JP2007224207A - Electroconductive composition, electroconductive coating material, electroconductive fiber material, method for producing electroconductive fiber material, and flat heater - Google Patents
Electroconductive composition, electroconductive coating material, electroconductive fiber material, method for producing electroconductive fiber material, and flat heater Download PDFInfo
- Publication number
- JP2007224207A JP2007224207A JP2006048677A JP2006048677A JP2007224207A JP 2007224207 A JP2007224207 A JP 2007224207A JP 2006048677 A JP2006048677 A JP 2006048677A JP 2006048677 A JP2006048677 A JP 2006048677A JP 2007224207 A JP2007224207 A JP 2007224207A
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- fiber material
- electroconductive
- weight
- carbon black
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2214/00—Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
- H05B2214/04—Heating means manufactured by using nanotechnology
Landscapes
- Surface Heating Bodies (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
- Resistance Heating (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Paints Or Removers (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
本発明は導電性組成物、導電性塗料、導電性繊維材料、導電性繊維材料の製造方法及び面状発熱体に関する。 The present invention relates to a conductive composition, a conductive paint, a conductive fiber material, a method for manufacturing a conductive fiber material, and a planar heating element.
従来、導電性繊維材料は、合成繊維や天然繊維などの繊維材料を基材として導電性塗料を塗布し、この繊維材料に導電性を付与することにより一般に製造されている。 Conventionally, a conductive fiber material is generally manufactured by applying a conductive paint using a fiber material such as synthetic fiber or natural fiber as a base material and imparting conductivity to the fiber material.
繊維材料に塗布する導電性塗料としては、例えばウレタン樹脂、セルロース樹脂、アミノアルキド系樹脂、アミノアクリル系樹脂等の樹脂(バインダー樹脂成分)と、例えばステンレス、スズ、銅、アルミニウム等の金属粉末;酸化亜鉛等の金属酸化物;二酸化チタンコーティングマイカ、シリコン、硫化コバルト等の導電性フィラー;などの導電性材料とを混合分散したものが知られている。 Examples of the conductive coating applied to the fiber material include resins (binder resin components) such as urethane resin, cellulose resin, aminoalkyd resin, and aminoacrylic resin, and metal powder such as stainless steel, tin, copper, and aluminum; A material in which a metal oxide such as zinc oxide; a conductive material such as titanium dioxide coating mica, silicon, cobalt sulfide, or the like is mixed and dispersed is known.
しかしながら、前記金属粉末を導電性繊維材料等の導電性発熱素子等に使用すると、電気抵抗値が過度に低くなり過ぎるという問題がある。また、該金属粉末は比重が大きいので導電性塗料の貯蔵中にバインダー樹脂成分と分離して、貯蔵用容器等の底に沈降し易く、凝集もし易い。更にまた、長期間にわたって導電性塗料を貯蔵すると金属粉末が固化し、攪拌等を行っても元の状態に再分散させることが困難となる。その結果として、導電性塗料を塗布して得られる塗膜の導電性が一様になりにくいという欠点を有する。 However, when the metal powder is used in a conductive heating element such as a conductive fiber material, there is a problem that the electric resistance value becomes excessively low. Further, since the metal powder has a large specific gravity, the metal powder is easily separated from the binder resin component during storage of the conductive coating material, easily settles on the bottom of a storage container or the like, and easily aggregates. Furthermore, when the conductive paint is stored for a long period of time, the metal powder solidifies and it becomes difficult to re-disperse to the original state even if stirring is performed. As a result, there is a drawback that the conductivity of the coating film obtained by applying the conductive paint is difficult to be uniform.
また、導電性材料として金属酸化物を用いると、形成される塗膜の電気抵抗値が過度に高くなり過ぎ、導電性発熱素子等に使用すると導電性が不足するという問題がある。 Further, when a metal oxide is used as the conductive material, there is a problem that the electric resistance value of the formed coating film becomes excessively high, and the conductivity is insufficient when used for a conductive heating element or the like.
一方、導電性カーボンブラックや鱗片状グラファイトカーボン等の炭素質導電性材料も導電性を付与できることが知られている。例えば、特定割合の導電性カーボンブラックと鱗片状グラファイトカーボンとを配合してなる導電性塗料は貯蔵安定性に優れ、導電性に優れた塗膜を形成できることが提案されている(特許文献1)。しかし、そこに報告されているような導電性塗料を、導電性繊維材料の導電性発熱素子等に適用するにあたっては、発熱素子への付加電圧が制限される(電気抵抗値が上がらない)という問題がある。 On the other hand, it is known that carbonaceous conductive materials such as conductive carbon black and scale-like graphite carbon can also impart conductivity. For example, it has been proposed that a conductive paint obtained by blending a specific ratio of conductive carbon black and scaly graphite carbon is excellent in storage stability and can form a coating film excellent in conductivity (Patent Document 1). . However, when a conductive paint as reported therein is applied to a conductive heating element made of conductive fiber material, the additional voltage to the heating element is limited (the electric resistance value does not increase). There's a problem.
そこで、本出願人は、グラファイトカーボンと、ジブチルフタレート吸油量が100ml/100g未満のカーボンブラックと、を導電性物質として用いてポリウレタンとともに有機溶剤に分散(ポリウレタンは溶解)させることにより、適度な電気抵抗値と導電性とを有する導電性塗料が得られることを見いだした(特許文献2)。しかし、前記導電性塗料を使用した導電性繊維材料を面状発熱体などに用いる場合に、電源を入れた後に、温度がある程度まで上昇(加熱)すると、前記導電性繊維材料やそれを発熱素子に有する面状発熱体などの電気抵抗値が、電源を入れる前の電気抵抗値から大きく変化してしまうという問題があり、更なる改良が求められている。 Therefore, the present applicant uses graphite carbon and carbon black having a dibutyl phthalate oil absorption of less than 100 ml / 100 g as a conductive substance, and disperses it in an organic solvent together with polyurethane (polyurethane dissolves), thereby achieving an appropriate electrical property. It has been found that a conductive paint having a resistance value and conductivity can be obtained (Patent Document 2). However, when the conductive fiber material using the conductive paint is used for a planar heating element or the like, if the temperature rises (heats) to some extent after turning on the power, the conductive fiber material or the heating element Further, there is a problem that the electrical resistance value of the sheet heating element or the like included in is greatly changed from the electrical resistance value before the power is turned on, and further improvement is required.
本発明は、温度上昇による電気抵抗値の変化率が低い面状発熱体を与えることができる、導電性組成物、導電性塗料、前記導電性組成物を有してなる適度な電気抵抗値と導電性とを有する導電性繊維材料、及びその製造方法を提供することにある。また、本発明の別の目的は、例えば200ボルトの高電圧を付加する場合でも、過不足のない適度な発熱性を有する面状発熱体を提供することにある。 The present invention can provide a sheet heating element having a low rate of change in electric resistance value due to temperature rise, a conductive composition, a conductive paint, and an appropriate electric resistance value comprising the conductive composition. An object of the present invention is to provide a conductive fiber material having conductivity and a method for manufacturing the same. Another object of the present invention is to provide a planar heating element having an appropriate exothermic property without excess or deficiency even when a high voltage of, for example, 200 volts is applied.
本発明者らは、前記課題を解決するためにバインダー樹脂の種類、炭素質導電性材料及び各充填剤等の特性や配合組成比等について鋭意検討を重ねた結果、ポリウレタンに、特定のジブチルフタレート吸油量を有する2種類のカーボンブラック混合物及び特定のタルクを配合してなる導電性組成物を、繊維材料に被覆してなる導電性繊維材料が、適度な電気抵抗値と導電性とを有し、また前記導電性繊維材料を面状発熱体などに用いる場合に、温度上昇による前記面状発熱体の電気抵抗値の変化率が低いことを見出し、本発明を完成するに到った。 In order to solve the above problems, the present inventors have made extensive studies on the types of binder resins, the characteristics of carbonaceous conductive materials and fillers, the composition ratios, and the like. As a result, specific dibutyl phthalates have been added to polyurethane. A conductive fiber material obtained by coating a fiber material with a conductive composition obtained by blending two types of carbon black mixture having an oil absorption amount and specific talc has an appropriate electrical resistance value and conductivity. In addition, when the conductive fiber material is used for a planar heating element or the like, the present inventors have found that the rate of change of the electrical resistance value of the planar heating element due to temperature rise is low, and completed the present invention.
すなわち、本発明によれば、
1. ポリウレタン(A)100重量部と、
ジブチルフタレート吸油量が100〜250ml/100gのカーボンブラック(b1)65〜95重量%及びジブチルフタレート吸油量が250ml/100gを超えるカーボンブラック(b2)35〜5重量%からなるカーボンブラック混合物(B)30〜60重量部と、
1次平均粒子径が1〜20μmのタルク(C)30〜60重量部と、
からなる導電性組成物(D);
2. 前記1記載の導電性組成物(D)と、
前記導電性組成物(D)中の前記ポリウレタン(A)100重量部に対する量として500〜1500重量部の溶媒(E)と、
からなる導電性塗料(F);
3. 前記1記載の導電性組成物(D)を、繊維材料に被覆してなることを特徴とする導電性繊維材料(G);
4. 前記2記載の導電性塗料(F)を、繊維材料に塗布することを特徴とする、導電性繊維材料(G)の製造方法;
5. 前記3記載の導電性繊維材料(G)を有してなることを特徴とする面状発熱体(H);
が提供される。
That is, according to the present invention,
1. 100 parts by weight of polyurethane (A),
Carbon black mixture (B) comprising 65 to 95% by weight of carbon black (b1) having a dibutyl phthalate oil absorption of 100 to 250 ml / 100 g and 35 to 5% by weight of carbon black (b2) having a dibutyl phthalate oil absorption of 250 ml / 100 g 30-60 parts by weight;
30-60 parts by weight of talc (C) having a primary average particle size of 1-20 μm,
A conductive composition (D) comprising:
2. Said 1 conductive composition (D),
500 to 1500 parts by weight of the solvent (E) as an amount with respect to 100 parts by weight of the polyurethane (A) in the conductive composition (D);
A conductive paint (F) comprising:
3. A conductive fiber material (G) obtained by coating the conductive composition (D) described in 1 above on a fiber material;
4). The method for producing a conductive fiber material (G), wherein the conductive paint (F) according to 2 is applied to a fiber material;
5). A sheet heating element (H) comprising the conductive fiber material (G) described in 3 above;
Is provided.
繊維材料(g)に、それぞれ特定割合のポリウレタン(A)、カーボンブラック混合物(B)及びタルク(C)からなる本発明の導電性組成物(D)を被覆してなる導電性繊維材料(G)は、適度な電気抵抗値と導電性とを有し、また該導電性繊維材料(G)を面状発熱体(H)に用いると、該面状発熱体(H)は、温度上昇による電気抵抗値の変化率が低く、過不足のない適度な発熱性と熱安定性とを有するものとすることができる。 Conductive fiber material (G) obtained by coating the fiber material (g) with the conductive composition (D) of the present invention comprising a specific proportion of polyurethane (A), carbon black mixture (B) and talc (C). ) Has an appropriate electrical resistance value and conductivity, and when the conductive fiber material (G) is used for the sheet heating element (H), the sheet heating element (H) is caused by temperature rise. The change rate of the electrical resistance value is low, and it can have moderate heat generation and thermal stability without excess or deficiency.
以下、本発明の導電性組成物(D)、導電性塗料(F)、導電性繊維材料(G)、導電性繊維材料(G)の製造方法及び面状発熱体(H)について詳細に説明する。 Hereinafter, the conductive composition (D), the conductive paint (F), the conductive fiber material (G), the method for producing the conductive fiber material (G), and the planar heating element (H) according to the present invention will be described in detail. To do.
本発明の導電性組成物(D)は、ポリウレタン(A)100重量部と、ジブチルフタレート吸油量が100〜250ml/100gのカーボンブラック(b1)65〜95重量%及びジブチルフタレート吸油量が250ml/100gを超えるカーボンブラック(b2)35〜5重量%からなるカーボンブラック混合物(B)30〜60重量部と、1次平均粒子径が1〜20μmのタルク(C)30〜60重量部と、からなる。 The conductive composition (D) of the present invention comprises 100 parts by weight of polyurethane (A), 65 to 95% by weight of carbon black (b1) having a dibutyl phthalate oil absorption of 100 to 250 ml / 100 g, and a dibutyl phthalate oil absorption of 250 ml / 30 to 60 parts by weight of a carbon black mixture (B) composed of 35 to 5% by weight of carbon black (b2) exceeding 100 g, and 30 to 60 parts by weight of talc (C) having a primary average particle diameter of 1 to 20 μm. Become.
前記ポリウレタン(A)は特に限定されないが、熱可塑性ポリウレタンエラストマーが好ましい。熱可塑性ポリウレタンエラストマーには、ポリエステル系、ポリエーテル系、ポリカーボネート系などがあり、市販又は公知の方法で調製したものを1種類を単独で、又は2種類以上を併用して用いることができる。 The polyurethane (A) is not particularly limited, but a thermoplastic polyurethane elastomer is preferable. Thermoplastic polyurethane elastomers include polyester-based, polyether-based, polycarbonate-based, and the like, and those prepared commercially or by a known method can be used alone or in combination of two or more.
本発明においては、導電性組成物(D)に導電性を与えるものとして、前記導電性組成物(D)100重量部に対して、ジブチルフタレート吸油量が100〜250ml/100gのカーボンブラック(b1)65〜95重量%及びジブチルフタレート吸油量が250ml/100gを超えるカーボンブラック(b2)35〜5重量%からなるカーボンブラック混合物(B)を30〜60重量部用いる。 In the present invention, carbon black (b1) having a dibutyl phthalate oil absorption of 100 to 250 ml / 100 g with respect to 100 parts by weight of the conductive composition (D) is assumed to impart conductivity to the conductive composition (D). 30) to 60 parts by weight of a carbon black mixture (B) comprising 35 to 5% by weight of carbon black (b2) having an oil absorption of 65 to 95% by weight and a dibutyl phthalate oil absorption of 250 ml / 100 g.
ジブチルフタレート吸油量が100〜250ml/100gのカーボンブラック(b1)の具体例(商品例)としては、例えば#3050B、#3350B(以上、三菱化学(株)社製)、シースト116HM、シーストFM、シーストFY(以上、東海カーボン(株)社製)、デンカブラック(電気化学工業(株)社製)等を挙げることができる。これらは、単独でも、2種類以上を併用しても良い。カーボンブラック(b1)におけるジブチルフタレート吸油量の好ましい範囲は150〜200ml/100gである。 Specific examples (product examples) of carbon black (b1) having a dibutyl phthalate oil absorption of 100 to 250 ml / 100 g include, for example, # 3050B, # 3350B (above, manufactured by Mitsubishi Chemical Corporation), Seast 116HM, Seast FM, Seast FY (above, manufactured by Tokai Carbon Co., Ltd.), Denka Black (manufactured by Electrochemical Industry Co., Ltd.) and the like can be mentioned. These may be used alone or in combination of two or more. A preferred range of the oil absorption of dibutyl phthalate in carbon black (b1) is 150 to 200 ml / 100 g.
ジブチルフタレート吸油量が250ml/100gを超えるカーボンブラック(b2)の具体例(商品例)としては、例えばケッチェンブラックEC(ライオン(株)社製)、エンサコ350G(リバソン(株)社製)等を挙げることができる。これらは、単独でも、2種類以上を併用しても良い。カーボンブラック(b2)におけるジブチルフタレート吸油量の好ましい範囲は300ml/100g以上である。 Specific examples (product examples) of carbon black (b2) having a dibutyl phthalate oil absorption exceeding 250 ml / 100 g include, for example, Ketjen Black EC (manufactured by Lion Corporation), Ensaco 350G (manufactured by Ribason Corporation), etc. Can be mentioned. These may be used alone or in combination of two or more. A preferable range of the oil absorption of dibutyl phthalate in carbon black (b2) is 300 ml / 100 g or more.
カーボンブラック混合物(B)におけるジブチルフタレート吸油量が100〜250ml/100gのカーボンブラック(b1)の含有量は、65〜95重量%、好ましくは70〜90重量%である。一方、カーボンブラック混合物(B)におけるジブチルフタレート吸油量が250ml/100gを超えるカーボンブラック(b2)の含有量は、35〜5重量%、好ましくは30〜10重量%である。ジブチルフタレート吸油量が前記の範囲にあるカーボンブラック(b1)及びカーボンブラック(b2)を、前記の範囲内の量使用することにより、導電性繊維材料(G)を面状発熱体(H)に用いると、温度上昇による面状発熱体(H)の電気抵抗値の変化率が低く、一定電圧下において通電時に過電流が流れたり導電性繊維材料(G)等の導電性発熱素子等が過度に発熱したりすることを防ぐことができる。 The content of carbon black (b1) having a dibutyl phthalate oil absorption of 100 to 250 ml / 100 g in the carbon black mixture (B) is 65 to 95% by weight, preferably 70 to 90% by weight. On the other hand, the carbon black (b2) content of the dibutyl phthalate oil absorption in the carbon black mixture (B) exceeding 250 ml / 100 g is 35 to 5% by weight, preferably 30 to 10% by weight. By using carbon black (b1) and carbon black (b2) whose dibutyl phthalate oil absorption is in the above range in an amount within the above range, the conductive fiber material (G) is used as the planar heating element (H). If used, the rate of change in the electrical resistance value of the sheet heating element (H) due to temperature rise is low, overcurrent flows when energized under a constant voltage, or conductive heating elements such as the conductive fiber material (G) are excessive. Heat generation can be prevented.
カーボンブラック混合物(B)の使用量は、前記ポリウレタン(A)100重量部に対して、通常、30〜60重量部、好ましくは35〜55重量部である。カーボンブラック混合物(B)の使用量が30重量部未満では、導電性繊維材料(G)、すなわち、導電性組成物(D)の電気抵抗値が高くなり過ぎ、一定電圧下においては導電性に劣ると共に、導電性繊維材料(G)等の導電性発熱素子として使用する際に発熱量が小さくなる傾向がある。他方、その使用量が60重量部を超えると、導電性繊維材料(G)、すなわち、導電性組成物(D)の電気抵抗値が低くなり過ぎ、所定の抵抗値の導電性繊維材料(G)が得られない。 The usage-amount of a carbon black mixture (B) is 30-60 weight part normally with respect to 100 weight part of said polyurethanes (A), Preferably it is 35-55 weight part. When the amount of the carbon black mixture (B) used is less than 30 parts by weight, the electrical resistance value of the conductive fiber material (G), that is, the conductive composition (D) becomes too high, and it becomes conductive under a constant voltage. In addition to being inferior, the amount of heat generated tends to be small when used as a conductive heating element such as a conductive fiber material (G). On the other hand, when the amount of use exceeds 60 parts by weight, the electrical resistance value of the conductive fiber material (G), that is, the conductive composition (D) becomes too low, and the conductive fiber material (G having a predetermined resistance value) ) Is not obtained.
前述したカーボンブラック(b1)、カーボンブラック(b2)及びカーボンブラック混合物(B)の粒子径については特に制限はないが、一次平均粒子径が10〜80nmの範囲のものを用いるのが好ましい。この範囲とすることにより、導電性塗料(F)の取り扱い性に優れる。 The particle diameters of the carbon black (b1), carbon black (b2), and carbon black mixture (B) described above are not particularly limited, but those having a primary average particle diameter in the range of 10 to 80 nm are preferably used. By setting it as this range, it is excellent in the handleability of a conductive paint (F).
本発明の導電性組成物(D)を構成するタルク(C)は粉末状であり、その1次平均粒子径が1〜20μmのものからなる。1次平均粒子径が1μmより小さいと、導電性塗料(F)の経時変化による導電性組成物(D)の抵抗値変化率(以下、「塗料抵抗値変化率」と呼ぶことがある。)が高くなってしまう。他方、1次平均粒子径が20μmより大きい場合は、導電性塗料(F)の経時変化による導電性組成物(D)の抵抗値変化率(塗料抵抗値変化率)が高くなってしまい、更に繊維材料(g)と導電性組成物(D)との接着性に劣るものとなってしまう。タルク(C)の1次平均粒子径は、好ましくは2〜15μmであり、より好ましくは3〜10μmである。 Talc (C) constituting the conductive composition (D) of the present invention is in the form of powder and has a primary average particle size of 1 to 20 μm. When the primary average particle diameter is smaller than 1 μm, the resistance value change rate of the conductive composition (D) due to the change with time of the conductive paint (F) (hereinafter, sometimes referred to as “paint resistance value change rate”). Becomes higher. On the other hand, when the primary average particle diameter is larger than 20 μm, the resistance value change rate (paint resistance value change rate) of the conductive composition (D) due to the change with time of the conductive paint (F) becomes high. It will be inferior to the adhesiveness of a fiber material (g) and an electroconductive composition (D). The primary average particle diameter of talc (C) is preferably 2 to 15 μm, more preferably 3 to 10 μm.
1次平均粒子径が1〜20μmのタルク(C)の好ましい具体例(商品名)としては、例えば、ミクロエース、SG−シリーズ(以上、日本タルク(株)製)、ハイトロン、ミクロライト、ハイラック(以上、竹原化学工業(株)製)等を挙げることができる。 Preferable specific examples (product names) of talc (C) having a primary average particle size of 1 to 20 μm include, for example, Microace, SG-series (manufactured by Nihon Talc Co., Ltd.), Hytron, Microlite, High A rack (made by Takehara Chemical Co., Ltd.) etc. can be mentioned.
1次平均粒子径が1〜20μmのタルク(C)の使用量は、前記ポリウレタン(A)100重量部に対して、通常、30〜60重量部、好ましくは45〜55重量部である。1次平均粒子径が1〜20μmのタルク(C)の使用量が30重量部未満では、導電性繊維材料(G)を面状発熱体(H)に用いたときの、温度上昇による面状発熱体(H)の電気抵抗値の変化率が高くなり、また、導電性組成物(D)の表面の平滑性に劣り(動摩擦係数が高くなり)、面状発熱体(H)製造時に導電性繊維材料(G)が切れてしまうなどの不具合が懸念される。他方、60重量部を超えると、導電性塗料(F)の経時変化による導電性組成物(D)の抵抗値変化率(塗料抵抗値変化率)が高くなってしまい、更に繊維材料(g)と導電性組成物(D)との接着性に劣るものとなってしまう。 The amount of talc (C) having a primary average particle size of 1 to 20 μm is usually 30 to 60 parts by weight, preferably 45 to 55 parts by weight, based on 100 parts by weight of the polyurethane (A). When the amount of talc (C) having a primary average particle size of 1 to 20 μm is less than 30 parts by weight, the surface shape due to temperature rise when the conductive fiber material (G) is used for the surface heating element (H). The rate of change of the electrical resistance value of the heating element (H) is increased, and the surface of the conductive composition (D) is inferior in smoothness (dynamic friction coefficient is increased). There is a concern that the conductive fiber material (G) is cut. On the other hand, when it exceeds 60 parts by weight, the resistance value change rate (paint resistance value change rate) of the conductive composition (D) due to the change over time of the conductive paint (F) becomes high, and further the fiber material (g). It will be inferior to the adhesiveness of a conductive composition (D).
本発明の導電性塗料(F)は、前記導電性組成物(D)と、前記導電性組成物(D)中の前記ポリウレタン(A)100重量部に対する量として500〜1500重量部の溶媒(E)と、からなる。 The conductive paint (F) of the present invention comprises 500 to 1500 parts by weight of solvent (100 to 100 parts by weight of the polyurethane (A) in the conductive composition (D) and the conductive composition (D). E).
本発明の導電性塗料(F)に用いる前記導電性組成物(D)については、前述した通りである。 The conductive composition (D) used for the conductive paint (F) of the present invention is as described above.
本発明の導電性塗料(F)に用いる溶媒(E)としては、前記ポリウレタン(A)を溶解又は分散できるものであれば特に制限はないが、好ましい例としては以下の極性有機溶媒が挙げられる。すなわち、テトラヒドロフラン(以下、THFと略記することがある)、フラン、テトラヒドロピラン、ピラン、ジオキサン、1,3−ジオキソラン、トリオキサンなどの環状エーテル系化合物;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのジアルキルケトアミド系化合物;ジメチルスルホキシド、ジエチルスルホキシドなどのジアルキルスルホキシド系化合物;アセトン、メチルエチルケトン(以下、MEKと略記することがある)、ジエチルケトンなどのケトン系化合物;エタノール、2−プロパノール、1−ブタノールなどのアルコール系化合物;ジクロロエチレン、ジクロロエタン、ジクロロベンゼンなどの塩素化炭化水素系化合物;などを挙げることができる。中でも環状エーテル系化合物、ケトン系化合物がより好ましく、更に好ましくはテトラヒドロフラン、1,3−ジオキソラン、メチルエチルケトンが挙げられ、特に好ましくはテトラヒドロフランが挙げられる。これらは単独で又は2種以上を併用して用いることができる。 The solvent (E) used in the conductive paint (F) of the present invention is not particularly limited as long as it can dissolve or disperse the polyurethane (A). Preferred examples include the following polar organic solvents. . That is, cyclic ether compounds such as tetrahydrofuran (hereinafter sometimes abbreviated as THF), furan, tetrahydropyran, pyran, dioxane, 1,3-dioxolane, trioxane; N, N-dimethylformamide, N, N-dimethyl Dialkyl ketamide compounds such as acetamide; dialkyl sulfoxide compounds such as dimethyl sulfoxide and diethyl sulfoxide; ketone compounds such as acetone, methyl ethyl ketone (hereinafter abbreviated as MEK) and diethyl ketone; ethanol, 2-propanol, Examples thereof include alcohol compounds such as 1-butanol; chlorinated hydrocarbon compounds such as dichloroethylene, dichloroethane, and dichlorobenzene. Of these, cyclic ether compounds and ketone compounds are more preferable, tetrahydrofuran, 1,3-dioxolane, and methyl ethyl ketone are more preferable, and tetrahydrofuran is particularly preferable. These can be used alone or in combination of two or more.
前記溶媒(E)の使用量は、前記ポリウレタン(A)100重量部に対して、通常、500〜1500重量部、好ましくは700〜1300重量部、より好ましくは800〜1200重量部である。溶媒量が500重量部未満では、導電性塗料(F)の粘度が高くなり過ぎて取り扱いが困難になり、他方、1500重量部を超えると、導電性塗料(F)の粘度が低くなり過ぎて基材である繊維材料(g)に導電性組成物(D)が被覆されにくくなる。 The amount of the solvent (E) used is usually 500 to 1500 parts by weight, preferably 700 to 1300 parts by weight, and more preferably 800 to 1200 parts by weight with respect to 100 parts by weight of the polyurethane (A). When the amount of the solvent is less than 500 parts by weight, the viscosity of the conductive paint (F) becomes too high and handling becomes difficult. On the other hand, when it exceeds 1500 parts by weight, the viscosity of the conductive paint (F) becomes too low. It becomes difficult to cover the conductive composition (D) on the fiber material (g) which is the base material.
導電性塗料(F)には前述したカーボンブラック〔(b1)、(b2)〕以外のその他の導電性フィラーを、本発明の効果を損なわない程度に配合することができる(前述したタルクは導電性フィラーではない)。その他の導電性フィラーとしては、通常、このような用途に使用されているものであれば特に制限されないが、無機導電性フィラーと有機導電性フィラーに大別され、下記のものが挙げられる。 Other conductive fillers other than the carbon black [(b1), (b2)] described above can be blended in the conductive paint (F) to such an extent that the effects of the present invention are not impaired (the talc described above is conductive). Not a filler.) Other conductive fillers are not particularly limited as long as they are usually used for such applications, but are roughly classified into inorganic conductive fillers and organic conductive fillers, and the following may be mentioned.
無機導電性フィラーとしては、鉄、コバルト、ニッケル、アルミニウムなどの金属紛;酸化チタン、酸化亜鉛、酸化鉄、酸化タングステンなどの金属酸化物;炭素繊維、フラーレン、カーボンナノチューブなどの、前記鱗片状グラファイトカーボン及び前記カーボンブラック以外の炭素質フィラー;などが挙げられる。また、有機導電性フィラーとしては、ポリアニリン、ポリピロールなどの導電性高分子;鉄フタロシアニン、フェロセンなどに代表される有機金属錯体;などが挙げられる。 Examples of inorganic conductive fillers include metal powders such as iron, cobalt, nickel, and aluminum; metal oxides such as titanium oxide, zinc oxide, iron oxide, and tungsten oxide; and the above scaly graphite such as carbon fiber, fullerene, and carbon nanotube. And carbonaceous fillers other than carbon and the carbon black. Examples of the organic conductive filler include conductive polymers such as polyaniline and polypyrrole; organometallic complexes represented by iron phthalocyanine, ferrocene, and the like.
本発明の導電性塗料(F)には、所望により、可塑剤、分散剤、塗面調整剤、流動調整剤、紫外線吸収剤、紫外線安定剤、酸化防止剤、架橋反応促進剤、架橋反応抑制剤など公知の各種添加剤を、本発明の効果を損なわない程度に配合することができる。 If desired, the conductive paint (F) of the present invention includes a plasticizer, a dispersant, a coating surface conditioner, a flow conditioner, an ultraviolet absorber, an ultraviolet stabilizer, an antioxidant, a crosslinking reaction accelerator, and a crosslinking reaction inhibitor. Various known additives such as an agent can be blended to such an extent that the effects of the present invention are not impaired.
本発明の導電性繊維材料(G)は、前記導電性組成物(D)を、繊維材料(g)に被覆してなることを特徴とする。ここで「被覆」とは、単に繊維材料の外表面を覆うことのみならず、繊維材料(g)の内部に浸透することをも意味し、特に単繊維を撚ってなる糸などの場合は、その糸の中に導電性組成物(D)が含浸し、糸を構成する単繊維を1本毎に覆うこと及び/又は浸透することをも意味する。 The conductive fiber material (G) of the present invention is obtained by coating the conductive composition (D) on a fiber material (g). Here, “coating” means not only covering the outer surface of the fiber material but also penetrating into the inside of the fiber material (g), and particularly in the case of a yarn formed by twisting single fibers. It also means that the conductive composition (D) is impregnated in the yarn, and the single fibers constituting the yarn are covered and / or permeated one by one.
本発明の導電性繊維材料(G)の基材となる繊維材料(g)の形状、材質、形態などは特に限定されない。例えば、短繊維、長繊維、単繊維糸、短繊維又は長繊維の集合体である糸、糸の集合体である布帛、などを用いることができる。また、繊維材料(g)の材質は、合成繊維であっても、天然繊維であってもよい。これらの中でも、ポリエステル、ナイロン又は綿からなる糸を用いることが好ましい。ポリエステルとしてはアルキル系ポリエステル、アリール系ポリエステルなど任意のものを選択して使用することができる。ナイロンとしては、ナイロン−6、ナイロン−6,6など任意のものを使用することができる。繊維材料(g)としての糸の形態は特に限定されないが、複数本撚り合わせて500〜1500デシテックスの範囲であることが好ましい。 The shape, material, form and the like of the fiber material (g) serving as the base material for the conductive fiber material (G) of the present invention are not particularly limited. For example, short fibers, long fibers, single fiber yarns, yarns that are short fibers or long fiber aggregates, fabrics that are aggregates of yarns, and the like can be used. The material of the fiber material (g) may be a synthetic fiber or a natural fiber. Among these, it is preferable to use a thread made of polyester, nylon or cotton. As the polyester, an arbitrary polyester such as an alkyl polyester or an aryl polyester can be selected and used. As nylon, arbitrary things, such as nylon-6 and nylon-6,6, can be used. Although the form of the yarn as the fiber material (g) is not particularly limited, it is preferably in the range of 500 to 1500 decitex by twisting a plurality of yarns.
前述したような導電性組成物(D)及び該導電性組成物(D)を繊維材料(g)に被覆してなる導電性繊維材料(G)においては、その単位長さあたりの電気抵抗値は3000〜9000Ω/cmの範囲にあることが好ましい。そのためには、繊維材料(g)(基材)を被覆する導電性組成物(D)の電気抵抗値は、1.0〜3.0Ω・cmの範囲にあることが好ましい。
導電性繊維材料(G)の単位長さあたりの電気抵抗値が前記の範囲にあることにより、適正な電圧での通電が可能であり、過電流による過度な発熱を生じることがなく、また導電性に劣ることもないので発熱量も適正範囲となる。
In the conductive composition (D) and the conductive fiber material (G) formed by coating the conductive composition (D) on the fiber material (g), the electrical resistance value per unit length is as follows. Is preferably in the range of 3000 to 9000 Ω / cm. For this purpose, the electrical resistance value of the conductive composition (D) covering the fiber material (g) (base material) is preferably in the range of 1.0 to 3.0 Ω · cm.
When the electrical resistance value per unit length of the conductive fiber material (G) is within the above range, it is possible to energize at an appropriate voltage, and no excessive heat is generated due to overcurrent. Therefore, the calorific value is within the appropriate range.
繊維材料(g)に導電性組成物(D)を被覆する方法は特に限定されず、導電性組成物(D)を溶媒(E)に溶解又は分散させてなる導電性塗料(F)を繊維材料(g)に塗布する方法;導電性組成物(D)を熱により融解し繊維材料(g)に塗布する方法;導電性組成物(D)を先ずシート状に成形し、それを繊維材料(g)に巻きつけた後に熱処理する方法;などが挙げられる。これらの被覆方法の中でも、次に説明する本発明の導電性繊維材料(G)の製造方法によるものが好ましい。 The method of coating the conductive composition (D) on the fiber material (g) is not particularly limited, and the conductive paint (F) obtained by dissolving or dispersing the conductive composition (D) in the solvent (E) is used as the fiber. Method of applying to material (g); Method of melting conductive composition (D) by heat and applying to fiber material (g); First forming conductive composition (D) into a sheet, And a method of performing a heat treatment after being wound around (g). Among these coating methods, the method according to the method for producing the conductive fiber material (G) of the present invention described below is preferable.
すなわち、本発明の導電性繊維材料(G)の製造方法は、前記導電性塗料(F)を、繊維材料(g)に塗布することを特徴とする。繊維材料(g)に導電性塗料(F)を塗布する方法は特に限定されず、従来行われている塗装方法によって塗布することができる。より具体的には、導電性塗料(F)を浸漬塗装、エアスプレー塗装、エアレススプレー塗装、各種の静電塗装、ロール塗装、刷毛塗り等の手段により繊維材料に塗布し、含浸させることができる。その中でも、浸漬塗装が好適に用いられる。 That is, the method for producing a conductive fiber material (G) of the present invention is characterized in that the conductive paint (F) is applied to the fiber material (g). The method for applying the conductive paint (F) to the fiber material (g) is not particularly limited, and it can be applied by a conventional coating method. More specifically, the conductive paint (F) can be applied and impregnated on the fiber material by means of dip coating, air spray coating, airless spray coating, various electrostatic coatings, roll coating, brush coating, and the like. . Among these, dip coating is preferably used.
本発明の製造方法において用いられる導電性塗料(F)に含まれる導電性組成物(D)は、前述のものと同様である。 The conductive composition (D) contained in the conductive paint (F) used in the production method of the present invention is the same as described above.
本発明の面状発熱体(H)は、前述した本発明の導電性繊維材料(G)を有してなることを特徴とする。かかる面状発熱体(H)は、例えば、導電性繊維材料(G)のうち糸状のものを、2つの電極間に延びる導電性緯糸とし、電極と略平行に延びる非導電性経糸と織布を形成させてこれを発熱層とし、発熱層及び電極の表裏面に絶縁シートからなる絶縁層を積層させることにより製造することができる。 The planar heating element (H) of the present invention is characterized by having the above-described conductive fiber material (G) of the present invention. Such a planar heating element (H) is, for example, a conductive fiber material (G) having a thread-like shape as a conductive weft extending between two electrodes, and a non-conductive warp and woven fabric extending substantially parallel to the electrode. This is used as a heat generating layer, and an insulating layer made of an insulating sheet is laminated on the front and back surfaces of the heat generating layer and the electrode.
以下、本発明の面状発熱体(H)を図面に基づいて説明する。図1は本発明の一実施形態に係る面状発熱体の概略斜視図、図2は図1に示すII−II線に沿う要部断面図である。 Hereinafter, the planar heating element (H) of this invention is demonstrated based on drawing. FIG. 1 is a schematic perspective view of a planar heating element according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a principal part taken along line II-II shown in FIG.
図1及び図2に示すように、本発明に係る面状発熱体2は、面状の発熱層4と、この発熱層4の両面に積層された絶縁層6とを有する。発熱層4の両側には、長手方向に沿って細長い電極8,8が形成してある。
As shown in FIGS. 1 and 2, the
発熱層4としては、本実施形態では、電極8,8間に延びる導電性緯糸と、電極8,8と略平行に延びる非導電性経糸との織布が用いられる。非導電性経糸としては、例えばポリエステル繊維を樹脂溶液に浸漬し、乾燥して得られる糸などが用いられる。
In the present embodiment, a woven fabric of conductive wefts extending between the
発熱層4の両側に配置される電極8,8は、特に限定されないが、本実施形態では、発熱層4を構成する導電性緯糸に接続するように編み込まれる可撓性金属線で構成される。電極8の厚みは、発熱層4と同程度であり、0.8〜1.4mm程度である。
The
絶縁層6,6は、発熱層4及び電極8,8を全て被覆するように表裏面に積層される。絶縁シートの両側端10,10は、相互に熱融着される。絶縁層6の厚みは、本実施形態では、0.2〜0.5mmであり、カレンダー法などで成形される。
The insulating
なお、本発明の面状発熱体(H)は、前述した実施形態に限定されるものではなく、本発明の範囲内で種々の形態をとることができる。 The planar heating element (H) of the present invention is not limited to the above-described embodiment, and can take various forms within the scope of the present invention.
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。実施例、比較例中の「部」及び「%」は重量基準である。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. “Parts” and “%” in Examples and Comparative Examples are based on weight.
〔測定法1〕カーボンブラックのジブチルフタレート(以下、「DBP」と略記することがある。)吸油量
カーボンブラックのDBP吸油量は下記の試験方法で測定した値である。
カーボンブラックの乾燥試料1.00±0.01gを平滑なガラス板上に置く。粒状の場合は、へらで適度の圧力をかけ粒を砕く。ビュレットから必要なDBP量の約1/2をガラス板上に静かに注ぎ加え、DBPを円状に均等に広げてから前記試料を少しずつDBPの上に移して分散させ、へらで小円形を描く操作で練る。へらに付着した試料は、他のへらで取り除き、更にDBP約1/3〜1/4を加え、同一操作を繰り返して混合物が均一になるようにする。終点に近くなったら1滴ずつ加えて、更に終点近くなったら1/2滴ずつ加え、全体が一つの締まった塊状となった点を終点とする。この操作は、10〜15分で終わるようにする。操作終了後3分経過してからビュレット中のDBP滴下量を読み、次式によって吸油量を算出する。
OA=100×(V/W)
(OA:吸油量(ml/100g)、V:終点までに用いたDBPの使用量(ml)、W:乾燥試料の重さ(g))
[Measuring Method 1] Dibutyl phthalate of carbon black (hereinafter sometimes abbreviated as “DBP”) oil absorption The DBP oil absorption of carbon black is a value measured by the following test method.
A dry sample of carbon black 1.00 ± 0.01 g is placed on a smooth glass plate. If it is granular, apply moderate pressure with a spatula to break the grain. Gently pour about 1/2 of the required DBP amount from the burette onto the glass plate, spread the DBP evenly in a circular shape, and then move the sample onto the DBP to disperse it little by little. Knead with drawing operations. The sample adhering to the spatula is removed with another spatula, and about 1/3 to 1/4 of DBP is further added, and the same operation is repeated to make the mixture uniform. When the end point is approached, add one drop at a time, and when the end point is nearer, add one-half drop, and the end point is the point where the whole becomes one tight block. This operation should be completed in 10-15 minutes. After 3 minutes from the end of the operation, the DBP dripping amount in the burette is read, and the oil absorption amount is calculated by the following equation.
OA = 100 × (V / W)
(OA: oil absorption (ml / 100 g), V: amount of DBP used until the end point (ml), W: weight of dry sample (g))
〔測定法2〕導電性組成物(D)の電気抵抗値
導電性組成物(D)の電気抵抗値は下記の試験方法で測定した値である。
(1) 試験用フィルム作成
50μm厚のポリエチレンテレフタレート製フィルム上に導電性塗料を塗布し、ベーカー式アプリケーター(理学工業(株)社製)で均一な厚みのフィルムとする。それを40℃のホットプレート上で5分間乾燥させ、その後、80℃のホットプレート上で5分間乾燥させる。
(2) 導電性組成物(D)の電気抵抗値測定
(1)で作製した試験用フィルムを、(5cm±0.5mm)×(6cm±0.5mm)に切り取り、短辺側両端5mmをそれぞれ幅5cmのステンレス製クリップで留める。両端にあるクリップにテスターを接続し、フィルム(5cm±0.5mm)×(5cm±0.5mm)の表面電気抵抗値r(Ω)を測定する。フィルムの厚みを、厚み計で測定し、以下の式により導電性組成物(D)の電気抵抗値ρ(Ω・cm)を算出する。
ρ=r×(T×5)/5=r×T
(ρ:導電性組成物(D)の電気抵抗値(Ω・cm)、T:フィルムの厚み(cm)、r:表面電気抵抗値(Ω))
[Measurement Method 2] Electrical Resistance Value of Conductive Composition (D) The electrical resistance value of the conductive composition (D) is a value measured by the following test method.
(1) Preparation of test film A conductive paint is applied onto a 50 μm-thick polyethylene terephthalate film, and a film having a uniform thickness is formed using a baker-type applicator (manufactured by Rigaku Corporation). It is dried for 5 minutes on a 40 ° C. hot plate and then for 5 minutes on a 80 ° C. hot plate.
(2) Measurement of electrical resistance value of conductive composition (D) The test film prepared in (1) was cut into (5 cm ± 0.5 mm) × (6 cm ± 0.5 mm), and 5 mm at both ends on the short side was cut. Fasten with stainless steel clips each 5 cm wide. A tester is connected to the clips at both ends, and the surface electrical resistance value r (Ω) of the film (5 cm ± 0.5 mm) × (5 cm ± 0.5 mm) is measured. The thickness of the film is measured with a thickness meter, and the electrical resistance value ρ (Ω · cm) of the conductive composition (D) is calculated by the following formula.
ρ = r × (T × 5) / 5 = r × T
(Ρ: electric resistance value (Ω · cm) of conductive composition (D), T: film thickness (cm), r: surface electric resistance value (Ω))
〔測定法3〕導電性繊維材料(G)の単位長さあたりの電気抵抗値
導電性繊維材料(G)の単位長さあたりの電気抵抗値は下記の試験方法で測定した値である。
(5cm±0.5mm)間隔の電極間に導電性繊維材料(G)をたるみのないように張り、この電極間に一定電圧を印加する。
同電極間に張り渡した導電性繊維材料(G)の電気抵抗値R1(Ω)をテスターにて読み取り、以下の式により、導電性繊維材料(G)の単位長さあたりの電気抵抗値R(Ω/cm)を算出する。
R=R1/L
(R:導電性繊維材料(G)の単位長さあたりの電気抵抗値(Ω/cm)、L:導電性繊維材料(G)の長さ(cm))
[Measurement Method 3] Electrical Resistance Value per Unit Length of Conductive Fiber Material (G) The electrical resistance value per unit length of the conductive fiber material (G) is a value measured by the following test method.
The conductive fiber material (G) is stretched between the electrodes with an interval of (5 cm ± 0.5 mm) so as not to sag, and a constant voltage is applied between the electrodes.
The electrical resistance value R1 (Ω) of the conductive fiber material (G) stretched between the electrodes is read with a tester, and the electrical resistance value R per unit length of the conductive fiber material (G) is calculated by the following formula. (Ω / cm) is calculated.
R = R1 / L
(R: electrical resistance value per unit length of conductive fiber material (G) (Ω / cm), L: length of conductive fiber material (G) (cm))
〔測定法4〕通電時の温度上昇による面状発熱体(H)の電気抵抗値の変化率
(1)試験用面状発熱体サンプル作製
長さ10cm、幅15cm、厚み0.1cmのポリエステル製メッシュ状基布上に、長さ15cmの可撓性の銅製電極線が編みこまれて形成された幅1cm、厚み0.1cmの電極2本を、10cmの間隔をおいて平行に配置する。幅方向には、電極から基布の端までが左右共に1.5cm有するように配置し、長さ方向には、一方の端に2本の電極線の端と基布の端とを合わせ、もう一方の端は、基布から5cm電極が飛び出すように配置する。前記基布部分を各実施例及び各比較例にて製造された導電性塗料に含浸させ、70℃のホットプレート上で20分乾燥させ、その後90℃のホットプレート上で10分間乾燥させる。乾燥後、2枚の塩化ビニル製シート(長さ15cm、幅20cm、厚み0.45cm)で挟み、2枚の塩化ビニル製シートの四辺の端部を加熱プレスして熱融着し、その後電極2本にそれぞれ通電用の電線を接続し、試験用面状発熱体サンプルを作製した。
(2)通電時の温度上昇による面状発熱体(H)の電気抵抗値の変化率測定
通電時の温度上昇による面状発熱体(H)の電気抵抗値の変化率は下記の試験方法で測定した結果である。
前記試験用面状発熱体(H)の通電前の電気抵抗値R0(23℃)をテスターにて読み取る。次に、該試験用面状発熱体(H)の温度が80℃になるように通電し、80℃での該試験用面状発熱体(H)の電気抵抗値R1をテスターにて読み取る。
以下の式により、通電時の温度上昇による面状発熱体(H)の電気抵抗値の変化率x(%)を算出する。
x=100×(R1−R0)/R0 (%)
[Measuring method 4] Rate of change of electrical resistance value of sheet heating element (H) due to temperature rise during energization (1) Preparation of sheet heating element sample for test Made of polyester with length 10cm, width 15cm, thickness 0.1cm Two electrodes having a width of 1 cm and a thickness of 0.1 cm, which are formed by weaving flexible copper electrode wires having a length of 15 cm, are arranged in parallel on a mesh-like base fabric with an interval of 10 cm. In the width direction, it is arranged so that both the left and right sides from the electrode to the edge of the base fabric are 1.5 cm, and in the length direction, the ends of the two electrode lines and the ends of the base fabric are aligned with one end The other end is arranged so that a 5 cm electrode protrudes from the base fabric. The base fabric portion is impregnated with the conductive paint produced in each Example and each Comparative Example, dried on a hot plate at 70 ° C. for 20 minutes, and then dried on a hot plate at 90 ° C. for 10 minutes. After drying, sandwiched between two vinyl chloride sheets (length 15 cm, width 20 cm, thickness 0.45 cm), the ends of the four sides of the two vinyl chloride sheets are hot-pressed and thermally fused, and then the electrodes Two electric wires for energization were connected to each of the two to produce a planar heating element sample for testing.
(2) Measurement of change rate of electrical resistance value of sheet heating element (H) due to temperature rise during energization The rate of change of electrical resistance value of sheet heating element (H) due to temperature rise during energization is as follows. It is the result of measurement.
The electrical resistance value R0 (23 ° C.) before energization of the test sheet heating element (H) is read with a tester. Next, electricity is applied so that the temperature of the test sheet heating element (H) is 80 ° C., and the electrical resistance value R1 of the test sheet heating element (H) at 80 ° C. is read with a tester.
The change rate x (%) of the electrical resistance value of the planar heating element (H) due to the temperature rise during energization is calculated by the following equation.
x = 100 × (R1-R0) / R0 (%)
〔測定法5〕導電性組成物(D)の表面の平滑性(動摩擦係数)
導電性組成物(D)の表面の平滑性を示す指標としてフィルムの動摩擦係数を用いる。測定法2にて作成した試験用フィルムを用い、JIS K 7125に準じて動摩擦係数を算出し、導電性組成物(D)の表面の平滑性とする。
[Measurement method 5] Smoothness of surface of conductive composition (D) (dynamic friction coefficient)
The dynamic friction coefficient of the film is used as an index indicating the smoothness of the surface of the conductive composition (D). The dynamic friction coefficient is calculated in accordance with JIS K 7125 using the test film prepared by the
ポリプロピレン製容器中でポリエステル系ポリウレタン P22SRNAT(日本ポリウレタン(株)製)100重量部をテトラヒドロフラン(以下、「THF」と略記することがある。)865重量部に溶解させた。その後、その溶液中にカーボンブラック(b1)として、デンカブラック(電気化学工業(株)社製:DBP吸油量180ml/100g)30重量部、カーボンブラック(b2)として、ケッチェンブラックEC(ライオン(株)社製:DBP吸油量360ml/100g)10重量部、及びタルクとしてL−1(1次平均粒子径4.9μm:日本タルク(株)社製)50重量部を加え、更に顔料分散及び混合用としてジルコニアビーズ1000重量部を入れ、顔料分散機((株)東洋精機製作所製)で2時間振とうさせた。その後デカンテーションでジルコニアビーズを取り除き、固形分濃度18.0%の導電性塗料(F)(1)を得た。(以下、各実施例及び各比較例においては、導電性塗料(F)の固形分濃度をおおよそ18.0%となるように溶媒(E)の量を調整した。)
繊維材料(g)としてポリエステル製のマルチフィラメントの糸(1100デシテックスのもの)を基糸として用い、その糸に、前記の方法で得た導電性塗料(F)(1)を塗布した後、乾燥し、基糸1mあたり0.04gの導電性組成物(D)(1)で被覆された糸、すなわち、導電性繊維材料(G)(1)を作製した。
また、前記〔測定法4〕にて、面状発熱体(H)(1)を作製した。
In a polypropylene container, 100 parts by weight of polyester polyurethane P22SRNAT (manufactured by Nippon Polyurethane Co., Ltd.) was dissolved in 865 parts by weight of tetrahydrofuran (hereinafter sometimes abbreviated as “THF”). Thereafter, 30 parts by weight of Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd .: DBP oil absorption 180 ml / 100 g) as carbon black (b1) and Ketjen Black EC (Lion ( Co., Ltd .: DBP oil absorption: 360 ml / 100 g) and 10 parts by weight of L-1 (primary average particle size: 4.9 μm: manufactured by Nippon Talc Co., Ltd.) as talc, and pigment dispersion and 1000 parts by weight of zirconia beads were added for mixing, and the mixture was shaken for 2 hours with a pigment dispersing machine (manufactured by Toyo Seiki Seisakusho). Thereafter, the zirconia beads were removed by decantation to obtain a conductive paint (F) (1) having a solid concentration of 18.0%. (Hereinafter, in each example and each comparative example, the amount of the solvent (E) was adjusted so that the solid content concentration of the conductive paint (F) was approximately 18.0%.)
A polyester multifilament yarn (1100 dtex) is used as the fiber material (g) as a base yarn, and the conductive paint (F) (1) obtained by the above method is applied to the yarn, followed by drying. Then, a thread coated with 0.04 g of the conductive composition (D) (1) per 1 m of the base thread, that is, the conductive fiber material (G) (1) was produced.
In addition, a planar heating element (H) (1) was produced by the [Measuring method 4].
作製した導電性組成物(D)(1)の電気抵抗値を前記〔測定法2〕で測定したところ、1.2Ω・cmであった。また作製した導電性繊維材料の単位長さあたりの電気抵抗値を前記〔測定法3〕で測定したところ、5570Ω/cmであった。また、通電時の温度上昇による面状発熱体(H)(1)の電気抵抗値の変化率を前記〔測定法4〕にて測定したところ、6.6%であった。また、導電性組成物(D)(1)の表面の平滑性(動摩擦係数)を〔測定法5〕で測定したところ、0.9であった。結果を表1に示す。 It was 1.2 ohm * cm when the electrical resistance value of produced electroconductive composition (D) (1) was measured by the said [measurement method 2]. In addition, when the electrical resistance value per unit length of the produced conductive fiber material was measured by the above [Measuring method 3], it was 5570 Ω / cm. Further, the rate of change in the electrical resistance value of the sheet heating element (H) (1) due to the temperature rise during energization was measured by the above [Measuring method 4], and was 6.6%. Further, the surface smoothness (coefficient of dynamic friction) of the conductive composition (D) (1) was measured by [Measurement Method 5] and found to be 0.9. The results are shown in Table 1.
カーボンブラックとしてデンカブラックを30重量部用いる代わりに35重量部用い、ケッチェンブラックECを10重量部用いる代わりに5重量部用いた他は、実施例1と同様の操作を行い、導電性塗料(F)(2)、導電性組成物(D)(2)、導電性繊維材料(G)(2)及び面状発熱体(H)(2)を得、実施例1と同様に評価した。評価結果を表1に示す。 The same operation as in Example 1 was performed except that 35 parts by weight of Denka Black was used as carbon black instead of 30 parts by weight, and 5 parts by weight of Ketjen Black EC was used instead of 10 parts by weight. F) (2), conductive composition (D) (2), conductive fiber material (G) (2) and planar heating element (H) (2) were obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
カーボンブラックとしてデンカブラックを30重量部用いる代わりに40重量部用い、ケッチェンブラックECを10重量部用いる代わりに5重量部用い、THFを865重量部用いる代わりに890重量部用いた他は、実施例1と同様の操作を行い、導電性塗料(F)(3)、導電性組成物(D)(3)、導電性繊維材料(G)(3)及び面状発熱体(H)(3)を得、実施例1と同様に評価した。評価結果を表1に示す。 Other than using 40 parts by weight instead of 30 parts by weight of Denka black as carbon black, using 5 parts by weight of Ketjen Black EC instead of 10 parts by weight, and using 890 parts by weight of THF instead of 865 parts by weight. The same operation as in Example 1 was performed, and the conductive paint (F) (3), the conductive composition (D) (3), the conductive fiber material (G) (3), and the planar heating element (H) (3 And evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
カーボンブラックとしてデンカブラックを30重量部用いる代わりに35重量部用い、THFを865重量部用いる代わりに890重量部用いた他は、実施例1と同様の操作を行い、導電性塗料(F)(4)、導電性組成物(D)(4)、導電性繊維材料(G)(4)及び面状発熱体(H)(4)を得、実施例1と同様に評価した。評価結果を表1に示す。 Conductive paint (F) (F) (except that 30 parts by weight of Denka black as carbon black was used, 35 parts by weight was used, and 890 parts by weight of THF was used instead of 865 parts by weight). 4), a conductive composition (D) (4), a conductive fiber material (G) (4), and a planar heating element (H) (4) were obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
〔比較例1〕
カーボンブラックとしてデンカブラックを30重量部用いる代わりに40重量部用い、ケッチェンブラックECを用いなかった他は、実施例1と同様の操作を行い、導電性塗料(F)(5)、導電性組成物(D)(5)、導電性繊維材料(G)(5)及び面状発熱体(H)(5)を得、実施例1と同様に評価した。評価結果を表1に示す。
[Comparative Example 1]
Conductive paint (F) (5), conductive properties are the same as in Example 1, except that 40 parts by weight of Denka black is used instead of 30 parts by weight of carbon black and ketjen black EC is not used. Composition (D) (5), conductive fiber material (G) (5), and sheet heating element (H) (5) were obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
〔比較例2〕
カーボンブラックとしてデンカブラックを30重量部用いる代わりに39重量部用い、ケッチェンブラックECを10重量部用いる代わりに1重量部用いた他は、実施例1と同様の操作を行い、導電性塗料(F)(6)、導電性組成物(D)(6)、導電性繊維材料(G)(6)及び面状発熱体(H)(6)を得、実施例1と同様に評価した。評価結果を表1に示す。
[Comparative Example 2]
The same operation as in Example 1 was performed except that 39 parts by weight of Denka Black as carbon black was used instead of 30 parts by weight and 1 part by weight of Ketjen Black EC was used instead of 10 parts by weight. F) (6), conductive composition (D) (6), conductive fiber material (G) (6) and planar heating element (H) (6) were obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
〔比較例3〕
カーボンブラックとしてデンカブラックを30重量部用いる代わりに25重量部用い、ケッチェンブラックECを10重量部用いる代わりに15重量部用いた他は、実施例1と同様の操作を行い、導電性塗料(F)(7)、導電性組成物(D)(7)、導電性繊維材料(G)(7)及び面状発熱体(H)(7)を得、実施例1と同様に評価した。評価結果を表1に示す。
[Comparative Example 3]
The same operation as in Example 1 was carried out except that 25 parts by weight of Denka Black as carbon black was used instead of 30 parts by weight and 15 parts by weight of Ketjen Black EC was used instead of 10 parts by weight. F) (7), conductive composition (D) (7), conductive fiber material (G) (7) and planar heating element (H) (7) were obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
〔比較例4〕
カーボンブラックとしてデンカブラックを30重量部用いる代わりに90重量部用い、ケッチェンブラックECを用いず、タルクL−1を用いなかった他は、実施例1と同様の操作を行い、導電性塗料(F)(8)、導電性組成物(D)(8)、導電性繊維材料(G)(8)及び面状発熱体(H)(8)を得、実施例1と同様に評価した。評価結果を表1に示す。
[Comparative Example 4]
Instead of using 30 parts by weight of Denka Black as carbon black, 90 parts by weight was used, Ketjen Black EC was not used, and Talc L-1 was not used. F) (8), conductive composition (D) (8), conductive fiber material (G) (8) and planar heating element (H) (8) were obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
〔比較例5〕
カーボンブラックとしてデンカブラック及びケッチェンブラックECを用いず、ジブチルフタレート吸油量が45ml/100gのカーボンブラックである三菱カ−ボンブラック#45L(三菱化学(株)社製)を10重量部用い、グラファイトであるJ−CPB(日本黒鉛工業(株)社製)を90重量部用い、タルクL−1を用いず、THFを865重量部用いる代わりに910重量部用いた他は、実施例1と同様の操作を行い、導電性塗料(F)(9)、導電性組成物(D)(9)、導電性繊維材料(G)(9)及び面状発熱体(H)(9)を得、実施例1と同様に評価した。評価結果を表1に示す。
[Comparative Example 5]
Without using Denka Black and Ketjen Black EC as carbon black, graphite carbon black # 45L (manufactured by Mitsubishi Chemical Corporation), which is carbon black having a dibutyl phthalate oil absorption of 45 ml / 100 g, is used, and graphite is used. The same as in Example 1 except that 90 parts by weight of J-CPB (manufactured by Nippon Graphite Industry Co., Ltd.) was used, talc L-1 was not used, and 910 parts by weight was used instead of 865 parts by weight of THF. To obtain a conductive paint (F) (9), a conductive composition (D) (9), a conductive fiber material (G) (9) and a sheet heating element (H) (9), Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 1.
〔比較例6〕
タルクL−1を用いず、THFを865重量部用いる代わりに635重量部用いた他は、実施例1と同様の操作を行い、導電性塗料(F)(10)、導電性組成物(D)(10)、導電性繊維材料(G)(10)及び面状発熱体(H)(10)を得、実施例1と同様に評価した。評価結果を表1に示す。
[Comparative Example 6]
The same operation as in Example 1 was carried out except that talc L-1 was not used and 635 parts by weight of THF was used instead of 865 parts by weight, and the conductive paint (F) (10), conductive composition (D ) (10), conductive fiber material (G) (10) and planar heating element (H) (10) were obtained and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
表1の結果から、ジブチルフタレート吸油量が250ml/100gを超えるカーボンブラック(b2)を用いなかった比較例1では、通電時の温度上昇による面状発熱体(H)の電気抵抗値の変化率が高すぎるものになってしまった。
また、カーボンブラック混合物(B)中のジブチルフタレート吸油量が100〜250ml/100gのカーボンブラック(b1)の割合が高すぎ、ジブチルフタレート吸油量が250ml/100gを超えるカーボンブラック(b2)の割合が低すぎる比較例2では、通電時の温度上昇による面状発熱体の電気抵抗値の変化率が高すぎるものになってしまった。
また、カーボンブラック混合物(B)中のジブチルフタレート吸油量が100〜250ml/100gのカーボンブラック(b1)の割合が低すぎ、ジブチルフタレート吸油量が250ml/100gを超えるカーボンブラック(b2)の割合が高すぎる比較例3では、導電性組成物(D)の電気抵抗値が低すぎ、また導電性繊維材料(G)の単位長さあたりの電気抵抗値が低すぎて発熱性が悪くなってしまった。
From the results of Table 1, in Comparative Example 1 in which carbon black (b2) having a dibutyl phthalate oil absorption of more than 250 ml / 100 g was not used, the rate of change in the electrical resistance value of the planar heating element (H) due to the temperature rise during energization Has become too expensive.
Further, the proportion of carbon black (b1) having a dibutyl phthalate oil absorption of 100 to 250 ml / 100 g in the carbon black mixture (B) is too high, and the proportion of carbon black (b2) having a dibutyl phthalate oil absorption of 250 ml / 100 g is too high. In Comparative Example 2, which is too low, the rate of change of the electrical resistance value of the planar heating element due to the temperature rise during energization is too high.
In addition, the proportion of carbon black (b1) having a dibutyl phthalate oil absorption of 100 to 250 ml / 100 g in the carbon black mixture (B) is too low, and the proportion of carbon black (b2) having a dibutyl phthalate oil absorption of 250 ml / 100 g is too low. In Comparative Example 3, which is too high, the electrical resistance value of the conductive composition (D) is too low, and the electrical resistance value per unit length of the conductive fiber material (G) is too low, resulting in poor heat generation. It was.
また、ジブチルフタレート吸油量が100〜250ml/100gのカーボンブラック(b1)の使用量が多すぎ、かつジブチルフタレート吸油量が250ml/100gを超えるカーボンブラック(b2)及びタルク(C)を使用していない比較例4では、導電性組成物(D)の電気抵抗値が低すぎ、また導電性繊維材料(G)の単位長さあたりの電気抵抗値が低すぎて発熱性が悪くなってしまった。
また、ジブチルフタレート吸油量が100〜250ml/100gのカーボンブラック(b1)、ジブチルフタレート吸油量が250ml/100gを超えるカーボンブラック(b2)及びタルク(C)を使用せず、ジブチルフタレート吸油量が100ml/100g未満のカーボンブラック及びグラファイトを使用した比較例5では、通電時の温度上昇による面状発熱体の電気抵抗値の変化率が非常に高すぎるものになってしまった。
また、タルク(C)を使用していない比較例6では、導電性組成物(D)の表面平滑性が悪くなってしまった。
Carbon black (b2) and talc (C) in which the amount of carbon black (b1) having a dibutyl phthalate oil absorption of 100 to 250 ml / 100 g is too large and the amount of dibutyl phthalate oil absorption exceeds 250 ml / 100 g is used. In Comparative Example 4, the electrical resistance value of the conductive composition (D) was too low, and the electrical resistance value per unit length of the conductive fiber material (G) was too low, resulting in poor heat generation. .
Also, carbon black (b1) with a dibutyl phthalate oil absorption of 100 to 250 ml / 100 g, carbon black (b2) with a dibutyl phthalate oil absorption of over 250 ml / 100 g, and talc (C) are not used, and the dibutyl phthalate oil absorption is 100 ml. In Comparative Example 5 using less than / 100 g of carbon black and graphite, the rate of change in the electrical resistance value of the planar heating element due to the temperature rise during energization was too high.
Moreover, in the comparative example 6 which is not using talc (C), the surface smoothness of the electroconductive composition (D) has deteriorated.
それに対して、本発明である実施例1〜4では、導電性組成物(D)の電気抵抗値が適度に高く、また導電性繊維材料(G)の単位長さあたりの電気抵抗値も適度に高く、また通電時の温度上昇による面状発熱体の電気抵抗値の変化率が低く抑えられている。 On the other hand, in Examples 1-4 which are this invention, the electrical resistance value of a conductive composition (D) is moderately high, and the electrical resistance value per unit length of a conductive fiber material (G) is also moderate. In addition, the rate of change of the electrical resistance value of the planar heating element due to the temperature rise during energization is kept low.
本発明の導電性組成物(D)を繊維材料(g)に被覆してなる導電性繊維材料(G)は、面状発熱体(H)用の導電性発熱素子等に使用するのに好適であり、本発明の面状発熱体(H)は、電気温布団、育苗用土壌加熱体、融雪・融氷用道路加熱体等に有用である。 The conductive fiber material (G) obtained by coating the fiber composition (D) with the conductive composition (D) of the present invention is suitable for use in a conductive heating element for the planar heating element (H). Thus, the sheet heating element (H) of the present invention is useful for an electric hot futon, a soil heating element for raising seedlings, a road heating element for melting snow and melting ice, and the like.
2… 面状発熱体
4… 発熱層
6… 絶縁層
8… 電極
10… 側端部
2 ...
Claims (5)
ジブチルフタレート吸油量が100〜250ml/100gのカーボンブラック(b1)65〜95重量%及びジブチルフタレート吸油量が250ml/100gを超えるカーボンブラック(b2)35〜5重量%からなるカーボンブラック混合物(B)30〜60重量部と、
1次平均粒子径が1〜20μmのタルク(C)30〜60重量部と、
からなる導電性組成物(D)。 100 parts by weight of polyurethane (A),
Carbon black mixture (B) comprising 65 to 95% by weight of carbon black (b1) having a dibutyl phthalate oil absorption of 100 to 250 ml / 100 g and 35 to 5% by weight of carbon black (b2) having a dibutyl phthalate oil absorption of 250 ml / 100 g 30-60 parts by weight;
30-60 parts by weight of talc (C) having a primary average particle size of 1-20 μm,
A conductive composition (D) comprising:
前記導電性組成物(D)中の前記ポリウレタン(A)100重量部に対する量として500〜1500重量部の溶媒(E)と、
からなる導電性塗料(F)。 The conductive composition (D) according to claim 1,
500 to 1500 parts by weight of the solvent (E) as an amount with respect to 100 parts by weight of the polyurethane (A) in the conductive composition (D);
A conductive paint (F) comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006048677A JP2007224207A (en) | 2006-02-24 | 2006-02-24 | Electroconductive composition, electroconductive coating material, electroconductive fiber material, method for producing electroconductive fiber material, and flat heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006048677A JP2007224207A (en) | 2006-02-24 | 2006-02-24 | Electroconductive composition, electroconductive coating material, electroconductive fiber material, method for producing electroconductive fiber material, and flat heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007224207A true JP2007224207A (en) | 2007-09-06 |
Family
ID=38546305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006048677A Pending JP2007224207A (en) | 2006-02-24 | 2006-02-24 | Electroconductive composition, electroconductive coating material, electroconductive fiber material, method for producing electroconductive fiber material, and flat heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007224207A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009543288A (en) * | 2006-06-27 | 2009-12-03 | ナオス カンパニー リミテッド | Planar heating element using carbon microfiber and method for producing the same |
WO2009147703A1 (en) * | 2008-06-02 | 2009-12-10 | 株式会社アプレックス | Roll type planar heat-generating heater |
KR101190104B1 (en) | 2007-10-23 | 2012-10-11 | 가부시키가이샤 호시노산쇼 | Paint and plane heater using the paint |
JP5729797B1 (en) * | 2014-08-25 | 2015-06-03 | スリーエステクノ株式会社 | Conductive paint and planar heating element using conductive paint |
KR102259236B1 (en) * | 2020-12-16 | 2021-06-03 | 주식회사 디에이티신소재 | Composition of carbon nanotube paste for flat heating element device, flat heating element device comprising the same and film heater for preventing winter damage of water pipe using carbon nanotube |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52138102A (en) * | 1975-11-25 | 1977-11-18 | Fujitsu Ltd | Magnetic recording media composition |
JPS63253529A (en) * | 1987-04-09 | 1988-10-20 | Konica Corp | Magnetic recording medium |
JPH05255520A (en) * | 1992-01-17 | 1993-10-05 | Mitsubishi Petrochem Co Ltd | Production of sliding member |
JP2002162812A (en) * | 2000-08-02 | 2002-06-07 | Canon Chemicals Inc | Electric conductive member, process cartridge, and electrophotographic device |
JP2002168235A (en) * | 2000-11-30 | 2002-06-14 | Canon Chemicals Inc | Electric conducting role and electronic photographic apparatus |
JP2002309102A (en) * | 2001-04-13 | 2002-10-23 | Sumitomo Chem Co Ltd | Process for preparation of thermoplastic resin composition, and composition |
JP2003165904A (en) * | 2001-11-29 | 2003-06-10 | Toray Ind Inc | Reinforced thermoplastic resin composition |
JP2007084949A (en) * | 2005-09-21 | 2007-04-05 | Nippon Zeon Co Ltd | Electroconductive fiber material, electroconductive coating material, method for producing the electroconductive fiber material, and planar heating element |
-
2006
- 2006-02-24 JP JP2006048677A patent/JP2007224207A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52138102A (en) * | 1975-11-25 | 1977-11-18 | Fujitsu Ltd | Magnetic recording media composition |
JPS63253529A (en) * | 1987-04-09 | 1988-10-20 | Konica Corp | Magnetic recording medium |
JPH05255520A (en) * | 1992-01-17 | 1993-10-05 | Mitsubishi Petrochem Co Ltd | Production of sliding member |
JP2002162812A (en) * | 2000-08-02 | 2002-06-07 | Canon Chemicals Inc | Electric conductive member, process cartridge, and electrophotographic device |
JP2002168235A (en) * | 2000-11-30 | 2002-06-14 | Canon Chemicals Inc | Electric conducting role and electronic photographic apparatus |
JP2002309102A (en) * | 2001-04-13 | 2002-10-23 | Sumitomo Chem Co Ltd | Process for preparation of thermoplastic resin composition, and composition |
JP2003165904A (en) * | 2001-11-29 | 2003-06-10 | Toray Ind Inc | Reinforced thermoplastic resin composition |
JP2007084949A (en) * | 2005-09-21 | 2007-04-05 | Nippon Zeon Co Ltd | Electroconductive fiber material, electroconductive coating material, method for producing the electroconductive fiber material, and planar heating element |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009543288A (en) * | 2006-06-27 | 2009-12-03 | ナオス カンパニー リミテッド | Planar heating element using carbon microfiber and method for producing the same |
KR101190104B1 (en) | 2007-10-23 | 2012-10-11 | 가부시키가이샤 호시노산쇼 | Paint and plane heater using the paint |
WO2009147703A1 (en) * | 2008-06-02 | 2009-12-10 | 株式会社アプレックス | Roll type planar heat-generating heater |
JP5729797B1 (en) * | 2014-08-25 | 2015-06-03 | スリーエステクノ株式会社 | Conductive paint and planar heating element using conductive paint |
KR102259236B1 (en) * | 2020-12-16 | 2021-06-03 | 주식회사 디에이티신소재 | Composition of carbon nanotube paste for flat heating element device, flat heating element device comprising the same and film heater for preventing winter damage of water pipe using carbon nanotube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mates et al. | Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics | |
US10329435B2 (en) | Electrothermal coating with nanostructures mixture and method for making the same | |
WO2015076390A1 (en) | Carbon heating composition and carbon heating element | |
JP2007224207A (en) | Electroconductive composition, electroconductive coating material, electroconductive fiber material, method for producing electroconductive fiber material, and flat heater | |
KR20080030410A (en) | Conductive ink-composition for flat type pyrogen and flat type pyrogen using with the ink composition | |
JPS6239678A (en) | Polymer thick film ink and its use | |
JPWO2007018000A1 (en) | Conductive fibers and brushes | |
JP2014133842A (en) | Conductive resin composition | |
JP2018060760A (en) | Planar heating element, planar heating device, planar heating element electrode, and method for manufacturing planar heating element | |
JP2006206706A (en) | Heat-treated conductive composition, conductive coating having the same, conductive fiber material, and flat heater | |
KR20150095406A (en) | Printable high heat resistance heating paste composition | |
JP7514174B2 (en) | Sheet heating element and its manufacturing method | |
JP6341885B2 (en) | Heating element | |
KR101434565B1 (en) | Thick membrane type PTC heating element with Conductive paste composition | |
JPWO2005012428A1 (en) | Conductive composition, conductive paint, conductive fiber material, and planar heating element | |
JP2007084949A (en) | Electroconductive fiber material, electroconductive coating material, method for producing the electroconductive fiber material, and planar heating element | |
JP2007077551A (en) | Conductive fiber, raised fabric for conductive brush, conductive brush | |
JP2006202575A (en) | Conductive composition, conductive paint, conductive fibrous material, and planar heating element | |
JP6940711B1 (en) | Plane heating element and water-based paint | |
RU2573594C1 (en) | Resistive carbon composite material | |
JP2006206707A (en) | Radiation-treated conductive composition, conductive coating having the same, conductive fiber material, and flat heater | |
JP5894755B2 (en) | Method for producing fluorinated carbon nanofiber and method for producing fluorinated carbon nanofiber-containing material | |
JP2020136153A (en) | Conductive composition and planar heating element | |
KR101551180B1 (en) | Manufacturing method of electrically conductive composition for coating plane heater, and electrically conductive composition for coating plane heater | |
JP5514452B2 (en) | Conductive resin composition and molded body thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080811 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090223 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110426 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120724 |