JP2020136153A - Conductive composition and planar heating element - Google Patents

Conductive composition and planar heating element Download PDF

Info

Publication number
JP2020136153A
JP2020136153A JP2019030284A JP2019030284A JP2020136153A JP 2020136153 A JP2020136153 A JP 2020136153A JP 2019030284 A JP2019030284 A JP 2019030284A JP 2019030284 A JP2019030284 A JP 2019030284A JP 2020136153 A JP2020136153 A JP 2020136153A
Authority
JP
Japan
Prior art keywords
conductive
heating element
conductive material
conductive composition
planar heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019030284A
Other languages
Japanese (ja)
Inventor
隆 上杉
Takashi Uesugi
隆 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2019030284A priority Critical patent/JP2020136153A/en
Publication of JP2020136153A publication Critical patent/JP2020136153A/en
Pending legal-status Critical Current

Links

Abstract

To provide a conductive composition having desired electric resistivity, and to provide a planer heating element having a free shape and uniform heating characteristics using the conductive composition, and to provide a planar heating element having a plurality of heating part having different heating characteristics in a single circuit using a plurality of kinds of conductive compositions having different electric resistivities.SOLUTION: A conductive composition contains an insulating resin, a first conductive material and a second conductive material having electric resistivity higher than that of the first conductive material, in which a mass ratio of a content of the second conductive material to a content of the first conductive material is 0.01-100. A planar heating element has a heating part formed of a linear pattern formed on the surface of a sheet-like or plate-like base material using the conductive composition.SELECTED DRAWING: None

Description

本発明は、導電性組成物と、該導電性組成物を用いて形成された発熱部を有する面状発熱体に関する。 The present invention relates to a conductive composition and a planar heating element having a heat generating portion formed by using the conductive composition.

面状発熱体は、シート状あるいは板状基材の表面の一部あるいは全面に、比較的に高い電気抵抗率を有する材料を用いて発熱部を形成し、該発熱部に電圧を印加して電気抵抗率に応じた発熱をするように構成されている。 In the planar heating element, a heat generating portion is formed on a part or the entire surface of a sheet-shaped or plate-shaped base material using a material having a relatively high electrical resistivity, and a voltage is applied to the heat generating portion. It is configured to generate heat according to the electrical resistivity.

特許文献1には、絶縁性繊維材料と導電性繊維材料とを経緯方向に配列して製織した発熱部を有する、面状発熱体が開示されている。特許文献2においては、ポリウレタン樹脂と球状カーボンとを含む面状発熱体用導電性ペースト、及びこの面状発熱体用導電性ペーストを用いた面状発熱体が開示されている。 Patent Document 1 discloses a planar heating element having a heat generating portion in which an insulating fiber material and a conductive fiber material are arranged in the warp and weft direction and woven. Patent Document 2 discloses a conductive paste for a planar heating element containing a polyurethane resin and spherical carbon, and a planar heating element using the conductive paste for a planar heating element.

特開2013−077384号公報Japanese Unexamined Patent Publication No. 2013-077384 国際公開第2009/125740号International Publication No. 2009/125740

特許文献1の面状発熱体においては、製織による導電性繊維材料の配列によって発熱部が形成されるため、その形状は矩形に限定される。一方、特許文献2によれば自由な形状の発熱部を形成できるものの、発熱部全体が均一に発熱するものにできるとは限らない。電圧を印加する電極間の抵抗値を、発熱部の各部分において同一とすることが困難であるためである。自由な形状の発熱部について、電極間距離が短い部分は導電性ペーストによる発熱部を薄く形成し、電極間距離が長い部分は導電性ペーストによる発熱部を厚く形成すれば両部分の電極間抵抗値をほぼ等しくすることは不可能ではないが、現実的ではない。 In the planar heating element of Patent Document 1, since the heat generating portion is formed by the arrangement of the conductive fiber materials by weaving, the shape is limited to a rectangle. On the other hand, according to Patent Document 2, although it is possible to form a heat generating portion having a free shape, it is not always possible for the entire heat generating portion to generate heat uniformly. This is because it is difficult to make the resistance value between the electrodes to which the voltage is applied the same in each part of the heat generating portion. Regarding the free-form heat generating part, if the part where the distance between the electrodes is short is formed thinly by the conductive paste, and the part where the distance between the electrodes is long is formed thick by the conductive paste, the resistance between the electrodes of both parts is formed. It is not impossible, but not realistic, to make the values nearly equal.

本発明者は、鋭意研究の結果、導電性組成物に電気抵抗率の異なる2種の導電性材料を配合し、これら2種の導電性材料の配合比を調整することにより、容易に電気抵抗率の設定が可能となることを見出し本発明の完成に至った。 As a result of diligent research, the present inventor blends two types of conductive materials having different electrical resistivitys into the conductive composition, and by adjusting the blending ratio of these two types of conductive materials, the electrical resistance can be easily obtained. We have found that the rate can be set, and have completed the present invention.

すなわち本発明は、絶縁性樹脂と、第一導電性材料と、前記第一導電性材料よりも高い電気抵抗率を有する第二導電性材料とを含み、前記第一導電性材料の含有量に対する前記第二導電性材料の含有量の質量比が0.01〜1.0であることを特徴とする導電性組成物である。 That is, the present invention includes an insulating resin, a first conductive material, and a second conductive material having a higher electrical resistivity than the first conductive material, with respect to the content of the first conductive material. The conductive composition is characterized in that the mass ratio of the contents of the second conductive material is 0.01 to 1.0.

これによれば、所望の電気抵抗率を有する導電性組成物を得ることができる。またこの導電性組成物を用いることで、従来技術では達成できなかった自由な形状であっても均一な発熱特性を有する面状発熱体を得ることができる。 According to this, a conductive composition having a desired electrical resistivity can be obtained. Further, by using this conductive composition, it is possible to obtain a planar heating element having uniform heat generation characteristics even in a free shape that could not be achieved by the prior art.

前記第一導電性材料が、金属を主成分とする粒子であることが好ましい。前記第二導電性材料が、炭素粒子であることが好ましい。 The first conductive material is preferably particles containing a metal as a main component. The second conductive material is preferably carbon particles.

本発明の面状発熱体は、シート状あるいは板状の基材の表面に、前記導電性組成物を用いて形成された線状パターンからなる発熱部を有することを特徴とする面状発熱体である。 The planar heating element of the present invention is characterized by having a heating element formed of a linear pattern formed by using the conductive composition on the surface of a sheet-shaped or plate-shaped base material. Is.

本発明によれば、所望の電気抵抗率を有する導電性組成物を得ることが可能となる。またこの導電性組成物を用いることで、従来技術では達成できなかった自由な形状で均一な発熱特性を有する面状発熱体を得ることができる。更には、異なる電気抵抗率を有する複数種の導電性組成物を用いて、単一の回路内において発熱特性の異なる複数の発熱部を有する面状発熱体をも容易に得ることができる。 According to the present invention, it is possible to obtain a conductive composition having a desired electrical resistivity. Further, by using this conductive composition, it is possible to obtain a planar heating element having a free shape and uniform heat generation characteristics, which could not be achieved by the prior art. Furthermore, by using a plurality of types of conductive compositions having different electrical resistivitys, it is possible to easily obtain a planar heating element having a plurality of heat generating portions having different heat generating characteristics in a single circuit.

本発明の導電性組成物を評価する際に用いた線状パターンを示す図である。It is a figure which shows the linear pattern used when evaluating the conductive composition of this invention. 赤外線サーモグラフィーにより面状発熱体の表面温度を観察した一例を示す写真である。It is a photograph which shows an example which observed the surface temperature of a planar heating element by infrared thermography.

本発明の導電性組成物は、絶縁性樹脂と、第一導電性材料と、前記第一導電性材料よりも高い電気抵抗率を有する第二導電性材料とを含む。絶縁性樹脂は第一導電性材料および第二導電性材料をその内部に分散し、発熱部を形成する際には固化してこれら導電性材料を保持する、所謂バインダーとして機能する。したがって、絶縁性樹脂は熱や光エネルギーによって、あるいは溶媒成分の除去や置換によって硬化または固化するものであることが望ましい。また硬化または固化した後に絶縁性を呈するものであることが肝要である。 The conductive composition of the present invention includes an insulating resin, a first conductive material, and a second conductive material having a higher electrical resistivity than the first conductive material. The insulating resin functions as a so-called binder in which the first conductive material and the second conductive material are dispersed therein and solidified when forming a heat generating portion to hold these conductive materials. Therefore, it is desirable that the insulating resin is cured or solidified by heat or light energy, or by removing or replacing a solvent component. In addition, it is important that the material exhibits insulating properties after being cured or solidified.

このような絶縁性樹脂の例としては、アクリル樹脂、フェノキシ樹脂、ポリビニルホルマール樹脂、 ポリスチレン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、ポリウレタン樹脂、エポキシ樹脂等が挙げられる。柔軟性が高く変形に対して耐久性が求められる場合には、アクリル樹脂、ポリウレタン樹脂が好ましい。 Examples of such insulating resins include acrylic resins, phenoxy resins, polyvinyl formal resins, polystyrene resins, polyvinyl butyral resins, polyester resins, polyamide resins, polyimide resins, xylene resins, polyurethane resins, epoxy resins and the like. Acrylic resin and polyurethane resin are preferable when high flexibility and durability against deformation are required.

本発明の導電性組成物に用いられる第一導電性材料の例としては、金属を主成分とする粒子が挙げられる。金属としては金、銀、白金、銅、ニッケル、鉄、スズ等が挙げられる。第一導電性材料としてはこれら金属とその酸化物、塩化物等との混合物であってもよい。粒子の形状は特に限定されず、球状、板状、針状、柱状等であってよい。第一導電性材料の粒径は0.1〜10μmであることが好ましい。第一導電性材料の電気抵抗率は1.0×10−8〜1.0×10−7Ω・mであることが好ましい。 Examples of the first conductive material used in the conductive composition of the present invention include particles containing a metal as a main component. Examples of the metal include gold, silver, platinum, copper, nickel, iron, tin and the like. The first conductive material may be a mixture of these metals and their oxides, chlorides and the like. The shape of the particles is not particularly limited, and may be spherical, plate-shaped, needle-shaped, columnar, or the like. The particle size of the first conductive material is preferably 0.1 to 10 μm. The electrical resistivity of the first conductive material is preferably 1.0 × 10-8 to 1.0 × 10-7 Ω · m.

本発明の導電性組成物に用いられる第二導電性材料は、前記第一導電性材料に比較してより高い電気抵抗率を有する。第二導電性材料の電気抵抗率は1.0×10−6〜1.0×10−4Ω・mであることが好ましい。このような第二導電性材料としては、炭素粒子が挙げられる。具体的にはカーボンブラック、カーボンナノチューブ、グラファイト粒子、フラーレン等が挙げられる。第二導電性材料の粒径は10〜200nmであることが好ましい。粒子の形状は特に限定されず、球状、板状、針状、柱状等であってよい。炭素以外に、ニッケル・クロム合金(ニクロム)や鉄・クロム・アルミニウム合金(カンタル)も利用可能である。 The second conductive material used in the conductive composition of the present invention has a higher electrical resistivity than the first conductive material. The electrical resistivity of the second conductive material is preferably 1.0 × 10 -6 to 1.0 × 10 -4 Ω · m. Examples of such a second conductive material include carbon particles. Specific examples thereof include carbon black, carbon nanotubes, graphite particles, and fullerenes. The particle size of the second conductive material is preferably 10 to 200 nm. The shape of the particles is not particularly limited, and may be spherical, plate-shaped, needle-shaped, columnar, or the like. In addition to carbon, nickel-chromium alloys (nichrome) and iron-chromium-aluminum alloys (kanthal) are also available.

前記第一導電性材料の含有量に対する前記第二導電性材料の含有量の質量比は0.01〜1.0であることが必要である。質量比が0.01〜1.0であれば、面状発熱体の発熱部として機能し、所望の電気抵抗率を有する導電性組成物が得られる。 The mass ratio of the content of the second conductive material to the content of the first conductive material needs to be 0.01 to 1.0. When the mass ratio is 0.01 to 1.0, a conductive composition that functions as a heating element of the planar heating element and has a desired electrical resistivity can be obtained.

前記第一導電性材料と前記第二導電性材料の合計含有量は、本発明の導電性組成物の全固形分量に対して60〜90質量%であることが好ましい。前記第一導電性材料と前記第二導電性材料の合計含有量がこの範囲内であれば、面状発熱体の発熱性と耐久性の両立という効果が得られる。 The total content of the first conductive material and the second conductive material is preferably 60 to 90% by mass with respect to the total solid content of the conductive composition of the present invention. When the total content of the first conductive material and the second conductive material is within this range, the effect of achieving both heat generation and durability of the planar heating element can be obtained.

本発明の導電性組成物は、その他の成分として溶媒、分散剤、消泡剤、レべリング剤、増粘剤等を含有していてもよい。なかでも溶媒や分散剤は本発明の導電性組成物を用いて発熱部を形成する手段として印刷法を採用する場合には重要な成分となる。 The conductive composition of the present invention may contain a solvent, a dispersant, an antifoaming agent, a leveling agent, a thickener and the like as other components. Among them, the solvent and the dispersant are important components when the printing method is adopted as a means for forming the heat generating portion by using the conductive composition of the present invention.

溶媒としては水の他、使用する前記絶縁性樹脂を溶解あるいは分散可能な有機溶剤も利用可能である。溶媒は発熱部を形成する際、熱処理等によって除去されるものであるため、沸点が30〜200℃であることが好ましい。分散剤の例としては、硫酸塩、スルホン酸塩、燐酸塩等のアニオン性化合物や脂肪族アミン塩等のカチオン性化合物、脂肪酸エステル等の非イオン系化合物等が挙げられる。消泡剤の例としては、シリコーン、界面活性剤、ポリエーテル、高級アルコール等が挙げられる。 As the solvent, in addition to water, an organic solvent capable of dissolving or dispersing the insulating resin to be used can also be used. Since the solvent is removed by heat treatment or the like when forming the heat generating portion, the boiling point is preferably 30 to 200 ° C. Examples of the dispersant include anionic compounds such as sulfates, sulfonates and phosphates, cationic compounds such as aliphatic amine salts, and nonionic compounds such as fatty acid esters. Examples of defoaming agents include silicones, surfactants, polyethers, higher alcohols and the like.

本発明の面状発熱体は、前記導電性組成物を用いて、シート状あるいは板状基材の表面に線状パターンからなる発熱部が形成されている。シート状あるいは板状基材の例としては、織物や編物等の布帛、紙、樹脂フィルム、樹脂板、木板、石板等である。これら基板の表面に形成される発熱部は、線状パターンからなる。発熱部の線状パターンは、必要とされる発熱部の発熱特性と、発熱部に用いられる導電性組成物の電気抵抗率に応じて線幅および線高(膜厚)が決定される。 In the planar heating element of the present invention, a heating element having a linear pattern is formed on the surface of a sheet-shaped or plate-shaped base material by using the conductive composition. Examples of sheet-shaped or plate-shaped base materials include fabrics such as woven fabrics and knitted fabrics, paper, resin films, resin boards, wooden boards, stone boards, and the like. The heat generating portion formed on the surface of these substrates has a linear pattern. The linear pattern of the heat generating portion has a line width and a line height (film thickness) determined according to the required heat generating characteristics of the heat generating portion and the electrical resistivity of the conductive composition used for the heat generating portion.

従来技術(例えば引用文献2)では同じ形状の二つの発熱部を、同一の電圧印加条件の下で、一方は低発熱性(低温部)に、他方は高発熱性(高温部)にしようとすると線状パターンの線幅や線高(膜厚)を変えて形成する必要があった。このため二つの発熱部において柔軟性や手触りが異なるものとなってしまう。しかしながら、本発明の導電性組成物を用いて同様の二つの発熱部を形成する場合、電気抵抗率の異なる二つの導電性組成物を用意することで全く同じ線幅と線高(膜厚)を有する線状パターンとして形成することが可能となる。つまり高温部用には比較的に電気抵抗率の小さな導電性組成物Aを、低温部用には比較的に電気抵抗率の大きな導電性組成物Bを用意すればよい。 In the prior art (for example, Reference 2), two heat generating parts having the same shape are attempted to have low heat generation (low temperature part) and high heat generation (high temperature part) under the same voltage application condition. Then, it was necessary to change the line width and line height (film thickness) of the linear pattern. Therefore, the flexibility and the feel of the two heat generating parts are different. However, when the same two heat generating portions are formed by using the conductive composition of the present invention, the same line width and line height (film thickness) can be obtained by preparing two conductive compositions having different electrical resistivitys. It becomes possible to form as a linear pattern having. That is, a conductive composition A having a relatively small electrical resistivity may be prepared for a high temperature portion, and a conductive composition B having a relatively large electrical resistivity may be prepared for a low temperature portion.

また発熱部に電圧を印加する電極間の距離が異なるような形状の発熱部であっても、電極間距離に応じて電気抵抗率の異なる複数種の導電性組成物を用いることで、自由な形状であって且つ均一な発熱特性を有する発熱部を形成することが可能となる。 Further, even if the heat generating portion has a shape in which the distance between the electrodes to which the voltage is applied to the heat generating portion is different, it is possible to freely use a plurality of types of conductive compositions having different electrical resistivitys according to the distance between the electrodes. It is possible to form a heat generating portion having a shape and having uniform heat generating characteristics.

本発明の面状発熱体においては、線状パターンの線幅や線高(膜厚)を同一としたままで発熱部の形状や発熱特性を自由に設計が可能である。そのため、発熱部を保護するシート等を積層した場合に段差ができない。布帛や紙、樹脂フィルム等の可撓性を有する基材を用いた場合には柔軟性の差が生じない。 In the planar heating element of the present invention, the shape and heat generation characteristics of the heat generating portion can be freely designed while keeping the line width and line height (film thickness) of the linear pattern the same. Therefore, no step is formed when a sheet or the like for protecting the heat generating portion is laminated. When a flexible base material such as cloth, paper, or resin film is used, there is no difference in flexibility.

本発明の導電性組成物を用いた面状発熱体の応用例として、電圧を印加する一対の電極間において、異なる電気抵抗率を有する導電性組成物による線状パターンの発熱部を形成することにより、単一の回路で異なる発熱特性を有する複数の発熱部が形成された面状発熱体を得ることも可能である。 As an application example of a planar heating element using the conductive composition of the present invention, a linear pattern heating element is formed between a pair of electrodes to which a voltage is applied by the conductive compositions having different electrical resistivitys. Therefore, it is also possible to obtain a planar heating element in which a plurality of heat generating portions having different heat generating characteristics are formed in a single circuit.

以下に本発明を実施例により説明するが、本発明はこれらの実施例により何らの制限を受けるものではない。本実施例における各種物性の評価方法は以下の通りである。 The present invention will be described below with reference to examples, but the present invention is not limited by these examples. The evaluation methods for various physical properties in this example are as follows.

<発熱部の評価>
各実施例または比較例で得られた面状発熱体について、硬化後の発熱部の線高(膜厚)はデジタルマイクロメータ(ソニー株式会社製M−30)、線幅はマイクロスコープ(株式会社キーエンス製、VHX5000)、両端間の電気抵抗はデジタルマルチメーター(三和電気計器株式会社製、PM3)を用いて測定した。
<Evaluation of heat generating part>
For the planar heating element obtained in each Example or Comparative Example, the line height (film thickness) of the heat-generating part after curing is a digital micrometer (M-30 manufactured by Sony Corporation), and the line width is a microscope (Co., Ltd.). Keyence, VHX5000), the electrical resistance between both ends was measured using a digital multimeter (Sanwa Electric Instrument Co., Ltd., PM3).

<発熱性の評価>
面状発熱体の発熱部の両端に導線を接続して電圧を印加し、赤外線サーモグラフィー(フリアーシステムズ社製、FLIR C2)にて面状発熱体の表面温度を観察した(図2)。解析ソフト(フリアーシステムズ社製、FLIR Tools)を用いて、電圧印加前後における表面温度の上昇値を算出し、発熱性を評価した。
<Evaluation of heat generation>
A voltage was applied by connecting wires to both ends of the heating element of the planar heating element, and the surface temperature of the planar heating element was observed by infrared thermography (FLIR C2, manufactured by FLIR Systems) (Fig. 2). Using analysis software (FLIR Tools, manufactured by FLIR Systems), the increase in surface temperature before and after voltage application was calculated, and the heat generation was evaluated.

(実施例1)
絶縁性樹脂としてポリカーボネート系ポリウレタン(DIC株式会社製、クリスボンMP120)、第一導電性材料として粒径3.5〜5.5μmのフレーク状銀粒子から成るシルコートAgC−A(福田金属箔粉工業株式会社製)、第二導電性材料として粒径40nmの導電性カーボンブラックから成るケッチェンブラックEC300J(ライオン・スペシャリティ・ケミカルズ株式会社製)を固形分配合比が表1に示すとおりとなるよう配合し、自転・公転ミキサー(株式会社シンキー製、あわとり練太郎ARE−310)にて攪拌・脱泡した後、溶剤としてジメチルホルムアミドを加えて粘度を10Pa・s(50rpm)に調整することにより、導電性組成物(ペースト)を調製した。
(Example 1)
Silcoat AgC-A (Fukuda Metal Foil Powder Industry Co., Ltd.) consisting of polycarbonate polyurethane (manufactured by DIC Co., Ltd., Chris Bonn MP120) as an insulating resin and flaky silver particles having a particle size of 3.5 to 5.5 μm as the first conductive material. (Manufactured by the company), Ketjen Black EC300J (manufactured by Lion Specialty Chemicals Co., Ltd.) made of conductive carbon black with a particle size of 40 nm was blended as the second conductive material so that the solid content blending ratio was as shown in Table 1. After stirring and defoaming with a rotating / revolving mixer (Sinky Co., Ltd., Awatori Rentaro ARE-310), dimethylformamide is added as a solvent to adjust the viscosity to 10 Pa · s (50 rpm), thereby conducting conductivity. A sex composition (paste) was prepared.

得られた導電性ペースト組成物を用いて、厚み125μmのポリウレタンフィルム(倉敷紡績株式会社製、U1490)上に、ディスペンサーにて折り返し長150mm、折り返しピッチ5mmで折り返した発熱長955mmの評価用パターン(図1)を塗工し、120℃で30分間の熱乾燥により、導電性ペースト組成物中の溶剤成分を除去し、評価用の面状発熱体を作製した。得られた面状発熱体について、発熱部の印加電圧6Vでの温度上昇ΔTは77.9Kであった。 Using the obtained conductive paste composition, an evaluation pattern having a heat generation length of 955 mm folded back with a dispenser on a polyurethane film (manufactured by Kurashiki Spinning Co., Ltd., U1490) having a thickness of 125 μm and a folding back pitch of 5 mm. FIG. 1) was applied, and the solvent component in the conductive paste composition was removed by heat drying at 120 ° C. for 30 minutes to prepare a planar heating element for evaluation. For the obtained planar heating element, the temperature rise ΔT at an applied voltage of 6 V to the heating part was 77.9 K.

(実施例2、3)
導電性組成物中の各成分の配合比が表1のとおりである以外は実施例1と同様にして導電性組成物を調製し、実施例1と同様にして面状発熱体を作製した。得られた面状発熱体について、印加電圧6Vによる発熱部の温度上昇ΔTはそれぞれ38.8K、19.2Kであった。実施例1〜3は発熱部の線幅、線高(膜厚)、発熱長が同じであるにも関わらず、異なる発熱性を示した。つまり、第一導電性材料と第二導電性材料の配合比を調整することにより、所望の電気抵抗率を有する導電性組成物が得られることを示した。









(Examples 2 and 3)
A conductive composition was prepared in the same manner as in Example 1 except that the compounding ratio of each component in the conductive composition was as shown in Table 1, and a planar heating element was prepared in the same manner as in Example 1. For the obtained planar heating element, the temperature rise ΔT of the heat generating portion due to the applied voltage of 6 V was 38.8 K and 19.2 K, respectively. In Examples 1 to 3, although the line width, line height (film thickness), and heat generation length of the heat generating portion were the same, they showed different heat generation properties. That is, it was shown that a conductive composition having a desired electrical resistivity can be obtained by adjusting the blending ratio of the first conductive material and the second conductive material.









(実施例4、5)
導電性組成物中の各成分の配合比を表2のとおりとした以外は実施例1と同様にして導電性組成物を調製した。得られた導電性組成物を用いて面状発熱体を作製するにあたり、実施例4については折り返し長を90mmとして発熱長を595mmとし、実施例5については折り返し長を40mmとして発熱長を295mmとした以外は実施例1と同様にして面状発熱体を作製した。得られた面状発熱体の印加電圧6Vにおける発熱部の温度上昇ΔTはそれぞれ実施例4が77.1K、実施例5が78.8Kであった。実施例1、実施例4、実施例5の面状発熱体を同じ印加電圧6Vにて比較した場合、発熱長が異なるにもかかわらず、同様の発熱性を示した。
(Examples 4 and 5)
A conductive composition was prepared in the same manner as in Example 1 except that the compounding ratio of each component in the conductive composition was as shown in Table 2. In producing a planar heating element using the obtained conductive composition, in Example 4, the folding length was 90 mm and the heating length was 595 mm, and in Example 5, the folding length was 40 mm and the heating length was 295 mm. A planar heating element was produced in the same manner as in Example 1 except for the above. The temperature rise ΔT of the heat generating portion at the applied voltage of 6 V of the obtained planar heating element was 77.1 K in Example 4 and 78.8 K in Example 5, respectively. When the planar heating elements of Example 1, Example 4, and Example 5 were compared at the same applied voltage of 6 V, they showed the same heat generation property even though the heat generation lengths were different.

(比較例1〜3)
第二導電性材料を配合せず、各成分の配合比を表3のとおりとした以外は実施例1と同様に導電性組成物を調製した。得られた導電性組成物を用いて面状発熱体を作製するにあたり、比較例1については折り返し長を150mmとして発熱長を955mmとし、比較例2については折り返し長を90mmとして発熱長を595mmとし、比較例3については折り返し長を60mmとして発熱長を415mmとした以外は実施例1と同様にして面状発熱体を作製した。得られた面状発熱体の印加電圧2Vにおける発熱部の温度上昇ΔTはそれぞれ比較例1が14.4K、比較例2が39.2K、比較例3が76.5Kと全て異なる発熱性を示すものであった。
(Comparative Examples 1 to 3)
A conductive composition was prepared in the same manner as in Example 1 except that the second conductive material was not blended and the blending ratio of each component was as shown in Table 3. In producing a planar heating element using the obtained conductive composition, in Comparative Example 1, the folding length was 150 mm and the heating length was 955 mm, and in Comparative Example 2, the folding length was 90 mm and the heating length was 595 mm. In Comparative Example 3, a planar heating element was produced in the same manner as in Example 1 except that the folding length was 60 mm and the heat generation length was 415 mm. The temperature rise ΔT of the heat generating portion at the applied voltage of 2 V of the obtained planar heating element is 14.4 K in Comparative Example 1, 39.2 K in Comparative Example 2, and 76.5 K in Comparative Example 3, respectively, showing different heat generating properties. It was a thing.

1:発熱部
2:基材
1: Heat generating part 2: Base material

Claims (4)

絶縁性樹脂と、第一導電性材料と、前記第一導電性材料よりも高い電気抵抗率を有する第二導電性材料とを含み、前記第一導電性材料の含有量に対する前記第二導電性材料の含有量の質量比が0.01〜1.00であることを特徴とする導電性組成物。 The second conductivity with respect to the content of the first conductive material, including an insulating resin, a first conductive material, and a second conductive material having a higher electrical resistivity than the first conductive material. A conductive composition characterized in that the mass ratio of the content of the material is 0.01 to 1.00. 前記第一導電性材料が、金属を主成分とする粒子であることを特徴とする請求項1に記載の導電性組成物。 The conductive composition according to claim 1, wherein the first conductive material is particles containing a metal as a main component. 前記第二導電性材料が、炭素粒子であることを特徴とする請求項1または2に記載の導電性組成物。 The conductive composition according to claim 1 or 2, wherein the second conductive material is carbon particles. シート状あるいは板状の基材の表面に、請求項1に記載の導電性組成物を用いて形成された線状パターンからなる発熱部を有することを特徴とする面状発熱体。 A planar heating element having a heat generating portion formed of a linear pattern formed by using the conductive composition according to claim 1 on the surface of a sheet-shaped or plate-shaped base material.
JP2019030284A 2019-02-22 2019-02-22 Conductive composition and planar heating element Pending JP2020136153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019030284A JP2020136153A (en) 2019-02-22 2019-02-22 Conductive composition and planar heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019030284A JP2020136153A (en) 2019-02-22 2019-02-22 Conductive composition and planar heating element

Publications (1)

Publication Number Publication Date
JP2020136153A true JP2020136153A (en) 2020-08-31

Family

ID=72279012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019030284A Pending JP2020136153A (en) 2019-02-22 2019-02-22 Conductive composition and planar heating element

Country Status (1)

Country Link
JP (1) JP2020136153A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539442A (en) * 1991-08-02 1993-02-19 Genji Naemura Electrically conductive heat generating fluid
JP2000311770A (en) * 1999-01-13 2000-11-07 Malden Mills Ind Inc Electric heating/warming cloth product
JP2005259546A (en) * 2004-03-12 2005-09-22 Toyobo Co Ltd Conductive paste for rotary screen printing apparatus and conductor circuit using the same
JP2007242397A (en) * 2006-03-08 2007-09-20 Toyobo Co Ltd Conductive paste, and surface heating element and printed circuit using this
JP2007299546A (en) * 2006-04-27 2007-11-15 Denso Corp Planar heating element
JP2008218350A (en) * 2007-03-07 2008-09-18 Fukuju Sangyo Kk Planar heating element and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539442A (en) * 1991-08-02 1993-02-19 Genji Naemura Electrically conductive heat generating fluid
JP2000311770A (en) * 1999-01-13 2000-11-07 Malden Mills Ind Inc Electric heating/warming cloth product
JP2005259546A (en) * 2004-03-12 2005-09-22 Toyobo Co Ltd Conductive paste for rotary screen printing apparatus and conductor circuit using the same
JP2007242397A (en) * 2006-03-08 2007-09-20 Toyobo Co Ltd Conductive paste, and surface heating element and printed circuit using this
JP2007299546A (en) * 2006-04-27 2007-11-15 Denso Corp Planar heating element
JP2008218350A (en) * 2007-03-07 2008-09-18 Fukuju Sangyo Kk Planar heating element and its manufacturing method

Similar Documents

Publication Publication Date Title
Chu et al. Smart conducting polymer composites having zero temperature coefficient of resistance
JP4897360B2 (en) Thermally conductive molded body and method for producing the same
JP5580835B2 (en) Carbon nanotube heating sheet
JP4936142B2 (en) Conductive paste composition, electronic circuit, and electronic component
CN103108906B (en) Utilize the PTC element conductive polymer composition that the NTC characteristic of carbon nanotube reduces
KR0140203B1 (en) Conductive polymer composition
KR102049508B1 (en) The plate heating element applied a coating fabric having an even surface and the manufacturing method thereof
JP5178117B2 (en) Heat dissipation slurry and electronic parts using the same
CN104396356B (en) Heat-conducting substrate product
JP2020136153A (en) Conductive composition and planar heating element
TWI742157B (en) Silver paste for resin substrate, electronic component and manufacturing method thereof
JP2007224207A (en) Electroconductive composition, electroconductive coating material, electroconductive fiber material, method for producing electroconductive fiber material, and flat heater
KR101434565B1 (en) Thick membrane type PTC heating element with Conductive paste composition
KR101467353B1 (en) Sheet-type hybrid heating composite
Staat et al. Substrates based on renewable resources for printed circuit boards
JP2006206706A (en) Heat-treated conductive composition, conductive coating having the same, conductive fiber material, and flat heater
KR101454454B1 (en) Ingredient of conducting pastes based on nano carbon materials having multiple hydrogen bonding motifs for printing and their fabrication method
KR20170097340A (en) A planar heating film using carbon nanotube
Minář et al. Electrical Properties of Photopolymers for 3D Printing
DE102017212579A1 (en) Heating element and method of manufacturing a heating element
KR20200125032A (en) Flexible planar heater and manufacturing method thereof
CN115244631A (en) PPTC heaters and materials with stable power and self-limiting characteristics
KR101551180B1 (en) Manufacturing method of electrically conductive composition for coating plane heater, and electrically conductive composition for coating plane heater
Jiang Inkjet Printing of Nano-Silver Conductive Ink on PET Substrate
JP2008186700A (en) Planar heating element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230926