JP5178117B2 - Heat dissipation slurry and electronic parts using the same - Google Patents

Heat dissipation slurry and electronic parts using the same Download PDF

Info

Publication number
JP5178117B2
JP5178117B2 JP2007254671A JP2007254671A JP5178117B2 JP 5178117 B2 JP5178117 B2 JP 5178117B2 JP 2007254671 A JP2007254671 A JP 2007254671A JP 2007254671 A JP2007254671 A JP 2007254671A JP 5178117 B2 JP5178117 B2 JP 5178117B2
Authority
JP
Japan
Prior art keywords
heat dissipation
slurry
heat
electronic component
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007254671A
Other languages
Japanese (ja)
Other versions
JP2009088164A (en
Inventor
仁志 西谷
昌文 山田
春樹 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2007254671A priority Critical patent/JP5178117B2/en
Publication of JP2009088164A publication Critical patent/JP2009088164A/en
Application granted granted Critical
Publication of JP5178117B2 publication Critical patent/JP5178117B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は電子部品を冷却するための放熱板を不要として、電子機器の大型化を抑制しつつ、その電子部品を高効率に冷却することができる放熱スラリー及びそれを用いた電子部品に関するものである。   The present invention relates to a heat-dissipating slurry that can cool an electronic component with high efficiency while eliminating the need for a heat-radiating plate for cooling the electronic component and suppressing an increase in size of the electronic device, and an electronic component using the same. is there.

トランジスタやIC等の電子部品は通電によって高熱を発するため、電子機器の分野においては、これら電子部品の発熱に対する冷却方法が重要な技術の一つとなっている。電子部品の冷却方法としては、通常、熱伝導性に優れる材料からなる放熱板(ヒートシンク)を電子部品の発熱面に取り付ける方法が一般的である(特許文献1)。更に、放熱フィンを冷却ファンにて空冷する方法もある。   Since electronic parts such as transistors and ICs generate high heat when energized, in the field of electronic equipment, a cooling method for heat generation of these electronic parts is one of important technologies. As a method for cooling an electronic component, a method of attaching a heat radiating plate (heat sink) made of a material excellent in thermal conductivity to a heat generating surface of the electronic component is generally used (Patent Document 1). Further, there is a method in which the heat radiation fin is air-cooled by a cooling fan.

しかしながら、近年では電子機器の小形・軽量化を達成するべく、その薄形化および高密度実装化が急速に進められており、そのため、放熱板を実装するための十分なスペースを確保することができないという問題点があった。即ち、電子部品を適切に冷却するためには、放熱板を大きくする必要があり、その分、電子機器全体としての大型化を招く。その一方、放熱板を小さく構成したのでは、放熱効率が低下して、電子部品を効率的に冷却することができない。   However, in recent years, in order to achieve miniaturization and weight reduction of electronic equipment, its thinning and high-density mounting have been promoted rapidly. Therefore, it is possible to secure a sufficient space for mounting a heat sink. There was a problem that it was not possible. That is, in order to properly cool the electronic component, it is necessary to increase the size of the heat radiating plate. On the other hand, if the heat radiating plate is made small, the heat radiating efficiency is lowered and the electronic components cannot be efficiently cooled.

特許文献2では電子部品の表層にダイヤモンド膜、ダイヤモンド状カーボン膜を形成する方法が示されている。しかしながら、特許文献2の方法では膜を形成するのに特殊な装置が必要なため、電子部品のコストが上昇してしまうとともに形成できる膜厚が薄いために十分な放熱性が得られない欠点があった。   Patent Document 2 discloses a method of forming a diamond film or a diamond-like carbon film on the surface layer of an electronic component. However, since the method of Patent Document 2 requires a special device to form a film, the cost of electronic components increases and the film thickness that can be formed is thin, so that sufficient heat dissipation cannot be obtained. there were.

特許文献3では絶縁材部の内層に熱伝導性を有するカーボンシートが積層状に設けられた電子部品が示されている。しかしながら、特許文献3の方法では以カーボンシートが高価なため、カーボンシートを使用すると電子部品の価格が上がってしまう問題があった。   Patent Document 3 discloses an electronic component in which a carbon sheet having thermal conductivity is provided in a laminated form on an inner layer of an insulating material portion. However, since the carbon sheet is expensive in the method of Patent Document 3, there is a problem that the price of electronic parts increases when the carbon sheet is used.

特許文献4では弾性を有するエマルションゴム中に膨張黒鉛を均一に分散させた黒鉛落ちのない熱伝導シートが示されている。しかしながら、ゴムを結着材とした場合には、可撓性は有するものの、結着性が十分ではないという問題があった。
特開平7−235781号公報 特開2007−157835号公報 特開2007−073654号公報 特開2006−137860号公報
Patent Document 4 discloses a heat conductive sheet having no graphite dropping in which expanded graphite is uniformly dispersed in an elastic emulsion rubber. However, when rubber is used as the binding material, there is a problem that the binding property is not sufficient although it has flexibility.
JP 7-235781 A JP 2007-157835 A Japanese Patent Laid-Open No. 2007-073654 JP 2006-137860 A

本発明の目的は、上述した問題点を解決するためになされたものであり、電子部品を冷却するための放熱板を不要として、電子機器の大型化を抑制しながら、安価かつ容易で高効率に冷却することができる材料及びそれを用いた電子部品を提供することを目的としている。   The object of the present invention is to solve the above-mentioned problems, and eliminates the need for a heat sink for cooling electronic components, while suppressing the increase in size of electronic equipment, and is inexpensive, easy and highly efficient. It is an object of the present invention to provide a material that can be cooled down and an electronic component using the material.

本発明者らは、上記課題について鋭意検討した結果、特定炭素材と結着材および分散媒からなる放熱スラリーを用い、さらにこの放熱スラリーを塗布、乾燥させた電子部品を用いると上記課題が解決されることを見出し、本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors have solved the above problems by using a heat dissipation slurry comprising a specific carbon material, a binder and a dispersion medium, and further using an electronic component coated and dried with this heat dissipation slurry. As a result, the present invention has been completed.

本発明の要旨は、下記の通りである。
(1)膨張黒鉛を主成分とする炭素材、結着材としての熱可塑性樹脂または熱硬化性樹脂のエマルション粒子、および分散媒としての有機溶剤または水性媒体からなり、炭素材と結着材との合計固形分比率が5〜40質量%であることを特徴とする放熱スラリー。
(2)結着材が熱硬化性樹脂のエマルション粒子である(1)記載の放熱スラリー。
(3)分散媒が水性媒体である(1)または(2)に記載の放熱スラリー。
(4)(1)〜(3)のいずれかに記載の放熱スラリーを塗布・乾燥してなる放熱層。
(5)(4)記載の放熱層を設けた電子部品。
(6)電子部品が、プリント基板、可変抵抗器、スイッチ、エンコーダ、センサ、コネク
タからから選ばれたものである(5)記載の電子部品。
(7)放熱層を電子部品の電気絶縁部表面及び/または内部に設けてなる(5)または(
6)に記載の電子部品。
The gist of the present invention is as follows.
(1) A carbon material mainly composed of expanded graphite, an emulsion particle of a thermoplastic resin or a thermosetting resin as a binder, and an organic solvent or an aqueous medium as a dispersion medium. The total solid content ratio is 5 to 40% by mass .
(2) The heat dissipation slurry according to (1), wherein the binder is emulsion particles of a thermosetting resin.
(3) The heat dissipation slurry according to (1) or (2), wherein the dispersion medium is an aqueous medium.
(4) A heat dissipation layer formed by applying and drying the heat dissipation slurry according to any one of (1) to (3).
(5) An electronic component provided with the heat dissipation layer described in (4).
(6) The electronic component according to (5), wherein the electronic component is selected from a printed circuit board, a variable resistor, a switch, an encoder, a sensor, and a connector.
(7) The heat radiation layer is provided on the surface and / or inside of the electrical insulating part of the electronic component (5) or (
The electronic component according to 6).

本発明の放熱スラリーによれば、電子部品を冷却するための放熱板を不要として、電子機器の大型化を抑制しながら、容易で高効率に冷却することができ、カーボン脱落のない放熱層を形成することができ、それを電子部品に設けることで、安価で効率的に熱を放出する電子部品を提供することができる。   According to the heat dissipating slurry of the present invention, a heat dissipating plate for cooling electronic components is not required, and the heat dissipating layer can be easily and highly efficiently cooled while suppressing the increase in size of the electronic device, and the heat dissipating layer without carbon falling off. An electronic component that can be formed and provided to the electronic component can efficiently provide heat at a low cost.

結着材として熱硬化性樹脂エマルションを用いると、耐熱性が向上し、電子部品を実装する際のハンダの熱にも耐えることができる。   When a thermosetting resin emulsion is used as the binder, the heat resistance is improved and the heat of the solder when mounting the electronic component can be withstood.

分散媒として水性媒体を用いることで、環境面や安全性に配慮したものとすることができる。   By using an aqueous medium as the dispersion medium, it is possible to consider the environment and safety.

以下、本発明を詳述する。   The present invention is described in detail below.

本発明の放熱スラリーには、炭素材の主成分として膨張黒鉛を用いる。膨張黒鉛は、黒鉛を硝酸、硫酸等の化学薬品で処理し、これを1000℃以上の高温で熱処理することで得られ、黒鉛の結晶格子の層間が膨張してフレーク状の粒子になったものである。平均粒子径が0.5〜300μmのものが好ましく、より好ましくは1〜200μmである。炭素材中における膨張黒鉛の占める割合は、50〜100質量%とすることが好ましく、さらに好ましくは70〜100質量%である。   In the heat dissipation slurry of the present invention, expanded graphite is used as the main component of the carbon material. Expanded graphite is obtained by treating graphite with chemicals such as nitric acid and sulfuric acid and heat-treating it at a high temperature of 1000 ° C. or higher, and the graphite crystal lattice layer expands into flaky particles. It is. The average particle diameter is preferably 0.5 to 300 μm, more preferably 1 to 200 μm. The proportion of the expanded graphite in the carbon material is preferably 50 to 100% by mass, and more preferably 70 to 100% by mass.

膨張黒鉛以外の炭素材として、カーボンブラックや炭素繊維などを併用することができる。カーボンブラックを併用する場合には、全炭素材中0〜50質量%とすることが好ましく、さらに好ましくは、0〜30質量%の範囲である。また、炭素繊維を用いる場合、全炭素材中0〜10質量%とすることが好ましく、さらに好ましくは0〜5質量%の範囲である。   As a carbon material other than expanded graphite, carbon black, carbon fiber, or the like can be used in combination. When using together carbon black, it is preferable to set it as 0-50 mass% in all the carbon materials, More preferably, it is the range of 0-30 mass%. Moreover, when using carbon fiber, it is preferable to set it as 0-10 mass% in all the carbon materials, More preferably, it is the range of 0-5 mass%.

カーボンブラックとしては、アセチレンブラック、オイルファーネスブラック、ケッチェンブラック、ランプブラック、チャンネルブラック、ガスブラック、サーマルブラック、プラズマブラックなどが挙げられ、アセチレンブラック、オイルファーネスブラック、ケッチェンブラックが好ましく、これらの一次粒子径が1〜100nmのものが好ましい。カーボンブラックの形状は粒子状、粉末状など特に制限はないが、好ましくは粉末状がよい。   Examples of carbon black include acetylene black, oil furnace black, ketjen black, lamp black, channel black, gas black, thermal black, plasma black, etc., and acetylene black, oil furnace black, and ketjen black are preferred. The thing with a primary particle diameter of 1-100 nm is preferable. The shape of the carbon black is not particularly limited, such as a particle form or a powder form, but preferably a powder form.

炭素繊維には、ピッチ系炭素繊維やPAN系炭素繊維が挙げられ、いわゆるカーボンナノチューブ、カーボンナノファイバーも含まれる。カーボンナノチューブとしては、炭素のチューブ構造が単一チューブであるシングル型、チューブ構造が二重のチューブであるダブル型、およびチューブ構造が三重以上となっているマルチ型構造を含み、さらに、チューブの一方の端が閉じて他方の端が開いているナノホーン型、一方の端の開口が他方の端の開口よりも大きいカップ型等の形態も含んでいる。   Examples of the carbon fiber include pitch-based carbon fiber and PAN-based carbon fiber, and so-called carbon nanotubes and carbon nanofibers are also included. The carbon nanotube includes a single type in which the tube structure of the carbon is a single tube, a double type in which the tube structure is a double tube, and a multi-type structure in which the tube structure is triple or more. Examples include a nanohorn type in which one end is closed and the other end is open, and a cup type in which the opening at one end is larger than the opening at the other end.

本発明の放熱スラリーには、結着材として熱可塑性樹脂または熱硬化性樹脂を用いる必要がある。特に、熱硬化性樹脂を用いた場合、耐熱性が向上し、電子部品を実装する際のハンダ熱の耐えることができるので、熱硬化性樹脂が好ましい。一般に熱可塑性樹脂にも熱硬化性樹脂にも分類されない、例えばゴム成分などでは、結着性に劣るため、カーボンの脱落などが生じやすい。   In the heat dissipation slurry of the present invention, it is necessary to use a thermoplastic resin or a thermosetting resin as a binder. In particular, when a thermosetting resin is used, the thermosetting resin is preferable because the heat resistance is improved and the soldering heat when the electronic component is mounted can be withstood. Generally, a rubber component or the like, which is not classified as a thermoplastic resin or a thermosetting resin, is inferior in binding properties, so that carbon is likely to fall off.

熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、シクロオレフィンポリマー、ナイロン11、ナイロン12、ナイロン6、ナイロン610、ナイロン612、ナイロン66、ナイロン9T、ナイロン6T、芳香族系ポリアミド、AS樹脂(アクリロ二トリル/スチレン共重合体)、ABS樹脂(アクリロニトリル/スチレン/ブタジエン共重合体)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、液晶ポリエステル等のポリエステル、ポリフェニレンサルファイド、ポリカーボネート、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアセタール、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリベンズイミダゾール及びフッ素樹脂およびこれらの共重合変性体からなる群から選ばれる1種、または2種類以上の組み合わせを用いることができる。なかでも、結着性の点から、ポリエチレン、ポリプロピレン、ポリエステルが好ましい。   Examples of the thermoplastic resin include polyethylene, polypropylene, polystyrene, cycloolefin polymer, nylon 11, nylon 12, nylon 6, nylon 610, nylon 612, nylon 66, nylon 9T, nylon 6T, aromatic polyamide, AS resin (acrylonitrile) Tolyl / styrene copolymer), ABS resin (acrylonitrile / styrene / butadiene copolymer), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyester such as liquid crystal polyester, polyphenylene sulfide, polycarbonate, polyarylate, polysulfone, polyether Sulphone, polyimide, polyetherimide, polyamideimide, polyetherketone, polyetheretherketone, polyacetal Polyphenylene ether, modified polyphenylene ether, can be used alone, or two or more combinations selected from polybenzimidazole and fluororesin and the group consisting of copolymerization modification thereof. Of these, polyethylene, polypropylene, and polyester are preferable from the viewpoint of binding properties.

熱硬化性樹脂として、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、アルキド樹脂、アクリル樹脂、メラミン樹脂、キシレン樹脂、グアナミン樹脂、ジアリルフタレート樹脂、アリルエステル樹脂、フラン樹脂、イミド樹脂、ウレタン樹脂、ユリア樹脂およびこれらの共重合変性体からなる群より選ばれる1種、または2種類以上の組み合わせを用いることができる。なかでも、結着性と耐熱性の点から、フェノール樹脂、エポキシ樹脂、アクリル樹脂、メラミン樹脂が好ましい。熱硬化性樹脂は、放熱スラリーとして基材に塗布後に硬化させて使用することが好ましい。   As thermosetting resin, phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, alkyd resin, acrylic resin, melamine resin, xylene resin, guanamine resin, diallyl phthalate resin, allyl ester resin, furan resin, imide resin, One type or a combination of two or more types selected from the group consisting of urethane resins, urea resins and copolymerized modified products thereof can be used. Of these, phenol resin, epoxy resin, acrylic resin, and melamine resin are preferable from the viewpoints of binding properties and heat resistance. The thermosetting resin is preferably used after being applied to the substrate as a heat dissipation slurry.

結着材は、エマルション粒子とする必要がある。エマルション粒子を用いると同量の溶剤可溶型結着材を用いたときに比べて結着力が強くなる傾向があり、より少量の結着材で炭素材料を結着することができる。したがって、得られる放熱層における炭素材の割合を高くでき、より放熱効率が高まる。   The binder must be emulsion particles. When emulsion particles are used, the binding force tends to be stronger than when the same amount of solvent-soluble binder is used, and the carbon material can be bound with a smaller amount of binder. Therefore, the ratio of the carbon material in the obtained heat dissipation layer can be increased, and the heat dissipation efficiency is further increased.

結着材と炭素材の配合比率は、質量比で90/10〜5/95の範囲とすることが好ましく、70/30〜7/93の範囲がより好ましく、60/40〜10/90がさらに好ましい。結着材の割合が90質量%を超えると、得られる電子部品においては、放熱性を発揮できず、一方、5質量%を下回ると、炭素材料と絶縁材部の各材料間の十分な結着性が得られないことがある。   The mixing ratio of the binder and the carbon material is preferably 90/10 to 5/95 in terms of mass ratio, more preferably 70/30 to 7/93, and 60/40 to 10/90. Further preferred. When the proportion of the binder exceeds 90% by mass, the obtained electronic component cannot exhibit heat dissipation, whereas when it is less than 5% by mass, sufficient bonding between the carbon material and each material of the insulating material part is achieved. Wearability may not be obtained.

放熱スラリーの分散媒は、結着材成分をエマルション粒子として均一分散することができる限り、有機溶剤系、水性媒体いずれでもよい。有機溶剤としては、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、メチルエチルケトン(MEK)、トルエン、キシレン、シクロヘキサノン、γ-ブチロラクトン、イソプロパノール、シクロペンチルメチルエーテル、クロロホルム、塩化メチレンが挙げられる。水性媒体とは、水単独、または水と水溶性有機溶媒との混合溶媒である。環境や安全性の点からは、分散媒は水性媒体とすることが好ましい。   The dispersion medium of the heat dissipation slurry may be either an organic solvent system or an aqueous medium as long as the binder component can be uniformly dispersed as emulsion particles. Examples of the organic solvent include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethyl sulfoxide, hexamethylsulfuramide, tetramethylurea, acetone, methyl ethyl ketone (MEK), toluene, Examples include xylene, cyclohexanone, γ-butyrolactone, isopropanol, cyclopentyl methyl ether, chloroform, and methylene chloride. The aqueous medium is water alone or a mixed solvent of water and a water-soluble organic solvent. From the viewpoint of environment and safety, the dispersion medium is preferably an aqueous medium.

放熱スラリーは、結着材と炭素材を分散媒に混合し、分散させることで得ることができる。炭素材と結着材の合計固形分比率は、放熱スラリー中の5〜40質量%とすることが必要であり、より好ましくは10〜30質量%である。混合、分散の手段は特に限定されず、ホモジナイザー等の公知の混合装置を用いることができる。 The heat dissipation slurry can be obtained by mixing a binder and a carbon material in a dispersion medium and dispersing them. The total solid content ratio of the carbon material and the binder is required to be 5 to 40% by mass in the heat dissipation slurry , and more preferably 10 to 30% by mass. The means for mixing and dispersing is not particularly limited, and a known mixing device such as a homogenizer can be used.

放熱スラリーには、必要に応じて濡れ剤を添加してもよい。濡れ剤としては、カルボシキメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン等を挙げることができ、好ましくはカルボシキメチルセルロースがよい。これらの濡れ剤は、炭素材の各材料間の濡れ性を向上させる。配合量としては、結着材、炭素材の合計100質量部に対して0.01〜50質量部が好ましく、より好ましくは0.01〜30質量部、さらに好ましくは0.01〜15質量部である。濡れ剤の混合時期や方法は特に限定されない。   You may add a wetting agent to the thermal radiation slurry as needed. Examples of the wetting agent include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein, and preferably carboxymethylcellulose. These wetting agents improve the wettability between the carbon materials. As a compounding quantity, 0.01-50 mass parts is preferable with respect to a total of 100 mass parts of a binder and a carbon material, More preferably, 0.01-30 mass parts, More preferably, 0.01-15 mass parts It is. The mixing timing and method of the wetting agent are not particularly limited.

本発明のスラリーは、これを電子部品の電気絶縁部の表面または内部に塗布し、乾燥することにより放熱層を形成させて用いる。   The slurry of the present invention is used by applying the slurry to the surface or inside of the electrical insulating portion of the electronic component and drying it to form a heat dissipation layer.

塗布方法としては、特に制限はないが、スクリーン印刷やドクターブレードによる塗布が挙げられる。特にパターンを塗布する場合にはスクリーン印刷が好ましい。   Although there is no restriction | limiting in particular as an application | coating method, Application | coating by screen printing and a doctor blade is mentioned. Screen printing is particularly preferred when applying a pattern.

乾燥方法としては、特に制限はないが、熱風乾燥、減圧乾燥、熱減圧乾燥が挙げられる。電子部品を高温にさらさない理由から、熱減圧乾燥が好ましい。   Although there is no restriction | limiting in particular as a drying method, Hot air drying, reduced pressure drying, and hot reduced pressure drying are mentioned. Thermal vacuum drying is preferred because the electronic components are not exposed to high temperatures.

放熱層の厚みは、5〜500μmが好ましく、10〜300μmの範囲がより好ましく、50〜250がさらに好ましい。放熱層が5μmより薄いと放熱性能が発揮できず、500μより厚いと電子部品の厚さが厚くなってしまうため、小型化が困難になってしまうためである。   The thickness of the heat dissipation layer is preferably 5 to 500 μm, more preferably 10 to 300 μm, and even more preferably 50 to 250. This is because if the heat dissipation layer is thinner than 5 μm, the heat dissipation performance cannot be exhibited, and if it is larger than 500 μm, the thickness of the electronic component is increased, which makes it difficult to reduce the size.

電子部品とは、プリント基板、可変抵抗器、スイッチ、エンコーダ、センサ、コネクタ等が挙げられる   Electronic components include printed circuit boards, variable resistors, switches, encoders, sensors, connectors, etc.

本発明の放熱層は、電子部品の電気絶縁部の表面及び/または内部に適宜設けて使用する。   The heat-dissipating layer of the present invention is used by being appropriately provided on the surface and / or inside of the electrical insulating portion of the electronic component.

以下、本発明を実施例により詳細に説明する。ただし、本発明は下記実施例によって何ら限定されるものではない。なお、各種評価は以下の方法によって行った。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples. Various evaluations were performed by the following methods.

〔放熱性の評価〕
作製したプリント基板に1kΩの抵抗を実装し、0〜60Vの電圧を印したときの抵
抗の温度を熱電対を用いて測定した。
[Evaluation of heat dissipation]
Implement 1kΩ resistor to a printed circuit board produced, the temperature of the resistance when the indicia pressurizing the voltage 0~60V was measured using a thermocouple.

〔結着性の評価〕
コア材作製時の真空プレス後に、ガラスクロス−エポキシ板とプリプレグ間の放熱層で剥離が発生しないかを目視で観察し、真空プレス後にガラスクロス−エポキシ板とプリプレグ間で200g/cmの引張り剥離試験を行なった。目視で剥離が発生せず、剥離試験でも剥離が発生しなかったものを○、目視での剥離は発生しなかったものの、剥離試験で剥離が発生したものを△、目視で剥離発生したものを×と評価した。
[Evaluation of binding properties]
After vacuum pressing at the time of core material production, it is visually observed whether or not peeling occurs in the heat dissipation layer between the glass cloth-epoxy plate and the prepreg, and after the vacuum pressing, a tension of 200 g / cm 2 is applied between the glass cloth-epoxy plate and the prepreg. A peel test was performed. No peeling occurred visually, no peeling occurred even in the peeling test, no peeling occurred visually, Δ peeling occurred in the peeling test, and peeling occurred visually. X was evaluated.

〔ハンダ耐熱性の評価〕
コア材作製時の真空プレス後に、280℃のハンダ層に20秒ディップして、コア材に膨れや剥がれがないかを目視で観察し、観察後にガラスクロス−エポキシ板とプリプレグ間で200g/cmの引張り剥離試験を行なった。目視で膨れや剥離が発生せず、剥離試験でも剥離が発生しなかったものを○、目視での膨れや剥離は発生しなかったものの、剥離試験で剥離が発生したものを△、目視で膨れや剥離発生したものを×と評価した。
[Evaluation of solder heat resistance]
After vacuum pressing at the time of core material preparation, dip on the solder layer at 280 ° C. for 20 seconds and visually observe whether the core material is swollen or peeled off. After observation, 200 g / cm between the glass cloth-epoxy plate and the prepreg Two tensile peel tests were performed. No bulging or peeling occurred visually, and no peeling occurred even in the peeling test. No bulging or peeling occurred visually, but no peeling occurred in the peeling test. And those where peeling occurred were evaluated as x.

〔放熱スラリーの製造〕
(放熱スラリー「A−1」の製造)
結着材としてエポキシ樹脂水性エマルション(ADEKA社製EM−107−50L 固形分濃度50質量%、以下、「EM−107」と呼ぶ。)12.5g、炭素材として膨張黒鉛(日本黒鉛社製CMX、平均粒子径30μm、以下、「CMX」と呼ぶ。)50gをホモジナイザー型分散機に仕込み、全固形分の濃度が15質量%となるように水を加えて混合し、放熱スラリー「A−1」を得た。
[Manufacture of heat dissipation slurry]
(Manufacture of heat dissipation slurry “A-1”)
Epoxy resin aqueous emulsion as binder (EMKA-107-50L manufactured by ADEKA, solid content concentration 50 mass%, hereinafter referred to as “EM-107”) 12.5 g, expanded graphite as carbon material (CMX manufactured by Nippon Graphite Co., Ltd.) The average particle diameter is 30 μm, hereinafter referred to as “CMX”.) 50 g is charged into a homogenizer-type disperser, and water is added and mixed so that the total solid content is 15% by mass. "

(放熱スラリー「A−2」の製造)
結着材として「EM−107」12.5g、炭素材として「CMX」25gおよびカーボンブラック(東海カーボン社製#5500F、一次粒子径50nm、以下、「CB」と呼ぶ。)25gをホモジナイザー型分散機に仕込み、全固形分の濃度が15質量%となるように水を加えて混合し、放熱スラリー「A−2」を得た。
(Manufacture of heat dissipation slurry “A-2”)
12.5 g of “EM-107” as a binder, 25 g of “CMX” as a carbon material, and 25 g of carbon black (# 5500F manufactured by Tokai Carbon Co., Ltd., primary particle diameter: 50 nm, hereinafter referred to as “CB”) Into the machine, water was added and mixed so that the concentration of the total solid content was 15% by mass to obtain a heat radiation slurry “A-2”.

(放熱スラリー「A−3」の製造)
結着材として「EM−107」12.5g、炭素材として「CMX」25gおよび「CB」25g、濡れ剤としてカルボキシメチルセルロース(以下、「CMC」と呼ぶ。)の2質量%水溶液62.5gをホモジナイザー型分散機に仕込み、全固形分の濃度が15質量%となるように水を加えて混合し、放熱スラリー「A−3」を得た。
(Manufacture of heat dissipation slurry “A-3”)
12.5 g of “EM-107” as a binder, 25 g of “CMX” and 25 “CB” as a carbon material, and 62.5 g of a 2 mass% aqueous solution of carboxymethyl cellulose (hereinafter referred to as “CMC”) as a wetting agent. It charged to the homogenizer type | mold disperser, water was added and mixed so that the density | concentration of total solid might be 15 mass%, and the thermal radiation slurry "A-3" was obtained.

(放熱スラリー「A−4」の製造)
結着材として酸変性ポリオレフィン水性エマルション(ユニチカ社製TC4010、固形分濃度25質量%)50gを用いた以外は、「A−3」の製造と同様にして放熱スラリー「A−4」を得た。
(Manufacture of heat dissipation slurry “A-4”)
Except for using 50 g of an acid-modified polyolefin aqueous emulsion (TC4010 manufactured by Unitika Ltd., solid content concentration: 25% by mass) as a binder, a heat radiation slurry “A-4” was obtained in the same manner as in the production of “A-3”. .

(放熱スラリー「A−5」の製造)
結着材として共重合ポリエステル水性エマルション(ユニチカ社製KZA−3556、固形分濃度30質量%)41.67gを用いた以外は、「A−3」の製造と同様にして、放熱スラリー「A−5」を得た。
(Manufacture of heat dissipation slurry “A-5”)
Except for using 41.67 g of a copolyester aqueous emulsion (KZA-3556 manufactured by Unitika Co., Ltd., solid content concentration of 30% by mass) as the binder, the heat release slurry “A-” was prepared in the same manner as in the production of “A-3”. 5 "was obtained.

(放熱スラリー「A−6」の製造)
結着材としてメラミン樹脂水性エマルション(昭和高分子社製ミルベン、固形分濃度25質量%)50gを用いた以外は、「A−3」の製造と同様にして、放熱スラリー「A−6」を得た。
(Manufacture of heat dissipation slurry “A-6”)
Except for using 50 g of a melamine resin aqueous emulsion (Milben, Showa Polymer Co., Ltd., solid content concentration: 25% by mass) as a binder, the heat release slurry “A-6” was prepared in the same manner as in the production of “A-3”. Obtained.

(放熱スラリー「A−7」の製造)
結着材としてアクリル-ウレタン樹脂水性エマルション(大成ファインケミカル社製WEM−3008、固形分濃度25質量%)50gを用いた以外は、「A−3」の製造と同様にして、放熱スラリー「A−6」を得た。
(Manufacture of heat dissipation slurry “A-7”)
Except for using 50 g of an acrylic-urethane resin aqueous emulsion (WEM-3008 manufactured by Taisei Fine Chemical Co., Ltd., solid content concentration: 25% by mass) as the binder, the heat release slurry “A-” was prepared in the same manner as in the production of “A-3”. 6 ”was obtained.

(放熱スラリー「A−8」の製造)
結着材としてゴム水性エマルション(日本合成ゴム社製Nipol1571C 樹脂固形分45%)13.89gを用いた以外は、「A−2」の製造と同様にして、放熱スラリー「A−8」を得た。
(Manufacture of heat dissipation slurry “A-8”)
Except for using 13.89 g of an aqueous rubber emulsion (Nipol 1571C resin solid content 45%, manufactured by Nippon Synthetic Rubber Co., Ltd.) as the binder, the heat release slurry “A-8” was obtained in the same manner as in the production of “A-2”. It was.

(放熱スラリー「A−9」の製造)
結着材として溶剤溶解エポキシ樹脂(ADEKA社製EP−4900、NMP溶媒、固形分濃度50質量%)12.5gに炭素材として「CMX」25gおよび「CB」25gをホモジナイザー型分散機に仕込み、全固形分の濃度が15質量%となるようにNMPを加えて混合し、放熱スラリー「A−9」を得た。
(Manufacture of heat dissipation slurry “A-9”)
12.5 g of solvent-soluble epoxy resin (EPKA manufactured by ADEKA, NMP solvent, solid content concentration 50 mass%) as a binder is charged with 25 g of “CMX” and 25 g of “CB” as a carbon material in a homogenizer-type disperser. NMP was added and mixed so that the concentration of the total solid content was 15% by mass to obtain a heat radiation slurry “A-9”.

(放熱スラリー「A−10」の製造)
結着材として「EM−107」12.5gを用い、炭素材として燐状黒鉛(日本黒鉛社製F#2、平均粒子径150μm)50gをホモジナイザー型分散機に仕込み、全固形分の濃度が15質量%となるように水を加えて混合し、放熱スラリー「A−10」を得た。
(Manufacture of heat dissipation slurry “A-10”)
12.5 g of “EM-107” is used as a binder, and 50 g of phosphorus-like graphite (F # 2, manufactured by Nippon Graphite Co., Ltd., average particle diameter of 150 μm) is charged as a carbon material in a homogenizer-type disperser. Water was added and mixed so that it might become 15 mass%, and the thermal radiation slurry "A-10" was obtained.

(放熱スラリー「A−11」の製造)
結着材として共重合ポリエステルUE3500(ユニチカ社製)10gと共重合ポリエステルUE9800(ユニチカ社製)2.5gをトルエン/MEK=8/2(質量比)の混合溶媒37.5gに溶解し、「CMX」25gおよび「CB」25gをホモジナイザー型分散機に仕込み、全固形分の濃度が15質量%となるように前記トルエン/MEK混合溶媒を加えて混合し、放熱スラリー「A−11」を得た。
(Manufacture of heat dissipation slurry “A-11”)
As a binder, 10 g of copolymerized polyester UE3500 (manufactured by Unitika) and 2.5 g of copolymerized polyester UE9800 (manufactured by Unitika) were dissolved in 37.5 g of a mixed solvent of toluene / MEK = 8/2 (mass ratio). 25 g of “CMX” and 25 g of “CB” were charged into a homogenizer type disperser, and the toluene / MEK mixed solvent was added and mixed so that the total solid concentration would be 15% by mass to obtain a heat radiation slurry “A-11”. It was.

放熱スラリー「A−1」〜「A−11」の組成を表1に示す。   Table 1 shows the compositions of the heat dissipation slurries “A-1” to “A-11”.

(実施例1)
得られた放熱スラリー「A−1」をドクターブレードによりガラスクロス−エポキシ板両面に塗布厚み2000μmで塗布、熱風乾燥した後、真空乾燥によりエポキシ樹脂を硬化させ、ロールプレスでカーボン層を片面200μmに厚さを調整した。調整した板両面にプリプレグと銅箔、離型フィルムの順に重ねて真空熱プレスしてコア材を作製した。コア材に感光性フィルムとパターンフィルムを重ねて紫外線で露光し、未露光部分の感光性フィルムを溶解させ、エッチングを施し、回路パターンを形成して両面プリント基板を作製した。
Example 1
The obtained heat release slurry “A-1” was applied on both sides of the glass cloth-epoxy plate with a doctor blade with a coating thickness of 2000 μm and dried with hot air, and then the epoxy resin was cured by vacuum drying, and the carbon layer was made 200 μm on one side with a roll press. The thickness was adjusted. A prepreg, a copper foil, and a release film were layered in order on both sides of the adjusted plate and vacuum hot pressed to produce a core material. A photosensitive film and a pattern film were superimposed on the core material and exposed with ultraviolet rays, and the photosensitive film in the unexposed portion was dissolved, etched, and a circuit pattern was formed to produce a double-sided printed board.

(実施例2)
放熱スラリー「A−2」を用いた以外は実施例1と同様にしてプリント基板を作製した。
(Example 2)
A printed circuit board was produced in the same manner as in Example 1 except that the heat dissipating slurry “A-2” was used.

(実施例3)
放熱スラリー「A−3」を用いた以外は実施例1と同様にしてプリント基板を作製した。
(Example 3)
A printed circuit board was produced in the same manner as in Example 1 except that the heat dissipating slurry “A-3” was used.

(実施例4)
得られた放熱スラリー「A−4」をドクターブレードによりガラスクロス−エポキシ板両面に塗布厚み2000μmで塗布、真空乾燥し、ロールプレスでカーボン層を片面200μmに厚さを調整した。調整した板両面にプリプレグと銅箔、離型フィルムの順に重ねて真空プレスしてコア材を作製した。コア材に感光性フィルムとパターンフィルムを重ねて紫外線で露光し、未露光部分の感光性フィルムを溶解させ、エッチングを施し、回路パターンを形成して両面プリント基板を作製した。
Example 4
The obtained heat-dissipating slurry “A-4” was applied to both sides of the glass cloth-epoxy plate with a doctor blade with a coating thickness of 2000 μm and vacuum-dried, and the thickness of the carbon layer was adjusted to 200 μm on one side with a roll press. A prepreg, a copper foil, and a release film were stacked in this order on both sides of the adjusted plate and vacuum pressed to produce a core material. A photosensitive film and a pattern film were superimposed on the core material and exposed with ultraviolet rays, and the photosensitive film in the unexposed portion was dissolved, etched, and a circuit pattern was formed to produce a double-sided printed board.

(実施例5)
放熱スラリー「A−5」を用いた以外は実施例4と同様にしてプリント基板を作製した。
(Example 5)
A printed circuit board was produced in the same manner as in Example 4 except that the heat dissipating slurry “A-5” was used.

(実施例6)
放熱スラリー「A−6」を用いた以外は実施例1と同様にしてプリント基板を作製した。
(Example 6)
A printed circuit board was produced in the same manner as in Example 1 except that the heat dissipating slurry “A-6” was used.

(実施例7)
放熱スラリー「A−7」を用いた以外は実施例1と同様にしてプリント基板を作製した。
(Example 7)
A printed circuit board was produced in the same manner as in Example 1 except that the heat dissipating slurry “A-7” was used.

(実施例8)
放熱スラリー「A−1」をスクリーン印刷により比較例1のプリント基板表面の絶縁部に塗布厚み2000μmでパターンを塗布、熱風乾燥した後、真空乾燥してエポキシ樹脂を硬化させ、ロールプレスでカーボン層を片面200μmに厚さを調整した。
(Example 8)
The heat dissipation slurry “A-1” was applied to the insulating part of the printed circuit board surface of Comparative Example 1 by screen printing by screen printing with a coating thickness of 2000 μm, dried with hot air, then vacuum dried to cure the epoxy resin, and then the carbon layer with a roll press The thickness was adjusted to 200 μm on one side.

(実施例9)
放熱スラリー「A−2」を用いた以外は実施例8と同様にして放熱層を調整した。
Example 9
A heat dissipation layer was prepared in the same manner as in Example 8 except that the heat dissipation slurry “A-2” was used.

(実施例10)
放熱スラリー「A−3」を用いた以外は実施例8と同様にして放熱層を調整した。
(Example 10)
A heat radiation layer was prepared in the same manner as in Example 8 except that the heat radiation slurry “A-3” was used.

(比較例1)
ガラスクロス−エポキシ板両面にプリプレグと銅箔、離型フィルムの順に重ねて真空プレスした以外は実施例1と同様にしてプリント基板を作製した。
(Comparative Example 1)
A printed circuit board was produced in the same manner as in Example 1 except that the prepreg, the copper foil, and the release film were stacked in this order on the both sides of the glass cloth-epoxy plate and vacuum pressed.

(比較例2)
放熱スラリーをガラスクロス−エポキシ板に塗布する代わりに、ガラスクロス−エポキシ板両面に膨張黒鉛シート(松下電器産業社製PGS 厚さ200μm)を配置する以外は実施例1と同様にプリント基板を作製した。
(Comparative Example 2)
Instead of applying the heat dissipation slurry to the glass cloth-epoxy plate, a printed circuit board is prepared in the same manner as in Example 1 except that an expanded graphite sheet (PGS thickness 200 μm manufactured by Matsushita Electric Industrial Co., Ltd.) is arranged on both sides of the glass cloth-epoxy plate. did.

(比較例3)
得られた放熱スラリー「A−8」をドクターブレードによりガラスクロス−エポキシ板両面に塗布厚み2000μmで塗布、真空乾燥し、ロールプレスでカーボン層を片面200μmに厚さを調整した。調整した板両面にプリプレグと銅箔、離型フィルムの順に重ねて真空プレスしてコア材を作製した。コア材に感光性フィルムとパターンフィルムを重ねて紫外線で露光し、未露光部分の感光性フィルムを溶解させ、エッチングを施し、回路パターンを形成して両面プリント基板を作製した。
(Comparative Example 3)
The obtained heat-dissipating slurry “A-8” was applied to both surfaces of the glass cloth-epoxy plate with a doctor blade with a coating thickness of 2000 μm and vacuum-dried, and the thickness of the carbon layer was adjusted to 200 μm on one side with a roll press. A prepreg, a copper foil, and a release film were stacked in this order on both sides of the adjusted plate and vacuum pressed to produce a core material. A photosensitive film and a pattern film were superimposed on the core material and exposed with ultraviolet rays, and the photosensitive film in the unexposed portion was dissolved, etched, and a circuit pattern was formed to produce a double-sided printed board.

(比較例4)
放熱スラリー「A−9」を用いた以外は実施例1と同様にしてプリント基板を作製した。
(Comparative Example 4)
A printed circuit board was produced in the same manner as in Example 1 except that the heat dissipating slurry “A-9” was used.

(比較例5)
放熱スラリー「A−10」を用いた以外は実施例1と同様にしてプリント基板を作製した。
(Comparative Example 5)
A printed circuit board was produced in the same manner as in Example 1 except that the heat dissipating slurry “A-10” was used.

(比較例6)
放熱スラリー「A−11」を用いた以外は実施例4と同様にしてプリント基板を作製した。
(Comparative Example 6)
A printed circuit board was produced in the same manner as in Example 4 except that the heat dissipating slurry “A-11” was used.

(比較例7)
得られた放熱スラリー「A−8」スクリーン印刷により比較例1のプリント基板表面の絶縁部に塗布厚み2000μmでパターンを塗布、真空乾燥し、ロールプレスでカーボン層を片面200μmに厚さを調整した。
(Comparative Example 7)
The obtained heat release slurry “A-8” was screen-printed to apply a pattern with a coating thickness of 2000 μm to the insulating portion of the printed circuit board surface of Comparative Example 1, vacuum dried, and the thickness of the carbon layer was adjusted to 200 μm on one side with a roll press. .

(比較例8)
放熱スラリー「A−9」を用いた以外は実施例8と同様にして放熱層を調整した。
(Comparative Example 8)
A heat dissipation layer was prepared in the same manner as in Example 8 except that the heat dissipation slurry “A-9” was used.

(比較例9)
放熱スラリー「A−10」を用いた以外は実施例8と同様にして放熱層を調整した。
(Comparative Example 9)
A heat dissipation layer was prepared in the same manner as in Example 8 except that the heat dissipation slurry “A-10” was used.

実施例1〜10および比較例1〜9における評価結果を表2に示す。   The evaluation results in Examples 1 to 10 and Comparative Examples 1 to 9 are shown in Table 2.

表2の結果から、プリント基板から発生する熱を放熱しているため、実施例1〜7ではカーボン層を設けない比較例1に比べて明らかに温度の上昇を抑制しており、プリント基板の絶縁部表面にパターン印刷した実施例8〜10に関しても、カーボン層を設けない比較例1に比べて温度の上昇を抑制していることがわかる。従来のカーボンシートを用いた比較例2と比べても同等以上の放熱性があることがわかる。膨張黒鉛を用いた実施例1〜10の方が鱗状黒鉛を用いた比較例5や比較例9よりも放熱性が高いこともわかる。   From the results of Table 2, since the heat generated from the printed circuit board is radiated, in Examples 1 to 7, the temperature rise is clearly suppressed as compared with Comparative Example 1 in which no carbon layer is provided. It can be seen that also in Examples 8 to 10 in which the pattern printing is performed on the surface of the insulating portion, the temperature rise is suppressed as compared with Comparative Example 1 in which no carbon layer is provided. Even if it compares with the comparative example 2 using the conventional carbon sheet, it turns out that there exists a heat dissipation equivalent or more. It can also be seen that Examples 1 to 10 using expanded graphite have higher heat dissipation than Comparative Examples 5 and 9 using scaly graphite.

結着性の評価では熱硬化性エマルションを用いた実施例1〜3と6〜10では結着性や耐熱性が優れており、熱可塑性樹脂エマルションを用いた実施例4〜5では結着性は優れており、熱硬化性樹脂エマルションを用いたときよりも耐熱性はやや劣るが、ゴムエマルションを用いた比較例3や比較例7よりも結着性・耐熱性が優れていた。また実施例1〜10は溶剤に溶解したエポキシ樹脂を用いた比較例4や比較例6、比較例9よりも結着性・耐熱性が優れていた。
In the evaluation of the binding property, Examples 1 to 3 and 6 to 10 using the thermosetting emulsion are excellent in binding property and heat resistance, and in Examples 4 to 5 using the thermoplastic resin emulsion, the binding property is used. The heat resistance was slightly inferior to that obtained when the thermosetting resin emulsion was used, but the binding property and heat resistance were superior to those of Comparative Examples 3 and 7 using a rubber emulsion. In addition, Examples 1 to 10 were superior in binding property and heat resistance to Comparative Example 4, Comparative Example 6, and Comparative Example 9 using an epoxy resin dissolved in a solvent.

Claims (7)

膨張黒鉛を主成分とする炭素材、結着材としての熱可塑性樹脂または熱硬化性樹脂のエマルション粒子、および分散媒としての有機溶剤または水性媒体からなり、炭素材と結着材との合計固形分比率が5〜40質量%であることを特徴とする放熱スラリー。 A carbon material mainly composed of expanded graphite, an emulsion particle of a thermoplastic resin or thermosetting resin as a binder, and an organic solvent or an aqueous medium as a dispersion medium. The total solid of the carbon material and the binder. A heat dissipating slurry having a fraction of 5 to 40% by mass . 結着材が熱硬化性樹脂のエマルション粒子である請求項1記載の放熱スラリー。 The heat dissipation slurry according to claim 1, wherein the binder is emulsion particles of a thermosetting resin. 分散媒が水性媒体である請求項1または2に記載の放熱スラリー。 The heat dissipating slurry according to claim 1 or 2, wherein the dispersion medium is an aqueous medium. 請求項1〜3のいずれかに記載の放熱スラリーを塗布・乾燥してなる放熱層。 A heat dissipation layer formed by applying and drying the heat dissipation slurry according to claim 1. 請求項4記載の放熱層を設けた電子部品。 An electronic component provided with the heat dissipation layer according to claim 4. 電子部品が、プリント基板、可変抵抗器、スイッチ、エンコーダ、センサ、コネクタから
選ばれたものである請求項5記載の電子部品。
The electronic component according to claim 5, wherein the electronic component is selected from a printed circuit board, a variable resistor, a switch, an encoder, a sensor, and a connector.
放熱層を電子部品の電気絶縁部表面及び/または内部に設けてなる請求項5または6に記
載の電子部品。
The electronic component according to claim 5 or 6, wherein a heat dissipation layer is provided on the surface and / or inside of the electrical insulating portion of the electronic component.
JP2007254671A 2007-09-28 2007-09-28 Heat dissipation slurry and electronic parts using the same Expired - Fee Related JP5178117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254671A JP5178117B2 (en) 2007-09-28 2007-09-28 Heat dissipation slurry and electronic parts using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254671A JP5178117B2 (en) 2007-09-28 2007-09-28 Heat dissipation slurry and electronic parts using the same

Publications (2)

Publication Number Publication Date
JP2009088164A JP2009088164A (en) 2009-04-23
JP5178117B2 true JP5178117B2 (en) 2013-04-10

Family

ID=40661216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254671A Expired - Fee Related JP5178117B2 (en) 2007-09-28 2007-09-28 Heat dissipation slurry and electronic parts using the same

Country Status (1)

Country Link
JP (1) JP5178117B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971780B1 (en) * 2009-09-01 2010-07-21 지씨에스커뮤니케이션(주) Graphite cooling material containing amorphous carbon nanogranules and manufacturing method thereof
KR101282125B1 (en) * 2012-01-18 2013-07-04 주식회사 지앤씨에스 Back-light assembly and display device having the same
KR101343568B1 (en) * 2013-05-29 2013-12-20 주식회사 그라셀 Graphite heat emitting materials with high density pressed expandable graphite particles and method for manufacturing the same
JP6399923B2 (en) * 2014-12-24 2018-10-03 株式会社ディスコ Laser processing method for plate
WO2016185688A1 (en) * 2015-05-15 2016-11-24 日本ゼオン株式会社 Heat transfer sheet and method for manufacturing same
KR102658569B1 (en) * 2015-08-24 2024-04-17 니폰 제온 가부시키가이샤 Heat conducting sheet and method of manufacturing the same
EP3850666B1 (en) * 2019-01-22 2023-05-24 Yangtze Memory Technologies Co., Ltd. Integrated circuit packaging structure and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158706A (en) * 2002-11-07 2004-06-03 Nippon Steel Corp Substrate for electronic equipment treated with high heat absorption painting, and electronic part
JP2004169182A (en) * 2002-11-08 2004-06-17 Nippon Paint Co Ltd Method for forming cured gradient coating film and method for forming laminated coating film containing the cured gradient coating film
JP2006019399A (en) * 2004-06-30 2006-01-19 Denki Kagaku Kogyo Kk Electromagnetic wave absorber
JP4853698B2 (en) * 2004-11-12 2012-01-11 日立化成工業株式会社 Heat conduction sheet
JP5255762B2 (en) * 2005-12-29 2013-08-07 アキレス株式会社 Acrylic resin composition and sheet-like molded body using the same

Also Published As

Publication number Publication date
JP2009088164A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5178117B2 (en) Heat dissipation slurry and electronic parts using the same
JP5080295B2 (en) Heat dissipating mounting board and manufacturing method thereof
JP5205947B2 (en) Resin carbon composite material
US20110086206A1 (en) Polymer compositions containing carbonaceous fillers
US20110133134A1 (en) Crosslinkable and Crosslinked Compositions of Olefin Polymers and Graphene Sheets
JP2005150362A (en) Highly thermal conductive sheet and its manufacturing method
US20120277360A1 (en) Graphene Compositions
JP5185582B2 (en) Thermally conductive sheet
KR20160086338A (en) Electromagnetic-wave-absorbing heat dissipation sheet
KR20180115269A (en) HEAT CONDUCTIVE SHEET, METHOD FOR MANUFACTURING THE SAME,
JP2006114877A (en) Electromagnetic wave absorption sheet, lamination thereof, and electromagnetic wave absorptivity housing using these
JP2010053224A (en) Thermally conductive resin sheet, heat conduction plate, thermally conductive printed wiring board and radiating member
US10457845B2 (en) Thermally conductive resin molded article
KR101637892B1 (en) Multi-layer heater using heating paste composition
JP2009096851A5 (en)
JP5516034B2 (en) Highly insulating heat conductive sheet and heat dissipation device using the same
KR101832769B1 (en) Heat-disspating printed circuit board using carbon-based material and method for fabricating the same
JP2000290616A (en) Electroconductive adhesive composition, electroconductive adhesive sheet and electromagnetic wave shielding material and electromagnetic wave shielding flexible printed circuit board using the same
Wu et al. Layer‐by‐Layer Assembly of Multifunctional NR/MXene/CNTs Composite Films with Exceptional Electromagnetic Interference Shielding Performances and Excellent Mechanical Properties
CN104396356B (en) Heat-conducting substrate product
Ren et al. Electrohydrodynamic printed PEDOT: PSS/graphene/PVA circuits for sustainable and foldable electronics
JP2010111829A (en) Thermally conductive coating for screen printing and electronic parts using the same
KR102134080B1 (en) Heat Dissipating Printed Circuit Board and The Manufacturing Method thereof
KR20180032582A (en) Thermal diffusion structure and method for forming the same
CN114502681A (en) Mixed binder composition for shielding electromagnetic wave, method for preparing mixed binder for shielding electromagnetic wave, and mixed binder film for shielding electromagnetic wave

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100428

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

LAPS Cancellation because of no payment of annual fees