WO2016185688A1 - Heat transfer sheet and method for manufacturing same - Google Patents

Heat transfer sheet and method for manufacturing same Download PDF

Info

Publication number
WO2016185688A1
WO2016185688A1 PCT/JP2016/002270 JP2016002270W WO2016185688A1 WO 2016185688 A1 WO2016185688 A1 WO 2016185688A1 JP 2016002270 W JP2016002270 W JP 2016002270W WO 2016185688 A1 WO2016185688 A1 WO 2016185688A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
heat conductive
heat
fibrous carbon
fluororesin
Prior art date
Application number
PCT/JP2016/002270
Other languages
French (fr)
Japanese (ja)
Inventor
拓朗 熊本
村上 康之
豊和 伊藤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2017518748A priority Critical patent/JP6834951B2/en
Publication of WO2016185688A1 publication Critical patent/WO2016185688A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a heat conductive sheet and a method for producing the heat conductive sheet.
  • a method of promoting heat dissipation by attaching a heat sink such as a metal heat sink, a heat sink, or a heat sink to a heat generator such as an electronic component is adopted.
  • a heat radiator in order to transfer heat efficiently from a heat generating body to a heat sink, a heat generating body, a heat sink, and a heat conductive sheet through a sheet-like member (heat conductive sheet) with high heat conductivity. Are in close contact. Therefore, the heat conductive sheet used by being sandwiched between the heat generator and the heat radiator is required to have high thermal conductivity and high flexibility.
  • the glass transition temperature (Tg) is an acrylate copolymer having a temperature of 50 ° C. or less, and a scaly, oval or rod-like shape, Formed using a composition containing graphite particles in which the six-membered ring surface in the crystal is oriented in the plane direction of the scale, the long axis direction of the ellipsoid or the long axis direction of the rod, and the phosphate ester flame retardant
  • a heat conductive sheet in which graphite particles are oriented in the thickness direction has been proposed.
  • the thermal conductive sheet is also required to have high flame resistance and excellent durability in addition to high thermal conductivity and flexibility.
  • the conventional heat conductive sheet described in Patent Document 1 or the like is not sufficient in flame retardancy and durability.
  • an object of this invention is to provide the heat conductive sheet excellent in a flame retardance and durability. Moreover, an object of this invention is to provide the manufacturing method of the heat conductive sheet which can manufacture efficiently the heat conductive sheet excellent in a flame retardance and durability.
  • the present inventors have intensively studied to achieve the above object.
  • the inventors have found that a heat conductive sheet formed using a composition containing a fluororesin and expanded graphite is excellent in both flame retardancy and durability, and completed the present invention. .
  • the heat conductive sheet of this invention contains a fluororesin and expanded graphite, and the heat conductivity of the thickness direction is 20 W /. It is more than m ⁇ K.
  • a fluororesin and expanded graphite are contained, a heat conductive sheet excellent in flame retardancy and durability can be obtained.
  • the heat conductivity of the thickness direction is 20 W / m * K or more, it can be used favorably as a heat conductive sheet.
  • thermophysical property measuring device can be measured using a thermophysical property measuring device
  • Constant pressure specific heat can be measured using a differential scanning calorimeter
  • specific gravity can be measured using an automatic hydrometer. Can be measured.
  • the heat conductive sheet of the present invention preferably contains 110 parts by mass or more of the expanded graphite per 100 parts by mass of the fluororesin.
  • the content ratio of the expanded graphite is 110 parts by mass or more per 100 parts by mass of the fluororesin, a heat conductive sheet in which flame retardancy, durability, and heat conductivity are juxtaposed at a sufficiently high level can be obtained.
  • the heat conductive sheet of the present invention further contains an adhesive resin. If an adhesive resin is contained, a heat conductive sheet can be favorably formed.
  • the heat conductive sheet of the present invention preferably further contains a phosphate ester flame retardant. If a phosphate ester flame retardant is contained, the heat conductive sheet can be formed satisfactorily, and the flame retardance of the heat conductive sheet can be further improved.
  • the heat conductive sheet of this invention further contains a fibrous carbon material.
  • the heat conductive sheet can be formed satisfactorily and the flame retardancy, durability and heat conductivity of the heat conductive sheet can be juxtaposed at a sufficiently high level.
  • the expanded graphite can be prevented from falling off.
  • Another object of the present invention is to advantageously solve the above-mentioned problems, and a method for producing a heat conductive sheet according to the present invention is a method in which a composition containing a fluororesin and expanded graphite is pressed to form a sheet. Forming a pre-heat conductive sheet, and stacking a plurality of the pre-heat conductive sheets in the thickness direction, or folding or winding the pre-heat conductive sheet to obtain a laminate, and And slicing the laminated body at an angle of 45 ° or less with respect to the laminating direction to obtain a heat conductive sheet.
  • a laminate comprising a pre-heat conductive sheet formed by pressurizing a composition containing a fluororesin and expanded graphite is sliced at an angle of 45 ° or less with respect to the lamination direction, flame retardancy and durability are achieved. It is possible to easily manufacture a heat conductive sheet that is excellent in properties and heat conductivity.
  • the heat conductive sheet of the present invention can be used, for example, by being sandwiched between a heat generator and a heat radiator when the heat radiator is attached to the heat generator. That is, the heat conductive sheet of this invention can comprise a heat radiating device with heat sinks, such as a heat sink, a heat sink, and a heat radiating fin. And the heat conductive sheet of this invention can be manufactured, for example using the manufacturing method of the heat conductive sheet of this invention.
  • the heat conductive sheet of the present invention contains a fluororesin and expanded graphite, and optionally further contains a fibrous carbon material, a particulate carbon material other than the expanded graphite, an additive, and the like. Moreover, the heat conductive sheet of this invention is 20 W / m * K or more in the heat conductivity of the thickness direction. And since the heat conductive sheet of this invention contains the fluororesin and expanded graphite, it is excellent in a flame retardance and durability. Moreover, since the heat conductivity sheet of the present invention has a heat conductivity in the thickness direction of 20 W / m ⁇ K or more and can efficiently transfer heat in the thickness direction, for example, between the heating element and the heat dissipation element. It can be used satisfactorily as a heat conductive sheet used by being sandwiched.
  • the fluororesin is not particularly limited.
  • fluororesin polytetrafluoroethylene, polytetrafluoroethylene modified acrylic, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene- A hexafluoropropylene copolymer is preferred.
  • rubber and elastomer are included in “resin”.
  • the fluororesin constitutes a matrix resin of the heat conductive sheet and also functions as a binder for binding expanded graphite and the like in the heat conductive sheet.
  • content of a fluororesin is 35 to 50 mass% in a heat conductive sheet. If the content of the fluororesin is 35% by mass or more, the expanded graphite can be bound well to form a heat conductive sheet, and the heat conductive sheet has sufficient flame retardancy and durability. Can be increased.
  • content of a fluororesin is 50 mass% or less, while being able to fully improve the heat conductivity of a heat conductive sheet, the hardness of a heat conductive sheet will raise (namely, a softness
  • the expanded graphite contained in the heat conductive sheet of the present invention is obtained by, for example, expanding the expanded graphite obtained by chemically treating graphite such as scale-like graphite with sulfuric acid or the like, and then reducing the size.
  • Examples of expanded graphite include EC1500, EC1000, EC500, EC300, EC100, and EC50 (all trade names) manufactured by Ito Graphite Industries.
  • the average particle size of the expanded graphite contained in the heat conductive sheet is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 500 ⁇ m or less, and 250 ⁇ m or less. More preferably. This is because if the average particle diameter of the expanded graphite is within the above range, the thermal conductivity of the thermal conductive sheet can be further improved. Further, the aspect ratio (major axis / minor axis) of the expanded graphite contained in the heat conductive sheet is preferably 1 or more and 10 or less, and more preferably 1 or more and 5 or less.
  • the “average particle diameter” refers to a cross section in the thickness direction of the heat conductive sheet observed with a SEM (scanning electron microscope), and the maximum diameter (major diameter) of any 50 expanded graphites is measured. It can obtain
  • the “aspect ratio” refers to a cross section in the thickness direction of the heat conductive sheet observed with an SEM (scanning electron microscope), and for any 50 expanded graphites, the maximum diameter (major diameter) and the maximum It can be determined by measuring the particle diameter (minor axis) in the direction perpendicular to the diameter and calculating the average value of the ratio of the major axis to the minor axis (major axis / minor axis).
  • the expanded graphite content is preferably 110 parts by mass or more, more preferably 130 parts by mass or more, and 150 parts by mass or less per 100 parts by mass of the fluororesin. Is preferable, and it is more preferable that it is 140 mass parts or less. If content of the expanded graphite per 100 mass parts of fluororesins is 110 mass parts or more, the heat conductivity of a heat conductive sheet can fully be improved. Moreover, if content of the expanded graphite per 100 mass parts of fluororesins is 150 mass parts or less, while being able to form a heat conductive sheet favorably, the durability of a heat conductive sheet can fully be improved. . Further, the heat conduction sheet is provided with a sufficiently high level of heat conductivity, flame retardancy, durability and flexibility by suppressing the increase in the hardness (that is, the flexibility is lowered) of the heat conduction sheet. Can be obtained.
  • the fibrous carbon material arbitrarily blended in the heat conductive sheet of the present invention is not particularly limited, and examples thereof include carbon nanotubes, vapor-grown carbon fibers, carbon fibers obtained by carbonizing organic fibers, and Those cut pieces can be used. These may be used individually by 1 type and may use 2 or more types together. And if a fibrous carbon material is contained in a heat conductive sheet, the flame retardance, durability, and heat conductivity of a heat conductive sheet can be juxtaposed at a sufficiently high level. Moreover, while being able to form a heat conductive sheet favorably, powder fall-off of expanded graphite and the particulate carbon material mentioned later can also be prevented.
  • a fibrous carbon nanostructure such as a carbon nanotube is preferably used, and a fibrous carbon nanostructure including a carbon nanotube is more preferably used. This is because the use of fibrous carbon nanostructures such as carbon nanotubes can further improve the thermal conductivity and durability of the thermal conductive sheet.
  • the fibrous carbon nanostructure containing carbon nanotubes that can be suitably used as the fibrous carbon material may be composed only of carbon nanotubes (hereinafter sometimes referred to as “CNT”).
  • CNT carbon nanotubes
  • a mixture of CNT and a fibrous carbon nanostructure other than CNT may be used.
  • the CNT in the fibrous carbon nanostructure is not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used. Nanotubes are preferable, and single-walled carbon nanotubes are more preferable. This is because if single-walled carbon nanotubes are used, the thermal conductivity and durability of the thermal conductive sheet can be further improved as compared with the case where multi-walled carbon nanotubes are used.
  • the fibrous carbon nanostructure containing CNT has a ratio (3 ⁇ / Av) of a value (3 ⁇ ) obtained by multiplying the standard deviation ( ⁇ ) of the diameter by 3 with respect to the average diameter (Av) is more than 0.20. It is preferable to use a carbon nanostructure of less than 0.60, more preferably a carbon nanostructure with 3 ⁇ / Av exceeding 0.25, and a carbon nanostructure with 3 ⁇ / Av exceeding 0.50. More preferably. If a fibrous carbon nanostructure containing CNTs with 3 ⁇ / Av of more than 0.20 and less than 0.60 is used, the thermal conductivity and durability of the thermal conductive sheet can be achieved even with a small amount of carbon nanostructure. The sex can be enhanced sufficiently.
  • the heat conductivity, flame retardancy, durability, and flexibility are suppressed by suppressing the increase in the hardness of the heat conductive sheet (that is, the decrease in flexibility) by blending the fibrous carbon nanostructure containing CNT. It is possible to obtain a heat conductive sheet in which the properties are juxtaposed at a sufficiently high level.
  • Average diameter (Av) of fibrous carbon nanostructure” and “standard deviation of diameter of fibrous carbon nanostructure ( ⁇ : sample standard deviation)” are measured using a transmission electron microscope, respectively. It can be determined by measuring the diameter (outer diameter) of 100 randomly selected fibrous carbon nanostructures.
  • the average diameter (Av) and standard deviation ( ⁇ ) of the fibrous carbon nanostructure containing CNT are adjusted by changing the manufacturing method and manufacturing conditions of the fibrous carbon nanostructure containing CNT. Alternatively, it may be adjusted by combining a plurality of types of fibrous carbon nanostructures containing CNTs obtained by different production methods.
  • the diameter measured as described above is plotted on the horizontal axis
  • the frequency is plotted on the vertical axis
  • a normal distribution is obtained when approximated by Gaussian. Things are usually used.
  • the fibrous carbon nanostructure containing CNTs preferably has a peak of Radial Breathing Mode (RBM) when evaluated using Raman spectroscopy. Note that there is no RBM in the Raman spectrum of a fibrous carbon nanostructure composed of only three or more multi-walled carbon nanotubes.
  • RBM Radial Breathing Mode
  • the fibrous carbon nanostructure containing CNTs preferably has a G-band peak intensity ratio (G / D ratio) of 1 to 20 in the Raman spectrum.
  • G / D ratio is 1 or more and 20 or less
  • the thermal conductivity and durability of the thermal conductive sheet can be sufficiently enhanced even if the blending amount of the fibrous carbon nanostructure is small. Therefore, the increase in the hardness of the heat conductive sheet (that is, the decrease in flexibility) is suppressed by blending the fibrous carbon nanostructure, and the thermal conductivity, flame retardancy, durability and flexibility are sufficient. It is possible to obtain a heat conductive sheet arranged side by side at a high level.
  • the average diameter (Av) of the fibrous carbon nanostructure containing CNTs is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 15 nm or less, and preferably 10 nm or less. More preferably it is.
  • the average diameter (Av) of the fibrous carbon nanostructure is 0.5 nm or more, aggregation of the fibrous carbon nanostructure can be suppressed and the dispersibility of the carbon nanostructure can be improved.
  • the average diameter (Av) of a fibrous carbon nanostructure is 15 nm or less, the heat conductivity and durability of a heat conductive sheet can fully be improved.
  • the fibrous carbon nanostructure containing CNTs preferably has an average length of the structure at the time of synthesis of 100 ⁇ m or more and 5000 ⁇ m or less. Note that, as the length of the structure at the time of synthesis increases, damage such as breakage or cutting occurs more easily at the time of dispersion. Therefore, the average length of the structure at the time of synthesis is preferably 5000 ⁇ m or less.
  • the BET specific surface area of the fibrous carbon nanostructure containing CNTs is preferably 600 m 2 / g or more, more preferably 800 m 2 / g or more, and 2500 m 2 / g or less. Preferably, it is 1200 m 2 / g or less. Furthermore, when the CNT in the fibrous carbon nanostructure is mainly opened, the BET specific surface area is preferably 1300 m 2 / g or more. If the BET specific surface area of the fibrous carbon nanostructure containing CNTs is 600 m 2 / g or more, the thermal conductivity and durability of the thermal conductive sheet can be sufficiently enhanced.
  • the BET specific surface area of the fibrous carbon nanostructure containing CNT is 2500 m 2 / g or less, the aggregation of the fibrous carbon nanostructure is suppressed and the dispersibility of the CNT in the heat conductive sheet is increased. be able to.
  • the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.
  • the fibrous carbon nanostructure containing CNTs is an aggregate oriented in a direction substantially perpendicular to the base material on the base material having a catalyst layer for carbon nanotube growth on the surface according to the super growth method described later.
  • the mass density of the fibrous carbon nanostructure as the aggregate is preferably 0.002 g / cm 3 or more and 0.2 g / cm 3 or less. If the mass density is 0.2 g / cm 3 or less, since the bonds between the fibrous carbon nanostructures are weakened, the fibrous carbon nanostructures can be uniformly dispersed in the heat conductive sheet. Further, if the mass density is 0.002 g / cm 3 or more, the integrity of the fibrous carbon nanostructure can be improved, and the handling can be facilitated because it can be prevented from being broken.
  • the fibrous carbon nanostructure containing CNTs having the above-described properties can be obtained by, for example, supplying a raw material compound and a carrier gas onto a substrate having a catalyst layer for producing carbon nanotubes on the surface,
  • CVD method phase growth method
  • oxidizing agent catalyst activation material
  • the fibrous carbon nanostructure containing CNT produced by the super-growth method may be composed only of SGCNT, and in addition to SGCNT, other carbon nanostructures such as non-cylindrical carbon nanostructures may be used. Carbon nanostructures may be included.
  • the average fiber diameter of the fibrous carbon material contained in a heat conductive sheet is preferably 1 nm or more, more preferably 3 nm or more, preferably 2 ⁇ m or less, and more preferably 1 ⁇ m or less. preferable. This is because if the average fiber diameter of the fibrous carbon material is within the above range, the thermal conductivity, durability and flexibility of the thermal conductive sheet can be juxtaposed at a sufficiently high level.
  • the aspect ratio of the fibrous carbon material preferably exceeds 10.
  • the “average fiber diameter” is measured by observing a cross section in the thickness direction of the heat conductive sheet with an SEM (scanning electron microscope), measuring the fiber diameter of any 50 fibrous carbon materials. It can obtain
  • TEM transmission electron microscope
  • content of fibrous carbon material is 0.05 mass part or more per 100 mass parts of fluororesins, and it is more preferable that it is 1.0 mass part or more. It is preferably 0 parts by mass or less, and more preferably 3.0 parts by mass or less. If content of the fibrous carbon material per 100 mass parts of fluororesins is 0.05 mass part or more, the heat conductivity and durability of a heat conductive sheet can fully be improved. Moreover, while being able to form a heat conductive sheet favorably, powder fall-off of expanded graphite and a particulate carbon material can be prevented.
  • the content of the fibrous carbon material per 100 parts by mass of the fluororesin is 5.0 parts by mass or less, the hardness of the heat conductive sheet is increased by blending the fibrous carbon material (that is, the flexibility is decreased). ) Can be suppressed, and a heat conductive sheet in which heat conductivity, flame retardancy, durability and flexibility are juxtaposed at a sufficiently high level can be obtained.
  • the particulate carbon material arbitrarily blended in the heat conductive sheet of the present invention is not particularly limited as long as it is a particulate carbon material other than expanded graphite.
  • a particulate carbon material other than expanded graphite for example, artificial graphite, flake graphite, exfoliated
  • graphite other than expanded graphite such as graphite, natural graphite, acid-treated graphite, and expandable graphite; carbon black; These may be used individually by 1 type and may use 2 or more types together.
  • content of the particulate carbon material in a heat conductive sheet can be suitably adjusted according to content of expanded graphite.
  • additives that can be used for forming the heat conductive sheet can be blended in the heat conductive sheet.
  • Additives that can be blended in the heat conductive sheet are not particularly limited, for example, adhesive resins; flame retardants such as red phosphorus flame retardants and phosphate ester flame retardants; plasticizers; calcium oxide, Hygroscopic agents such as magnesium oxide; Adhesion improvers such as silane coupling agents, titanium coupling agents, and acid anhydrides; Wettability improvers such as nonionic surfactants and fluorosurfactants; Inorganic ion exchangers, etc. Ion trapping agents; and the like.
  • an adhesive resin and / or a phosphate ester flame retardant into the heat conductive sheet. If an adhesive resin is blended with the heat conductive sheet, the heat conductive sheet can be formed satisfactorily. Moreover, if a phosphate ester flame retardant is blended in the heat conductive sheet, the heat conductive sheet can be favorably formed while further improving the flame retardancy of the heat conductive sheet. The reason why the heat conductive sheet can be satisfactorily formed by adding an adhesive resin or a phosphate ester flame retardant is not clear, but an adhesive resin or a phosphate ester flame retardant was added.
  • the composition used for the formation of the heat conductive sheet is imparted with tackiness, facilitating formation of the composition into a sheet, and detachment of expanded graphite and particulate carbon material from the formed heat conductive sheet. It is presumed that this is to prevent this.
  • Adhesive resin a resin other than the above-described fluororesin can be used.
  • a known tackifier that does not contain a solvent can be used as the adhesive resin.
  • tackifiers include rosin tackifiers, terpene tackifiers, and petroleum resin tackifiers. These may be used individually by 1 type and may use 2 or more types together.
  • rosin tackifiers examples include esters of rosin acid (main component: abietic acid) contained in pine ani and pine oil, glycerin and pentaerythritol, and their hydrogenated products. An average is mentioned. More specifically, examples of the rosin tackifier include gum rosin, tall oil rosin, wood rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin, modified rosin, and rosin ester (rosin diol).
  • examples of terpene tackifiers include those obtained by polymerizing terpene oil contained in pine or natural terpenes contained in orange peel. More specifically, examples of the terpene tackifier include terpene resins, aromatic modified terpene resins, terpene phenol resins, hydrogenated terpene resins, and the like.
  • examples of the petroleum resin tackifier include aliphatic, alicyclic and aromatic resins made from petroleum. More specifically, examples of petroleum resin tackifiers include C5 petroleum resins, C9 petroleum resins, copolymer petroleum resins, alicyclic saturated hydrocarbon resins, and styrene petroleum resins.
  • rosin tackifier is preferable, and rosin ester is more preferable.
  • content of adhesive resin is 3 mass parts or more per 100 mass parts of fluororesins, More preferably, it is 5 mass parts or more, It is 15 mass parts or less. Is preferable, and it is more preferable that it is 10 mass parts or less. If the content of the adhesive resin per 100 parts by mass of the fluororesin is 3 parts by mass or more, the composition used for the formation of the heat conductive sheet can be further easily formed, and the heat conductive sheet can be satisfactorily formed. Can do. Moreover, if content of the adhesive resin per 100 mass parts of fluororesins is 15 mass parts or less, the heat conductivity of a heat conductive sheet, a flame retardance, and durability can fully be improved.
  • the phosphate ester flame retardant is not particularly limited, and examples thereof include aliphatic phosphate esters such as trimethyl phosphate, triethyl phosphate, tributyl phosphate; triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, trixylate.
  • Aromatic phosphates such as nyl phosphate, cresyl-2,6-xylenyl phosphate, tris (t-butylated phenyl) phosphate, tris (isopropylated phenyl) phosphate, triaryl isopropylate; resorcinol bisdiphenyl phosphate , Aromatic condensed phosphate esters such as bisphenol A bis (diphenyl phosphate) and resorcinol bis-doxylenyl phosphate; and the like. These may be used individually by 1 type and may use 2 or more types together.
  • a phosphate ester flame retardant which is liquid at normal temperature and pressure, specifically, a phosphate ester flame retardant having a freezing point of 15 ° C. or lower and a boiling point of 120 ° C. or higher is preferable. If a phosphate ester-based flame retardant having a freezing point of 15 ° C. or lower and a boiling point of 120 ° C. or higher is used, the composition used for forming the heat conductive sheet is imparted with tackiness, and the composition can be easily formed into a sheet. . Moreover, the softness
  • Examples of the phosphate ester flame retardant having a freezing point of 15 ° C. or lower and a boiling point of 120 ° C. or higher include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6- Examples include xylenyl phosphate, resorcinol bisdiphenyl phosphate, and bisphenol A bis (diphenyl phosphate).
  • a heat conductive sheet it is preferable that content of a phosphate ester type flame retardant is 3 mass parts or more per 100 mass parts of fluororesins, It is more preferable that it is 5 mass parts or more, 40 mass parts or less It is preferable that it is 30 mass parts or less. If the content of the phosphate ester flame retardant per 100 parts by mass of the fluororesin is 3 parts by mass or more, it becomes easier to form a composition used for forming the heat conductive sheet, and the heat conductive sheet is improved. Can be formed. Furthermore, the flame retardance and flexibility of the heat conductive sheet can be sufficiently enhanced.
  • the heat conductivity and durability of a heat conductive sheet can fully be improved. Furthermore, bleeding of the phosphate ester flame retardant from the heat conductive sheet can also be suppressed.
  • the heat conductive sheet of the present invention may contain an adhesive or an adhesive layer used when manufacturing the heat conductive sheet.
  • thermo conductive sheet ⁇ Properties of thermal conductive sheet>
  • heat conductive sheet of this invention is not specifically limited, It is preferable to have the following properties.
  • the thermal conductivity sheet needs to have a thermal conductivity in the thickness direction of 20 W / m ⁇ K or higher at 25 ° C., preferably 30 W / m ⁇ K or higher, and 40 W / m ⁇ K or higher. More preferably, it is more preferably 45 W / m ⁇ K or more, and particularly preferably 50 W / m ⁇ K or more. If the thermal conductivity in the thickness direction is 20 W / m ⁇ K or more, for example, when sandwiched between a heating element and a radiator, heat can be efficiently transferred from the heating element to the radiator. .
  • the heat conductive sheet preferably has an Asker C hardness of 90 or less, more preferably 88 or less. If the Asker C hardness is 90 or less, for example, when used by being sandwiched between a heating element and a heat dissipation body, excellent flexibility can be exhibited, and the heating element and the heat dissipation element can be adhered well.
  • the “Asker C hardness” can be measured at a temperature of 23 ° C. using a hardness meter in accordance with the Asker C method of the Japan Rubber Association Standard (SRIS).
  • the thickness of a heat conductive sheet becomes like this.
  • it is 0.1 mm or more and 10 mm or less.
  • the heat conductive sheet mentioned above is not specifically limited,
  • the process pre heat conductive sheet shaping
  • the process laminate formation process
  • each step will be specifically described.
  • pre-heat conductive sheet molding process contains a fluororesin and expanded graphite, and optionally a fibrous carbon material, a particulate carbon material other than expanded graphite, an adhesive resin, a phosphate ester flame retardant, etc.
  • a composition further containing these additives is pressed into a sheet shape to obtain a pre-heat conductive sheet.
  • composition can be prepared by mixing the fluororesin and the expanded graphite and the above-described optional components (fibrous carbon material, particulate carbon material, additive). And as fluororesin, expanded graphite, fibrous carbon material, particulate carbon material and additive, fluororesin, expanded graphite, fibrous carbon material, particulate carbon material which can be included in the heat conductive sheet of the present invention And what was mentioned above as an additive can be used.
  • the mixing of the above-described components is not particularly limited, and can be performed using a known mixing apparatus such as a kneader, a roll, or a mixer. Mixing may be performed in the presence of a solvent such as an organic solvent. And mixing time can be made into 5 minutes or more and 60 minutes or less, for example. Also, the mixing temperature can be, for example, 5 ° C. or more and 150 ° C. or less.
  • the fibrous carbon material is particularly prone to agglomerate and has low dispersibility. Therefore, when mixed with other components such as fluororesin and expanded graphite as they are, it is excellent in the composition. Difficult to disperse.
  • the fibrous carbon material is mixed with other components such as fluororesin and expanded graphite in the state of dispersion dispersed in a solvent (dispersion medium), the occurrence of aggregation can be suppressed. In the case of mixing in this state, a large amount of solvent is used when the solid content is solidified after mixing to obtain a composition, and therefore the amount of the solvent used for preparing the composition may increase.
  • the fibrous carbon material when a fibrous carbon material is blended in the composition used to form the pre-heat conductive sheet, the fibrous carbon material is a solvent from a dispersion obtained by dispersing the fibrous carbon material in a solvent (dispersion medium). It is preferable to mix with other components in the state of an aggregate (easily dispersible aggregate) of fibrous carbon materials obtained by removing.
  • the aggregate of the fibrous carbon material obtained by removing the solvent from the dispersion of the fibrous carbon material is composed of the fibrous carbon material once dispersed in the solvent, and the fibrous carbon material before being dispersed in the solvent. Since the dispersibility is superior to that of the above-mentioned aggregate, it becomes an easily dispersible aggregate with high dispersibility. Therefore, mixing easily dispersible aggregates with other components such as fluororesin and expanded graphite effectively disperses the fibrous carbon material in the composition efficiently without using a large amount of solvent. Can be made.
  • the dispersion of the fibrous carbon material for example, a coarse dispersion obtained by adding the fibrous carbon material to the solvent is subjected to a dispersion treatment that provides a cavitation effect or a dispersion treatment that obtains a crushing effect. Can be obtained.
  • the dispersion process which can obtain a cavitation effect is a dispersion method using a shock wave generated when a vacuum bubble generated in water bursts when high energy is applied to a liquid.
  • Specific examples of the dispersion treatment that can provide a cavitation effect include dispersion treatment using an ultrasonic homogenizer, dispersion treatment using a jet mill, and dispersion treatment using a high shear stirrer.
  • the dispersion treatment that provides the crushing effect is to apply shear force to the coarse dispersion liquid to crush and disperse the aggregates of the fibrous carbon material, and further to apply a back pressure to the coarse dispersion liquid.
  • This is a dispersion method in which the fibrous carbon material is uniformly dispersed in a solvent while suppressing generation.
  • distribution process from which a crushing effect is acquired can be performed using a commercially available dispersion
  • the solvent can be removed from the dispersion using a known solvent removal method such as drying or filtration. From the viewpoint of removing the solvent quickly and efficiently, filtration such as vacuum filtration is used. It is preferable to carry out.
  • composition prepared as described above can be defoamed and crushed arbitrarily, and then pressed to form a sheet.
  • a solvent is used at the time of mixing, it is preferable to form the sheet after removing the solvent. For example, if defoaming is performed using vacuum defoaming, the solvent is simultaneously removed at the time of defoaming. be able to.
  • the composition can be formed into a sheet using a known forming method such as press forming, rolling forming, or extrusion forming without particular limitation as long as it is a forming method in which pressure is applied.
  • the composition is preferably formed into a sheet by rolling, and more preferably formed into a sheet by passing between rolls in a state of being sandwiched between protective films.
  • a protective film the polyethylene terephthalate film etc. which performed the sandblast process etc. can be used, without being specifically limited.
  • the roll temperature can be 5 ° C. or more and 150 ° C.
  • the pre-heat conductive sheet formed by pressurizing the composition into a sheet shape, the expanded graphite, the particulate carbon material and the fibrous carbon material to be blended arbitrarily are arranged mainly in the in-plane direction, It is presumed that the thermal conductivity in the in-plane direction is improved.
  • the thickness of a pre heat conductive sheet is not specifically limited, For example, it can be 0.05 mm or more and 2 mm or less. From the viewpoint of further improving the thermal conductivity of the heat conductive sheet, the thickness of the pre-heat conductive sheet is preferably more than 20 times and not more than 5000 times the average particle diameter of the expanded graphite.
  • a laminated body forming step a plurality of pre heat conductive sheets obtained in the pre heat conductive sheet forming step are laminated in the thickness direction, or the pre heat conductive sheets are folded or wound to obtain a laminate.
  • formation of the laminated body by folding of a pre heat conductive sheet is not specifically limited, It can carry out by folding a pre heat conductive sheet by fixed width using a folding machine.
  • the formation of the laminate by winding the pre-heat conductive sheet is not particularly limited, and by rolling the pre-heat conductive sheet around an axis parallel to the short direction or the long direction of the pre-heat conductive sheet It can be carried out.
  • the adhesive force between the surfaces of the pre-heat conductive sheets depends on the pressure when laminating the pre-heat conductive sheets and the tensile force when folding or winding. Fully obtained.
  • the laminate forming step may be performed with the surface of the pre-heat conductive sheet slightly dissolved with a solvent.
  • the laminated body forming step may be performed in a state where an adhesive is applied to the surface of the pre-heat conductive sheet or a state where an adhesive layer is provided on the surface of the pre-heat conductive sheet.
  • dissolving the surface of a pre heat conductive sheet it does not specifically limit,
  • acetone is preferably used from the viewpoints of solubility and volatility.
  • coated to the surface of a pre heat conductive sheet A commercially available adhesive agent and adhesive resin can be used.
  • the adhesive it is preferable to use a resin having the same composition as the resin component such as a fluororesin contained in the pre-heat conductive sheet.
  • coated to the surface of a pre heat conductive sheet can be 10 micrometers or more and 1000 micrometers or less, for example.
  • the adhesive layer provided on the surface of the pre-heat conductive sheet is not particularly limited, and a double-sided tape or the like can be used.
  • the heat conductive filler may be mix
  • the obtained laminate may be heated at 120 ° C. or more and 170 ° C. or less for 2 to 8 hours while being pressed at a pressure of 0.1 MPa or more and 0.5 MPa or less in the lamination direction. Good.
  • the expanded graphite and the arbitrarily mixed particulate carbon material and fibrous carbon material are arranged in a direction substantially perpendicular to the laminating direction. It is inferred that
  • the laminated body obtained in the laminated body forming step is sliced at an angle of 45 ° or less with respect to the laminating direction to obtain a heat conductive sheet composed of sliced pieces of the laminated body.
  • the method for slicing the laminate is not particularly limited, and examples thereof include a multi-blade method, a laser processing method, a water jet method, and a knife processing method.
  • the knife processing method is preferable at the point which makes the thickness of a heat conductive sheet uniform.
  • the cutting tool for slicing the laminate is not particularly limited, and includes a slice member (for example, a sharp blade) having a smooth board surface having a slit and a blade portion protruding from the slit portion. Canna and slicer) can be used.
  • the heat conductive sheet obtained through the slicing step is usually a strip (laminated body) containing a fluororesin and expanded graphite and the above-mentioned optional components (fibrous carbon material, particulate carbon material, additive).
  • the slice piece of the pre-heat-conductive sheet which has comprised was connected in parallel.
  • the angle at which the laminate is sliced is preferably 30 ° or less with respect to the stacking direction, and more preferably 15 ° or less with respect to the stacking direction. Preferably, it is approximately 0 ° with respect to the stacking direction (that is, the direction along the stacking direction).
  • the temperature of the laminate when slicing is preferably ⁇ 20 ° C. or more and 20 ° C. or less, and more preferably ⁇ 10 ° C. or more and 0 ° C. or less.
  • the laminated body to be sliced is preferably sliced while applying a pressure in a direction perpendicular to the lamination direction, and a pressure of 0.1 MPa to 0.5 MPa in the direction perpendicular to the lamination direction. It is more preferable to slice while loading.
  • Thermal conductivity About the heat conductive sheet, the thermal diffusivity ⁇ (m 2 / s) in the thickness direction, the constant pressure specific heat Cp (J / g ⁇ K), and the specific gravity ⁇ (g / m 3 ) were measured by the following methods.
  • Thermal diffusivity The thermal diffusivity at a temperature of 25 ° C. was measured using a thermophysical property measuring apparatus (product name “Thermo Wave Analyzer TA35” manufactured by Bethel Co., Ltd.).
  • Specific pressure specific heat Using a differential scanning calorimeter (manufactured by Rigaku, product name “DSC8230”), the specific heat at a temperature of 25 ° C.
  • Pre-heat conductive sheet has no holes of 1 mm or more and 1 mm or more breakage points
  • Pre-heat conduction sheet has 1 mm or more holes or 1 mm or more breakage sites
  • Five test pieces were prepared by cutting the heat conductive sheet into a size of width 10 mm ⁇ length 150 mm.
  • the flaming and non-flaming combustion durations and the presence or absence of combustion drops (drip) were evaluated, and the flame retardancy was evaluated according to UL-94 (flame retardant standard). That is, the flaming combustion duration after the end of the first and second flame contact, the total of the flammable combustion duration and the flameless combustion duration after the end of the second flame contact, Whether the flameless combustion duration corresponds to V-0 or V-2 of UL-94 (flame retardant standard) was determined based on the total duration of flameless combustion and the presence or absence of combustion drops (drip). Flame test was completed within 10 seconds after the first and second flame contact, and the total of the second and last flame-free combustion duration was within 30 seconds.
  • UL-94 flame retardant standard
  • the sum of the flaming and flameless burning durations of the pieces was within 50 seconds and there was no burning dripping was designated as V-0.
  • the first and second flames were burned within 30 seconds after the end of the flame contact, and the total of the second flamed combustion duration and the flameless combustion duration was within 60 seconds, and 5 more
  • the total of the flammable and non-flammable combustion durations of the test pieces was 250 seconds or less, and V-2 was the one where there was combustion dripping.
  • all burned items were out of specification. If this evaluation satisfies the V-0 condition, it can be said that the flame retardancy is excellent.
  • a sample A was formed by forming a heat conductive sheet into a strip shape of 100 mm ⁇ 20 mm ⁇ 0.5 mm. And the test body A was heated at 200 degreeC in the thermostat for 3 hours. Specimen B was obtained by cooling specimen A taken out of the thermostat to room temperature in a 25 ° C. atmosphere. And about the test body A and the test body B, the place of 0.5 cm from both ends of the test body is pinched using a tensile tester (manufactured by Nidec Sympo, small desk tester: FGS-TV), and the temperature is 25 ° C.
  • a tensile tester manufactured by Nidec Sympo, small desk tester: FGS-TV
  • Fluorine rubber as a fluororesin (Daikin Kogyo Co., Ltd., Daiel-G912, ternary fluororubber made of vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer) is cut into rice grains with scissors and 60 g of methyl ethyl ketone The product was put into (made by Wako Pure Chemical Industries, Ltd.), stirred for 3 hours, and the piece of rubber that was visually invisible was used as a fluororesin solution.
  • a fibrous carbon nanostructure A containing SGCNT was obtained by the super-growth method according to the description in WO2006 / 011655.
  • the obtained fibrous carbon nanostructure A had a G / D ratio of 3.0, a BET specific surface area of 800 m 2 / g, and a mass density of 0.03 g / cm 3 .
  • the average diameter (Av) was 3.3 nm
  • the sample standard deviation ( ⁇ ) of the diameter (3 ⁇ ) multiplied by 3 was 1.9 nm
  • the ratio (3 ⁇ / Av) was 0.58
  • the average length was 100 ⁇ m.
  • the obtained fibrous carbon nanostructure A was mainly composed of single-walled CNTs.
  • a reactor was charged with 100 parts of a monomer mixture composed of 94 parts of 2-ethylhexyl acrylate and 6 parts of acrylic acid, 0.03 part of 2,2′-azobisisobutyronitrile and 700 parts of ethyl acetate. After dissolving in nitrogen and purging with nitrogen, a polymerization reaction was carried out at 80 ° C. for 6 hours. The polymerization conversion rate was 97%. And the obtained polymer was dried under reduced pressure and ethyl acetate was evaporated, and the viscous solid acrylic resin was obtained.
  • the weight average molecular weight (Mw) of the acrylic resin was 270000, and the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) was 3.1.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) were determined in terms of standard polystyrene by gel permeation chromatography using tetrahydrofuran as an eluent. 100 parts of methyl ethyl ketone was added to 100 parts of the obtained acrylic resin, and the mixture was stirred until it became uniform to obtain an acrylic resin solution.
  • composition 1 part of an easily dispersible aggregate of fibrous carbon nanostructure A as a fibrous carbon material, expanded graphite (trade name “EC-50” manufactured by Ito Graphite Industries Co., Ltd., average particle size: 250 ⁇ m) 130 parts, 190 parts of fluororesin solution (95 parts of solid content (fluororesin)), tack fire as an adhesive resin (trade name “KE-359”, manufactured by Arakawa Chemical Industries, Ltd.), super light rosin 5 parts of the ester was stirred and mixed for 1 hour using a Hobart mixer (manufactured by Kodaira Manufacturing Co., Ltd., trade name “ACM-5 LVT type”).
  • EC-50 manufactured by Ito Graphite Industries Co., Ltd., average particle size: 250 ⁇ m
  • fluororesin solution 95 parts of solid content (fluororesin)
  • tack fire as an adhesive resin trade name “KE-359”, manufactured by Arakawa Chemical Industries, Ltd.
  • super light rosin 5 parts of the ester was stir
  • the resulting mixture is vacuum degassed for 1 hour, and methyl ethyl ketone is removed simultaneously with degassing, and contains fibrous carbon nanostructure A, expanded graphite, fluororesin, and adhesive resin.
  • a composition was obtained. And the obtained composition was thrown into the crusher and crushed for 10 seconds.
  • Preparation of pre-heat conductive sheet> Subsequently, 5 g of the crushed composition was sandwiched between 50 ⁇ m thick PET films (protective film) subjected to sandblast treatment, a roll gap of 330 ⁇ m, a roll temperature of 50 ° C., a roll linear pressure of 50 kg / cm, and a roll speed of 1 m / min.
  • Roll forming was performed under conditions to obtain a pre-heat conductive sheet having a thickness of 0.3 mm. And the sheet formability was evaluated using the obtained pre heat conductive sheet.
  • a 12 ⁇ m thick double-sided tape manufactured by Nichiban, trade name “Nai Stack” is attached to one side of the obtained pre-heat conductive sheet, and pre-heat is applied around the 1 cm diameter metal rod.
  • the conductive sheet was wound into a roll shape to obtain a cylindrical body (laminated body).
  • the metal rod was extracted from the cylindrical body of the pre-heat conductive sheet and pressed at a pressure of 10 MPa from the surface direction of the pre-thermal conductive sheet, so that the cylindrical body was an elliptic cylinder.
  • the obtained elliptic cylinder (laminated body) is sliced woodworking slicer (manufactured by Marunaka Co., Ltd.) at an angle of 0 degrees with respect to the elliptical surface of the elliptical cylinder (that is, parallel to the elliptical surface).
  • the product was sliced with the trade name “Super-finished planer board super mechanism”, the protrusion length of the sword portion from the slit portion: 0.11 mm) to obtain an elliptical heat conductive sheet having a thickness of 0.5 mm. And about the obtained heat conductive sheet, heat conductivity, Asker C hardness, a flame retardance, and durability were measured or evaluated. The results are shown in Table 1.
  • Example 2 When producing a cylindrical body using a pre-heat conductive sheet, acetone (made by Wako Pure Chemical Industries) is applied to one side of the obtained pre-heat conductive sheet without using a double-sided tape, and the surface of the pre-heat conductive sheet In the same manner as in Example 1 except that a cylindrical body was obtained by winding a pre-heat conductive sheet around a metal rod having a diameter of 1 cm in a state in which the resin component present in the resin was dissolved, in the same manner as in Example 1. Got. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 When preparing the composition, the amount of expanded graphite was changed to 120 parts, the amount of the fluororesin solution was changed to 160 parts (the solid content (fluororesin) was 80 parts), and the tackifier was replaced.
  • An elliptical heat conductive sheet was obtained in the same manner as in Example 1 except that 20 parts of a phosphate ester flame retardant (trade name “PX-110”) was blended. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 When preparing the composition, the compounding amount of expanded graphite is changed to 110 parts, the compounding amount of the fluororesin solution is changed to 200 parts (the solid content (fluororesin) is 100 parts), and tackifier is added. An elliptical heat conductive sheet was obtained in the same manner as Example 1 except that there was no. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 When preparing the composition, the compounding amount of the expanded graphite was changed to 110 parts, the compounding amount of the fluororesin solution was changed to 200 parts (the solid content (the fluororesin) was 100 parts), and the fibrous carbon nano An elliptical heat conductive sheet was obtained in the same manner as in Example 1 except that the easily dispersible aggregate of structure A and the tackifier were not blended. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 1 When preparing the composition, use 200 parts of an acrylic resin solution (solid content is 100 parts) instead of the fluororesin solution, and blend an easily dispersible aggregate of fibrous carbon nanostructure A and a tackifier. An elliptical heat conductive sheet was obtained in the same manner as Example 1 except that there was no. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 2 When preparing the composition, use 100 parts of an acrylic resin solution (50 parts in solid content) instead of the fluororesin solution, and blend an easily dispersible assembly of fibrous carbon nanostructure A and a tackifier. First, an elliptical heat conductive sheet was prepared in the same manner as in Example 1 except that 50 parts of a phosphate ester flame retardant (trade name “PX-110”) was blended. It was not possible to produce an elliptical heat conductive sheet.
  • a phosphate ester flame retardant trade name “PX-110”
  • the heat conductive sheets of Examples 1 to 5 containing fluororesin and expanded graphite are excellent in flame retardancy and durability as compared with the heat conductive sheet of Comparative Example 1 using an acrylic resin. I understand. In Comparative Example 2, a heat conductive sheet could not be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a heat transfer sheet having exceptional flame retardancy and durability. This heat transfer sheet contains a fluororesin and expanded graphite, and exhibits thickness-direction thermal conductivity of 20 W/m•K or higher. In addition, this method for manufacturing a heat transfer sheet includes: a step for pressurizing a composition containing a fluororesin and expanded graphite, forming the composition into the form of a sheet, and obtaining a pre-heat-transfer sheet; a step for laminating a plurality of the pre-heat-transfer sheets in the thickness direction, or folding or winding the pre-heat-transfer sheet, to obtain a laminated body; and a step for slicing the laminated body at an angle equal to or less than 45° relative to the lamination direction, and obtaining a heat transfer sheet.

Description

熱伝導シートおよびその製造方法Thermal conductive sheet and manufacturing method thereof
 本発明は、熱伝導シートおよび熱伝導シートの製造方法に関するものである。 The present invention relates to a heat conductive sheet and a method for producing the heat conductive sheet.
 近年、プラズマディスプレイパネル(PDP)や集積回路(IC)チップ等の電子部品は、高性能化に伴って発熱量が増大している。その結果、電子部品を用いた電子機器では、電子部品の温度上昇による機能障害対策を講じる必要が生じている。 In recent years, electronic parts such as a plasma display panel (PDP) and an integrated circuit (IC) chip have increased in calorific value as performance is improved. As a result, in electronic devices using electronic components, it is necessary to take measures against functional failures due to temperature rise of the electronic components.
 ここで、一般に、温度上昇による機能障害対策としては、電子部品等の発熱体に対し、金属製のヒートシンク、放熱板、放熱フィン等の放熱体を取り付けることによって、放熱を促進させる方法が採られている。そして、放熱体を使用する際には、発熱体から放熱体へと熱を効率的に伝えるために、熱伝導性が高いシート状の部材(熱伝導シート)を介して発熱体と放熱体とを密着させている。そのため、発熱体と放熱体との間に挟み込んで使用される熱伝導シートには、高い熱伝導性と、高い柔軟性とを有することが求められている。 Here, in general, as a countermeasure against functional failure due to a temperature rise, a method of promoting heat dissipation by attaching a heat sink such as a metal heat sink, a heat sink, or a heat sink to a heat generator such as an electronic component is adopted. ing. And when using a heat radiator, in order to transfer heat efficiently from a heat generating body to a heat sink, a heat generating body, a heat sink, and a heat conductive sheet through a sheet-like member (heat conductive sheet) with high heat conductivity. Are in close contact. Therefore, the heat conductive sheet used by being sandwiched between the heat generator and the heat radiator is required to have high thermal conductivity and high flexibility.
 そこで、例えば特許文献1では、熱伝導性および柔軟性に優れる熱伝導シートとして、ガラス転移温度(Tg)が50℃以下のアクリル酸エステル共重合体と、鱗片状、楕球状または棒状であり、結晶中の6員環面が鱗片の面方向、楕球の長軸方向または棒の長軸方向に配向している黒鉛粒子と、リン酸エステル系難燃剤とを含有する組成物を用いて形成した、黒鉛粒子が厚み方向に配向している熱伝導シートが提案されている。 Therefore, for example, in Patent Document 1, as a heat conductive sheet excellent in thermal conductivity and flexibility, the glass transition temperature (Tg) is an acrylate copolymer having a temperature of 50 ° C. or less, and a scaly, oval or rod-like shape, Formed using a composition containing graphite particles in which the six-membered ring surface in the crystal is oriented in the plane direction of the scale, the long axis direction of the ellipsoid or the long axis direction of the rod, and the phosphate ester flame retardant A heat conductive sheet in which graphite particles are oriented in the thickness direction has been proposed.
国際公開第2008/053843号International Publication No. 2008/053843
 ここで、近年では、安全性などの観点から、熱伝導シートには、高い熱伝導性および柔軟性に加え、高い難燃性と、優れた耐久性とを有することも求められている。しかし、特許文献1等に記載の従来の熱伝導シートでは、難燃性および耐久性が十分ではなかった。 Here, in recent years, from the viewpoint of safety and the like, the thermal conductive sheet is also required to have high flame resistance and excellent durability in addition to high thermal conductivity and flexibility. However, the conventional heat conductive sheet described in Patent Document 1 or the like is not sufficient in flame retardancy and durability.
 そこで、本発明は、難燃性および耐久性に優れる熱伝導シートを提供することを目的とする。
 また、本発明は、難燃性および耐久性に優れる熱伝導シートを効率的に製造し得る熱伝導シートの製造方法を提供することを目的とする。
Then, an object of this invention is to provide the heat conductive sheet excellent in a flame retardance and durability.
Moreover, an object of this invention is to provide the manufacturing method of the heat conductive sheet which can manufacture efficiently the heat conductive sheet excellent in a flame retardance and durability.
 本発明者らは、上記目的を達成するために鋭意検討を行った。そして、本発明者らは、フッ素樹脂と膨張化黒鉛とを含む組成物を用いて形成した熱伝導シートが難燃性および耐久性の双方に優れていることを見出し、本発明を完成させた。 The present inventors have intensively studied to achieve the above object. The inventors have found that a heat conductive sheet formed using a composition containing a fluororesin and expanded graphite is excellent in both flame retardancy and durability, and completed the present invention. .
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の熱伝導シートは、フッ素樹脂と、膨張化黒鉛とを含み、厚み方向の熱伝導率が20W/m・K以上であることを特徴とする。このように、フッ素樹脂と膨張化黒鉛とを含有させれば、難燃性および耐久性に優れる熱伝導シートを得ることができる。また、厚み方向の熱伝導率が20W/m・K以上であれば、熱伝導シートとして良好に使用することができる。
 なお、本発明において、「厚み方向の熱伝導率」は、熱伝導シートの厚み方向の熱拡散率α(m2/s)、定圧比熱Cp(J/g・K)および比重ρ(g/m3)を用いて、下記式(I):
 厚み方向の熱伝導率λ(W/m・K)=α×Cp×ρ ・・・(I)
より求めることができる。ここで、「熱拡散率」は熱物性測定装置を用いて測定することができ、「定圧比熱」は示差走査熱量計を用いて測定することができ、「比重」は自動比重計を用いて測定することができる。
That is, this invention aims at solving the said subject advantageously, The heat conductive sheet of this invention contains a fluororesin and expanded graphite, and the heat conductivity of the thickness direction is 20 W /. It is more than m · K. Thus, if a fluororesin and expanded graphite are contained, a heat conductive sheet excellent in flame retardancy and durability can be obtained. Moreover, if the heat conductivity of the thickness direction is 20 W / m * K or more, it can be used favorably as a heat conductive sheet.
In the present invention, the “thermal conductivity in the thickness direction” refers to the thermal diffusivity α (m 2 / s) in the thickness direction of the heat conductive sheet, the constant pressure specific heat Cp (J / g · K), and the specific gravity ρ (g / m 3 ), the following formula (I):
Thermal conductivity in thickness direction λ (W / m · K) = α × Cp × ρ (I)
It can be obtained more. Here, "thermal diffusivity" can be measured using a thermophysical property measuring device, "constant pressure specific heat" can be measured using a differential scanning calorimeter, and "specific gravity" can be measured using an automatic hydrometer. Can be measured.
 ここで、本発明の熱伝導シートは、前記フッ素樹脂100質量部当たり前記膨張化黒鉛を110質量部以上含有することが好ましい。膨張化黒鉛の含有割合をフッ素樹脂100質量部当たり110質量部以上とすれば、難燃性と、耐久性と、熱伝導性とを十分に高いレベルで並立させた熱伝導シートが得られる。 Here, the heat conductive sheet of the present invention preferably contains 110 parts by mass or more of the expanded graphite per 100 parts by mass of the fluororesin. When the content ratio of the expanded graphite is 110 parts by mass or more per 100 parts by mass of the fluororesin, a heat conductive sheet in which flame retardancy, durability, and heat conductivity are juxtaposed at a sufficiently high level can be obtained.
 また、本発明の熱伝導シートは、粘着性樹脂を更に含むことが好ましい。粘着性樹脂を含有させれば、熱伝導シートを良好に形成することができる。 Moreover, it is preferable that the heat conductive sheet of the present invention further contains an adhesive resin. If an adhesive resin is contained, a heat conductive sheet can be favorably formed.
 更に、本発明の熱伝導シートは、リン酸エステル系難燃剤を更に含むことが好ましい。リン酸エステル系難燃剤を含有させれば、熱伝導シートを良好に形成することができると共に、熱伝導シートの難燃性を更に向上させることができる。 Furthermore, the heat conductive sheet of the present invention preferably further contains a phosphate ester flame retardant. If a phosphate ester flame retardant is contained, the heat conductive sheet can be formed satisfactorily, and the flame retardance of the heat conductive sheet can be further improved.
 そして、本発明の熱伝導シートは、繊維状炭素材料を更に含むことが好ましい。繊維状炭素材料を含有させれば、熱伝導シートを良好に形成することができると共に、熱伝導シートの難燃性、耐久性および熱伝導性を十分に高いレベルで並立させることができる。また、繊維状炭素材料を配合すれば、膨張化黒鉛の粉落ちを防止することもできる。 And it is preferable that the heat conductive sheet of this invention further contains a fibrous carbon material. When the fibrous carbon material is contained, the heat conductive sheet can be formed satisfactorily and the flame retardancy, durability and heat conductivity of the heat conductive sheet can be juxtaposed at a sufficiently high level. Moreover, if a fibrous carbon material is blended, the expanded graphite can be prevented from falling off.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の熱伝導シートの製造方法は、フッ素樹脂と、膨張化黒鉛とを含む組成物を加圧してシート状に成形し、プレ熱伝導シートを得る工程と、前記プレ熱伝導シートを厚み方向に複数枚積層して、或いは、前記プレ熱伝導シートを折畳または捲回して、積層体を得る工程と、前記積層体を、積層方向に対して45°以下の角度でスライスし、熱伝導シートを得る工程とを含むことを特徴とする。このように、フッ素樹脂および膨張化黒鉛を含む組成物を加圧して成形したプレ熱伝導シートよりなる積層体を積層方向に対して45°以下の角度でスライスすれば、難燃性と、耐久性と、熱伝導性とに優れる熱伝導シートを容易に製造することができる。 Another object of the present invention is to advantageously solve the above-mentioned problems, and a method for producing a heat conductive sheet according to the present invention is a method in which a composition containing a fluororesin and expanded graphite is pressed to form a sheet. Forming a pre-heat conductive sheet, and stacking a plurality of the pre-heat conductive sheets in the thickness direction, or folding or winding the pre-heat conductive sheet to obtain a laminate, and And slicing the laminated body at an angle of 45 ° or less with respect to the laminating direction to obtain a heat conductive sheet. Thus, if a laminate comprising a pre-heat conductive sheet formed by pressurizing a composition containing a fluororesin and expanded graphite is sliced at an angle of 45 ° or less with respect to the lamination direction, flame retardancy and durability are achieved. It is possible to easily manufacture a heat conductive sheet that is excellent in properties and heat conductivity.
 本発明によれば、難燃性および耐久性に優れる熱伝導シートおよびその効率的な製造方法を提供することができる。 According to the present invention, it is possible to provide a heat conductive sheet excellent in flame retardancy and durability and an efficient manufacturing method thereof.
 以下、本発明の実施形態について詳細に説明する。
 本発明の熱伝導シートは、例えば、発熱体に放熱体を取り付ける際に発熱体と放熱体との間に挟み込んで使用することができる。即ち、本発明の熱伝導シートは、ヒートシンク、放熱板、放熱フィン等の放熱体と共に放熱装置を構成することができる。そして、本発明の熱伝導シートは、例えば本発明の熱伝導シートの製造方法を用いて製造することができる。
Hereinafter, embodiments of the present invention will be described in detail.
The heat conductive sheet of the present invention can be used, for example, by being sandwiched between a heat generator and a heat radiator when the heat radiator is attached to the heat generator. That is, the heat conductive sheet of this invention can comprise a heat radiating device with heat sinks, such as a heat sink, a heat sink, and a heat radiating fin. And the heat conductive sheet of this invention can be manufactured, for example using the manufacturing method of the heat conductive sheet of this invention.
(熱伝導シート)
 本発明の熱伝導シートは、フッ素樹脂と、膨張化黒鉛とを含み、任意に、繊維状炭素材料、膨張化黒鉛以外の粒子状炭素材料および添加剤などを更に含有する。また、本発明の熱伝導シートは、厚み方向の熱伝導率が20W/m・K以上である。そして、本発明の熱伝導シートは、フッ素樹脂と膨張化黒鉛とを含有しているので、難燃性および耐久性に優れている。また、本発明の熱伝導シートは、厚み方向の熱伝導率が20W/m・K以上であり、厚み方向に熱を効率的に伝えることができるので、例えば発熱体と放熱体との間に挟み込んで使用される熱伝導シートとして良好に使用することができる。
(Heat conduction sheet)
The heat conductive sheet of the present invention contains a fluororesin and expanded graphite, and optionally further contains a fibrous carbon material, a particulate carbon material other than the expanded graphite, an additive, and the like. Moreover, the heat conductive sheet of this invention is 20 W / m * K or more in the heat conductivity of the thickness direction. And since the heat conductive sheet of this invention contains the fluororesin and expanded graphite, it is excellent in a flame retardance and durability. Moreover, since the heat conductivity sheet of the present invention has a heat conductivity in the thickness direction of 20 W / m · K or more and can efficiently transfer heat in the thickness direction, for example, between the heating element and the heat dissipation element. It can be used satisfactorily as a heat conductive sheet used by being sandwiched.
<フッ素樹脂>
 フッ素樹脂としては、特に限定されることなく、例えば、ポリテトラフルオロエチレン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-エチレン共重合体、ポリビニリデンフルオライド、ポリクロロトリフルオロエチレン、エチレン-クロロフルオロエチレン共重合体、テトラフルオロエチレン-パーフルオロジオキソール共重合体、ポリビニルフルオライド、テトラフルオロエチレン-プロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレンのアクリル変性物、ポリテトラフルオロエチレンのエステル変性物、ポリテトラフルオロエチレンのエポキシ変性物およびポリテトラフルオロエチレンのシラン変性物等が挙げられる。これらの中でも、加工性の観点からは、フッ素樹脂としては、ポリテトラフルオロエチレン、ポリテトラフルオロエチレンのアクリル変性物、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ビニリデンフルオライド-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体が好ましい。
 なお、本発明において、ゴムおよびエラストマーは、「樹脂」に含まれるものとする。
<Fluorine resin>
The fluororesin is not particularly limited. For example, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer , Polyvinylidene fluoride, polychlorotrifluoroethylene, ethylene-chlorofluoroethylene copolymer, tetrafluoroethylene-perfluorodioxole copolymer, polyvinyl fluoride, tetrafluoroethylene-propylene copolymer, vinylidene fluoride -Tetrafluoroethylene-hexafluoropropylene copolymer, acrylic modified product of polytetrafluoroethylene, ester modified product of polytetrafluoroethylene, polytetrafluoroethylene Epoxy-modified products of alkylene and silane-modified product of polytetrafluoroethylene, and the like. Among these, from the viewpoint of processability, as the fluororesin, polytetrafluoroethylene, polytetrafluoroethylene modified acrylic, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene- A hexafluoropropylene copolymer is preferred.
In the present invention, rubber and elastomer are included in “resin”.
 ここで、フッ素樹脂は、熱伝導シートのマトリックス樹脂を構成すると共に、熱伝導シート中で膨張化黒鉛等を結着する結着材としても機能する。そして、熱伝導シートは、フッ素樹脂の含有量が35質量%以上50質量%以下であることが好ましい。フッ素樹脂の含有量が35質量%以上であれば、膨張化黒鉛等を良好に結着して熱伝導シートを良好に形成することができると共に、熱伝導シートの難燃性および耐久性を十分に高めることができる。また、フッ素樹脂の含有量が50質量%以下であれば、熱伝導シートの熱伝導性を十分に高めることができると共に、熱伝導シートの硬度が上昇する(即ち、柔軟性が低下する)のを抑制することができる。 Here, the fluororesin constitutes a matrix resin of the heat conductive sheet and also functions as a binder for binding expanded graphite and the like in the heat conductive sheet. And it is preferable that content of a fluororesin is 35 to 50 mass% in a heat conductive sheet. If the content of the fluororesin is 35% by mass or more, the expanded graphite can be bound well to form a heat conductive sheet, and the heat conductive sheet has sufficient flame retardancy and durability. Can be increased. Moreover, if content of a fluororesin is 50 mass% or less, while being able to fully improve the heat conductivity of a heat conductive sheet, the hardness of a heat conductive sheet will raise (namely, a softness | flexibility will fall). Can be suppressed.
<膨張化黒鉛>
 本発明の熱伝導シートが含有する膨張化黒鉛は、例えば、鱗片状黒鉛などの黒鉛を硫酸などで化学処理して得た膨張性黒鉛を、熱処理して膨張させた後、微細化することにより得ることができる。そして、膨張化黒鉛としては、例えば、伊藤黒鉛工業社製のEC1500、EC1000、EC500、EC300、EC100、EC50(いずれも商品名)等が挙げられる。
<Expanded graphite>
The expanded graphite contained in the heat conductive sheet of the present invention is obtained by, for example, expanding the expanded graphite obtained by chemically treating graphite such as scale-like graphite with sulfuric acid or the like, and then reducing the size. Obtainable. Examples of expanded graphite include EC1500, EC1000, EC500, EC300, EC100, and EC50 (all trade names) manufactured by Ito Graphite Industries.
 ここで、熱伝導シートに含有されている膨張化黒鉛の平均粒子径は、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、500μm以下であることが好ましく、250μm以下であることがより好ましい。膨張化黒鉛の平均粒子径が上記範囲内であれば、熱伝導シートの熱伝導性を更に向上させることができるからである。
 また、熱伝導シートに含有されている膨張化黒鉛のアスペクト比(長径/短径)は、1以上10以下であることが好ましく、1以上5以下であることがより好ましい。
Here, the average particle size of the expanded graphite contained in the heat conductive sheet is preferably 0.1 μm or more, more preferably 1 μm or more, preferably 500 μm or less, and 250 μm or less. More preferably. This is because if the average particle diameter of the expanded graphite is within the above range, the thermal conductivity of the thermal conductive sheet can be further improved.
Further, the aspect ratio (major axis / minor axis) of the expanded graphite contained in the heat conductive sheet is preferably 1 or more and 10 or less, and more preferably 1 or more and 5 or less.
 なお、本発明において「平均粒子径」は、熱伝導シートの厚み方向における断面をSEM(走査型電子顕微鏡)で観察し、任意の50個の膨張化黒鉛について最大径(長径)を測定し、測定した長径の個数平均値を算出することにより求めることができる。また、本発明において、「アスペクト比」は、熱伝導シートの厚み方向における断面をSEM(走査型電子顕微鏡)で観察し、任意の50個の膨張化黒鉛について、最大径(長径)と、最大径に直交する方向の粒子径(短径)とを測定し、長径と短径の比(長径/短径)の平均値を算出することにより求めることができる。 In the present invention, the “average particle diameter” refers to a cross section in the thickness direction of the heat conductive sheet observed with a SEM (scanning electron microscope), and the maximum diameter (major diameter) of any 50 expanded graphites is measured. It can obtain | require by calculating the number average value of the measured major axis. Further, in the present invention, the “aspect ratio” refers to a cross section in the thickness direction of the heat conductive sheet observed with an SEM (scanning electron microscope), and for any 50 expanded graphites, the maximum diameter (major diameter) and the maximum It can be determined by measuring the particle diameter (minor axis) in the direction perpendicular to the diameter and calculating the average value of the ratio of the major axis to the minor axis (major axis / minor axis).
 そして、熱伝導シートは、膨張化黒鉛の含有量が、フッ素樹脂100質量部当たり、110質量部以上であることが好ましく、130質量部以上であることがより好ましく、150質量部以下であることが好ましく、140質量部以下であることがより好ましい。フッ素樹脂100質量部当たりの膨張化黒鉛の含有量が110質量部以上であれば、熱伝導シートの熱伝導性を十分に高めることができる。また、フッ素樹脂100質量部当たりの膨張化黒鉛の含有量が150質量部以下であれば、熱伝導シートを良好に形成することができると共に、熱伝導シートの耐久性を十分に高めることができる。更に、熱伝導シートの硬度が上昇する(即ち、柔軟性が低下する)のを抑制して、熱伝導性、難燃性、耐久性および柔軟性を十分に高いレベルで並立させた熱伝導シートを得ることができる。 In the heat conductive sheet, the expanded graphite content is preferably 110 parts by mass or more, more preferably 130 parts by mass or more, and 150 parts by mass or less per 100 parts by mass of the fluororesin. Is preferable, and it is more preferable that it is 140 mass parts or less. If content of the expanded graphite per 100 mass parts of fluororesins is 110 mass parts or more, the heat conductivity of a heat conductive sheet can fully be improved. Moreover, if content of the expanded graphite per 100 mass parts of fluororesins is 150 mass parts or less, while being able to form a heat conductive sheet favorably, the durability of a heat conductive sheet can fully be improved. . Further, the heat conduction sheet is provided with a sufficiently high level of heat conductivity, flame retardancy, durability and flexibility by suppressing the increase in the hardness (that is, the flexibility is lowered) of the heat conduction sheet. Can be obtained.
<繊維状炭素材料>
 本発明の熱伝導シートに任意に配合される繊維状炭素材料としては、特に限定されることなく、例えば、カーボンナノチューブ、気相成長炭素繊維、有機繊維を炭化して得られる炭素繊維、および、それらの切断物などを用いることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 そして、熱伝導シートに繊維状炭素材料を含有させれば、熱伝導シートの難燃性、耐久性および熱伝導性を十分に高いレベルで並立させることができる。また、熱伝導シートを良好に形成することができると共に、膨張化黒鉛や後述する粒子状炭素材料の粉落ちを防止することもできる。なお、繊維状炭素材料を配合することで熱伝導シートが良好に形成し得るようになると共に膨張化黒鉛や粒子状炭素材料の粉落ちを防止することができる理由は、明らかではないが、繊維状炭素材料が三次元網目構造を形成することにより、熱伝導性や耐久性を高めつつ膨張化黒鉛や粒子状炭素材料の脱離を防止しているためであると推察される。
<Fibrous carbon material>
The fibrous carbon material arbitrarily blended in the heat conductive sheet of the present invention is not particularly limited, and examples thereof include carbon nanotubes, vapor-grown carbon fibers, carbon fibers obtained by carbonizing organic fibers, and Those cut pieces can be used. These may be used individually by 1 type and may use 2 or more types together.
And if a fibrous carbon material is contained in a heat conductive sheet, the flame retardance, durability, and heat conductivity of a heat conductive sheet can be juxtaposed at a sufficiently high level. Moreover, while being able to form a heat conductive sheet favorably, powder fall-off of expanded graphite and the particulate carbon material mentioned later can also be prevented. The reason why the heat conductive sheet can be satisfactorily formed by blending the fibrous carbon material and the powdered powder of the expanded graphite and the particulate carbon material can be prevented is not clear, but the fiber This is presumably because the formation of the three-dimensional network structure of the carbonaceous material prevents detachment of the expanded graphite and the particulate carbon material while improving the thermal conductivity and durability.
 ここで、上述した中でも、繊維状炭素材料としては、カーボンナノチューブなどの繊維状の炭素ナノ構造体を用いることが好ましく、カーボンナノチューブを含む繊維状の炭素ナノ構造体を用いることがより好ましい。カーボンナノチューブなどの繊維状の炭素ナノ構造体を使用すれば、熱伝導シートの熱伝導性および耐久性を更に向上させることができるからである。 Here, among the above, as the fibrous carbon material, a fibrous carbon nanostructure such as a carbon nanotube is preferably used, and a fibrous carbon nanostructure including a carbon nanotube is more preferably used. This is because the use of fibrous carbon nanostructures such as carbon nanotubes can further improve the thermal conductivity and durability of the thermal conductive sheet.
[カーボンナノチューブを含む繊維状の炭素ナノ構造体]
 ここで、繊維状炭素材料として好適に使用し得る、カーボンナノチューブを含む繊維状の炭素ナノ構造体は、カーボンナノチューブ(以下、「CNT」と称することがある。)のみからなるものであってもよいし、CNTと、CNT以外の繊維状の炭素ナノ構造体との混合物であってもよい。
 なお、繊維状の炭素ナノ構造体中のCNTとしては、特に限定されることなく、単層カーボンナノチューブおよび/または多層カーボンナノチューブを用いることができるが、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。単層カーボンナノチューブを使用すれば、多層カーボンナノチューブを使用した場合と比較し、熱伝導シートの熱伝導性および耐久性を更に向上させることができるからである。
[Fibrous carbon nanostructures containing carbon nanotubes]
Here, the fibrous carbon nanostructure containing carbon nanotubes that can be suitably used as the fibrous carbon material may be composed only of carbon nanotubes (hereinafter sometimes referred to as “CNT”). Alternatively, a mixture of CNT and a fibrous carbon nanostructure other than CNT may be used.
The CNT in the fibrous carbon nanostructure is not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used. Nanotubes are preferable, and single-walled carbon nanotubes are more preferable. This is because if single-walled carbon nanotubes are used, the thermal conductivity and durability of the thermal conductive sheet can be further improved as compared with the case where multi-walled carbon nanotubes are used.
 また、CNTを含む繊維状の炭素ナノ構造体としては、平均直径(Av)に対する、直径の標準偏差(σ)に3を乗じた値(3σ)の比(3σ/Av)が0.20超0.60未満の炭素ナノ構造体を用いることが好ましく、3σ/Avが0.25超の炭素ナノ構造体を用いることがより好ましく、3σ/Avが0.50超の炭素ナノ構造体を用いることが更に好ましい。3σ/Avが0.20超0.60未満のCNTを含む繊維状の炭素ナノ構造体を使用すれば、炭素ナノ構造体の配合量が少量であっても熱伝導シートの熱伝導性および耐久性を十分に高めることができる。従って、CNTを含む繊維状の炭素ナノ構造体の配合により熱伝導シートの硬度が上昇する(即ち、柔軟性が低下する)のを抑制して、熱伝導性、難燃性、耐久性および柔軟性を十分に高いレベルで並立させた熱伝導シートを得ることができる。
 なお、「繊維状の炭素ナノ構造体の平均直径(Av)」および「繊維状の炭素ナノ構造体の直径の標準偏差(σ:標本標準偏差)」は、それぞれ、透過型電子顕微鏡を用いて無作為に選択した繊維状の炭素ナノ構造体100本の直径(外径)を測定して求めることができる。そして、CNTを含む繊維状の炭素ナノ構造体の平均直径(Av)および標準偏差(σ)は、CNTを含む繊維状の炭素ナノ構造体の製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られたCNTを含む繊維状の炭素ナノ構造体を複数種類組み合わせることにより調整してもよい。
In addition, the fibrous carbon nanostructure containing CNT has a ratio (3σ / Av) of a value (3σ) obtained by multiplying the standard deviation (σ) of the diameter by 3 with respect to the average diameter (Av) is more than 0.20. It is preferable to use a carbon nanostructure of less than 0.60, more preferably a carbon nanostructure with 3σ / Av exceeding 0.25, and a carbon nanostructure with 3σ / Av exceeding 0.50. More preferably. If a fibrous carbon nanostructure containing CNTs with 3σ / Av of more than 0.20 and less than 0.60 is used, the thermal conductivity and durability of the thermal conductive sheet can be achieved even with a small amount of carbon nanostructure. The sex can be enhanced sufficiently. Therefore, the heat conductivity, flame retardancy, durability, and flexibility are suppressed by suppressing the increase in the hardness of the heat conductive sheet (that is, the decrease in flexibility) by blending the fibrous carbon nanostructure containing CNT. It is possible to obtain a heat conductive sheet in which the properties are juxtaposed at a sufficiently high level.
“Average diameter (Av) of fibrous carbon nanostructure” and “standard deviation of diameter of fibrous carbon nanostructure (σ: sample standard deviation)” are measured using a transmission electron microscope, respectively. It can be determined by measuring the diameter (outer diameter) of 100 randomly selected fibrous carbon nanostructures. And the average diameter (Av) and standard deviation (σ) of the fibrous carbon nanostructure containing CNT are adjusted by changing the manufacturing method and manufacturing conditions of the fibrous carbon nanostructure containing CNT. Alternatively, it may be adjusted by combining a plurality of types of fibrous carbon nanostructures containing CNTs obtained by different production methods.
 そして、CNTを含む繊維状の炭素ナノ構造体としては、前述のようにして測定した直径を横軸に、その頻度を縦軸に取ってプロットし、ガウシアンで近似した際に、正規分布を取るものが通常使用される。 And as a fibrous carbon nanostructure containing CNT, the diameter measured as described above is plotted on the horizontal axis, the frequency is plotted on the vertical axis, and a normal distribution is obtained when approximated by Gaussian. Things are usually used.
 更に、CNTを含む繊維状の炭素ナノ構造体は、ラマン分光法を用いて評価した際に、Radial Breathing Mode(RBM)のピークを有することが好ましい。なお、三層以上の多層カーボンナノチューブのみからなる繊維状の炭素ナノ構造体のラマンスペクトルには、RBMが存在しない。 Furthermore, the fibrous carbon nanostructure containing CNTs preferably has a peak of Radial Breathing Mode (RBM) when evaluated using Raman spectroscopy. Note that there is no RBM in the Raman spectrum of a fibrous carbon nanostructure composed of only three or more multi-walled carbon nanotubes.
 また、CNTを含む繊維状の炭素ナノ構造体は、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が1以上20以下であることが好ましい。G/D比が1以上20以下であれば、繊維状の炭素ナノ構造体の配合量が少量であっても熱伝導シートの熱伝導性および耐久性を十分に高めることができる。従って、繊維状の炭素ナノ構造体の配合により熱伝導シートの硬度が上昇する(即ち、柔軟性が低下する)のを抑制して、熱伝導性、難燃性、耐久性および柔軟性を十分に高いレベルで並立させた熱伝導シートを得ることができる。 In addition, the fibrous carbon nanostructure containing CNTs preferably has a G-band peak intensity ratio (G / D ratio) of 1 to 20 in the Raman spectrum. When the G / D ratio is 1 or more and 20 or less, the thermal conductivity and durability of the thermal conductive sheet can be sufficiently enhanced even if the blending amount of the fibrous carbon nanostructure is small. Therefore, the increase in the hardness of the heat conductive sheet (that is, the decrease in flexibility) is suppressed by blending the fibrous carbon nanostructure, and the thermal conductivity, flame retardancy, durability and flexibility are sufficient. It is possible to obtain a heat conductive sheet arranged side by side at a high level.
 更に、CNTを含む繊維状の炭素ナノ構造体の平均直径(Av)は、0.5nm以上であることが好ましく、1nm以上であることが更に好ましく、15nm以下であることが好ましく、10nm以下であることが更に好ましい。繊維状の炭素ナノ構造体の平均直径(Av)が0.5nm以上であれば、繊維状の炭素ナノ構造体の凝集を抑制して炭素ナノ構造体の分散性を高めることができる。また、繊維状の炭素ナノ構造体の平均直径(Av)が15nm以下であれば、熱伝導シートの熱伝導性および耐久性を十分に高めることができる。 Furthermore, the average diameter (Av) of the fibrous carbon nanostructure containing CNTs is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 15 nm or less, and preferably 10 nm or less. More preferably it is. When the average diameter (Av) of the fibrous carbon nanostructure is 0.5 nm or more, aggregation of the fibrous carbon nanostructure can be suppressed and the dispersibility of the carbon nanostructure can be improved. Moreover, if the average diameter (Av) of a fibrous carbon nanostructure is 15 nm or less, the heat conductivity and durability of a heat conductive sheet can fully be improved.
 また、CNTを含む繊維状の炭素ナノ構造体は、合成時における構造体の平均長さが100μm以上5000μm以下であることが好ましい。なお、合成時の構造体の長さが長いほど、分散時にCNTに破断や切断などの損傷が発生し易いので、合成時の構造体の平均長さは5000μm以下であることが好ましい。 Further, the fibrous carbon nanostructure containing CNTs preferably has an average length of the structure at the time of synthesis of 100 μm or more and 5000 μm or less. Note that, as the length of the structure at the time of synthesis increases, damage such as breakage or cutting occurs more easily at the time of dispersion. Therefore, the average length of the structure at the time of synthesis is preferably 5000 μm or less.
 更に、CNTを含む繊維状の炭素ナノ構造体のBET比表面積は、600m2/g以上であることが好ましく、800m2/g以上であることが更に好ましく、2500m2/g以下であることが好ましく、1200m2/g以下であることが更に好ましい。更に、繊維状の炭素ナノ構造体中のCNTが主として開口したものにあっては、BET比表面積が1300m2/g以上であることが好ましい。CNTを含む繊維状の炭素ナノ構造体のBET比表面積が600m2/g以上であれば、熱伝導シートの熱伝導性および耐久性を十分に高めることができる。また、CNTを含む繊維状の炭素ナノ構造体のBET比表面積が2500m2/g以下であれば、繊維状の炭素ナノ構造体の凝集を抑制して熱伝導シート中のCNTの分散性を高めることができる。
 なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
Further, the BET specific surface area of the fibrous carbon nanostructure containing CNTs is preferably 600 m 2 / g or more, more preferably 800 m 2 / g or more, and 2500 m 2 / g or less. Preferably, it is 1200 m 2 / g or less. Furthermore, when the CNT in the fibrous carbon nanostructure is mainly opened, the BET specific surface area is preferably 1300 m 2 / g or more. If the BET specific surface area of the fibrous carbon nanostructure containing CNTs is 600 m 2 / g or more, the thermal conductivity and durability of the thermal conductive sheet can be sufficiently enhanced. Moreover, if the BET specific surface area of the fibrous carbon nanostructure containing CNT is 2500 m 2 / g or less, the aggregation of the fibrous carbon nanostructure is suppressed and the dispersibility of the CNT in the heat conductive sheet is increased. be able to.
In the present invention, the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.
 更に、CNTを含む繊維状の炭素ナノ構造体は、後述のスーパーグロース法によれば、カーボンナノチューブ成長用の触媒層を表面に有する基材上に、基材に略垂直な方向に配向した集合体(配向集合体)として得られるが、当該集合体としての、繊維状の炭素ナノ構造体の質量密度は、0.002g/cm3以上0.2g/cm3以下であることが好ましい。質量密度が0.2g/cm3以下であれば、繊維状の炭素ナノ構造体同士の結びつきが弱くなるので、熱伝導シート中で繊維状の炭素ナノ構造体を均質に分散させることができる。また、質量密度が0.002g/cm3以上であれば、繊維状の炭素ナノ構造体の一体性を向上させ、バラけることを抑制できるため取り扱いが容易になる。 Furthermore, the fibrous carbon nanostructure containing CNTs is an aggregate oriented in a direction substantially perpendicular to the base material on the base material having a catalyst layer for carbon nanotube growth on the surface according to the super growth method described later. Although obtained as a body (aligned aggregate), the mass density of the fibrous carbon nanostructure as the aggregate is preferably 0.002 g / cm 3 or more and 0.2 g / cm 3 or less. If the mass density is 0.2 g / cm 3 or less, since the bonds between the fibrous carbon nanostructures are weakened, the fibrous carbon nanostructures can be uniformly dispersed in the heat conductive sheet. Further, if the mass density is 0.002 g / cm 3 or more, the integrity of the fibrous carbon nanostructure can be improved, and the handling can be facilitated because it can be prevented from being broken.
 そして、上述した性状を有するCNTを含む繊維状の炭素ナノ構造体は、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。
 ここで、スーパーグロース法により製造したCNTを含む繊維状の炭素ナノ構造体は、SGCNTのみから構成されていてもよいし、SGCNTに加え、例えば、非円筒形状の炭素ナノ構造体等の他の炭素ナノ構造体が含まれていてもよい。
The fibrous carbon nanostructure containing CNTs having the above-described properties can be obtained by, for example, supplying a raw material compound and a carrier gas onto a substrate having a catalyst layer for producing carbon nanotubes on the surface, When synthesizing CNTs by the phase growth method (CVD method), a method of dramatically improving the catalytic activity of the catalyst layer by making a small amount of oxidizing agent (catalyst activation material) present in the system (super growth method) According to International Publication No. 2006/011655). Hereinafter, the carbon nanotube obtained by the super growth method may be referred to as “SGCNT”.
Here, the fibrous carbon nanostructure containing CNT produced by the super-growth method may be composed only of SGCNT, and in addition to SGCNT, other carbon nanostructures such as non-cylindrical carbon nanostructures may be used. Carbon nanostructures may be included.
[繊維状炭素材料の性状]
 そして、熱伝導シートに含まれる繊維状炭素材料の平均繊維径は、1nm以上であることが好ましく、3nm以上であることがより好ましく、2μm以下であることが好ましく、1μm以下であることがより好ましい。繊維状炭素材料の平均繊維径が上記範囲内であれば、熱伝導シートの熱伝導性、耐久性および柔軟性を十分に高いレベルで並立させることができるからである。ここで、繊維状炭素材料のアスペクト比は、10を超えることが好ましい。
[Properties of fibrous carbon material]
And the average fiber diameter of the fibrous carbon material contained in a heat conductive sheet is preferably 1 nm or more, more preferably 3 nm or more, preferably 2 μm or less, and more preferably 1 μm or less. preferable. This is because if the average fiber diameter of the fibrous carbon material is within the above range, the thermal conductivity, durability and flexibility of the thermal conductive sheet can be juxtaposed at a sufficiently high level. Here, the aspect ratio of the fibrous carbon material preferably exceeds 10.
 なお、本発明において、「平均繊維径」は、熱伝導シートの厚み方向における断面をSEM(走査型電子顕微鏡)で観察し、任意の50個の繊維状炭素材料について繊維径を測定し、測定した繊維径の個数平均値を算出することにより求めることができる。なお、繊維径が小さい場合は、同様の断面をTEM(透過型電子顕微鏡)にて観察し、同様の方法で平均繊維径を求めることができる。 In the present invention, the “average fiber diameter” is measured by observing a cross section in the thickness direction of the heat conductive sheet with an SEM (scanning electron microscope), measuring the fiber diameter of any 50 fibrous carbon materials. It can obtain | require by calculating the number average value of the made fiber diameter. In addition, when a fiber diameter is small, the same cross section is observed with TEM (transmission electron microscope), and an average fiber diameter can be calculated | required with the same method.
[繊維状炭素材料の含有割合]
 そして、熱伝導シートは、繊維状炭素材料の含有量が、フッ素樹脂100質量部当たり、0.05質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、5.0質量部以下であることが好ましく、3.0質量部以下であることがより好ましい。フッ素樹脂100質量部当たりの繊維状炭素材料の含有量が0.05質量部以上であれば、熱伝導シートの熱伝導性および耐久性を十分に高めることができる。また、熱伝導シートを良好に形成することができると共に、膨張化黒鉛や粒子状炭素材料の粉落ちを防止することができる。また、フッ素樹脂100質量部当たりの繊維状炭素材料の含有量が5.0質量部以下であれば、繊維状炭素材料の配合により熱伝導シートの硬度が上昇する(即ち、柔軟性が低下する)のを抑制して、熱伝導性、難燃性、耐久性および柔軟性を十分に高いレベルで並立させた熱伝導シートを得ることができる。
[Content ratio of fibrous carbon material]
And as for a heat conductive sheet, it is preferable that content of fibrous carbon material is 0.05 mass part or more per 100 mass parts of fluororesins, and it is more preferable that it is 1.0 mass part or more. It is preferably 0 parts by mass or less, and more preferably 3.0 parts by mass or less. If content of the fibrous carbon material per 100 mass parts of fluororesins is 0.05 mass part or more, the heat conductivity and durability of a heat conductive sheet can fully be improved. Moreover, while being able to form a heat conductive sheet favorably, powder fall-off of expanded graphite and a particulate carbon material can be prevented. Further, if the content of the fibrous carbon material per 100 parts by mass of the fluororesin is 5.0 parts by mass or less, the hardness of the heat conductive sheet is increased by blending the fibrous carbon material (that is, the flexibility is decreased). ) Can be suppressed, and a heat conductive sheet in which heat conductivity, flame retardancy, durability and flexibility are juxtaposed at a sufficiently high level can be obtained.
<粒子状炭素材料>
 本発明の熱伝導シートに任意に配合される粒子状炭素材料としては、膨張化黒鉛以外の粒子状の炭素材料であれば特に限定されることなく、例えば、人造黒鉛、鱗片状黒鉛、薄片化黒鉛、天然黒鉛、酸処理黒鉛、膨張性黒鉛などの、膨張化黒鉛以外の黒鉛;カーボンブラック;などを用いることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。また、熱伝導シート中の粒子状炭素材料の含有量は、膨張化黒鉛の含有量に応じて適宜調整することができる。
<Particulate carbon material>
The particulate carbon material arbitrarily blended in the heat conductive sheet of the present invention is not particularly limited as long as it is a particulate carbon material other than expanded graphite. For example, artificial graphite, flake graphite, exfoliated It is possible to use graphite other than expanded graphite, such as graphite, natural graphite, acid-treated graphite, and expandable graphite; carbon black; These may be used individually by 1 type and may use 2 or more types together. Moreover, content of the particulate carbon material in a heat conductive sheet can be suitably adjusted according to content of expanded graphite.
<添加剤>
 熱伝導シートには、必要に応じて、熱伝導シートの形成に使用され得る既知の添加剤を配合することができる。そして、熱伝導シートに配合し得る添加剤としては、特に限定されることなく、例えば、粘着性樹脂;赤りん系難燃剤、リン酸エステル系難燃剤などの難燃剤;可塑剤;酸化カルシウム、酸化マグネシウムなどの吸湿剤;シランカップリング剤、チタンカップリング剤、酸無水物などの接着力向上剤;ノニオン系界面活性剤、フッ素系界面活性剤などの濡れ性向上剤;無機イオン交換体などのイオントラップ剤;等が挙げられる。
<Additives>
If necessary, known additives that can be used for forming the heat conductive sheet can be blended in the heat conductive sheet. Additives that can be blended in the heat conductive sheet are not particularly limited, for example, adhesive resins; flame retardants such as red phosphorus flame retardants and phosphate ester flame retardants; plasticizers; calcium oxide, Hygroscopic agents such as magnesium oxide; Adhesion improvers such as silane coupling agents, titanium coupling agents, and acid anhydrides; Wettability improvers such as nonionic surfactants and fluorosurfactants; Inorganic ion exchangers, etc. Ion trapping agents; and the like.
 上述した中でも、熱伝導シートには、粘着性樹脂および/またはリン酸エステル系難燃剤を配合することが好ましい。熱伝導シートに粘着性樹脂を配合すれば、熱伝導シートを良好に形成することができる。また、熱伝導シートにリン酸エステル系難燃剤を配合すれば、熱伝導シートの難燃性を更に向上させつつ、熱伝導シートを良好に形成することができる。
 なお、粘着性樹脂やリン酸エステル系難燃剤を配合することで熱伝導シートが良好に形成し得るようになる理由は、明らかではないが、粘着性樹脂やリン酸エステル系難燃剤を配合した場合、熱伝導シートの形成に用いられる組成物に粘着性が付与され、当該組成物のシート化が容易になると共に、形成された熱伝導シートからの膨張化黒鉛や粒子状炭素材料の脱離が防止されるためであると推察される。
Among the above-mentioned, it is preferable to mix an adhesive resin and / or a phosphate ester flame retardant into the heat conductive sheet. If an adhesive resin is blended with the heat conductive sheet, the heat conductive sheet can be formed satisfactorily. Moreover, if a phosphate ester flame retardant is blended in the heat conductive sheet, the heat conductive sheet can be favorably formed while further improving the flame retardancy of the heat conductive sheet.
The reason why the heat conductive sheet can be satisfactorily formed by adding an adhesive resin or a phosphate ester flame retardant is not clear, but an adhesive resin or a phosphate ester flame retardant was added. In this case, the composition used for the formation of the heat conductive sheet is imparted with tackiness, facilitating formation of the composition into a sheet, and detachment of expanded graphite and particulate carbon material from the formed heat conductive sheet. It is presumed that this is to prevent this.
[粘着性樹脂]
 ここで、粘着性樹脂としては、上述したフッ素樹脂以外の樹脂を用いることができる。具体的には、粘着性樹脂としては、溶剤を含まない公知のタッキファイヤーを用いることができる。そして、タッキファイヤーとしては、例えば、ロジン系タッキファイヤー、テルペン系タッキファイヤー、石油樹脂系タッキファイヤーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
[Adhesive resin]
Here, as the adhesive resin, a resin other than the above-described fluororesin can be used. Specifically, a known tackifier that does not contain a solvent can be used as the adhesive resin. Examples of tackifiers include rosin tackifiers, terpene tackifiers, and petroleum resin tackifiers. These may be used individually by 1 type and may use 2 or more types together.
 なお、ロジン系タッキファイヤーとしては、例えば、松ヤニや松根油中に含まれているロジン酸(主成分:アビエチン酸)と、グリセリンやペンタエリスリトールとのエステル、および、これらの水添物、不均化物が挙げられる。より具体的には、ロジン系タッキファイヤーとしては、ガムロジン、トール油ロジン、ウッドロジン、水素添加ロジン、不均化ロジン、重合ロジン、変性ロジン、ロジンエステル(ロジンジオール)などが挙げられる。 Examples of rosin tackifiers include esters of rosin acid (main component: abietic acid) contained in pine ani and pine oil, glycerin and pentaerythritol, and their hydrogenated products. An average is mentioned. More specifically, examples of the rosin tackifier include gum rosin, tall oil rosin, wood rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin, modified rosin, and rosin ester (rosin diol).
 また、テルペン系タッキファイヤーとしては、松に含まれるテルペン油やオレンジの皮などに含まれる天然のテルペンを重合したものを挙げられる。より具体的には、テルペン系タッキファイヤーとしては、テルペン樹脂、芳香族変性テルペン樹脂、テルペンフェノール樹脂、水素添加テルペン樹脂などが挙げられる。 Also, examples of terpene tackifiers include those obtained by polymerizing terpene oil contained in pine or natural terpenes contained in orange peel. More specifically, examples of the terpene tackifier include terpene resins, aromatic modified terpene resins, terpene phenol resins, hydrogenated terpene resins, and the like.
 更に、石油樹脂系タッキファイヤーとしては、石油を原料とした脂肪族、脂環族、芳香族系の樹脂が挙げられる。より具体的には、石油樹脂系タッキファイヤーとしては、C5系石油樹脂、C9系石油樹脂、共重合系石油樹脂、脂環族飽和炭化水素樹脂、スチレン系石油樹脂などが挙げられる。 Furthermore, examples of the petroleum resin tackifier include aliphatic, alicyclic and aromatic resins made from petroleum. More specifically, examples of petroleum resin tackifiers include C5 petroleum resins, C9 petroleum resins, copolymer petroleum resins, alicyclic saturated hydrocarbon resins, and styrene petroleum resins.
 上述した中でも、粘着性樹脂としては、ロジン系タッキファイヤーが好ましく、ロジンエステルがより好ましい。 Among the above-mentioned, as the adhesive resin, rosin tackifier is preferable, and rosin ester is more preferable.
 そして、熱伝導シートは、粘着性樹脂の含有量が、フッ素樹脂100質量部当たり、3質量部以上であることが好ましく、5質量部以上であることがより好ましく、15質量部以下であることが好ましく、10質量部以下であることがより好ましい。フッ素樹脂100質量部当たりの粘着性樹脂の含有量が3質量部以上であれば、熱伝導シートの形成に用いられる組成物のシート化が更に容易になり、熱伝導シートを良好に形成することができる。また、フッ素樹脂100質量部当たりの粘着性樹脂の含有量が15質量部以下であれば、熱伝導シートの熱伝導性、難燃性および耐久性を十分に高めることができる。 And as for a heat conductive sheet, it is preferable that content of adhesive resin is 3 mass parts or more per 100 mass parts of fluororesins, More preferably, it is 5 mass parts or more, It is 15 mass parts or less. Is preferable, and it is more preferable that it is 10 mass parts or less. If the content of the adhesive resin per 100 parts by mass of the fluororesin is 3 parts by mass or more, the composition used for the formation of the heat conductive sheet can be further easily formed, and the heat conductive sheet can be satisfactorily formed. Can do. Moreover, if content of the adhesive resin per 100 mass parts of fluororesins is 15 mass parts or less, the heat conductivity of a heat conductive sheet, a flame retardance, and durability can fully be improved.
[リン酸エステル系難燃剤]
 リン酸エステル系難燃剤としては、特に限定されることなく、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート等の脂肪族リン酸エステル;トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、クレジル-2,6-キシレニルホスフェート、トリス(t-ブチル化フェニル)ホスフェート、トリス(イソプロピル化フェニル)ホスフェート、リン酸トリアリールイソプロピル化物等の芳香族リン酸エステル;レゾルシノールビスジフェニルホスフェート、ビスフェノールAビス(ジフェニルホスフェート)、レゾルシノールビスジキシレニルホスフェート等の芳香族縮合リン酸エステル;等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
[Phosphate ester flame retardant]
The phosphate ester flame retardant is not particularly limited, and examples thereof include aliphatic phosphate esters such as trimethyl phosphate, triethyl phosphate, tributyl phosphate; triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, trixylate. Aromatic phosphates such as nyl phosphate, cresyl-2,6-xylenyl phosphate, tris (t-butylated phenyl) phosphate, tris (isopropylated phenyl) phosphate, triaryl isopropylate; resorcinol bisdiphenyl phosphate , Aromatic condensed phosphate esters such as bisphenol A bis (diphenyl phosphate) and resorcinol bis-doxylenyl phosphate; and the like. These may be used individually by 1 type and may use 2 or more types together.
 中でも、リン酸エステル系難燃剤としては、常温常圧で液状のリン酸エステル系難燃剤、具体的には凝固点が15℃以下で沸点が120℃以上のリン酸エステル系難燃剤が好ましい。凝固点が15℃以下で沸点が120℃以上のリン酸エステル系難燃剤を使用すれば、熱伝導シートの形成に用いられる組成物に粘着性が付与され、当該組成物のシート化が容易になる。また、形成された熱伝導シートの柔軟性が向上する。
 なお、凝固点が15℃以下で沸点が120℃以上のリン酸エステル系難燃剤としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-キシレニルホスフェート、レゾルシノールビスジフェニルホスフェート、ビスフェノールAビス(ジフェニルホスフェート)等が挙げられる。
Among them, as the phosphate ester flame retardant, a phosphate ester flame retardant which is liquid at normal temperature and pressure, specifically, a phosphate ester flame retardant having a freezing point of 15 ° C. or lower and a boiling point of 120 ° C. or higher is preferable. If a phosphate ester-based flame retardant having a freezing point of 15 ° C. or lower and a boiling point of 120 ° C. or higher is used, the composition used for forming the heat conductive sheet is imparted with tackiness, and the composition can be easily formed into a sheet. . Moreover, the softness | flexibility of the formed heat conductive sheet improves.
Examples of the phosphate ester flame retardant having a freezing point of 15 ° C. or lower and a boiling point of 120 ° C. or higher include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6- Examples include xylenyl phosphate, resorcinol bisdiphenyl phosphate, and bisphenol A bis (diphenyl phosphate).
 そして、熱伝導シートは、リン酸エステル系難燃剤の含有量が、フッ素樹脂100質量部当たり、3質量部以上であることが好ましく、5質量部以上であることがより好ましく、40質量部以下であることが好ましく、30質量部以下であることがより好ましい。フッ素樹脂100質量部当たりのリン酸エステル系難燃剤の含有量が3質量部以上であれば、熱伝導シートの形成に用いられる組成物のシート化が更に容易になり、熱伝導シートを良好に形成することができる。更に、熱伝導シートの難燃性および柔軟性を十分に高めることができる。また、フッ素樹脂100質量部当たりのリン酸エステル系難燃剤の含有量が40質量部以下であれば、熱伝導シートの熱伝導性および耐久性を十分に高めることができる。更に、熱伝導シートからリン酸エステル系難燃剤がブリーディングするのを抑制することもできる。 And as for a heat conductive sheet, it is preferable that content of a phosphate ester type flame retardant is 3 mass parts or more per 100 mass parts of fluororesins, It is more preferable that it is 5 mass parts or more, 40 mass parts or less It is preferable that it is 30 mass parts or less. If the content of the phosphate ester flame retardant per 100 parts by mass of the fluororesin is 3 parts by mass or more, it becomes easier to form a composition used for forming the heat conductive sheet, and the heat conductive sheet is improved. Can be formed. Furthermore, the flame retardance and flexibility of the heat conductive sheet can be sufficiently enhanced. Moreover, if content of the phosphate ester flame retardant per 100 mass parts of fluororesins is 40 mass parts or less, the heat conductivity and durability of a heat conductive sheet can fully be improved. Furthermore, bleeding of the phosphate ester flame retardant from the heat conductive sheet can also be suppressed.
 なお、本発明の熱伝導シートには、上述した成分以外に、熱伝導シートを製造する際に使用した接着剤や接着層が含まれていてもよい。 In addition to the above-described components, the heat conductive sheet of the present invention may contain an adhesive or an adhesive layer used when manufacturing the heat conductive sheet.
<熱伝導シートの性状>
 そして、本発明の熱伝導シートは、特に限定されることなく、以下の性状を有していることが好ましい。
<Properties of thermal conductive sheet>
And the heat conductive sheet of this invention is not specifically limited, It is preferable to have the following properties.
[熱伝導率]
 熱伝導シートは、厚み方向の熱伝導率が、25℃において、20W/m・K以上であることが必要であり、30W/m・K以上であることが好ましく、40W/m・K以上であることがより好ましく、45W/m・K以上であることが更に好ましく、50W/m・K以上であることが特に好ましい。厚み方向の熱伝導率が20W/m・K以上であれば、例えば発熱体と放熱体との間に挟み込んで使用した場合に、発熱体から放熱体へと熱を効率的に伝えることができる。
[Thermal conductivity]
The thermal conductivity sheet needs to have a thermal conductivity in the thickness direction of 20 W / m · K or higher at 25 ° C., preferably 30 W / m · K or higher, and 40 W / m · K or higher. More preferably, it is more preferably 45 W / m · K or more, and particularly preferably 50 W / m · K or more. If the thermal conductivity in the thickness direction is 20 W / m · K or more, for example, when sandwiched between a heating element and a radiator, heat can be efficiently transferred from the heating element to the radiator. .
[硬度]
 また、熱伝導シートは、アスカーC硬度が、90以下であることが好ましく、88以下であることがより好ましい。アスカーC硬度が90以下であれば、例えば発熱体と放熱体との間に挟み込んで使用した場合に、優れた柔軟性を発揮し、発熱体と放熱体とを良好に密着させることができる。
 なお、本発明において、「アスカーC硬度」は、日本ゴム協会規格(SRIS)のアスカーC法に準拠し、硬度計を用いて温度23℃で測定することができる。
[hardness]
The heat conductive sheet preferably has an Asker C hardness of 90 or less, more preferably 88 or less. If the Asker C hardness is 90 or less, for example, when used by being sandwiched between a heating element and a heat dissipation body, excellent flexibility can be exhibited, and the heating element and the heat dissipation element can be adhered well.
In the present invention, the “Asker C hardness” can be measured at a temperature of 23 ° C. using a hardness meter in accordance with the Asker C method of the Japan Rubber Association Standard (SRIS).
[厚み]
 なお、熱伝導シートの厚みは、好ましくは0.1mm以上10mm以下である。
[Thickness]
In addition, the thickness of a heat conductive sheet becomes like this. Preferably it is 0.1 mm or more and 10 mm or less.
(熱伝導シートの製造方法)
 そして、上述した熱伝導シートは、特に限定されることなく、例えば、フッ素樹脂と、膨張化黒鉛とを含む組成物を用いてプレ熱伝導シートを形成する工程(プレ熱伝導シート成形工程)と、得られたプレ熱伝導シートを用いて積層体を形成する工程(積層体形成工程)と、積層体をスライスする工程(スライス工程)とを経て製造することができる。
 以下、各工程について具体的に説明する。
(Method for producing heat conductive sheet)
And the heat conductive sheet mentioned above is not specifically limited, For example, the process (pre heat conductive sheet shaping | molding process) of forming a pre heat conductive sheet using the composition containing a fluororesin and expanded graphite, And it can manufacture through the process (laminate formation process) which forms a laminated body using the obtained pre heat conductive sheet, and the process (slicing process) which slices a laminated body.
Hereinafter, each step will be specifically described.
<プレ熱伝導シート成形工程>
 プレ熱伝導シート成形工程では、フッ素樹脂と、膨張化黒鉛とを含み、任意に、繊維状炭素材料と、膨張化黒鉛以外の粒子状炭素材料と、粘着性樹脂やリン酸エステル系難燃剤などの添加剤とを更に含有する組成物を加圧してシート状に成形し、プレ熱伝導シートを得る。
<Pre-heat conductive sheet molding process>
In the pre-heat conductive sheet molding step, it contains a fluororesin and expanded graphite, and optionally a fibrous carbon material, a particulate carbon material other than expanded graphite, an adhesive resin, a phosphate ester flame retardant, etc. A composition further containing these additives is pressed into a sheet shape to obtain a pre-heat conductive sheet.
[組成物]
 ここで、組成物は、フッ素樹脂および膨張化黒鉛と、上述した任意成分(繊維状炭素材料、粒子状炭素材料、添加剤)とを混合して調製することができる。そして、フッ素樹脂、膨張化黒鉛、繊維状炭素材料、粒子状炭素材料および添加剤としては、本発明の熱伝導シートに含まれ得るフッ素樹脂、膨張化黒鉛、繊維状炭素材料、粒子状炭素材料および添加剤として上述したものを用いることができる。
[Composition]
Here, the composition can be prepared by mixing the fluororesin and the expanded graphite and the above-described optional components (fibrous carbon material, particulate carbon material, additive). And as fluororesin, expanded graphite, fibrous carbon material, particulate carbon material and additive, fluororesin, expanded graphite, fibrous carbon material, particulate carbon material which can be included in the heat conductive sheet of the present invention And what was mentioned above as an additive can be used.
 また、上述した成分の混合は、特に限定されることなく、ニーダー、ロール、ミキサー等の既知の混合装置を用いて行うことができる。また、混合は、有機溶剤等の溶媒の存在下で行ってもよい。そして、混合時間は、例えば5分以上60分以下とすることができる。また、混合温度は、例えば5℃以上150℃以下とすることができる。 Further, the mixing of the above-described components is not particularly limited, and can be performed using a known mixing apparatus such as a kneader, a roll, or a mixer. Mixing may be performed in the presence of a solvent such as an organic solvent. And mixing time can be made into 5 minutes or more and 60 minutes or less, for example. Also, the mixing temperature can be, for example, 5 ° C. or more and 150 ° C. or less.
 なお、上述した成分のうち、特に繊維状炭素材料は、凝集し易く、分散性が低いため、そのままの状態でフッ素樹脂や膨張化黒鉛などの他の成分と混合すると、組成物中で良好に分散し難い。一方、繊維状炭素材料は、溶媒(分散媒)に分散させた分散液の状態でフッ素樹脂や膨張化黒鉛などの他の成分と混合すれば凝集の発生を抑制することはできるものの、分散液の状態で混合した場合には混合後に固形分を凝固させて組成物を得る際などに多量の溶媒を使用するため、組成物の調製に使用する溶媒の量が多くなる虞が生じる。そのため、プレ熱伝導シートの形成に用いる組成物に繊維状炭素材料を配合する場合には、繊維状炭素材料は、溶媒(分散媒)に繊維状炭素材料を分散させて得た分散液から溶媒を除去して得た繊維状炭素材料の集合体(易分散性集合体)の状態で他の成分と混合することが好ましい。繊維状炭素材料の分散液から溶媒を除去して得た繊維状炭素材料の集合体は、一度溶媒に分散させた繊維状炭素材料で構成されており、溶媒に分散させる前の繊維状炭素材料の集合体よりも分散性に優れているので、分散性の高い易分散性集合体となる。従って、易分散性集合体と、フッ素樹脂や膨張化黒鉛などの他の成分とを混合すれば、多量の溶媒を使用することなく効率的に、組成物中で繊維状炭素材料を良好に分散させることができる。 Of the components described above, the fibrous carbon material is particularly prone to agglomerate and has low dispersibility. Therefore, when mixed with other components such as fluororesin and expanded graphite as they are, it is excellent in the composition. Difficult to disperse. On the other hand, when the fibrous carbon material is mixed with other components such as fluororesin and expanded graphite in the state of dispersion dispersed in a solvent (dispersion medium), the occurrence of aggregation can be suppressed. In the case of mixing in this state, a large amount of solvent is used when the solid content is solidified after mixing to obtain a composition, and therefore the amount of the solvent used for preparing the composition may increase. Therefore, when a fibrous carbon material is blended in the composition used to form the pre-heat conductive sheet, the fibrous carbon material is a solvent from a dispersion obtained by dispersing the fibrous carbon material in a solvent (dispersion medium). It is preferable to mix with other components in the state of an aggregate (easily dispersible aggregate) of fibrous carbon materials obtained by removing. The aggregate of the fibrous carbon material obtained by removing the solvent from the dispersion of the fibrous carbon material is composed of the fibrous carbon material once dispersed in the solvent, and the fibrous carbon material before being dispersed in the solvent. Since the dispersibility is superior to that of the above-mentioned aggregate, it becomes an easily dispersible aggregate with high dispersibility. Therefore, mixing easily dispersible aggregates with other components such as fluororesin and expanded graphite effectively disperses the fibrous carbon material in the composition efficiently without using a large amount of solvent. Can be made.
 ここで、繊維状炭素材料の分散液は、例えば、溶媒に対して繊維状炭素材料を添加してなる粗分散液を、キャビテーション効果が得られる分散処理または解砕効果が得られる分散処理に供して得ることができる。なお、キャビテーション効果が得られる分散処理は、液体に高エネルギーを付与した際、水に生じた真空の気泡が破裂することにより生じる衝撃波を利用した分散方法である。そして、キャビテーション効果が得られる分散処理の具体例としては、超音波ホモジナイザーによる分散処理、ジェットミルによる分散処理および高剪断撹拌装置による分散処理が挙げられる。また、解砕効果が得られる分散処理は、粗分散液にせん断力を与えて繊維状炭素材料の凝集体を解砕・分散させ、さらに粗分散液に背圧を負荷することで、気泡の発生を抑制しつつ、繊維状炭素材料を溶媒中に均一に分散させる分散方法である。そして、解砕効果が得られる分散処理は、市販の分散システム(例えば、製品名「BERYU SYSTEM PRO」(株式会社美粒製)など)を用いて行うことができる。 Here, as the dispersion of the fibrous carbon material, for example, a coarse dispersion obtained by adding the fibrous carbon material to the solvent is subjected to a dispersion treatment that provides a cavitation effect or a dispersion treatment that obtains a crushing effect. Can be obtained. In addition, the dispersion process which can obtain a cavitation effect is a dispersion method using a shock wave generated when a vacuum bubble generated in water bursts when high energy is applied to a liquid. Specific examples of the dispersion treatment that can provide a cavitation effect include dispersion treatment using an ultrasonic homogenizer, dispersion treatment using a jet mill, and dispersion treatment using a high shear stirrer. In addition, the dispersion treatment that provides the crushing effect is to apply shear force to the coarse dispersion liquid to crush and disperse the aggregates of the fibrous carbon material, and further to apply a back pressure to the coarse dispersion liquid. This is a dispersion method in which the fibrous carbon material is uniformly dispersed in a solvent while suppressing generation. And the dispersion | distribution process from which a crushing effect is acquired can be performed using a commercially available dispersion | distribution system (For example, product name "BERYU SYSTEM PRO" (product made from a beautiful grain) etc.).
 また、分散液からの溶媒の除去は、乾燥やろ過などの既知の溶媒除去方法を用いて行うことができるが、迅速かつ効率的に溶媒を除去する観点からは、減圧ろ過などのろ過を用いて行うことが好ましい。 The solvent can be removed from the dispersion using a known solvent removal method such as drying or filtration. From the viewpoint of removing the solvent quickly and efficiently, filtration such as vacuum filtration is used. It is preferable to carry out.
[組成物の成形]
 そして、上述のようにして調製した組成物は、任意に脱泡および解砕した後に、加圧してシート状に成形することができる。なお、混合時に溶媒を用いている場合には、溶媒を除去してからシート状に成形することが好ましく、例えば真空脱泡を用いて脱泡を行えば、脱泡時に溶媒の除去も同時に行うことができる。
[Molding of composition]
The composition prepared as described above can be defoamed and crushed arbitrarily, and then pressed to form a sheet. In addition, when a solvent is used at the time of mixing, it is preferable to form the sheet after removing the solvent. For example, if defoaming is performed using vacuum defoaming, the solvent is simultaneously removed at the time of defoaming. be able to.
 ここで、組成物は、圧力が負荷される成形方法であれば特に限定されることなく、プレス成形、圧延成形または押し出し成形などの既知の成形方法を用いてシート状に成形することができる。中でも、組成物は、圧延成形によりシート状に形成することが好ましく、保護フィルムに挟んだ状態でロール間を通過させてシート状に成形することがより好ましい。なお、保護フィルムとしては、特に限定されることなく、サンドブラスト処理を施したポリエチレンテレフタレートフィルム等を用いることができる。また、ロール温度は5℃以上150℃とすることができる。 Here, the composition can be formed into a sheet using a known forming method such as press forming, rolling forming, or extrusion forming without particular limitation as long as it is a forming method in which pressure is applied. Among these, the composition is preferably formed into a sheet by rolling, and more preferably formed into a sheet by passing between rolls in a state of being sandwiched between protective films. In addition, as a protective film, the polyethylene terephthalate film etc. which performed the sandblast process etc. can be used, without being specifically limited. The roll temperature can be 5 ° C. or more and 150 ° C.
[プレ熱伝導シート]
 そして、組成物を加圧してシート状に成形してなるプレ熱伝導シートでは、膨張化黒鉛や、任意に配合される粒子状炭素材料および繊維状炭素材料が主として面内方向に配列し、特に面内方向の熱伝導性が向上すると推察される。
 なお、プレ熱伝導シートの厚みは、特に限定されることなく、例えば0.05mm以上2mm以下とすることができる。また、熱伝導シートの熱伝導性を更に向上させる観点からは、プレ熱伝導シートの厚みは、膨張化黒鉛の平均粒子径の20倍超5000倍以下であることが好ましい。
[Pre-heat conductive sheet]
And in the pre-heat conductive sheet formed by pressurizing the composition into a sheet shape, the expanded graphite, the particulate carbon material and the fibrous carbon material to be blended arbitrarily are arranged mainly in the in-plane direction, It is presumed that the thermal conductivity in the in-plane direction is improved.
In addition, the thickness of a pre heat conductive sheet is not specifically limited, For example, it can be 0.05 mm or more and 2 mm or less. From the viewpoint of further improving the thermal conductivity of the heat conductive sheet, the thickness of the pre-heat conductive sheet is preferably more than 20 times and not more than 5000 times the average particle diameter of the expanded graphite.
<積層体形成工程>
 積層体形成工程では、プレ熱伝導シート成形工程で得られたプレ熱伝導シートを厚み方向に複数枚積層して、或いは、プレ熱伝導シートを折畳または捲回して、積層体を得る。ここで、プレ熱伝導シートの折畳による積層体の形成は、特に限定されることなく、折畳機を用いてプレ熱伝導シートを一定幅で折り畳むことにより行うことができる。また、プレ熱伝導シートの捲回による積層体の形成は、特に限定されることなく、プレ熱伝導シートの短手方向または長手方向に平行な軸の回りにプレ熱伝導シートを捲き回すことにより行うことができる。
<Laminated body formation process>
In the laminated body forming step, a plurality of pre heat conductive sheets obtained in the pre heat conductive sheet forming step are laminated in the thickness direction, or the pre heat conductive sheets are folded or wound to obtain a laminate. Here, formation of the laminated body by folding of a pre heat conductive sheet is not specifically limited, It can carry out by folding a pre heat conductive sheet by fixed width using a folding machine. Further, the formation of the laminate by winding the pre-heat conductive sheet is not particularly limited, and by rolling the pre-heat conductive sheet around an axis parallel to the short direction or the long direction of the pre-heat conductive sheet It can be carried out.
 ここで、通常、積層体形成工程で得られる積層体において、プレ熱伝導シートの表面同士の接着力は、プレ熱伝導シートを積層する際の圧力や折畳または捲回する際の引っ張り力により充分に得られる。しかし、接着力が不足する場合や、積層体の層間剥離を十分に抑制する必要がある場合には、プレ熱伝導シートの表面を溶剤で若干溶解させた状態で積層体形成工程を行ってもよいし、プレ熱伝導シートの表面に接着剤を塗布した状態またはプレ熱伝導シートの表面に接着層を設けた状態で積層体形成工程を行ってもよい。 Here, usually, in the laminate obtained in the laminate formation step, the adhesive force between the surfaces of the pre-heat conductive sheets depends on the pressure when laminating the pre-heat conductive sheets and the tensile force when folding or winding. Fully obtained. However, when the adhesive force is insufficient or when it is necessary to sufficiently suppress delamination of the laminate, the laminate forming step may be performed with the surface of the pre-heat conductive sheet slightly dissolved with a solvent. Alternatively, the laminated body forming step may be performed in a state where an adhesive is applied to the surface of the pre-heat conductive sheet or a state where an adhesive layer is provided on the surface of the pre-heat conductive sheet.
 なお、プレ熱伝導シートの表面を溶解させる際に用いる溶剤としては、特に限定されることなく、プレ熱伝導シート中に含まれているフッ素樹脂などの樹脂成分を溶解可能な既知の溶剤を用いることができる。中でも、溶解性と揮発性の観点からはアセトンを用いることが好ましい。 In addition, as a solvent used when melt | dissolving the surface of a pre heat conductive sheet, it does not specifically limit, The known solvent which can melt | dissolve resin components, such as a fluororesin contained in the pre heat conductive sheet, is used. be able to. Among these, acetone is preferably used from the viewpoints of solubility and volatility.
 また、プレ熱伝導シートの表面に塗布する接着剤としては、特に限定されることなく、市販の接着剤や粘着性の樹脂を用いることができる。中でも、接着剤としては、プレ熱伝導シート中に含まれているフッ素樹脂などの樹脂成分と同じ組成の樹脂を用いることが好ましい。そして、プレ熱伝導シートの表面に塗布する接着剤の厚さは、例えば、10μm以上1000μm以下とすることができる。
 更に、プレ熱伝導シートの表面に設ける接着層としては、特に限定されることなく、両面テープなどを用いることができる。
 ここで、接着剤や接着層には、得られる熱伝導シートが硬くなりすぎない範囲で熱伝導性フィラーが配合されていてもよい。
Moreover, it does not specifically limit as an adhesive agent apply | coated to the surface of a pre heat conductive sheet, A commercially available adhesive agent and adhesive resin can be used. Among these, as the adhesive, it is preferable to use a resin having the same composition as the resin component such as a fluororesin contained in the pre-heat conductive sheet. And the thickness of the adhesive agent apply | coated to the surface of a pre heat conductive sheet can be 10 micrometers or more and 1000 micrometers or less, for example.
Furthermore, the adhesive layer provided on the surface of the pre-heat conductive sheet is not particularly limited, and a double-sided tape or the like can be used.
Here, the heat conductive filler may be mix | blended with the adhesive agent or the contact bonding layer in the range by which the heat conductive sheet obtained does not become hard too much.
 なお、層間剥離を抑制する観点からは、得られた積層体は、積層方向に0.1MPa以上0.5MPa以下の圧力で押し付けながら、120℃以上170℃以下で2~8時間加熱してもよい。 From the viewpoint of suppressing delamination, the obtained laminate may be heated at 120 ° C. or more and 170 ° C. or less for 2 to 8 hours while being pressed at a pressure of 0.1 MPa or more and 0.5 MPa or less in the lamination direction. Good.
 そして、プレ熱伝導シートを積層、折畳または捲回して得られる積層体では、膨張化黒鉛や、任意に配合される粒子状炭素材料および繊維状炭素材料が積層方向に略直交する方向に配列していると推察される。 And in the laminate obtained by laminating, folding or winding the pre-heat conductive sheet, the expanded graphite and the arbitrarily mixed particulate carbon material and fibrous carbon material are arranged in a direction substantially perpendicular to the laminating direction. It is inferred that
<スライス工程>
 スライス工程では、積層体形成工程で得られた積層体を、積層方向に対して45°以下の角度でスライスし、積層体のスライス片よりなる熱伝導シートを得る。ここで、積層体をスライスする方法としては、特に限定されることなく、例えば、マルチブレード法、レーザー加工法、ウォータージェット法、ナイフ加工法等が挙げられる。中でも、熱伝導シートの厚みを均一にし易い点で、ナイフ加工法が好ましい。また、積層体をスライスする際の切断具としては、特に限定されることなく、スリットを有する平滑な盤面と、このスリット部より突出した刃部とを有するスライス部材(例えば、鋭利な刃を備えたカンナやスライサー)を用いることができる。
 そして、スライス工程を経て得られた熱伝導シートは、通常、フッ素樹脂および膨張化黒鉛と、上述した任意成分(繊維状炭素材料、粒子状炭素材料、添加剤)とを含む条片(積層体を構成していたプレ熱伝導シートのスライス片)が並列接合されてなる構成を有する。
<Slicing process>
In the slicing step, the laminated body obtained in the laminated body forming step is sliced at an angle of 45 ° or less with respect to the laminating direction to obtain a heat conductive sheet composed of sliced pieces of the laminated body. Here, the method for slicing the laminate is not particularly limited, and examples thereof include a multi-blade method, a laser processing method, a water jet method, and a knife processing method. Especially, the knife processing method is preferable at the point which makes the thickness of a heat conductive sheet uniform. The cutting tool for slicing the laminate is not particularly limited, and includes a slice member (for example, a sharp blade) having a smooth board surface having a slit and a blade portion protruding from the slit portion. Canna and slicer) can be used.
And the heat conductive sheet obtained through the slicing step is usually a strip (laminated body) containing a fluororesin and expanded graphite and the above-mentioned optional components (fibrous carbon material, particulate carbon material, additive). The slice piece of the pre-heat-conductive sheet which has comprised was connected in parallel.
 なお、熱伝導シートの熱伝導性を高める観点からは、積層体をスライスする角度は、積層方向に対して30°以下であることが好ましく、積層方向に対して15°以下であることがより好ましく、積層方向に対して略0°である(即ち、積層方向に沿う方向である)ことが好ましい。 In addition, from the viewpoint of increasing the thermal conductivity of the heat conductive sheet, the angle at which the laminate is sliced is preferably 30 ° or less with respect to the stacking direction, and more preferably 15 ° or less with respect to the stacking direction. Preferably, it is approximately 0 ° with respect to the stacking direction (that is, the direction along the stacking direction).
 また、積層体を容易にスライスする観点からは、スライスする際の積層体の温度は-20℃以上20℃以下とすることが好ましく、-10℃以上0℃以下とすることがより好ましい。更に、同様の理由により、スライスする積層体は、積層方向とは垂直な方向に圧力を負荷しながらスライスすることが好ましく、積層方向とは垂直な方向に0.1MPa以上0.5MPa以下の圧力を負荷しながらスライスすることがより好ましい。 Further, from the viewpoint of easily slicing the laminate, the temperature of the laminate when slicing is preferably −20 ° C. or more and 20 ° C. or less, and more preferably −10 ° C. or more and 0 ° C. or less. Furthermore, for the same reason, the laminated body to be sliced is preferably sliced while applying a pressure in a direction perpendicular to the lamination direction, and a pressure of 0.1 MPa to 0.5 MPa in the direction perpendicular to the lamination direction. It is more preferable to slice while loading.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、熱伝導シートの熱伝導率、アスカーC硬度、シート成形性、難燃性および耐久性は、それぞれ以下の方法を使用して測定または評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In Examples and Comparative Examples, the thermal conductivity, Asker C hardness, sheet formability, flame retardancy, and durability of the thermal conductive sheet were measured or evaluated using the following methods, respectively.
<熱伝導率>
 熱伝導シートについて、厚み方向の熱拡散率α(m2/s)、定圧比熱Cp(J/g・K)および比重ρ(g/m3)を以下の方法で測定した。
[熱拡散率]
 熱物性測定装置(株式会社ベテル製、製品名「サーモウェーブアナライザTA35」)を使用して温度25℃における熱拡散率を測定した。
[定圧比熱]
 示差走査熱量計(Rigaku製、製品名「DSC8230」)を使用し、10℃/分の昇温条件下、温度25℃における比熱を測定した。
[比重]
 自動比重計(東洋精機社製、商品名「DENSIMETER-H」)を用いて測定した。
 そして、得られた測定値を用いて下記式(I):
  λ=α×Cp×ρ ・・・(I)
より温度25℃における熱伝導シートの厚み方向の熱伝導率λ(W/m・K)を求めた。
<アスカーC硬度>
 日本ゴム協会規格(SRIS)のアスカーC法に準拠し、硬度計(高分子計器社製、商品名「ASKER CL-150LJ」を使用して温度23℃で測定した。
 具体的には、幅30mm×長さ60mm×厚さ1.0mmの大きさに調製した熱伝導シートの試験片を6枚重ね合わせ、23℃で保たれた恒温室に48時間以上静置したものを試料としてアスカーC硬度を測定した。そして、指針が95~98となるようにダンパー高さを調整し、試料とダンパーとが衝突してから20秒後の硬度を5回測定して、その平均値を試料のアスカーC硬度とした。
<シート成形性>
 プレ熱伝導シートの状態を目視で確認し、以下の基準に従ってシート成形性を評価した。プレ熱伝導シート中の穴や破断部位が小さく且つ少ないほど、組成物のシート化が容易であり、プレ熱伝導シートを用いて熱伝導シートを良好に形成し得ることを示す。
 ○:プレ熱伝導シートに1mm以上の穴や1mm以上の破断部位がない
 ×:プレ熱伝導シートに1mm以上の穴や1mm以上の破断部位がある
<難燃性>
 熱伝導シートを幅10mm×長さ150mmの大きさに裁断した試験片を5枚用意した。ブンゼンバーナーの空気およびガスの流量を調整して高さ20mm程度の青色炎をつくり、垂直に支持した試験片の下端にブンゼンバーナーの炎をあてて(炎と試験片とが約10mm交わるように)10秒間保った後、試験片とブンゼンバーナーの炎とを離した。その後、試験片の炎が消えれば直ちにブンゼンバーナーの炎を試験片に再びあて、更に10秒間保持した後、試験片とブンゼンバーナーの炎とを離した。1回目と2回目の接炎終了後の有炎および無炎燃焼持続時間や燃焼滴下物(ドリップ)の有無を評価し、UL-94(難燃性規格)に従って難燃性を評価した。
 即ち、1回目と2回目の接炎終了後の有炎燃焼持続時間、2回目の接炎終了後の有炎燃焼持続時間および無炎燃焼持続時間の合計、5枚の試験片の有炎および無炎燃焼持続時間の合計、並びに、燃焼滴下物(ドリップ)の有無で、UL-94(難燃性規格)のV-0およびV-2のどちらに相当するのかを判定した。1回目、2回目ともに接炎終了後10秒以内に有炎燃焼を終え、2回目の有炎燃焼持続時間と無炎燃焼持続時間との合計が30秒以内であって、更に5枚の試験片の有炎および無炎燃焼持続時間の合計が50秒以内であり、燃焼滴下物がないものをV-0とした。また、1回目、2回目ともに接炎終了後30秒以内に有炎燃焼を終え、2回目の有炎燃焼持続時間と無炎燃焼持続時間との合計が60秒以内であって、更に5枚の試験片の有炎および無炎燃焼持続時間の合計が250秒以内であり、燃焼滴下物があったものをV-2とした。さらに、すべて燃えたものは、規格外とした。この評価によってV-0の条件を満たしていれば、難燃性に優れていると言える。
<耐久性>
 熱伝導シートを100mm×20mm×0.5mmの短冊状に成形したものを試験体Aとした。そして、試験体Aを恒温槽にて200℃で3時間加熱した。恒温槽から取り出した試験体Aを25℃雰囲気下で常温になるまで冷却したものを試験体Bとした。
 そして、試験体Aと試験体Bについて、引張試験機(日本電産シンポ製、小型卓上試験機:FGS-TV)を用い、試験体の両末端から0.5cmの箇所をつまみ、温度25℃において30mm/分の引張速度で試験体を引っ張り、最も荷重がかかった時の値を破断強度(引張強度)として測定した。そして、試験体Bの破断強度を試験体Aの破断強度で除したものを変化率(=試験体Bの破断強度/試験体Aの破断強度)とし、以下の基準で評価した。なお、変化率が1.0に近いほど、加熱の前後で破断強度の変化が小さく、耐久性に優れていることを示す。
 ○:変化率が0.5以上2.0以下
 ×:変化率が0.5未満または2.0超
<Thermal conductivity>
About the heat conductive sheet, the thermal diffusivity α (m 2 / s) in the thickness direction, the constant pressure specific heat Cp (J / g · K), and the specific gravity ρ (g / m 3 ) were measured by the following methods.
[Thermal diffusivity]
The thermal diffusivity at a temperature of 25 ° C. was measured using a thermophysical property measuring apparatus (product name “Thermo Wave Analyzer TA35” manufactured by Bethel Co., Ltd.).
[Specific pressure specific heat]
Using a differential scanning calorimeter (manufactured by Rigaku, product name “DSC8230”), the specific heat at a temperature of 25 ° C. was measured under a temperature rising condition of 10 ° C./min.
[specific gravity]
The measurement was performed using an automatic hydrometer (trade name “DENSIMTER-H” manufactured by Toyo Seiki Co., Ltd.).
And the following formula (I):
λ = α × Cp × ρ (I)
Further, the thermal conductivity λ (W / m · K) in the thickness direction of the thermal conductive sheet at a temperature of 25 ° C. was determined.
<Asker C hardness>
In accordance with the Asker C method of the Japan Rubber Association Standard (SRIS), the hardness was measured at a temperature of 23 ° C. using a hardness meter (trade name “ASKER CL-150LJ” manufactured by Kobunshi Keiki Co., Ltd.).
Specifically, six heat conductive sheet test pieces prepared to have a size of width 30 mm × length 60 mm × thickness 1.0 mm were stacked and left in a temperature-controlled room maintained at 23 ° C. for 48 hours or more. Asker C hardness was measured using a sample. Then, the height of the damper was adjusted so that the pointer was 95 to 98, and the hardness 20 seconds after the sample and the damper collided was measured five times, and the average value was taken as the Asker C hardness of the sample. .
<Sheet formability>
The state of the pre-heat conductive sheet was visually confirmed, and sheet formability was evaluated according to the following criteria. It shows that the smaller the number of holes and breakage sites in the pre-heat conductive sheet, the easier the composition is made into a sheet, and the heat-conductive sheet can be favorably formed using the pre-heat conductive sheet.
○: Pre-heat conductive sheet has no holes of 1 mm or more and 1 mm or more breakage points ×: Pre-heat conduction sheet has 1 mm or more holes or 1 mm or more breakage sites <Flame Retardancy>
Five test pieces were prepared by cutting the heat conductive sheet into a size of width 10 mm × length 150 mm. Adjust the air and gas flow rate of the Bunsen burner to create a blue flame with a height of about 20 mm, and apply the Bunsen burner flame to the lower end of the vertically supported test piece (so that the flame and the test piece intersect about 10 mm). ) After holding for 10 seconds, the specimen and the Bunsen burner flame were released. After that, as soon as the flame of the test piece disappeared, the flame of the Bunsen burner was again applied to the test piece and held for another 10 seconds, and then the test piece and the flame of the Bunsen burner were separated. After completion of the first and second flame contact, the flaming and non-flaming combustion durations and the presence or absence of combustion drops (drip) were evaluated, and the flame retardancy was evaluated according to UL-94 (flame retardant standard).
That is, the flaming combustion duration after the end of the first and second flame contact, the total of the flammable combustion duration and the flameless combustion duration after the end of the second flame contact, Whether the flameless combustion duration corresponds to V-0 or V-2 of UL-94 (flame retardant standard) was determined based on the total duration of flameless combustion and the presence or absence of combustion drops (drip). Flame test was completed within 10 seconds after the first and second flame contact, and the total of the second and last flame-free combustion duration was within 30 seconds. The sum of the flaming and flameless burning durations of the pieces was within 50 seconds and there was no burning dripping was designated as V-0. In addition, the first and second flames were burned within 30 seconds after the end of the flame contact, and the total of the second flamed combustion duration and the flameless combustion duration was within 60 seconds, and 5 more The total of the flammable and non-flammable combustion durations of the test pieces was 250 seconds or less, and V-2 was the one where there was combustion dripping. Furthermore, all burned items were out of specification. If this evaluation satisfies the V-0 condition, it can be said that the flame retardancy is excellent.
<Durability>
A sample A was formed by forming a heat conductive sheet into a strip shape of 100 mm × 20 mm × 0.5 mm. And the test body A was heated at 200 degreeC in the thermostat for 3 hours. Specimen B was obtained by cooling specimen A taken out of the thermostat to room temperature in a 25 ° C. atmosphere.
And about the test body A and the test body B, the place of 0.5 cm from both ends of the test body is pinched using a tensile tester (manufactured by Nidec Sympo, small desk tester: FGS-TV), and the temperature is 25 ° C. The sample was pulled at a tensile speed of 30 mm / min, and the value when the most load was applied was measured as the breaking strength (tensile strength). And the thing which remove | divided the breaking strength of the test body B by the breaking strength of the test body A was made into the change rate (= breaking strength of the test body B / breaking strength of the test body A), and the following references | standards evaluated. Note that the closer the change rate is to 1.0, the smaller the change in breaking strength before and after heating, and the better the durability.
○: Change rate is 0.5 or more and 2.0 or less ×: Change rate is less than 0.5 or more than 2.0
(フッ素樹脂溶液の調製)
 フッ素樹脂としてのフッ素ゴム(ダイキン工業社製、Daiel-G912、ビニリデンフルオライド-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体からなる三元系フッ素ゴム)60gをハサミで米粒サイズに切り刻み、60gのメチルエチルケトン(和光純薬製)に投入し、3時間撹拌して目視でゴム片が見えなくなったものをフッ素樹脂溶液とした。
(Preparation of fluororesin solution)
Fluorine rubber as a fluororesin (Daikin Kogyo Co., Ltd., Daiel-G912, ternary fluororubber made of vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer) is cut into rice grains with scissors and 60 g of methyl ethyl ketone The product was put into (made by Wako Pure Chemical Industries, Ltd.), stirred for 3 hours, and the piece of rubber that was visually invisible was used as a fluororesin solution.
(CNTを含む繊維状の炭素ナノ構造体Aの調製)
 国際公開第2006/011655号の記載に従って、スーパーグロース法によってSGCNTを含む繊維状の炭素ナノ構造体Aを得た。
 得られた繊維状の炭素ナノ構造体Aは、G/D比が3.0、BET比表面積が800m2/g、質量密度が0.03g/cm3であった。また、透過型電子顕微鏡を用い、無作為に選択した100本の繊維状の炭素ナノ構造体Aの直径を測定した結果、平均直径(Av)が3.3nm、直径の標本標準偏差(σ)に3を乗じた値(3σ)が1.9nm、それらの比(3σ/Av)が0.58、平均長さが100μmであった。また、得られた繊維状の炭素ナノ構造体Aは、主に単層CNTにより構成されていた。
(Preparation of fibrous carbon nanostructure A containing CNT)
A fibrous carbon nanostructure A containing SGCNT was obtained by the super-growth method according to the description in WO2006 / 011655.
The obtained fibrous carbon nanostructure A had a G / D ratio of 3.0, a BET specific surface area of 800 m 2 / g, and a mass density of 0.03 g / cm 3 . Moreover, as a result of measuring the diameter of 100 randomly selected fibrous carbon nanostructures A using a transmission electron microscope, the average diameter (Av) was 3.3 nm, and the sample standard deviation (σ) of the diameter (3σ) multiplied by 3 was 1.9 nm, the ratio (3σ / Av) was 0.58, and the average length was 100 μm. Moreover, the obtained fibrous carbon nanostructure A was mainly composed of single-walled CNTs.
(易分散性集合体の調製)
<分散液の調製>
 繊維状炭素材料としての繊維状の炭素ナノ構造体Aを400mg量り取り、溶媒としてのメチルエチルケトン2L中に混ぜ、ホモジナイザーにより2分間撹拌し、粗分散液を得た。湿式ジェットミル(株式会社常光製、JN-20)を使用し、得られた粗分散液を湿式ジェットミルの0.5mmの流路に100MPaの圧力で2サイクル通過させて、繊維状炭素ナノ構造体Aをメチルエチルケトンに分散させた。そして、固形分濃度0.20質量%の分散液Aを得た。
<溶媒の除去>
 その後、得られた分散液Aをキリヤマろ紙(No.5A)を用いて減圧ろ過し、シート状の易分散性集合体を得た。
(Preparation of easily dispersible aggregates)
<Preparation of dispersion>
400 mg of fibrous carbon nanostructure A as a fibrous carbon material was weighed, mixed in 2 L of methyl ethyl ketone as a solvent, and stirred for 2 minutes with a homogenizer to obtain a crude dispersion. Using a wet jet mill (manufactured by Joko Co., Ltd., JN-20), the obtained coarse dispersion was passed through a 0.5 mm flow path of the wet jet mill for two cycles at a pressure of 100 MPa to obtain a fibrous carbon nanostructure. Form A was dispersed in methyl ethyl ketone. Then, a dispersion A having a solid content concentration of 0.20% by mass was obtained.
<Removal of solvent>
Thereafter, the obtained dispersion A was filtered under reduced pressure using Kiriyama filter paper (No. 5A) to obtain a sheet-like easily dispersible aggregate.
(アクリル樹脂溶液の調整)
 反応器に、アクリル酸2-エチルヘキシル94部とアクリル酸6部とからなる単量体混合物100部、2,2’-アゾビスイソブチロニトリル0.03部および酢酸エチル700部を入れて均一に溶解し、窒素置換した後、80℃で6時間重合反応を行った。なお、重合転化率は97%であった。そして、得られた重合体を減圧乾燥して酢酸エチルを蒸発させ、粘性のある固体状のアクリル樹脂を得た。アクリル樹脂の重量平均分子量(Mw)は270000であり、分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は3.1であった。なお、重量平均分子量(Mw)および数平均分子量(Mn)は、テトラヒドロフランを溶離液とするゲルパーミエーションクロマトグラフィーにより、標準ポリスチレン換算で求めた。
 得られたアクリル樹脂100部に対してメチルエチルケトンを100部加え、均一になるまで撹拌したものをアクリル樹脂溶液とした。
(Adjustment of acrylic resin solution)
A reactor was charged with 100 parts of a monomer mixture composed of 94 parts of 2-ethylhexyl acrylate and 6 parts of acrylic acid, 0.03 part of 2,2′-azobisisobutyronitrile and 700 parts of ethyl acetate. After dissolving in nitrogen and purging with nitrogen, a polymerization reaction was carried out at 80 ° C. for 6 hours. The polymerization conversion rate was 97%. And the obtained polymer was dried under reduced pressure and ethyl acetate was evaporated, and the viscous solid acrylic resin was obtained. The weight average molecular weight (Mw) of the acrylic resin was 270000, and the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) was 3.1. The weight average molecular weight (Mw) and the number average molecular weight (Mn) were determined in terms of standard polystyrene by gel permeation chromatography using tetrahydrofuran as an eluent.
100 parts of methyl ethyl ketone was added to 100 parts of the obtained acrylic resin, and the mixture was stirred until it became uniform to obtain an acrylic resin solution.
(実施例1)
<組成物の調製>
 繊維状炭素材料としての繊維状の炭素ナノ構造体Aの易分散性集合体を1部と、膨張化黒鉛(伊藤黒鉛工業株式会社製、商品名「EC-50」、平均粒子径:250μm)を130部と、フッ素樹脂溶液を190部(固形分(フッ素樹脂)は95部)と、粘着性樹脂としてのタッキファイヤー(荒川化学工業株式会社製、商品名「KE-359」、超淡色ロジンエステル)を5部とをホバートミキサー(株式会社小平製作所製、商品名「ACM-5LVT型」)を用いて1時間攪拌混合した。そして、得られた混合物を1時間真空脱泡し、脱泡と同時にメチルエチルケトンの除去を行って、繊維状の炭素ナノ構造体Aと、膨張化黒鉛と、フッ素樹脂と、粘着性樹脂とを含有する組成物を得た。そして、得られた組成物を解砕機に投入し、10秒間解砕した。
<プレ熱伝導シートの作製>
 次いで、解砕した組成物5gを、サンドブラスト処理を施した厚さ50μmのPETフィルム(保護フィルム)で挟み、ロール間隙330μm、ロール温度50℃、ロール線圧50kg/cm、ロール速度1m/分の条件にて圧延成形し、厚さ0.3mmのプレ熱伝導シートを得た。
 そして、得られたプレ熱伝導シートを用いてシート成形性を評価した。
<円柱体の作製>
 そして、保護フィルムを剥がした後、得られたプレ熱伝導シートの片面に厚さ12μmの両面テープ(ニチバン製、商品名「ナイスタック」)を貼りつけ、直径1cmの金属棒の周辺にプレ熱伝導シートをロール状に巻きつけ、円柱体(積層体)を得た。
<熱伝導シートの作製>
 その後、プレ熱伝導シートの円柱体から金属棒を抜き取り、プレ熱伝導シートの表面方向から圧力10MPaでプレスし、円柱体を楕円柱体とした。そして、得られた楕円柱体(積層体)を、楕円柱体の楕円面に対して0度の角度で(即ち、楕円面に平行に)スライス木工用スライサー(株式会社丸仲鐵工所製、商品名「超仕上げかんな盤スーパーメカ」、スリット部からの刀部の突出長さ:0.11mm)でスライスし、厚さ0.5mmの楕円状熱伝導シートを得た。
 そして、得られた熱伝導シートについて、熱伝導率、アスカーC硬度、難燃性および耐久性を測定または評価した。結果を表1に示す。
(Example 1)
<Preparation of composition>
1 part of an easily dispersible aggregate of fibrous carbon nanostructure A as a fibrous carbon material, expanded graphite (trade name “EC-50” manufactured by Ito Graphite Industries Co., Ltd., average particle size: 250 μm) 130 parts, 190 parts of fluororesin solution (95 parts of solid content (fluororesin)), tack fire as an adhesive resin (trade name “KE-359”, manufactured by Arakawa Chemical Industries, Ltd.), super light rosin 5 parts of the ester was stirred and mixed for 1 hour using a Hobart mixer (manufactured by Kodaira Manufacturing Co., Ltd., trade name “ACM-5 LVT type”). The resulting mixture is vacuum degassed for 1 hour, and methyl ethyl ketone is removed simultaneously with degassing, and contains fibrous carbon nanostructure A, expanded graphite, fluororesin, and adhesive resin. A composition was obtained. And the obtained composition was thrown into the crusher and crushed for 10 seconds.
<Preparation of pre-heat conductive sheet>
Subsequently, 5 g of the crushed composition was sandwiched between 50 μm thick PET films (protective film) subjected to sandblast treatment, a roll gap of 330 μm, a roll temperature of 50 ° C., a roll linear pressure of 50 kg / cm, and a roll speed of 1 m / min. Roll forming was performed under conditions to obtain a pre-heat conductive sheet having a thickness of 0.3 mm.
And the sheet formability was evaluated using the obtained pre heat conductive sheet.
<Production of cylindrical body>
Then, after peeling off the protective film, a 12 μm thick double-sided tape (manufactured by Nichiban, trade name “Nai Stack”) is attached to one side of the obtained pre-heat conductive sheet, and pre-heat is applied around the 1 cm diameter metal rod. The conductive sheet was wound into a roll shape to obtain a cylindrical body (laminated body).
<Preparation of heat conductive sheet>
Then, the metal rod was extracted from the cylindrical body of the pre-heat conductive sheet and pressed at a pressure of 10 MPa from the surface direction of the pre-thermal conductive sheet, so that the cylindrical body was an elliptic cylinder. And the obtained elliptic cylinder (laminated body) is sliced woodworking slicer (manufactured by Marunaka Co., Ltd.) at an angle of 0 degrees with respect to the elliptical surface of the elliptical cylinder (that is, parallel to the elliptical surface). Then, the product was sliced with the trade name “Super-finished planer board super mechanism”, the protrusion length of the sword portion from the slit portion: 0.11 mm) to obtain an elliptical heat conductive sheet having a thickness of 0.5 mm.
And about the obtained heat conductive sheet, heat conductivity, Asker C hardness, a flame retardance, and durability were measured or evaluated. The results are shown in Table 1.
(実施例2)
 プレ熱伝導シートを用いて円柱体を作製する際に、両面テープを使用することなく、得られたプレ熱伝導シートの片面にアセトン(和光純薬製)を塗布し、プレ熱伝導シートの表面に存在する樹脂成分を溶解させた状態で直径1cmの金属棒の周辺にプレ熱伝導シートをロール状に巻きつけて円柱体を得た以外は実施例1と同様にして、楕円状熱伝導シートを得た。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(Example 2)
When producing a cylindrical body using a pre-heat conductive sheet, acetone (made by Wako Pure Chemical Industries) is applied to one side of the obtained pre-heat conductive sheet without using a double-sided tape, and the surface of the pre-heat conductive sheet In the same manner as in Example 1 except that a cylindrical body was obtained by winding a pre-heat conductive sheet around a metal rod having a diameter of 1 cm in a state in which the resin component present in the resin was dissolved, in the same manner as in Example 1. Got. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例3)
 組成物を調製する際に、膨張化黒鉛の配合量を120部に変更し、フッ素樹脂溶液の配合量を160部(固形分(フッ素樹脂)は80部)に変更し、タッキファイヤーに替えてリン酸エステル系難燃剤(商品名「PX-110」)を20部配合した以外は実施例1と同様にして、楕円状熱伝導シートを得た。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(Example 3)
When preparing the composition, the amount of expanded graphite was changed to 120 parts, the amount of the fluororesin solution was changed to 160 parts (the solid content (fluororesin) was 80 parts), and the tackifier was replaced. An elliptical heat conductive sheet was obtained in the same manner as in Example 1 except that 20 parts of a phosphate ester flame retardant (trade name “PX-110”) was blended. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例4)
 組成物を調製する際に、膨張化黒鉛の配合量を110部に変更し、フッ素樹脂溶液の配合量を200部(固形分(フッ素樹脂)は100部)に変更し、タッキファイヤーを配合しなかった以外は実施例1と同様にして、楕円状熱伝導シートを得た。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
Example 4
When preparing the composition, the compounding amount of expanded graphite is changed to 110 parts, the compounding amount of the fluororesin solution is changed to 200 parts (the solid content (fluororesin) is 100 parts), and tackifier is added. An elliptical heat conductive sheet was obtained in the same manner as Example 1 except that there was no. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例5)
 組成物を調製する際に、膨張化黒鉛の配合量を110部に変更し、フッ素樹脂溶液の配合量を200部(固形分(フッ素樹脂)は100部)に変更し、繊維状の炭素ナノ構造体Aの易分散性集合体およびタッキファイヤーを配合しなかった以外は実施例1と同様にして、楕円状熱伝導シートを得た。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(Example 5)
When preparing the composition, the compounding amount of the expanded graphite was changed to 110 parts, the compounding amount of the fluororesin solution was changed to 200 parts (the solid content (the fluororesin) was 100 parts), and the fibrous carbon nano An elliptical heat conductive sheet was obtained in the same manner as in Example 1 except that the easily dispersible aggregate of structure A and the tackifier were not blended. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
 組成物を調製する際に、フッ素樹脂溶液に替えてアクリル樹脂溶液を200部(固形分は100部)使用し、繊維状の炭素ナノ構造体Aの易分散性集合体およびタッキファイヤーを配合しなかった以外は実施例1と同様にして、楕円状熱伝導シートを得た。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(Comparative Example 1)
When preparing the composition, use 200 parts of an acrylic resin solution (solid content is 100 parts) instead of the fluororesin solution, and blend an easily dispersible aggregate of fibrous carbon nanostructure A and a tackifier. An elliptical heat conductive sheet was obtained in the same manner as Example 1 except that there was no. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
 組成物を調製する際に、フッ素樹脂溶液に替えてアクリル樹脂溶液を100部(固形分は50部)使用し、繊維状の炭素ナノ構造体Aの易分散性集合体およびタッキファイヤーを配合せず、リン酸エステル系難燃剤(商品名「PX-110」)を50部配合した以外は実施例1と同様にして楕円状熱伝導シートを作製しようとしたが、組成物を良好にシート化することができず、楕円状熱伝導シートを作製することができなかった。
(Comparative Example 2)
When preparing the composition, use 100 parts of an acrylic resin solution (50 parts in solid content) instead of the fluororesin solution, and blend an easily dispersible assembly of fibrous carbon nanostructure A and a tackifier. First, an elliptical heat conductive sheet was prepared in the same manner as in Example 1 except that 50 parts of a phosphate ester flame retardant (trade name “PX-110”) was blended. It was not possible to produce an elliptical heat conductive sheet.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、フッ素樹脂と膨張化黒鉛とを含む実施例1~5の熱伝導シートはアクリル樹脂を用いた比較例1の熱伝導シートと比較して難燃性および耐久性に優れていることが分かる。また、比較例2では熱伝導シートを作製することができなかった。 From Table 1, the heat conductive sheets of Examples 1 to 5 containing fluororesin and expanded graphite are excellent in flame retardancy and durability as compared with the heat conductive sheet of Comparative Example 1 using an acrylic resin. I understand. In Comparative Example 2, a heat conductive sheet could not be produced.
 本発明によれば、難燃性および耐久性に優れる熱伝導シートおよびその効率的な製造方法を提供することができる。 According to the present invention, it is possible to provide a heat conductive sheet excellent in flame retardancy and durability and an efficient manufacturing method thereof.

Claims (6)

  1.  フッ素樹脂と、膨張化黒鉛とを含み、
     厚み方向の熱伝導率が20W/m・K以上である、熱伝導シート。
    Including fluororesin and expanded graphite,
    A thermal conductive sheet having a thermal conductivity in the thickness direction of 20 W / m · K or more.
  2.  前記フッ素樹脂100質量部当たり前記膨張化黒鉛を110質量部以上含有する、請求項1に記載の熱伝導シート。 The heat conductive sheet according to claim 1, comprising 110 parts by mass or more of the expanded graphite per 100 parts by mass of the fluororesin.
  3.  粘着性樹脂を更に含む、請求項1または2に記載の熱伝導シート。 The heat conductive sheet according to claim 1 or 2, further comprising an adhesive resin.
  4.  リン酸エステル系難燃剤を更に含む、請求項1~3の何れかに記載の熱伝導シート。 The heat conductive sheet according to any one of claims 1 to 3, further comprising a phosphate ester flame retardant.
  5.  繊維状炭素材料を更に含む、請求項1~4の何れかに記載の熱伝導シート。 The heat conductive sheet according to any one of claims 1 to 4, further comprising a fibrous carbon material.
  6.  フッ素樹脂と、膨張化黒鉛とを含む組成物を加圧してシート状に成形し、プレ熱伝導シートを得る工程と、
     前記プレ熱伝導シートを厚み方向に複数枚積層して、或いは、前記プレ熱伝導シートを折畳または捲回して、積層体を得る工程と、
     前記積層体を、積層方向に対して45°以下の角度でスライスし、熱伝導シートを得る工程と、
    を含む、熱伝導シートの製造方法。
    Pressurizing a composition containing a fluororesin and expanded graphite to form a sheet, and obtaining a pre-heat conductive sheet;
    Laminating a plurality of the pre-heat conductive sheets in the thickness direction, or folding or winding the pre-heat conductive sheet to obtain a laminate; and
    Slicing the laminate at an angle of 45 ° or less with respect to the lamination direction to obtain a heat conductive sheet;
    The manufacturing method of the heat conductive sheet containing this.
PCT/JP2016/002270 2015-05-15 2016-05-09 Heat transfer sheet and method for manufacturing same WO2016185688A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017518748A JP6834951B2 (en) 2015-05-15 2016-05-09 Heat conductive sheet and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-100311 2015-05-15
JP2015100311 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016185688A1 true WO2016185688A1 (en) 2016-11-24

Family

ID=57319718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002270 WO2016185688A1 (en) 2015-05-15 2016-05-09 Heat transfer sheet and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6834951B2 (en)
WO (1) WO2016185688A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016715A (en) * 2016-07-27 2018-02-01 日本ゼオン株式会社 Composite sheet and thermocompression bonding method
JP2018103586A (en) * 2016-12-28 2018-07-05 日本ゼオン株式会社 Composite laminate and composite laminated sheet
JP2018127530A (en) * 2017-02-07 2018-08-16 日本ゼオン株式会社 Heat conductive sheet
JP2018203857A (en) * 2017-06-02 2018-12-27 日本ゼオン株式会社 Thermally conductive sheet
JP2019021687A (en) * 2017-07-12 2019-02-07 日本ゼオン株式会社 Thermal conduction sheet
JP2019038921A (en) * 2017-08-24 2019-03-14 日本ゼオン株式会社 Powder composition and method for producing powder composition
US10703952B2 (en) 2017-02-07 2020-07-07 Zeon Corporation Thermally conductive sheet
JP2021054876A (en) * 2019-09-26 2021-04-08 日本ゼオン株式会社 Thermal conductive sheet
JP2021533058A (en) * 2018-06-07 2021-12-02 エスエイチティー スマート ハイ−テック エービー Methods for Producing Thermally Conductive Films and Films Based on Laminated Graphene
CN114106561A (en) * 2021-10-20 2022-03-01 东莞市道睿石墨烯研究院 Graphene foam heat-conducting gasket and preparation method thereof
JP2022060242A (en) * 2017-06-02 2022-04-14 日本ゼオン株式会社 Heat conductive sheet and method for producing the same
WO2023095758A1 (en) 2021-11-29 2023-06-01 日本ゼオン株式会社 Heat-conductive sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311027A (en) * 2004-04-21 2005-11-04 Nitto Shinko Kk Heat conductive sheet and manufacturing method thereof
US20080137304A1 (en) * 2006-12-11 2008-06-12 Reis Bradley E Compound Heat Sink
JP2009055021A (en) * 2007-08-01 2009-03-12 Hitachi Chem Co Ltd Heat conductive sheet and its manufacturing method
JP2009088164A (en) * 2007-09-28 2009-04-23 Unitika Ltd Heat dissipation slurry and electronic part using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311027A (en) * 2004-04-21 2005-11-04 Nitto Shinko Kk Heat conductive sheet and manufacturing method thereof
US20080137304A1 (en) * 2006-12-11 2008-06-12 Reis Bradley E Compound Heat Sink
JP2009055021A (en) * 2007-08-01 2009-03-12 Hitachi Chem Co Ltd Heat conductive sheet and its manufacturing method
JP2009088164A (en) * 2007-09-28 2009-04-23 Unitika Ltd Heat dissipation slurry and electronic part using it

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016715A (en) * 2016-07-27 2018-02-01 日本ゼオン株式会社 Composite sheet and thermocompression bonding method
JP2018103586A (en) * 2016-12-28 2018-07-05 日本ゼオン株式会社 Composite laminate and composite laminated sheet
US10703952B2 (en) 2017-02-07 2020-07-07 Zeon Corporation Thermally conductive sheet
JP2018127530A (en) * 2017-02-07 2018-08-16 日本ゼオン株式会社 Heat conductive sheet
JP7136274B2 (en) 2017-02-07 2022-09-13 日本ゼオン株式会社 thermal conductive sheet
JP2021158364A (en) * 2017-02-07 2021-10-07 日本ゼオン株式会社 Heat conduction sheet
JP7024213B2 (en) 2017-06-02 2022-02-24 日本ゼオン株式会社 Heat conduction sheet and its manufacturing method
JP2022060242A (en) * 2017-06-02 2022-04-14 日本ゼオン株式会社 Heat conductive sheet and method for producing the same
JP7334809B2 (en) 2017-06-02 2023-08-29 日本ゼオン株式会社 Heat-conducting sheet and manufacturing method thereof
JP2018203857A (en) * 2017-06-02 2018-12-27 日本ゼオン株式会社 Thermally conductive sheet
JP2019021687A (en) * 2017-07-12 2019-02-07 日本ゼオン株式会社 Thermal conduction sheet
JP7091616B2 (en) 2017-07-12 2022-06-28 日本ゼオン株式会社 Heat conduction sheet
JP7069600B2 (en) 2017-08-24 2022-05-18 日本ゼオン株式会社 Powder composition and method for producing powder composition
JP2019038921A (en) * 2017-08-24 2019-03-14 日本ゼオン株式会社 Powder composition and method for producing powder composition
JP2021533058A (en) * 2018-06-07 2021-12-02 エスエイチティー スマート ハイ−テック エービー Methods for Producing Thermally Conductive Films and Films Based on Laminated Graphene
JP7324783B2 (en) 2018-06-07 2023-08-10 エスエイチティー スマート ハイ-テック エービー Thermally conductive films and methods of making films based on laminated graphene
JP2021054876A (en) * 2019-09-26 2021-04-08 日本ゼオン株式会社 Thermal conductive sheet
JP7358883B2 (en) 2019-09-26 2023-10-11 日本ゼオン株式会社 thermal conductive sheet
CN114106561A (en) * 2021-10-20 2022-03-01 东莞市道睿石墨烯研究院 Graphene foam heat-conducting gasket and preparation method thereof
WO2023095758A1 (en) 2021-11-29 2023-06-01 日本ゼオン株式会社 Heat-conductive sheet

Also Published As

Publication number Publication date
JP6834951B2 (en) 2021-02-24
JPWO2016185688A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6834951B2 (en) Heat conductive sheet and its manufacturing method
US10731067B2 (en) Heat conductive sheet and method of producing same, and heat dissipation device
JP7127710B2 (en) thermal conductive sheet
US10741470B2 (en) Heat conductive sheet and method of producing same, and heat dissipation device
JP6743823B2 (en) Thermal conductive sheet and method for manufacturing the same
JP7136274B2 (en) thermal conductive sheet
US20200101701A1 (en) Method of producing secondary sheet
JP6897129B2 (en) Heat conduction sheet
WO2017081867A1 (en) Method for producing composite material sheet and method for producing heat conductive sheet
JP6705329B2 (en) Composite sheet and thermocompression bonding method
JP7467024B2 (en) Thermal Conductive Sheet
JP2018089733A (en) Slicing method of laminate and manufacturing method of composite sheet
WO2018025587A1 (en) Heat transfer sheet
JP6984331B2 (en) Method for manufacturing resin composition
JP7091616B2 (en) Heat conduction sheet
JP6705325B2 (en) COMPOSITE PARTICLE FOR HEAT CONDUCTIVE SHEET, PROCESS FOR PRODUCING THE SAME, METHOD FOR PRODUCING HEAT CONDUCTIVE PRIMARY SHEET AND HEAT CONDUCTIVE SECONDARY SHEET, METHOD FOR PRODUCING HEATING BODY WITH HEAT CONDUCTIVE PRIMARY SHEET, AND METHOD FOR PRODUCING HEATING BODY WITH LAMINATED SHEET
JP2019178264A (en) Powder composition and method for producing thermal conductive sheet
US10724810B1 (en) Heat conductive sheet
JP7172031B2 (en) Method for manufacturing thermally conductive sheet
JP7218510B2 (en) thermal conductive sheet
JP2020019883A (en) Thermally conductive sheet
WO2018025586A1 (en) Heat transfer sheet
TW202043042A (en) Heat conducting sheet capable of achieving excellent flame retarding property and excellent heat conductivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017518748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796084

Country of ref document: EP

Kind code of ref document: A1