状発熱体。
(6)前記電極層の厚みが10~200μmの範囲にあり、
前記電気絶縁性被覆層の厚みが5~200μmの範囲にあり、
前記電気絶縁性フィルム基材の厚みが5~500μmの範囲にある、(1)から(5)のいずれかに記載の面状発熱体。
(1) An electrically insulating film base material made of polyurethane resin and
A planar heat generating layer provided on the electrically insulating film base material and containing a carbon material and a resin,
A pair of electrode layers arranged connected to the planar heat generating layer,
A planar heating element having an electrically insulating coating layer covering the planar heating layer.
(2) The planar heating element according to (1), wherein the thickness of the planar heating element is in the range of 10 to 100 μm.
(3) The planar heating element according to (1) or (2), wherein the volume resistivity of the planar heating element is in the range of 300 to 500 μΩm.
(4) The planar heating element according to any one of (1) to (3), wherein the resin of the planar heating layer is a polyurethane resin.
(5) The planar heating element according to any one of (1) to (4), wherein the planar heating element contains a carbon nanomaterial as the carbon material.
(6) The thickness of the electrode layer is in the range of 10 to 200 μm, and the thickness is in the range of 10 to 200 μm.
The thickness of the electrically insulating coating layer is in the range of 5 to 200 μm, and the thickness is in the range of 5 to 200 μm.
The planar heating element according to any one of (1) to (5), wherein the thickness of the electrically insulating film base material is in the range of 5 to 500 μm.

本発明によれば、薄く、柔軟性に優れた面状発熱体を提供することができる。 According to the present invention, it is possible to provide a thin, highly flexible planar heating element.

本発明の実施形態による面状発熱体の断面図である。It is sectional drawing of the planar heating element by embodiment of this invention. 本発明の実施形態による面状発熱体の平面図である。It is a top view of the planar heating element according to the embodiment of this invention. 本発明の実施例の面状発熱体の発熱挙動を示す図である。It is a figure which shows the heat generation behavior of the planar heating element of the Example of this invention.

以下、本発明の好適な実施の形態について説明する。
まず、本実施形態による面状発熱体の基本構造を図1の断面図および図2の平面図を用いて説明する。図1は、図2のA-A線に沿った断面図である。
図1において、符号1は電気絶縁性フィルム基材、符号2は電極層、符号3は面状発熱層、符号4は電気絶縁性被覆層を示す。なお、図2においては下層側の部材の位置が分かるように、電気絶縁性被覆層4の下の面状発熱層3が見えるように、また面状発熱層3の下の電極層2が見えるように描いている。
Hereinafter, preferred embodiments of the present invention will be described.
First, the basic structure of the planar heating element according to the present embodiment will be described with reference to the cross-sectional view of FIG. 1 and the plan view of FIG. FIG. 1 is a cross-sectional view taken along the line AA of FIG.
In FIG. 1, reference numeral 1 is an electrically insulating film base material, reference numeral 2 is an electrode layer, reference numeral 3 is a planar heat generating layer, and reference numeral 4 is an electrically insulating coating layer. In FIG. 2, the planar heating layer 3 under the electrically insulating coating layer 4 can be seen, and the electrode layer 2 under the planar heating layer 3 can be seen so that the positions of the members on the lower layer side can be seen. It is drawn like this.

図1及び図2に示すように、電気絶縁性フィルム基材1上に、一対のライン状の電極層2が所定の間隔(W)で平行配置されている。これらの電極層2の上面を覆うように電気絶縁性基材1上に面状発熱層3が配置されている。面状発熱層3を覆うように電気絶縁性基材1上に電気絶縁性被覆層4が配置されている。一対の電極層2に給電することで、一対の電極層2の間の面状発熱層に電流が流れ、発熱する。面状発熱層3における2つの電極層2の間の部分が発熱領域となり、2つの電極層2の間の長さWと、電極層2が形成された部分の長さLが、発熱領域の縦と横の長さに相当する。
本例では、電極層2の上面を覆うように面状発熱層3が配置され、面状発熱層3の下面と電極層2の上面とが接続しているが、面状発熱層3上に電極層2を設けて、面状発熱層3の上面と電極層2の下面を接続させてもよい。
As shown in FIGS. 1 and 2, a pair of line-shaped electrode layers 2 are arranged in parallel at predetermined intervals (W) on the electrically insulating film base material 1. The planar heat generating layer 3 is arranged on the electrically insulating base material 1 so as to cover the upper surface of these electrode layers 2. The electrically insulating coating layer 4 is arranged on the electrically insulating base material 1 so as to cover the planar heat generating layer 3. By supplying power to the pair of electrode layers 2, a current flows through the planar heat generating layer between the pair of electrode layers 2 to generate heat. The portion of the planar heat-generating layer 3 between the two electrode layers 2 becomes a heat-generating region, and the length W between the two electrode layers 2 and the length L of the portion where the electrode layer 2 is formed are the heat-generating regions. Corresponds to the vertical and horizontal lengths.
In this example, the planar heating layer 3 is arranged so as to cover the upper surface of the electrode layer 2, and the lower surface of the planar heating layer 3 and the upper surface of the electrode layer 2 are connected to each other, but on the planar heating layer 3. The electrode layer 2 may be provided to connect the upper surface of the planar heat generating layer 3 and the lower surface of the electrode layer 2.

本発明の実施形態における電気絶縁性フィルム基材は、フィルム状あるいはシート状に成形された樹脂からなる。電気絶縁性基材に用いられる樹脂としては、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、フッ素樹脂、塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル樹脂、ポリエチレンテレフタレート樹脂、ポリウレタン樹脂、アクリル樹脂が挙げられる。柔軟性(例えば伸び率)及び耐溶剤性の点から、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル樹脂、ポリウレタン樹脂が好ましい。柔軟性(例えば伸び率)及び耐溶剤性、さらに耐薬品性(耐酸、耐アルカリ)の点から、ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂が好ましい。これらの中でも、面状発熱層との接着性(付着性)、また製造時において面状発熱層形成用の塗料(例えばカーボン分散液)に対する濡れ性の点から、ポリウレタン樹脂が特に好ましい。また、ポリウレタン樹脂は、ソフトセグメントとハードセグメントから構成されるリニヤー型の熱可塑性ポリマーであり、結合単位であるウレタン基同士の強固な水素結合により強く凝集したハードセグメントと、フレキシブルなソフトセグメント(ポリオール鎖)のバランスにより、柔軟性と強靭さ、弾性を兼ね備えるため、柔軟性と強靭さに優れる電気絶縁性フィルム基材を形成できる。 The electrically insulating film base material in the embodiment of the present invention is made of a resin formed into a film or a sheet. Resins used for the electrically insulating base material include polyimide resin, polyamideimide resin, polyamide resin, fluororesin, vinyl chloride resin, polyethylene resin, polypropylene resin, ethylene vinyl acetate resin, polyethylene terephthalate resin, polyurethane resin, and acrylic resin. Can be mentioned. From the viewpoint of flexibility (for example, elongation) and solvent resistance, polyethylene resin, polypropylene resin, ethylene vinyl acetate resin, and polyurethane resin are preferable. Polyethylene resin, polypropylene resin, and polyurethane resin are preferable from the viewpoint of flexibility (for example, elongation rate), solvent resistance, and chemical resistance (acid resistance, alkali resistance). Among these, polyurethane resin is particularly preferable from the viewpoint of adhesiveness (adhesiveness) to the planar heat generating layer and wettability to a paint (for example, carbon dispersion) for forming the planar heating layer at the time of manufacture. Polyurethane resin is a liner-type thermoplastic polymer composed of soft segments and hard segments, and has hard segments strongly aggregated by strong hydrogen bonds between urethane groups, which are bonding units, and flexible soft segments (polyurethane). Since the balance of the chains) has flexibility, toughness, and elasticity, it is possible to form an electrically insulating film base material having excellent flexibility and toughness.

本発明の実施形態における電気絶縁性フィルム基材の厚みは、5~500μmの範囲に設定することができ、基材としての強度の点から5μm以上が好ましく、10μm以上がより好ましく、50μm以上がさらに好ましく、薄型化や柔軟性の点から500μm以下が好ましく、300μm以下がより好ましく、200μm以下がさらに好ましい。 The thickness of the electrically insulating film base material in the embodiment of the present invention can be set in the range of 5 to 500 μm, preferably 5 μm or more, more preferably 10 μm or more, and 50 μm or more from the viewpoint of strength as a base material. More preferably, it is preferably 500 μm or less, more preferably 300 μm or less, and even more preferably 200 μm or less from the viewpoint of thinning and flexibility.

本発明の実施形態における電気絶縁性被覆層は、面状発熱層を被覆して(面状発熱層上に電極層がある場合は電極層と面状発熱層を被覆して)、電気絶縁性が確保できれば、特に制限されないが、面状発熱層およびフィルム基材との接着性(付着性)や被覆のしやすさの点から、塗布により形成できる樹脂層が好ましい。電気絶縁性被覆層を形成する材料としては、種々の樹脂コーティング材(絶縁塗料)を用いることができる。あるいは、上述の電気絶縁性フィルム基材を電気絶縁性被覆層として用いることもできる。この場合、下層側のフィルム基材と上層側のフィルム基材(電気絶縁性被覆層)の外周縁を融着封止することで互いに接着することができる。
電気絶縁性被覆層を構成する樹脂としては、電気絶縁性基材を構成する前述の樹脂を挙げることができ、柔軟性(例えば伸び率)、面状発熱層との接着性(付着性)、コーティング材に対する濡れ性、耐溶剤性、耐薬品性(耐酸、耐アルカリ)の点から、ポリウレタン樹脂が特に好ましい。例えば、ポリウレタン樹脂からなる電気絶縁性被覆層は、ウレタン系ポリマーコート剤を用いて形成することができる。
The electrically insulating coating layer in the embodiment of the present invention covers the planar heat generating layer (when the electrode layer is on the planar heating layer, it covers the electrode layer and the planar heating layer), and has electrical insulating properties. However, the resin layer that can be formed by coating is preferable from the viewpoint of adhesiveness (adhesiveness) to the planar heat generating layer and the film substrate and ease of coating. Various resin coating materials (insulating paints) can be used as the material for forming the electrically insulating coating layer. Alternatively, the above-mentioned electrically insulating film base material can also be used as the electrically insulating coating layer. In this case, the film base material on the lower layer side and the outer peripheral edge of the film base material (electrically insulating coating layer) on the upper layer side can be bonded to each other by fusion-sealing.
Examples of the resin constituting the electrically insulating coating layer include the above-mentioned resins constituting the electrically insulating base material, which have flexibility (for example, elongation), adhesiveness to the planar heat generating layer (adhesiveness), and the like. Polyurethane resin is particularly preferable from the viewpoint of wettability to the coating material, solvent resistance, and chemical resistance (acid resistance, alkali resistance). For example, the electrically insulating coating layer made of polyurethane resin can be formed by using a urethane-based polymer coating agent.

本発明の実施形態における電気絶縁性被覆層の厚みは、5~200μmの範囲に設定でき、被覆層の強度や段差被覆性の点から5μm以上が好ましく、10μm以上がより好ましく、20μm以上がさらに好ましく、薄型化や柔軟性の点から200μm以下が好ましく、150μm以下がより好ましく、100μm以下がさらに好ましい。 The thickness of the electrically insulating coating layer in the embodiment of the present invention can be set in the range of 5 to 200 μm, and is preferably 5 μm or more, more preferably 10 μm or more, and further 20 μm or more from the viewpoint of the strength of the coating layer and the step covering property. It is preferable, from the viewpoint of thinning and flexibility, 200 μm or less is preferable, 150 μm or less is more preferable, and 100 μm or less is further preferable.

本発明の実施形態における電極層は、導電性テープ(例えば導電性粘着テープ)や、銀ペースト等の導電性ペーストを用いて形成することができる。電極層の厚みは、10~200μmの範囲に設定でき、十分な導電性および強度の店から10μm以上が好ましく、20μm以上がより好ましく、薄型化や柔軟性、電極層による段差の被覆のしやすさの点から200μm以下が好ましく、100μm以下がより好ましい。 The electrode layer in the embodiment of the present invention can be formed by using a conductive tape (for example, a conductive adhesive tape) or a conductive paste such as a silver paste. The thickness of the electrode layer can be set in the range of 10 to 200 μm, preferably 10 μm or more from a store with sufficient conductivity and strength, more preferably 20 μm or more, thinning and flexibility, and easy to cover steps with the electrode layer. From this point of view, 200 μm or less is preferable, and 100 μm or less is more preferable.

本発明の実施形態における面状発熱層は、カーボン材料と樹脂を含む導電膜である。この面状発熱層は、マトリクスとしての樹脂中に導電性材料としてのカーボン材料が均一に分散して存在している。そのため、面状発熱層中のカーボン材料は、必要最小量の含有量で、面状発熱層の均一な温度分布の発熱を可能にする。また、面状発熱層は、カーボン材料が分散状態であり、マトリクスが樹脂であるため、柔軟性に優れる。また、面状発熱層は樹脂を含むため、樹脂からなる電気絶縁性フィルム基材との親和性が高く、フィルム基材に対する接着性(付着性)に優れるため、剥がれにくく、耐久性に優れた面状発熱体を得ることができる。 The planar heat generating layer in the embodiment of the present invention is a conductive film containing a carbon material and a resin. In this planar heat-generating layer, the carbon material as the conductive material is uniformly dispersed in the resin as the matrix. Therefore, the carbon material in the planar heating layer enables heat generation with a uniform temperature distribution in the planar heating layer with the minimum required content. Further, the planar heat generating layer is excellent in flexibility because the carbon material is in a dispersed state and the matrix is a resin. In addition, since the planar heating layer contains a resin, it has a high affinity with an electrically insulating film substrate made of a resin, and has excellent adhesiveness (adhesiveness) to the film substrate, so that it is difficult to peel off and has excellent durability. A planar heating element can be obtained.

本発明の実施形態における面状発熱層の厚みは、10~200μmの範囲に設定でき、十分な強度や発熱を得る点から10μm以上が好ましく、20μm以上がより好ましく、薄型化や柔軟性、消費電力の点から200μm以下が好ましく、100μm以下がより好ましく、80μm以下がさらに好ましい。 The thickness of the planar heat generating layer in the embodiment of the present invention can be set in the range of 10 to 200 μm, preferably 10 μm or more, more preferably 20 μm or more, thinning, flexibility, and consumption from the viewpoint of obtaining sufficient strength and heat generation. From the viewpoint of power consumption, 200 μm or less is preferable, 100 μm or less is more preferable, and 80 μm or less is further preferable.

本発明の実施形態における面状発熱層の体積抵抗率は、300~500μΩmの範囲に設定できる。面状発熱層が、このような体積抵抗率を有していれば、例えば30V以下の比較的低電圧の印加により、十分な発熱量を得ることができ、例えば12V/24V車両の電源や太陽電池などの低電圧電源を使用可能である。面状発熱層に印加する電圧は、面状発熱体の電極間距離に応じて、例えば1~30Vの範囲に設定でき、又は3~30Vの範囲に設定できる。 The volume resistivity of the planar heating layer in the embodiment of the present invention can be set in the range of 300 to 500 μΩm. If the planar heating layer has such a volume resistivity, a sufficient amount of heat can be obtained by applying a relatively low voltage of, for example, 30 V or less, for example, a power supply for a 12 V / 24 V vehicle or the sun. A low voltage power source such as a battery can be used. The voltage applied to the planar heating layer can be set, for example, in the range of 1 to 30V or in the range of 3 to 30V, depending on the distance between the electrodes of the planar heating element.

本発明の実施形態における面状発熱層に含まれるカーボン材料としては、カーボンナノチューブ、グラフェンプレートレット、カーボンナノファイバー等のカーボンナノ材料、黒鉛、カーボンブラックが挙げられ、これらの2種以上を組み合わせて用いてもよい。これらのカーボン材料の中でも、カーボンナノ材料が好ましく、カーボンナノチューブ及びグラフェンプレートレットからなる群から選ばれる少なくとも一種のカーボン材料が好ましい。例えば、グラフェンプレートレットを主材とするカーボン材料、カーボンナノチューブを主材とするカーボン材料、グラフェンプレートレットを主材として含み、さらにカーボンナノチューブを含むカーボン材料を用いることができる。特に、グラフェンプレートレットを主材として含むカーボン材料は、カーボン材料中のグラフェンプレートレットの比率が60質量%以上が好ましく、70質量%以上がより好ましく、一方、90質量%以下が好ましく、80質量%以下がより好ましく、他のカーボン材料(好ましくはカーボンナノチューブ)の比率が40質量%以下が好ましく、30質量%以下がより好ましく、一方、10質量%以上が好ましく、20質量%以上がより好ましい。カーボンナノチューブを主材とするカーボン材料は、カーボン材料中のカーボンナノチューブの比率が60質量%以上が好ましく、70質量%以上がより好ましい。 Examples of the carbon material contained in the planar heating layer in the embodiment of the present invention include carbon nanomaterials such as carbon nanotubes, graphene platelets, and carbon nanofibers, graphite, and carbon black, and a combination of two or more of these can be mentioned. You may use it. Among these carbon materials, carbon nanomaterials are preferable, and at least one carbon material selected from the group consisting of carbon nanotubes and graphene platelets is preferable. For example, a carbon material containing graphene platelet as a main material, a carbon material containing carbon nanotubes as a main material, a carbon material containing graphene platelet as a main material, and a carbon material containing carbon nanotubes can be used. In particular, in the carbon material containing graphene platelet as a main material, the ratio of graphene platelet in the carbon material is preferably 60% by mass or more, more preferably 70% by mass or more, while it is preferably 90% by mass or less, preferably 80% by mass. % Or less is more preferable, the ratio of other carbon materials (preferably carbon nanotubes) is preferably 40% by mass or less, more preferably 30% by mass or less, while 10% by mass or more is preferable, and 20% by mass or more is more preferable. .. In the carbon material containing carbon nanotubes as a main material, the ratio of carbon nanotubes in the carbon material is preferably 60% by mass or more, more preferably 70% by mass or more.

カーボンナノチューブ(CNT)としては、単層カーボンナノチューブ(SWNT)、多層カーボンナノチューブ(MWNT)があり、MWNTには、例えば2層、さらに3層、4層のものがある。CNTは、直径0.5~500nmのものがあり、好ましくは直径3~100nm、より好ましくは直径5~25nmのものを用いることができる。CNTは、数mmの長さのものがあるが、例えば500μm以下、あるいは100μm以下のものを用いることができ、アスペクト比(直径に対する長さの比)が5以上のものを用いることができ、好ましくは50以上、より好ましく100以上のものを用いることができる。 Examples of carbon nanotubes (CNTs) include single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), and MWNTs include, for example, two-walled, three-walled, and four-walled ones. The CNT has a diameter of 0.5 to 500 nm, preferably a diameter of 3 to 100 nm, and more preferably a diameter of 5 to 25 nm. The CNTs have a length of several mm, but for example, those having a length of 500 μm or less or 100 μm or less can be used, and those having an aspect ratio (ratio of length to diameter) of 5 or more can be used. It is preferable to use 50 or more, more preferably 100 or more.

グラフェンプレートレットとしては、単層のグラフェン、単層のグラフェンがスタックした多層のグラフェンがあり、これらの両方を含んでいてもよい。グラフェンプレートレットは、グラフェンの層数が1~100層のものを用いることができ、10~90層が好ましく、20~60層がより好ましい。
グラフェンプレートレットのサイズとしては、厚み(グラフェン平面に垂直方向の長さ)が100nm以下のものを用いることができ、10nm以下が好ましく、1nm以下がより好ましく、グラフェン平面方向の長さ(幅)は1μm以上が好ましく、20μm以下が好ましい。
Graphene platelets include single-layer graphene and multi-layer graphene in which single-layer graphene is stacked, and may contain both of these. As the graphene platelet, one having 1 to 100 layers of graphene can be used, preferably 10 to 90 layers, and more preferably 20 to 60 layers.
As the size of the graphene platelet, one having a thickness (length in the direction perpendicular to the graphene plane) of 100 nm or less can be used, preferably 10 nm or less, more preferably 1 nm or less, and the length (width) in the graphene plane direction. Is preferably 1 μm or more, and preferably 20 μm or less.

本発明の実施形態における面状発熱層に含まれる樹脂としては、マトリクス樹脂として機能し、カーボン材料を層内に分散状態で保持できるバインダー樹脂として機能するものを用いることができる。また、使用する電気絶縁性フィルム基材を構成する樹脂と親和性がある樹脂が好ましく、同種の樹脂であることが好ましい。
本発明の実施形態における面状発熱層に含まれる樹脂としては、前述の電気絶縁性フィルム基材を構成する樹脂と同様な樹脂を挙げることができる。すなわち、本発明の実施形態における面状発熱層に含まれる樹脂としては、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、フッ素樹脂、塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル樹脂、ポリエチレンテレフタレート樹脂、ポリウレタン樹脂、アクリル樹脂が挙げられる。柔軟性(例えば伸び率)及び耐溶剤性の点から、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル樹脂、ポリウレタン樹脂が好ましい。柔軟性(例えば伸び率)及び耐溶剤性、さらに耐薬品性(耐酸、耐アルカリ)の点から、ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂が好ましい。これらの中でも、電気絶縁性フィルム基材との接着性(付着性)、また製造時において面状発熱層形成用の塗料(例えばカーボン分散液)の塗布性の点から、ポリウレタン樹脂が特に好ましい。また、前述の通り、ポリウレタン樹脂は、ソフトセグメントとハードセグメントから構成されるリニヤー型の熱可塑性ポリマーであり、結合単位であるウレタン基同士の強固な水素結合により強く凝集したハードセグメントと、フレキシブルなソフトセグメント(ポリオール鎖)のバランスにより、柔軟性と強靭さ、弾性を兼ね備えるため、柔軟性と強靭性に優れた面状発熱層を得ることができる。
As the resin contained in the planar heat generating layer in the embodiment of the present invention, a resin that functions as a matrix resin and functions as a binder resin that can hold the carbon material in a dispersed state in the layer can be used. Further, a resin having an affinity with the resin constituting the electrically insulating film substrate to be used is preferable, and a resin of the same type is preferable.
Examples of the resin contained in the planar heat generating layer in the embodiment of the present invention include the same resin as the resin constituting the above-mentioned electrically insulating film base material. That is, the resin contained in the planar heating layer in the embodiment of the present invention includes a polyimide resin, a polyamideimide resin, a polyamide resin, a fluororesin, a vinyl chloride resin, a polyethylene resin, a polypropylene resin, an ethylene vinyl acetate resin, and a polyethylene terephthalate resin. , Polyurethane resin, acrylic resin and the like. From the viewpoint of flexibility (for example, elongation) and solvent resistance, polyethylene resin, polypropylene resin, ethylene vinyl acetate resin, and polyurethane resin are preferable. Polyethylene resin, polypropylene resin, and polyurethane resin are preferable from the viewpoint of flexibility (for example, elongation rate), solvent resistance, and chemical resistance (acid resistance, alkali resistance). Among these, polyurethane resin is particularly preferable from the viewpoint of adhesiveness (adhesiveness) to an electrically insulating film base material and coatability of a paint for forming a planar heat-generating layer (for example, a carbon dispersion) at the time of production. Further, as described above, the polyurethane resin is a linear type thermoplastic polymer composed of a soft segment and a hard segment, and is flexible with a hard segment strongly aggregated by a strong hydrogen bond between urethane groups which are bonding units. Since the balance of the soft segments (polyurethane chains) has flexibility, toughness, and elasticity, a planar heat-generating layer having excellent flexibility and toughness can be obtained.

本発明の実施形態における面状発熱層に含まれるカーボン材料の体積比率(面状発熱層の構成材料に対する比率)は、10~90%の範囲に設定することができ、30~90%の範囲が好ましく、50~80%の範囲がより好ましい。カーボン材料の比率が少なすぎると、体積抵抗率のばらつきが大きくなり、均一な発熱領域を得ること困難になる。逆にカーボン材料の比率が多すぎると、面状発熱層の機械特性(特に柔軟性)および耐久性が低下する。
また、面状発熱層に含まれる樹脂の体積比率(面状発熱層の構成材料に対する比率)は、10~90%の範囲に設定することができ、10~70%の範囲が好ましく、20~50%の範囲がより好ましい。樹脂の体積比率が少なすぎると、面状発熱層の機械特性(特に柔軟性)、耐久性、付着性が低下し、逆に多すぎると、体積抵抗率のばらつきが大きくなり、均一な発熱領域を得ること困難になる。
樹脂に対するカーボン材料の体積比率は、樹脂100部に対してカーボン材料10~900部の範囲に設定でき、樹脂100部に対してカーボン材料40~900部が好ましく、樹脂100部に対してカーボン材料100~400部がより好ましい。カーボン材料の比率が少なすぎると、体積抵抗率のばらつきが大きくなり、均一な発熱領域を得ること困難になる。逆にカーボン材料の比率が多すぎると、樹脂の比率が少なくなり、面状発熱層の機械特性(特に柔軟性)、耐久性、付着性が低下する。
The volume ratio of the carbon material contained in the planar heating layer (ratio of the planar heating layer to the constituent materials) in the embodiment of the present invention can be set in the range of 10 to 90%, and is in the range of 30 to 90%. Is preferable, and the range of 50 to 80% is more preferable. If the ratio of the carbon material is too small, the variation in volume resistivity becomes large, and it becomes difficult to obtain a uniform heat generation region. On the contrary, if the ratio of the carbon material is too large, the mechanical properties (particularly flexibility) and durability of the planar heat generating layer are deteriorated.
Further, the volume ratio of the resin contained in the planar heat generating layer (ratio to the constituent material of the planar heating layer) can be set in the range of 10 to 90%, preferably in the range of 10 to 70%, and preferably in the range of 20 to 70%. A range of 50% is more preferred. If the volume ratio of the resin is too small, the mechanical properties (especially flexibility), durability, and adhesiveness of the planar heating layer deteriorate, and conversely, if it is too large, the variation in volume resistivity becomes large and a uniform heat generation region. Will be difficult to obtain.
The volume ratio of the carbon material to the resin can be set in the range of 10 to 900 parts of the carbon material with respect to 100 parts of the resin, preferably 40 to 900 parts of the carbon material with respect to 100 parts of the resin, and the carbon material with respect to 100 parts of the resin. More preferably, 100 to 400 parts. If the ratio of the carbon material is too small, the variation in volume resistivity becomes large, and it becomes difficult to obtain a uniform heat generation region. On the contrary, if the ratio of the carbon material is too large, the ratio of the resin becomes small, and the mechanical properties (particularly flexibility), durability, and adhesiveness of the planar heat generating layer are lowered.

本発明の実施形態における面状発熱層は、所望の効果が得られる範囲内で、導電性材料としてカーボン材料以外の他の導電性材料を含んでいてもよい。カーボン材料以外の他の材料として、銀、アルミニウム、ニッケル等の金属からなる金属微粒子を用いることができる。発熱効率、重量、分散性等の点から、導電性材料中のカーボン材料の比率が多いほど好ましく、カーボン材料以外の他の導電性材料の比率は、カーボン材料を含む導電性材料の全体に対して10質量%以下が好ましく、5質量%以下がより好ましく、導電性材料の全部がカーボン材料であることがさらに好ましい。 The planar heat generating layer in the embodiment of the present invention may contain a conductive material other than the carbon material as the conductive material as long as the desired effect can be obtained. As a material other than the carbon material, metal fine particles made of a metal such as silver, aluminum, and nickel can be used. From the viewpoint of heat generation efficiency, weight, dispersibility, etc., it is preferable that the ratio of the carbon material in the conductive material is large, and the ratio of the conductive material other than the carbon material is the ratio of the total of the conductive materials including the carbon material. It is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably all of the conductive materials are carbon materials.

本発明の実施形態における面状発熱層は、カーボン材料の分散液を用いて形成された塗膜であることが好ましい。この塗膜は、カーボン材料および樹脂を含むカーボン分散液を、電気絶縁性フィルム基材上に塗布し、乾燥することにより形成することができる。塗膜の厚みは、前述の面状発熱層の厚みの範囲に設定することができ、塗布目付(乾燥後)は、10~150g/mの範囲に設定でき、十分な厚みと発熱を得る点から10g/m以上が好ましく、20g/m以上がより好ましく、25g/m以上がさらに好ましく、薄型化や柔軟性の点から150g/m以下が好ましく、120以下がより好ましく、100g/m以下がさらに好ましい。 The planar heat generating layer in the embodiment of the present invention is preferably a coating film formed by using a dispersion liquid of a carbon material. This coating film can be formed by applying a carbon dispersion liquid containing a carbon material and a resin onto an electrically insulating film substrate and drying the coating film. The thickness of the coating film can be set in the range of the thickness of the above-mentioned planar heat generating layer, and the coating basis weight (after drying) can be set in the range of 10 to 150 g / m 2 to obtain sufficient thickness and heat generation. From the point of view, 10 g / m 2 or more is preferable, 20 g / m 2 or more is more preferable, 25 g / m 2 or more is further preferable, 150 g / m 2 or less is preferable, 120 g / m 2 or less is more preferable, and 120 g / m 2 or less is more preferable from the viewpoint of thinning and flexibility. More preferably, it is 100 g / m 2 or less.

カーボン分散液の塗布は、ロールコート法、ディッピング法、スピンコート法、スプレー法などの一般的なコーティング方法で行うことができ、また、スクリーン印刷法やインクジェット印刷法等の印刷法で行うこともできる。カーボン分散液の粘度、カーボン材料の含有率、分散媒の種類などに応じて塗布方法を選択することができる。スクリーン印刷法等の印刷法に比べて、塗布法は、基材の強度が求められないため、薄い電気絶縁性フィルム基材を用いることができ、面状発熱体を薄型化する点で有利である。特に、ドクターブレードを用いたロールコート法は均一な薄膜を形成できる点で好ましい。 The carbon dispersion can be applied by a general coating method such as a roll coating method, a dipping method, a spin coating method, a spray method, or a printing method such as a screen printing method or an inkjet printing method. can. The coating method can be selected according to the viscosity of the carbon dispersion liquid, the content of the carbon material, the type of the dispersion medium, and the like. Compared to printing methods such as the screen printing method, the coating method does not require the strength of the base material, so a thin electrically insulating film base material can be used, which is advantageous in that the planar heating element is made thinner. be. In particular, the roll coating method using a doctor blade is preferable in that a uniform thin film can be formed.

本発明の実施形態における面状発熱層の形成に用いるカーボン分散液は、カーボン材料、樹脂、分散媒を含み、必要に応じて、カーボン材料以外の導電性材料や、種々の添加剤を含有していてもよい。 The carbon dispersion used for forming the planar heating layer in the embodiment of the present invention contains a carbon material, a resin, and a dispersion medium, and if necessary, contains a conductive material other than the carbon material and various additives. May be.

カーボン分散液に含まれる樹脂としては、面状発熱層を構成する前述の樹脂が挙げられ、樹脂を分散媒に分散させてもよいし、分散媒に溶解させてもよい。カーボン分散液の低粘度化の点から、樹脂を分散させることが好ましい。樹脂を分散状態で含有しているカーボン分散液は、粘度が低いため、塗布法に好適であり、均一な薄膜を形成することができる。
カーボン分散液に含まれる樹脂としては、ポリウレタン樹脂が好ましいが、特に水性ポリウレタン樹脂がより好ましい。水性ポリウレタン樹脂は水に分散できるため、カーボン材料とともに樹脂が水系媒体(水又は水を主成分とした液体)に分散したカーボン分散液を得ることができる。水性ポリウレタンは、ポリマー骨格に親水基が導入された自己乳化型(アイオノマー型)を用いることができる。
Examples of the resin contained in the carbon dispersion liquid include the above-mentioned resin constituting the planar heat generating layer, and the resin may be dispersed in a dispersion medium or dissolved in a dispersion medium. From the viewpoint of reducing the viscosity of the carbon dispersion, it is preferable to disperse the resin. Since the carbon dispersion liquid containing the resin in a dispersed state has a low viscosity, it is suitable for a coating method and can form a uniform thin film.
As the resin contained in the carbon dispersion, a polyurethane resin is preferable, but an aqueous polyurethane resin is more preferable. Since the water-based polyurethane resin can be dispersed in water, it is possible to obtain a carbon dispersion liquid in which the resin is dispersed in an aqueous medium (water or a liquid containing water as a main component) together with the carbon material. As the aqueous polyurethane, a self-emulsifying type (ionomer type) in which a hydrophilic group is introduced into the polymer skeleton can be used.

カーボン分散液に含まれるカーボン材料以外の導電性材料としては、面状発熱層に用いてもよい前述の導電性材料が挙げられる。カーボン分散液に含まれるその他の添加剤としては、分散剤、浸透剤、安定化剤、粘度調整剤(増粘剤)、架橋剤などの一般的な分散液に使用される補助剤が挙げられる。 Examples of the conductive material other than the carbon material contained in the carbon dispersion include the above-mentioned conductive material that may be used for the planar heat generating layer. Other additives contained in the carbon dispersion include auxiliary agents used in general dispersions such as dispersants, penetrants, stabilizers, viscosity modifiers (thickeners) and crosslinkers. ..

カーボン分散液中のカーボン材料および樹脂を含む固形分の濃度は、10~65質量%の範囲に設定することができ、30~60質量%の範囲が好ましく、40~60質量%の範囲がより好ましい。固形分の濃度が低すぎると、均一な厚み及び分散状態の塗膜の形成が困難になったり、塗工時の分散媒の除去に時間やエネルギーが多く必要になったりする。逆に、固形分の濃度が高すぎると、粘度が高くなり塗布が困難になったり、均一な厚み及び分散状態の塗膜の形成が困難になったりする。カーボン分散液の粘度は、0.1~100Pa・sの範囲に設定でき、1~50Pa・sの範囲が好ましく、1~10Pa・sの範囲がより好ましい。 The concentration of the solid content containing the carbon material and the resin in the carbon dispersion can be set in the range of 10 to 65% by mass, preferably in the range of 30 to 60% by mass, more preferably in the range of 40 to 60% by mass. preferable. If the concentration of the solid content is too low, it becomes difficult to form a coating film having a uniform thickness and a dispersed state, and it takes a lot of time and energy to remove the dispersion medium at the time of coating. On the contrary, if the concentration of the solid content is too high, the viscosity becomes high and it becomes difficult to apply the coating film, or it becomes difficult to form a coating film having a uniform thickness and a dispersed state. The viscosity of the carbon dispersion can be set in the range of 0.1 to 100 Pa · s, preferably in the range of 1 to 50 Pa · s, and more preferably in the range of 1 to 10 Pa · s.

本発明の実施形態による面状発熱体の製造は、例えば以下のように実施することができる。
まず、電気絶縁性フィルム基材上に、一対のライン状の電極層を互いに平行に配置して取り付ける。次に、電気絶縁性フィルム基材上に、電極層を覆うようにカーボン分散液を塗布し、続いて分散液を乾燥する。乾燥は自然乾燥でもよいし、加熱による強制乾燥を行ってもよい。乾燥後の塗膜が面状発熱層となる。次に、この面状発熱層を覆うように、樹脂コーティング材を塗布し乾燥して電気絶縁性被覆層を形成する。電気絶縁性被覆層は、樹脂コーティング材の塗布に代えて、電気絶縁性フィルム又はシートをラミネートし、その外周縁を熱融着して封止してもよい。また、電極層は、面状発熱層を形成した後に、該面状発熱層上に形成してもよい。
The production of a planar heating element according to the embodiment of the present invention can be carried out, for example, as follows.
First, a pair of line-shaped electrode layers are arranged and attached in parallel to each other on an electrically insulating film base material. Next, the carbon dispersion liquid is applied on the electrically insulating film base material so as to cover the electrode layer, and then the dispersion liquid is dried. The drying may be natural drying or forced drying by heating. The coating film after drying becomes a planar heat generating layer. Next, a resin coating material is applied and dried so as to cover the planar heat generating layer to form an electrically insulating coating layer. Instead of applying the resin coating material, the electrically insulating coating layer may be laminated with an electrically insulating film or a sheet, and the outer peripheral edge thereof may be heat-sealed and sealed. Further, the electrode layer may be formed on the planar heat generating layer after the planar heat generating layer is formed.

以上に説明した本発明の実施形態による面状発熱体は、面状発熱層の厚み、電極層の長さ、電極間の距離に応じて、電極間の抵抗値を調整することができ、発熱を制御することができる。面状発熱体の発熱の制御は、適用対象や使用目的に応じて適宜設定できるが、例えば自動車内装用ヒーターとしてのシートヒーターに適用する場合、電極間の距離は例えば50~500mmの範囲に設定でき、100~500mmの範囲が好ましく、150~500mmの範囲がより好ましく、電極長さ(面状発熱層上における長さ)は50~1000mmの範囲に設定でき、100~1000mmの範囲が好ましく、150~1000mmの範囲がより好ましい。 The planar heating element according to the embodiment of the present invention described above can adjust the resistance value between the electrodes according to the thickness of the planar heating layer, the length of the electrode layer, and the distance between the electrodes, and generates heat. Can be controlled. The control of heat generation of the planar heating element can be appropriately set according to the application target and the purpose of use. However, when applied to a seat heater as a heater for an automobile interior, for example, the distance between the electrodes is set in the range of 50 to 500 mm, for example. The range of 100 to 500 mm is preferable, the range of 150 to 500 mm is more preferable, the electrode length (length on the planar heating layer) can be set in the range of 50 to 1000 mm, and the range of 100 to 1000 mm is preferable. The range of 150 to 1000 mm is more preferable.

以上の構成を有する本実施形態による面状発熱体の厚みは、例えば50~1200μmの範囲に設定でき、十分な強度や耐久性を確保する点から、50μm以上が好ましく、80μm以上がより好ましく、100μm以上がさらに好ましい。一方、薄さや柔軟性の観点から、面状発熱体の厚みは、1200μm以下が好ましく、1000μm以下がより好ましく、500μm以下がさらに好ましく、200μm以下であっても良好な面状発熱体を提供できる。 The thickness of the planar heating element according to the present embodiment having the above configuration can be set in the range of, for example, 50 to 1200 μm, and is preferably 50 μm or more, more preferably 80 μm or more, from the viewpoint of ensuring sufficient strength and durability. 100 μm or more is more preferable. On the other hand, from the viewpoint of thinness and flexibility, the thickness of the planar heating element is preferably 1200 μm or less, more preferably 1000 μm or less, further preferably 500 μm or less, and even if it is 200 μm or less, a good planar heating element can be provided. ..

本発明の実施形態による面状発熱体は、薄く、柔軟性に優れるため、人の体に接触するヒーターに好適であり、例えば、車載用座席ヒーターやステアリングヒーター等の自動車内装用ヒーターに利用できる。本発明の他の実施形態によれば、面状発熱体を備えた車載用座席ヒーターを提供することができる。
本発明の実施形態による面状発熱体は、柔軟性に優れるため使用感に優れ、繰り返し屈曲しても劣化しにくく耐久性に優れる。また、広範囲を温める場合は、金属線を用いたヒーターに対して、均一な発熱が可能であり、省電力であり、断線による不具合も防ぐことができる。このような面状発熱体を備えた車載用座席ヒーターは、使用感および耐久性に優れ、省電力であり、信頼性にも優れる。
Since the planar heating element according to the embodiment of the present invention is thin and has excellent flexibility, it is suitable for a heater that comes into contact with a human body, and can be used, for example, as an automobile interior heater such as an in-vehicle seat heater or a steering heater. .. According to another embodiment of the present invention, it is possible to provide an in-vehicle seat heater provided with a planar heating element.
The planar heating element according to the embodiment of the present invention has excellent flexibility and therefore has an excellent usability, and is resistant to deterioration even when repeatedly bent and has excellent durability. Further, when heating a wide range, uniform heat generation is possible for a heater using a metal wire, power saving is possible, and problems due to disconnection can be prevented. An in-vehicle seat heater provided with such a planar heating element is excellent in usability and durability, power saving, and reliability.

以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples.

(実施例1)
図1及び図2に示す構造を有する面状発熱体を作製し、以下の評価を行った。
面状発熱体の作製は次のように行った。
まず、ポリウレタン樹脂からなる絶縁性フィルム基材1上に、導電性ペーストで一対のライン状の電極層2を形成した。導電性ペーストとしては、比較的低温で硬化するタイプの銀ペースト(藤倉化成(株)製、製品名:ドータイトFA-333)を用い、熱処理は120℃で行い、絶縁性基材フィルムを軟化、変形させることなく、電極層を形成した。
(Example 1)
A planar heating element having the structures shown in FIGS. 1 and 2 was prepared and evaluated as follows.
The planar heating element was prepared as follows.
First, a pair of line-shaped electrode layers 2 were formed with a conductive paste on an insulating film base material 1 made of a polyurethane resin. As the conductive paste, a silver paste (manufactured by Fujikura Kasei Co., Ltd., product name: Dotite FA-333) that cures at a relatively low temperature is used, and the heat treatment is performed at 120 ° C to soften the insulating base film. The electrode layer was formed without deformation.

次いで電極層2を覆うようにカーボン材料の分散液を塗布し、乾燥して面状発熱層3を形成した。カーボン材料の分散液としては、カーボン材料としてカーボンナノ材料、樹脂として水性ポリウレタン樹脂、分散媒として水を含む分散液を使用した。
次に、面状発熱層3上にウレタン系ポリマーコート剤を塗布し、乾燥して電気絶縁性被覆層4を形成した。
Next, a dispersion liquid of a carbon material was applied so as to cover the electrode layer 2 and dried to form a planar heat generating layer 3. As the dispersion liquid of the carbon material, a carbon nanomaterial was used as the carbon material, an aqueous polyurethane resin was used as the resin, and a dispersion liquid containing water was used as the dispersion medium.
Next, a urethane-based polymer coating agent was applied onto the planar heat-generating layer 3 and dried to form an electrically insulating coating layer 4.

得られた面状発熱体のサイズは以下の通りとした。
電気絶縁性フィルム基材の厚み:100μm
面状発熱層の厚み:50μm
発熱領域の縦の長さ(面状発熱層上の電極間の長さW):100mm
発熱領域の横の長さ(面状発熱層上の電極形成部分の長さL):100mm
電気絶縁性被覆層の厚み:20μm
The size of the obtained planar heating element was as follows.
Thickness of electrically insulating film substrate: 100 μm
Thickness of planar heating layer: 50 μm
Vertical length of heat generation region (length W between electrodes on planar heat generation layer): 100 mm
Horizontal length of heat generation region (length L of electrode forming portion on planar heat generation layer): 100 mm
Thickness of electrically insulating coating layer: 20 μm

得られた面状発熱体について、次のようにして評価を行った。
(発熱性能と消費電力)
車載用座席のシート表皮の下に、面状発熱体をシートヒーターとして装着し、金属線をシートヒーターとして装着した場合と比較した。
シートヒーターの電源を入れてから3分後にシート表皮表面の温度を測定したところ、いずれの場合も31℃になった。本実施例の面状発熱体は、金属線をシートヒーターとして装着した場合と同等以上の発熱性能を有することが分かる。その後に、シートヒーターの電源を切り、5分後のシート表面の温度を測定したところ、金属線を装着した場合は28℃まで低下したが、本実施例の面状発熱体の場合は30℃であった。本実施例の面状発熱体は保温性に優れることが分かる。また、本実施例の面状発熱体を装着した場合の消費電力は、金属線を装着した場合に対して25%低減できた。
The obtained planar heating element was evaluated as follows.
(Heat generation performance and power consumption)
A comparison was made with the case where a planar heating element was mounted as a seat heater and a metal wire was mounted as a seat heater under the seat skin of the in-vehicle seat.
When the temperature of the seat skin surface was measured 3 minutes after the power of the seat heater was turned on, it was 31 ° C. in each case. It can be seen that the planar heating element of this embodiment has a heat generation performance equal to or higher than that when the metal wire is attached as a seat heater. After that, when the power of the seat heater was turned off and the temperature of the seat surface was measured 5 minutes later, the temperature dropped to 28 ° C. when the metal wire was attached, but 30 ° C. in the case of the planar heating element of this embodiment. Met. It can be seen that the planar heating element of this example has excellent heat retention. In addition, the power consumption when the planar heating element of this embodiment was attached could be reduced by 25% as compared with the case where the metal wire was attached.

(発熱挙動)
作製した面状発熱体の上に表皮をセットし、5時間通電し、表皮表面の温度を測定した。通電時間と表皮上面の温度の関係を図3に示す。この図から、表面温度が安定するため、温度制御部品の削減が可能であることが分かる。
(Fever behavior)
The epidermis was set on the prepared planar heating element, energized for 5 hours, and the temperature of the epidermis surface was measured. FIG. 3 shows the relationship between the energization time and the temperature of the upper surface of the epidermis. From this figure, it can be seen that the number of temperature control parts can be reduced because the surface temperature is stable.

(耐久性の評価)
作製した面状発熱体について以下の耐久性試験を行ったが、いずれの場合も著しい外観変化は無かった。
<低温折り曲げ試験>
サンプルとして作製した面状発熱体(100×100mm)を準備し、-30℃雰囲気下で、長さ100mm、φ12の円柱をサンプルの中央部に置き、円柱に沿ってサンプルの一方の辺をもう一方の辺へ180°重ねるように折り曲げたのち、元の状態にもどす。これを100回繰り返し、面状発熱体の亀裂、変形の有無を確認した。
<耐熱性試験>
作製した面状発熱体を恒温槽に入れ、80℃で400時間保持した後、外観を確認した。
<耐溶剤性および耐薬品性の評価>
ASTM D543に基づいて、使用する材料の耐溶剤性および耐薬品性を評価することができる。
(Evaluation of durability)
The following durability tests were performed on the prepared planar heating element, and there was no significant change in appearance in any case.
<Low temperature bending test>
Prepare a planar heating element (100 x 100 mm) prepared as a sample, place a cylinder with a length of 100 mm and φ12 in the center of the sample under an atmosphere of -30 ° C, and place one side of the sample along the cylinder. Bend it so that it overlaps 180 ° on one side, and then return it to its original state. This was repeated 100 times, and the presence or absence of cracks and deformation of the planar heating element was confirmed.
<Heat resistance test>
The prepared planar heating element was placed in a constant temperature bath and held at 80 ° C. for 400 hours, and then the appearance was confirmed.
<Evaluation of solvent resistance and chemical resistance>
Solvent resistance and chemical resistance of the materials used can be evaluated based on ASTM D543.

(面状発熱層の評価)
形成した塗膜(面状発熱層)について、以下の平面摩耗性試験(耐摩耗性試験)及び塗膜の付着性試験(碁盤目試験)を行ったところ、耐摩耗性および付着性に優れていることが分かった。
<平面摩耗性試験>
JIS K5701-1に示す学振形摩擦試験機にて面状発熱体を10000回摺動し、耐摩擦性試験を行い、表面の摩耗度合いを確認した。
<塗膜の付着性試験>
JIS K5600-5-6に従って碁盤目試験を行い、塗膜の付着性を評価した。
(Evaluation of planar heating layer)
The following planar wear resistance test (wear resistance test) and coating film adhesion test (go board test) were performed on the formed coating film (planar heat-generating layer), and the results were excellent in wear resistance and adhesion. It turned out that there was.
<Plane wear resistance test>
The surface heating element was slid 10,000 times with the Gakushin type friction tester shown in JIS K5701-1 and the friction resistance test was performed to confirm the degree of surface wear.
<Coating film adhesion test>
A grid test was performed according to JIS K5600-5-6 to evaluate the adhesion of the coating film.

(実施例2)
ウレタン系ポリマーコート剤に代えて、塩化ビニル樹脂(PVC)系コート剤を用いて電気絶縁性被覆層を形成した以外は、実施例1と同様にして面状発熱体を作製した。実施例1と同様に評価を行ったところ、耐熱性が実施例1に対して劣っていたが他の評価結果は良好であった。
なお、塩化ビニル樹脂(PVC)の耐溶剤性がポリウレタン樹脂より劣るため、得られた面状発熱体の耐溶剤性も実施例1に対して劣るといえる。
(Example 2)
A planar heating element was produced in the same manner as in Example 1 except that an electrically insulating coating layer was formed by using a vinyl chloride resin (PVC) -based coating agent instead of the urethane-based polymer coating agent. When the evaluation was performed in the same manner as in Example 1, the heat resistance was inferior to that of Example 1, but the other evaluation results were good.
Since the solvent resistance of the vinyl chloride resin (PVC) is inferior to that of the polyurethane resin, it can be said that the solvent resistance of the obtained planar heating element is also inferior to that of Example 1.

(実施例3)
ウレタン系ポリマーコート剤に代えて、ポリエチレン(PE)系コート剤を用いて電気絶縁性被覆層を形成した以外は、実施例1と同様にして面状発熱体を作製した。実施例1と同様に評価を行ったところ、耐熱性が実施例1に対して劣っていたが他の評価結果は良好であった。
(Example 3)
A planar heating element was produced in the same manner as in Example 1 except that an electrically insulating coating layer was formed by using a polyethylene (PE) -based coating agent instead of the urethane-based polymer coating agent. When the evaluation was performed in the same manner as in Example 1, the heat resistance was inferior to that of Example 1, but the other evaluation results were good.

(比較例1)
ポリウレタン樹脂からなる絶縁性フィルム基材に代えて、ポリエチレンテレフタレート(PET)樹脂からなる絶縁性フィルム基材を用いた以外は、実施例1と同様にして面状発熱体を作製した。実施例と同様に評価を行ったところ、塗膜の付着性試験が実施例1に対して劣っていた。
また、ポリエチレンテレフタレート(PET)樹脂の耐溶剤性と耐薬品性(アルカリ)がポリウレタン樹脂より劣るため、得られた面状発熱体の耐溶剤性と耐薬品性(アルカリ)も実施例1に対して劣るといえる。
(Comparative Example 1)
A planar heating element was produced in the same manner as in Example 1 except that an insulating film base material made of polyethylene terephthalate (PET) resin was used instead of the insulating film base material made of polyurethane resin. When the evaluation was performed in the same manner as in Example, the adhesion test of the coating film was inferior to that in Example 1.
Further, since the solvent resistance and chemical resistance (alkali) of the polyethylene terephthalate (PET) resin are inferior to those of the polyurethane resin, the solvent resistance and chemical resistance (alkali) of the obtained planar heating element are also higher than those of Example 1. It can be said that it is inferior.

(比較例2)
ポリウレタン樹脂からなる絶縁性フィルム基材に代えて、塩化ビニル樹脂(PVC)からなる絶縁性フィルム基材を用いた以外は、実施例1と同様にして面状発熱体を作製した。実施例1と同様に評価を行ったところ、塗膜の付着性試験と耐熱性試験が実施例1に対して劣っていた。
また、塩化ビニル樹脂(PVC)の耐溶剤性がポリウレタン樹脂より劣るため、得られた面状発熱体の耐溶剤性も実施例1に対して劣るといえる。
(Comparative Example 2)
A planar heating element was produced in the same manner as in Example 1 except that an insulating film base material made of vinyl chloride resin (PVC) was used instead of the insulating film base material made of polyurethane resin. When the evaluation was performed in the same manner as in Example 1, the adhesion test and the heat resistance test of the coating film were inferior to those of Example 1.
Further, since the solvent resistance of the vinyl chloride resin (PVC) is inferior to that of the polyurethane resin, it can be said that the solvent resistance of the obtained planar heating element is also inferior to that of Example 1.

1 電気絶縁性フィルム基材
2 電極層
3 面状発熱層
4 電気絶縁性被覆層
1 Electrically insulating film base material 2 Electrode layer 3 Planar heat generating layer 4 Electrically insulating coating layer

Claims (6)

ポリウレタン樹脂からなる電気絶縁性フィルム基材と、
前記電気絶縁性フィルム基材上に設けられ、カーボン材料と樹脂を含む面状発熱層と、
前記面状発熱層に接続して配置された一対の電極層と、
前記面状発熱層を覆う電気絶縁性被覆層と、を有する面状発熱体。
With an electrically insulating film base material made of polyurethane resin,
A planar heat generating layer provided on the electrically insulating film base material and containing a carbon material and a resin,
A pair of electrode layers arranged connected to the planar heat generating layer,
A planar heating element having an electrically insulating coating layer covering the planar heating layer.
前記面状発熱層の厚みが10~200μmの範囲にある、請求項1に記載の面状発熱体。 The planar heating element according to claim 1, wherein the thickness of the planar heating element is in the range of 10 to 200 μm. 前記面状発熱層の体積抵抗率が300~500μΩmの範囲にある、請求項1又は2に記載の面状発熱体。 The planar heating element according to claim 1 or 2, wherein the volume resistivity of the planar heating element is in the range of 300 to 500 μΩm. 前記面状発熱層の樹脂がポリウレタン樹脂である、請求項1から3のいずれか一項に記載の面状発熱体。 The planar heating element according to any one of claims 1 to 3, wherein the resin of the planar heating layer is a polyurethane resin. 前記面状発熱層は、前記カーボン材料としてカーボンナノ材料を含む、請求項1から4のいずれか一項に記載の面状発熱体。 The planar heating element according to any one of claims 1 to 4, wherein the planar heating element contains a carbon nanomaterial as the carbon material. 前記電極層の厚みが10~200μmの範囲にあり、
前記電気絶縁性被覆層の厚みが5~200μmの範囲にあり、
前記電気絶縁性フィルム基材の厚みが5~500μmの範囲にある、請求項1から5のいずれか一項に記載の面状発熱体。
The thickness of the electrode layer is in the range of 10 to 200 μm, and the thickness is in the range of 10 to 200 μm.
The thickness of the electrically insulating coating layer is in the range of 5 to 200 μm, and the thickness is in the range of 5 to 200 μm.
The planar heating element according to any one of claims 1 to 5, wherein the thickness of the electrically insulating film base material is in the range of 5 to 500 μm.
JP2020197569A 2020-11-27 2020-11-27 Sheet heating element and its manufacturing method Active JP7514174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020197569A JP7514174B2 (en) 2020-11-27 2020-11-27 Sheet heating element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020197569A JP7514174B2 (en) 2020-11-27 2020-11-27 Sheet heating element and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2022085740A true JP2022085740A (en) 2022-06-08
JP7514174B2 JP7514174B2 (en) 2024-07-10

Family

ID=81892460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020197569A Active JP7514174B2 (en) 2020-11-27 2020-11-27 Sheet heating element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7514174B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024078234A1 (en) * 2022-10-13 2024-04-18 中山大学 Heater, preparation method therefor, and application thereof
WO2024135692A1 (en) * 2022-12-23 2024-06-27 日本発條株式会社 Heater device and vehicle seat

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2675533C (en) 2007-01-22 2013-09-24 Panasonic Corporation Sheet heating element
JP2008269914A (en) 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd Flat heating element
CN108235469A (en) 2016-12-15 2018-06-29 西安仁科电子科技有限公司 A kind of waterproof heating desk mat using graphene heating film
JP2020136153A (en) 2019-02-22 2020-08-31 セーレン株式会社 Conductive composition and planar heating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024078234A1 (en) * 2022-10-13 2024-04-18 中山大学 Heater, preparation method therefor, and application thereof
WO2024135692A1 (en) * 2022-12-23 2024-06-27 日本発條株式会社 Heater device and vehicle seat

Also Published As

Publication number Publication date
JP7514174B2 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
JP6319085B2 (en) Conductive paste
Hu et al. Direct pen writing of adhesive particle-free ultrahigh silver salt-loaded composite ink for stretchable circuits
Lin et al. Superior stretchable conductors by electroless plating of copper on knitted fabrics
De et al. Transparent, flexible, and highly conductive thin films based on polymer− nanotube composites
Hu et al. Stretchable, porous, and conductive energy textiles
Gul et al. Retracted Article: 3D printed highly flexible strain sensor based on TPU–graphene composite for feedback from high speed robotic applications
JP2022085740A (en) Planar heating element
JP4617479B2 (en) Touch panel using transparent conductive carbon nanotube film
TW201735057A (en) Stretchable conductor sheet, stretchable conductor sheet having adhesiveness, and method for forming wiring line formed of stretchable conductor on fabric
JP6174220B1 (en) Planar heating element, planar heating device, planar heating element electrode, and manufacturing method of planar heating element
EP2123120A2 (en) Ptc resistor
JP2009211978A (en) Transparent conductive film, and optical device using the same
Wang et al. Flexible electrothermal laminate films based on tannic acid-modified carbon nanotube/thermoplastic polyurethane composite
TW201633328A (en) Electroconductive film
JP2016170123A (en) Distortion sensor
Ding et al. A polyester/spandex blend fabrics-based e-textile for strain sensor, joule heater and energy storage applications
Jiang et al. Facile thermoplastic polyurethane-based multi-walled carbon nanotube ink for fabrication of screen-printed fabric electrodes of wearable e-textiles with high adhesion and resistance stability under large deformation
JP2017204529A (en) Photovoltaic power generation module having snow-melting function, and building or vehicle with photovoltaic power generation module installed therein
Jiang et al. Development of flexible supercapacitors with coplanar integrated multi-walled carbon nanotubes/textile electrode and current collectors
JP2007224207A (en) Electroconductive composition, electroconductive coating material, electroconductive fiber material, method for producing electroconductive fiber material, and flat heater
CN109903891A (en) A kind of preparation method of high-performance conductive elastic composite
KR100662199B1 (en) Electronic paper display apparatus having carbon nanotube and conducting polymer electrode and manufacturing process thereof
JP2003109804A (en) Flexible ptc heating element
US20230015196A1 (en) Pressure sensitive heating element and method for manufacturing the same
JP4396308B2 (en) Manufacturing method of fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240628

R150 Certificate of patent or registration of utility model

Ref document number: 7514174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150