JPH0439814A - Manufacture of conductive sheet - Google Patents

Manufacture of conductive sheet

Info

Publication number
JPH0439814A
JPH0439814A JP14705290A JP14705290A JPH0439814A JP H0439814 A JPH0439814 A JP H0439814A JP 14705290 A JP14705290 A JP 14705290A JP 14705290 A JP14705290 A JP 14705290A JP H0439814 A JPH0439814 A JP H0439814A
Authority
JP
Japan
Prior art keywords
kneading
sheet
carbon black
conductive sheet
assistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14705290A
Other languages
Japanese (ja)
Inventor
Hiroaki Arai
啓哲 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP14705290A priority Critical patent/JPH0439814A/en
Publication of JPH0439814A publication Critical patent/JPH0439814A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently manufacture a conductive sheet provided with a PCT mechanism and having a uniform high temperature heat generating property, high strength and flexibility by adding a specific kneading assistant into a mixture of fiber polytetrafluoroethylene (PTFE) and carbon black, followed by kneading, and forming the resultant kneaded material into a sheet by means of a rolling mill. CONSTITUTION:Fiber polytetrafluoroethylene and carbon black are mixed in a powdery state. As a kneading assistant, liquid, where a silicone resin is dissolved in glycerine or 2-methyl-2,4 pentane diol solvent easy to be removed by flushing, is added into the mixture powder. The resultant component powder incorporating the kneading assistant therein is sufficiently kneaded in a kneader capable of applying a shearing force, such as a rotary-wing kneader. A kneaded material is formed into a thin film sheet by a rolling mill for passing the material between rolls of one or plural systems. Therefore, a conductive sheet having a PTC mechanism suitable for a heating element in addition to a uniform high temperature heat generating property, high strength and flexibility can be mass- produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、均一な高温発熱性とPCT機構を併有し、高
強度で屈曲可能な可撓性を備える導電性シートの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a conductive sheet that has uniform high temperature heat generation properties and a PCT mechanism, and has high strength and bendable flexibility.

[従来の技術] カーボンブラックは本質的に電気伝導性を有する微粉末
であるため、古くから樹脂材料等の導電フィラーとして
の利用が試みられている。ところが、カーボンブラック
はマトリックス樹脂との親和性に乏しい関係で、多量の
配合範囲において十分な均一分散性を得ることが困難で
ある。
[Prior Art] Since carbon black is essentially a fine powder that has electrical conductivity, attempts have been made to use it as a conductive filler for resin materials and the like for a long time. However, carbon black has poor affinity with matrix resins, so it is difficult to obtain sufficient uniform dispersibility in a large amount range.

このような問題点を解消する目的で、熱可塑性樹脂と導
電性カーボンブラックとを混練するにあたり各成分をフ
ィブリル化したポリテトラフルオロエチレン(PTFE
)による拘束状態で混線処理することを内容とした導電
性樹脂組成物の製造方法が提案されている(特公昭62
−55533号公報)。しかしながら、この方法によっ
てもカーボンブラックの配合量は組成物全量に対して5
0重量%が限度であり、これ以上の配合は機械的強度、
成形性などを損ねる原因となる。したがって、実質的に
付与する導電性能にも限界を伴う難点がある。
In order to solve these problems, when kneading thermoplastic resin and conductive carbon black, we used polytetrafluoroethylene (PTFE), which is made by fibrillating each component.
) has been proposed (Japanese Patent Publication No. 62
-55533). However, even with this method, the amount of carbon black added is 5% based on the total amount of the composition.
The upper limit is 0% by weight, and adding more than this will result in poor mechanical strength,
This may cause deterioration in moldability, etc. Therefore, there is a drawback that there is a limit to the electrical conductivity that can be substantially imparted.

本出願人は上記の事態に鑑み、マトリックス樹脂を使用
しない組成系の導電性シートの製造方法として、繊維化
可能な弗素樹脂にカーボンブラックのような炭素質粉末
を混合し、混練助剤を加えて混練したのち抄紙法でシー
トに形成したものを一定の条件下で熱圧成形するプロセ
スを開発(特開平1−169809号)し、さらにこの
改良技術として繊維化性のポリテトラフルオロエチレン
とカーボンブラックの混合粉に混練助剤を加えて混練し
、混練物をロール圧延によりシート化することを特徴と
する導電性シートの製造方法を提案(特願平1−186
333号)した。
In view of the above situation, the present applicant has developed a method for producing a conductive sheet with a composition that does not use a matrix resin by mixing a carbonaceous powder such as carbon black with a fluororesin that can be made into fibers, and adding a kneading aid. He developed a process (Japanese Unexamined Patent Publication No. 1-169809) in which the material is kneaded and then formed into a sheet using a papermaking method and then hot-pressed under certain conditions. We proposed a method for producing a conductive sheet, which is characterized by adding a kneading aid to a black mixed powder, kneading it, and rolling the kneaded product into a sheet (Patent application No. 1-186).
No. 333).

〔発明が解決しようとする諜M] これら先行技術のうち、ロール圧延法を用いてシート化
する後者の方法は成形能率およびシート強度の面で優れ
ており工業化手段として有効であるが、カーボンブラッ
クの最適配合量が80〜90重量%と著しく多量となる
ためにシートの発熱温度と電気比抵抗との関係がフラ・
7トもしくは負の傾向を示し、電流の制御化を難しくす
る問題点がある。
[Intelligence M to be Solved by the Invention] Among these prior art methods, the latter method of forming a sheet using a roll rolling method is excellent in terms of forming efficiency and sheet strength and is effective as a means for industrialization, but carbon black Since the optimal blending amount is extremely large at 80 to 90% by weight, the relationship between the heat generation temperature and the electrical resistivity of the sheet becomes flat.
There is a problem that it shows a negative trend or a negative tendency, making it difficult to control the current.

本発明は、前記特願平1−186333号による方法に
材質的な改良を加えることにより温度と電気比抵抗の関
係を発熱体として好適な自己調整機能のある正の方向(
PCT機構)に改質したものである。したがって、本発
明の目的は、均一な高温発熱性とPCT機構を兼備する
高強度で可撓性の導電性シートを効率よく製造する方法
を提供するところにある。
The present invention improves the material properties of the method disclosed in Japanese Patent Application No. 1-186333 to change the relationship between temperature and electrical resistivity in the positive direction (with a suitable self-adjusting function) as a heating element.
PCT mechanism). Therefore, an object of the present invention is to provide a method for efficiently manufacturing a high-strength, flexible conductive sheet that has both uniform high-temperature heat generation properties and a PCT mechanism.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するための本発明による導電性シート
の製造方法は、繊維化性のポリテトラフルオロエチレン
(PTF[りとカーボンブラックの混合物にシリコーン
樹脂をグリセリンまたは2−メチル−2,4ペンタンジ
オールに溶解した混練助剤を加えて混練し、混練物をロ
ール圧延によりシート化することを構成上の特徴とする
A method for producing a conductive sheet according to the present invention to achieve the above object is to add a silicone resin to a mixture of fibrous polytetrafluoroethylene (PTF) and carbon black in glycerin or 2-methyl-2,4-pentane. The structural feature is that a kneading aid dissolved in diol is added and kneaded, and the kneaded product is formed into a sheet by roll rolling.

本発明に用いられる繊維化性のポリテトラフルオロエチ
レン(PTFE)は、シートの骨格組織を形成するため
に機能する成分で、剪断力あるいは圧縮力を加えること
によって容易に繊維状態に転化する特性のものが選択使
用される。この種の繊維化性ポリテトラフルオロエチレ
ン(PTFE)は、通常、in末するいはサスペンショ
ンの形態で市販されているが、本発明の目的には粒子径
0.5μ−以下の微粉末を適用することが望ましい。粒
子径が0゜5μmを越すと形成される繊維径が太くなっ
て局部的な電気比抵抗の増大を招くことがある。
The fibrous polytetrafluoroethylene (PTFE) used in the present invention is a component that functions to form the skeletal structure of the sheet, and has the property of easily converting into a fibrous state by applying shearing or compressive force. The ones used are selective. This type of fibrous polytetrafluoroethylene (PTFE) is usually commercially available in the form of powder or suspension, but for the purpose of the present invention, fine powder with a particle size of 0.5μ or less is used. It is desirable to do so. If the particle size exceeds 0.5 μm, the diameter of the formed fibers becomes thick, which may lead to a local increase in electrical resistivity.

カーボンブラックは形成シートに導電性を付与するため
の基本成分となるもので、ファーネスブラック、アセチ
レンフ゛ランク、チャン不ルフ゛ラック、サーマルブラ
ック、副生ブラックなど各種のものが適用可能であるが
、とくに窒素吸着比表面積(N2SA)が40 m2/
g以上、DBP吸油量が50 Id/100g以上の粒
子性状をもつ品種から選定することが好ましい。
Carbon black is a basic component for imparting conductivity to the formed sheet, and various types such as furnace black, acetylene black, carbon black, thermal black, and by-product black can be used, but nitrogen Adsorption specific surface area (N2SA) is 40 m2/
It is preferable to select from types having particle properties with a DBP oil absorption of 50 Id/100g or more.

上記の繊維化性ポリテトラフルオロエチレン(PTFB
)とカーボンブラックは粉末状態で混合される。
The above-mentioned fibrous polytetrafluoroethylene (PTFB)
) and carbon black are mixed in powder form.

この際のカーボンブラック配合量は、全成分中に占める
比率として55〜70重量%に設定することが望ましい
。この配合比率が55重量%未満であると導電性能が不
足し、70重量%を越えるとPTC機能の付与が困難と
なる。
At this time, the amount of carbon black to be blended is desirably set to 55 to 70% by weight as a proportion of the total components. If the blending ratio is less than 55% by weight, the conductive performance will be insufficient, and if it exceeds 70% by weight, it will be difficult to provide the PTC function.

これら成分の混合粉末には、混練助剤として水洗浄で容
易に除去することができるグリセリンまたは2−メチル
−2,4ペンタンジオール溶剤にシリコーン樹脂を溶解
した液が添加される。混練助剤の添加量は、概ねカーボ
ンブラック量の1〜1.5倍量の範囲とするのがよい。
A solution prepared by dissolving a silicone resin in glycerin or 2-methyl-2,4-pentanediol solvent, which can be easily removed by washing with water, is added to the mixed powder of these components as a kneading aid. The amount of the kneading aid added is preferably in the range of approximately 1 to 1.5 times the amount of carbon black.

シリコーン樹脂は、体積膨張率が7 X 10−4cc
/cc ’C以上の高熱膨張特性のものから選択し、前
記の原料混合粉末に対し20〜40重量%(内割)の範
囲量で使用することが好適である0体積膨張率が7 X
 I O−4cc/cc ′(未満であり、前記使用量
が20重量%を下田る場合には熱膨張特性が不足してP
TC機能が付与されなくなり、また前記使用量が40重
量%を越えると粘度が増大して円滑な混線ができなくな
る。
Silicone resin has a volume expansion coefficient of 7 x 10-4cc
It is preferable to select from those with high thermal expansion properties of /cc 'C or more and use in an amount in the range of 20 to 40% by weight (internal division) based on the raw material mixed powder.
If the amount used is less than 20% by weight, the thermal expansion properties will be insufficient and P
The TC function is no longer imparted, and if the amount used exceeds 40% by weight, the viscosity increases and smooth crosstalk becomes impossible.

混練助剤を加えた成分粉末は、回転翼二一ダーのような
剪断力がかかる混練機に入れて十分に混練する。混線の
条件は特に限定されるものではないが、温度を100°
C以上に保持した加熱状態で5 rp−を越えない低い
回転数により処理したときに最も細繊化が進行し、シー
ト強度が上昇する。
The component powder to which the kneading aid has been added is thoroughly kneaded by putting it into a kneader that applies shearing force, such as a rotary vane mixer. The conditions for crosstalk are not particularly limited, but the temperature is 100°
When processed at a low rotational speed not exceeding 5 rp- in a heated state maintained at a temperature of C or higher, fibrillation progresses the most and sheet strength increases.

ついで、混練物を1系列(2本)または複数系列のロー
ル間を通過させるロール圧延により、厚さ100〜20
00μm程度の薄膜状シートに成形する。成形されたシ
ートは、引続き水中で洗浄することにより溶剤成分であ
るグリセリンまたは2−メチル−2,4ペンタンジオー
ルを溶解除去し、乾燥する。
Next, the kneaded material is rolled to a thickness of 100 to 20 mm by passing between one series (two rolls) or multiple series of rolls.
Form into a thin film sheet with a thickness of about 00 μm. The formed sheet is subsequently washed in water to dissolve and remove the solvent component glycerin or 2-methyl-2,4 pentanediol, and then dried.

洗浄後のシートは、必要に応し200 ”C以上の温度
で熱圧処理をおこなって本発明の導電性シートを得る。
The sheet after washing is subjected to heat-pressure treatment at a temperature of 200''C or higher, if necessary, to obtain the conductive sheet of the present invention.

〔作 用] 上記のプロセスにおいて、繊維化性のポリテトラフルオ
ロエチレンは、混練過程において混練助剤が介在する剪
断力の付加環境で繊維に転化し、カーボンブラック組織
中に均等に分散して絡み合い作用により多量のカーボン
ブラ・2り成分を担持する機能を果たす。同時に混練助
剤の1部を構成するシリコーン樹脂成分も全組織内に均
一に分散されるが、該成分は混練およびロール圧延時に
はバインダーとして働き、導電性シートの発熱時におい
ては熱膨張性に基づ<PTC機能を発揮して抵抗の自己
調整作用を営む。
[Function] In the above process, fibrous polytetrafluoroethylene is converted into fibers in an environment where shearing force is applied through the presence of a kneading aid during the kneading process, and the fibers are evenly dispersed and entangled in the carbon black structure. It functions to support a large amount of carbon bra and two components. At the same time, the silicone resin component that constitutes a part of the kneading aid is also uniformly dispersed throughout the structure, but this component acts as a binder during kneading and roll rolling, and when the conductive sheet generates heat, it is based on thermal expansion. It exhibits the PTC function and carries out self-regulating action of resistance.

このような作用が総合して、広い面積でも電気抵抗にば
らつきがなく、骨格強度が堅固で、均一な高温発熱性と
優れた可撓性を備える導電性シートの効率的な製造が可
能となる。
Collectively, these effects make it possible to efficiently manufacture a conductive sheet that has uniform electrical resistance even over a wide area, strong skeletal strength, uniform heat generation at high temperatures, and excellent flexibility. .

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明する。 Examples of the present invention will be described below in comparison with comparative examples.

実施例1〜4、比較例1〜2 繊維化性のポリテトラフルオロエチレン(PTFE)(
三井デュポンフロロケミカル社製、6C−J)に平均粒
子径43n++、窒素吸着比表面積(Nz 5A)42
 m” /g、、DBP吸油量115 m/100gの
特性を有するカーボンブラック(東海カーボン■製、ノ
ーストSO)を配合比を変えて混合し、該混合粉末に体
積膨張率が0. 096cc/cc ’Cのンリコーン
m脂D−レ・ダウコーニング・シリコーン社製S E1
886G E L )を各種割合で2−メチル2.4ペ
ンタンジオール〔関東化学■製]に溶解した混練助剤を
カーボンブラックと同一重量添加した。この混合成分を
回転翼型ニーグーに投入し、100°Cの温度に保持し
なから5 rpmの回転速度で10分間混練した。
Examples 1 to 4, Comparative Examples 1 to 2 Fiberizable polytetrafluoroethylene (PTFE) (
Manufactured by Mitsui DuPont Fluorochemical Co., Ltd., 6C-J) with an average particle diameter of 43n++ and a nitrogen adsorption specific surface area (Nz 5A) of 42
m"/g, DBP oil absorption of 115 m/100 g. Carbon black (manufactured by Tokai Carbon ■, Norst SO) was mixed at different blending ratios, and the mixed powder had a volumetric expansion coefficient of 0.096 cc/cc. 'C's Silicone M Fat D-Le Dow Corning Silicone Co., Ltd. S E1
A kneading aid prepared by dissolving 886GEL) in various proportions in 2-methyl 2.4pentanediol (manufactured by Kanto Kagaku ■) was added in the same weight as carbon black. The mixed components were put into a rotary vane-type Nigu and kneaded for 10 minutes at a rotational speed of 5 rpm while maintaining the temperature at 100°C.

ついで、混練物を1系列(2本)ロール間を通してシー
ト化した。成形したシートを水中に1時間浸して2−メ
チル−2,4ペンタンジオールを溶解除去し、乾燥した
のち、セラミックシートの間に挟み温度200°C1圧
力11 kg/cm”の条件で熱圧処理を施した。
Then, the kneaded material was passed through one series (two rolls) of rolls to form a sheet. The formed sheet was soaked in water for 1 hour to dissolve and remove 2-methyl-2,4 pentanediol, dried, and then sandwiched between ceramic sheets and heat-pressure treated at a temperature of 200°C and a pressure of 11 kg/cm. was applied.

このようにして、縦横2500m+*、厚さ200μ−
(平均)の薄膜導電性シートを製造した。
In this way, the length and breadth of 2500m+* and the thickness of 200μ-
(average) thin film conductive sheets were produced.

比較のために、シリコーン樹脂を加えない混練助剤を用
い、その他は上記と同一条件により導電性シートを製造
した(比較例)。
For comparison, a conductive sheet was manufactured under the same conditions as above except that a kneading aid without silicone resin was used (comparative example).

得られた各導電性ソートの特性を測定し、適用した成分
配合比率と対比させて表1に示した。表1の結果から、
実施例で製造した導電性ノートは比較例のそれに比べて
電気比抵抗が上昇し、引張強さ、伸び等の特性も改善さ
れていることが認められる。
The characteristics of each conductive sort obtained were measured and shown in Table 1 in comparison with the applied component blending ratio. From the results in Table 1,
It can be seen that the electrical resistivity of the conductive notebooks manufactured in the Examples is increased compared to that of the Comparative Examples, and properties such as tensile strength and elongation are also improved.

次に、実施例による導電性ノートの両端部に幅10++
mの銅網を圧着してターミナルを形成し、このターミナ
ルに通電して発熱テストをおこなった。
Next, a width of 10++ is applied to both ends of the conductive note according to the example.
A terminal was formed by crimping a copper mesh of 50 m in length, and a heat generation test was conducted by applying electricity to the terminal.

この測定結果から得られた発熱温度と電気比抵抗の関係
を第1図に、また実施例3のノートを200°Cに発熱
させた際の/−ト面9ケ所について計測した温度分布を
第2図に示した。
Figure 1 shows the relationship between the heat generation temperature and electrical resistivity obtained from this measurement result, and Figure 1 shows the temperature distribution measured at 9 points on the /-to surface when the notebook of Example 3 was heated to 200°C. It is shown in Figure 2.

これらの図から、本発明により得られる導電性シートは
温度分布にばらつきのない均一な高温発熱性を示し、発
熱温度による比抵抗が正の傾向を示すPTC@構を有し
ていることが判明する。
From these figures, it is clear that the conductive sheet obtained by the present invention exhibits uniform high-temperature heat generation properties with no variation in temperature distribution, and has a PTC@ structure in which the specific resistance depending on the heat generation temperature tends to be positive. do.

〔発明の効果) 以上のとおり、本発明によれば高温均一発熱性、高強度
性、可撓性などのほか、発熱体の具備特性として好適な
PTC機構をもつ導電性シートを量産性よく製造するこ
とができる。したがって、民生用および工業用に供され
る各種面状発熱体として広汎な用途が期待される。
[Effects of the Invention] As described above, according to the present invention, a conductive sheet having uniform heating properties at high temperatures, high strength, flexibility, etc., as well as a PTC mechanism suitable as a characteristic characteristic of a heating element, can be manufactured with good mass production. can do. Therefore, it is expected to have a wide range of uses as various sheet heating elements for consumer and industrial use.

【図面の簡単な説明】[Brief explanation of the drawing]

図は実施例による導電性シートの発熱テストの結果を示
したもので、第1図は発熱温度と電気比抵抗との関係図
、第2図は温度分布の状態図である。 出願人  東海カーボン株式会社 代理人 弁理士 高 畑 正 也
The figures show the results of a heat generation test of a conductive sheet according to an example, in which Figure 1 is a relationship diagram between heat generation temperature and electrical specific resistance, and Figure 2 is a state diagram of temperature distribution. Applicant Tokai Carbon Co., Ltd. Agent Patent Attorney Masaya Takahata

Claims (2)

【特許請求の範囲】[Claims] 1.繊維化性のポリテトラフルオロエチレン(PTFE
)とカーボンブラックの混合物にシリコーン樹脂をグリ
セリンまたは2−メチル−2,4ペンタンジオールに溶
解した混練助剤を加えて混練し、混練物をロール圧延に
よりシート化することを特徴とする導電性シートの製造
方法。
1. Fibrous polytetrafluoroethylene (PTFE)
) and carbon black, a kneading aid in which a silicone resin is dissolved in glycerin or 2-methyl-2,4-pentanediol is added and kneaded, and the kneaded product is formed into a sheet by roll rolling. manufacturing method.
2.繊維化性のポリテトラフルオロエチレン(PTFE
)とカーボンブラックの混合物に対し、体積膨張率が7
×10^−^4cc/cc℃以上のシリコーン樹脂を2
0〜40重量%(内割)の範囲量で使用する請求項1記
載の導電性シートの製造方法。
2. Fibrous polytetrafluoroethylene (PTFE)
) and carbon black, the volumetric expansion coefficient is 7.
×10^-^4cc/cc℃ or higher silicone resin 2
The method for producing a conductive sheet according to claim 1, wherein the amount is used in a range of 0 to 40% by weight.
JP14705290A 1990-06-05 1990-06-05 Manufacture of conductive sheet Pending JPH0439814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14705290A JPH0439814A (en) 1990-06-05 1990-06-05 Manufacture of conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14705290A JPH0439814A (en) 1990-06-05 1990-06-05 Manufacture of conductive sheet

Publications (1)

Publication Number Publication Date
JPH0439814A true JPH0439814A (en) 1992-02-10

Family

ID=15421416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14705290A Pending JPH0439814A (en) 1990-06-05 1990-06-05 Manufacture of conductive sheet

Country Status (1)

Country Link
JP (1) JPH0439814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381918B1 (en) * 2001-02-20 2003-04-26 엘지전선 주식회사 Method for overcurrent protecting PTC polymer fuse
JP2009193904A (en) * 2008-02-18 2009-08-27 Panasonic Corp Planar heating element
JP2010507247A (en) * 2006-10-17 2010-03-04 コンフラックス・アーベー Heating element
WO2014196629A1 (en) * 2013-06-07 2014-12-11 矢崎総業株式会社 Bus bar module and power supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381918B1 (en) * 2001-02-20 2003-04-26 엘지전선 주식회사 Method for overcurrent protecting PTC polymer fuse
JP2010507247A (en) * 2006-10-17 2010-03-04 コンフラックス・アーベー Heating element
US8367986B2 (en) 2006-10-17 2013-02-05 Conflux Ab Heating element
JP2009193904A (en) * 2008-02-18 2009-08-27 Panasonic Corp Planar heating element
WO2014196629A1 (en) * 2013-06-07 2014-12-11 矢崎総業株式会社 Bus bar module and power supply device

Similar Documents

Publication Publication Date Title
JP2595396B2 (en) Manufacturing method of conductive composite
CN110318118A (en) Flexible highly conductive wool top fiber of one kind and preparation method thereof
Zhang et al. High dielectric performance composites with a hybrid BaTiO3/graphene as filler and poly (vinylidene fluoride) as matrix
JPH03289004A (en) Conductive resin composite
KR100642622B1 (en) Resin-basd Caron Nanotube Hybrid Materials with High Thermal Conductivity
JPH0439814A (en) Manufacture of conductive sheet
JPH01101373A (en) Electrically conductive composition
JP2007224207A (en) Electroconductive composition, electroconductive coating material, electroconductive fiber material, method for producing electroconductive fiber material, and flat heater
JP2006206706A (en) Heat-treated conductive composition, conductive coating having the same, conductive fiber material, and flat heater
JPH0349184A (en) Manufacture of conducting sheet
JP2005060204A (en) Conductive material-covered expanded graphite, graphite based conductive filler, conductive rubber material, rubber molding and method for producing rubber molding
JP2588033B2 (en) Flexible sheet heating element and manufacturing method thereof
CN114573844A (en) Pearl-mother-like aramid fiber-mica nano paper and preparation method thereof
Orhun et al. Design of dual‐conductive polyacrylonitrile‐based composite nanofiber: Synergistic effect of copper nanoparticles decorated‐boron nitride and polyaniline
JPH11354261A (en) Sheet-like heating element
TWI763082B (en) Paper recycling and remaking conductive paper and its making method
KR20210003419A (en) Manufacturing method of planar heating element using graphene carbon fiber heating paper
JPH03234751A (en) Production of plane heating element with high electrical resistance
JPH03179687A (en) Manufacture of flexible facial heating element
KR100847055B1 (en) Planar heating apparatus and method of making the same
JPH0831554A (en) Panel heat radiating body
JPH01101372A (en) Electrically conductive composite resin composition
Wu et al. Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites
JPH0349181A (en) Far infrared radiating sheet heating element
JPH0584865A (en) Composite damping steel plate excellent in spot weldability