JPH03179687A - Manufacture of flexible facial heating element - Google Patents

Manufacture of flexible facial heating element

Info

Publication number
JPH03179687A
JPH03179687A JP31859389A JP31859389A JPH03179687A JP H03179687 A JPH03179687 A JP H03179687A JP 31859389 A JP31859389 A JP 31859389A JP 31859389 A JP31859389 A JP 31859389A JP H03179687 A JPH03179687 A JP H03179687A
Authority
JP
Japan
Prior art keywords
powder
heating element
sheet
graphite powder
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31859389A
Other languages
Japanese (ja)
Inventor
Hiroaki Arai
啓哲 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP31859389A priority Critical patent/JPH03179687A/en
Publication of JPH03179687A publication Critical patent/JPH03179687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PURPOSE:To effectively mass-product a facial heating element that is equally heated at a predetermined temperature ranging from lower temperature to higher by kneading component powder in which graphite powder, ceramics powder and fiber polytetrafluoroethylene are mixed with one another, after a kneading agent is added thereto, and by forming the kneaded material to a sheet through rolling. CONSTITUTION:A kneading agent is added to the component powder in which 95-10weight% of graphite powder, 4-70weight% of ceramics powder, and 1-20weight% of fiber polytetrafluoroethylene are mixed with one another, which is kneaded, and the kneaded material is formed into a sheet by rolling. By mixing the graphite powder and the ceramics powder together at a mixing ratio that is preliminarily set based on the measurement of the resistance characteristics of a heating element, a desired resistance value can be obtained. By changing the component mixing ratio of the graphite powder, the ceramics powder and the fiber polytetrafluoroethylene, desired resistance characteristics can be imparted to the heating element, and a facial heating element in a thin film of high and equal heating characteristics, high intensity, and of flexibility, can be obtained at a low voltage thereby.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、所望の電気比抵抗を付与することができ、優
れた均一発熱性と屈曲可能な可撓性を備える面状発熱体
の製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to the production of a planar heating element that can be imparted with a desired electrical resistivity, has excellent uniform heating properties, and bendable flexibility. Regarding the method.

〔従来の技術〕[Conventional technology]

黒鉛は非金属物質のうち最も電気伝導性Gこ優れている
ため、金属粉とともに微粉末として樹脂材料等の導電フ
ィラーとしての利用が試みられている。面状発熱体とし
ては、例えば黒鉛、金属などの導電性粉末を樹脂または
ゴム材料に練り込んで板状に成形したもの(特公昭62
−25694号公報〉がある。しかしながら、この種の
発熱体は耐熱度(又は使用上限温度)がマトリックスと
なる樹脂あるいはゴム材料の耐熱性に支配される。
Since graphite has the highest electrical conductivity among non-metallic substances, attempts have been made to use it as a fine powder together with metal powder as a conductive filler for resin materials and the like. As a sheet heating element, for example, a conductive powder such as graphite or metal is kneaded into a resin or rubber material and formed into a plate shape (Japanese Patent Publication No. 62
-25694 Publication>. However, the heat resistance (or upper limit temperature for use) of this type of heating element is controlled by the heat resistance of the matrix resin or rubber material.

本出願人は、マトリックス樹脂を使用しない組成系の導
電性シートの製造方法として、繊維化可能な弗素樹脂に
カーボンブランクのような炭素質粉末を混合し、l昆練
助剤を加えて7昆練したのち抄紙法でシートに形成した
ものを一定の条件下で熱圧成形するプロセスを開発(特
開平1−169809号)し、さらにこの改良技術とし
て繊維化性のポリテトラフルオロエチレンとカーボンブ
ラックの混合粉に混練助剤を加えて混練し、混練物をロ
ール圧延によりシート化することを特徴とする特許ソー
トの製造方法を提案(特願平1−186333号)した
As a method for manufacturing a conductive sheet with a composition that does not use a matrix resin, the present applicant has developed a method of manufacturing a conductive sheet with a composition that does not use a matrix resin by mixing a carbonaceous powder such as a carbon blank with a fluororesin that can be made into fibers, and adding a kneading aid to the mixture. After kneading, we developed a process in which the sheet was formed into a sheet using a papermaking method and then hot-pressed under certain conditions (Japanese Patent Application Laid-Open No. 1-169809), and as an improved technology, we added fiber-forming polytetrafluoroethylene and carbon black. proposed a patented method for manufacturing sorting (Japanese Patent Application No. 1-186333), which is characterized in that the mixed powder is kneaded with a kneading aid, and the kneaded product is rolled into a sheet.

〔発明が解決ようとする課題] これらの方法によれば耐熱度の高い繊維化弗素系成分が
骨格組織を形成して可撓性のある薄い面状発熱ノートを
製造することができるが、電気比抵抗の制御は専ら導電
性材料となるカーボンブラックと弗素樹脂成分の配合比
もしくはシート厚さを調整することによりおこなう必要
がある。ところが、抵抗を増すために弗素樹脂成分の配
合比率を高めると、均一かつ十分な4電性能を付与する
ことが困難となり、またシート厚さを変動させることは
強度、可撓性などを損ねる間理点がある。
[Problems to be Solved by the Invention] According to these methods, a fibrous fluorine-based component with high heat resistance forms a skeletal structure and a flexible thin sheet heating notebook can be manufactured. The specific resistance must be controlled solely by adjusting the blending ratio of the conductive material carbon black and the fluororesin component or the sheet thickness. However, if the blending ratio of the fluororesin component is increased in order to increase the resistance, it becomes difficult to provide uniform and sufficient 4-electrode performance, and varying the sheet thickness impairs strength, flexibility, etc. There's a point.

本発明はこのような課題を解決するためになされたもの
で、その目的はカーボンブラックをより導電性に優れる
黒鉛粉末に代えて低電圧高発熱性を改善し、かつ均一な
発熱性と良好な可撓性を損わずに所望の抵抗特性を備え
る可撓性面状発熱体の製造方法を提供するところにある
The present invention was made to solve these problems, and its purpose is to replace carbon black with graphite powder, which has better conductivity, to improve low voltage and high heat generation properties, and to achieve uniform heat generation and good heat generation properties. An object of the present invention is to provide a method for manufacturing a flexible planar heating element having desired resistance characteristics without impairing its flexibility.

〔課題を解決するための手段] 上記の目的を達成するための本発明による可撓性面状発
熱体の製造方法は、黒鉛粉末95〜10重量%、セラく
ソクス粉末4〜70重量%および繊維化性ポリテトラフ
ルオロエチレン1〜20重量%の範囲内で配合した成分
粉末に層線助剤を加えて?昆練し、7昆練物をロール圧
延によりシート化することを構成上の特徴とするもので
ある。
[Means for Solving the Problems] A method for manufacturing a flexible planar heating element according to the present invention to achieve the above object includes graphite powder of 95 to 10% by weight, cerax powder of 4 to 70% by weight, and By adding a layer auxiliary agent to the component powder blended within the range of 1 to 20% by weight of fibrous polytetrafluoroethylene? The structure is characterized by kneading the dough and forming the kneaded product into a sheet by roll rolling.

黒鉛粉末は発熱体に導電性能を付与するための基本酸分
となるもので、天然黒鉛、人造黒鉛のいずれでもよいが
、分散性を良好にし異方性を減少させるために粒子径が
1μm以下の微粉末として供することが好ましい。
Graphite powder is a basic acid component that imparts electrical conductivity to the heating element, and may be either natural graphite or artificial graphite, but in order to improve dispersibility and reduce anisotropy, the particle size should be 1 μm or less. It is preferable to provide it as a fine powder.

通常、黒鉛は層状結晶構造を呈するため、層に平行な方
向と垂直な方向とでは電気伝導性が相違する。この異方
性を緩和するためには、前記した微粉末化する方法のほ
か黒鉛粉末に無定形のカーボンブラックを混合すること
が有効な手段となる。
Since graphite usually exhibits a layered crystal structure, electrical conductivity is different in a direction parallel to the layers and in a direction perpendicular to the layers. In order to alleviate this anisotropy, it is effective to mix amorphous carbon black with graphite powder in addition to the above-mentioned method of pulverization.

この場合には、重量比で1:lを越えない範囲でカーボ
ンブランクを混合する。
In this case, carbon blanks are mixed in a weight ratio not exceeding 1:l.

セラミックス粉末は、前記の黒鉛粉末に制御された配合
割合で均一分散させることにより抵抗特性を可変させる
成分要素となるもので、例えば粒子径10μm以下のア
ル稟す、シリカ、チタニア、ジルコニアなどの微粉末が
使用される。これらセラミックス物質の配合は、同時に
遠赤外線放射機能を与える作用がある。
Ceramic powder is a component that changes the resistance characteristics by uniformly dispersing it in the graphite powder at a controlled blending ratio. Powder is used. The combination of these ceramic materials also has the effect of imparting a far-infrared radiation function.

繊維化ポリテトラフルオロエチレンは、黒鉛およびセラ
ミックスの両粉末戒分を一体に結合させるためのバイン
グーとして、またシート&Il織を形成するための骨格
として機能する耐熱性成分で、細かい網目状態を呈して
組織全体に介在する。
Fiberized polytetrafluoroethylene is a heat-resistant component that functions as a binder for bonding both graphite and ceramic powder components together and as a skeleton for forming sheet & Il weave, and exhibits a fine mesh state. Intervening throughout the organization.

上記3威分の配合比率は、黒鉛粉末95〜10重量%、
セラ旦ンクス粉末4〜70重量%および繊維化性のポリ
テトラフルオロエチレン1〜20重量%の範囲内で適宜
に設定する。
The blending ratio of the above three components is 95 to 10% by weight of graphite powder,
The content is appropriately set within the range of 4 to 70% by weight of Ceratanx powder and 1 to 20% by weight of fibrous polytetrafluoroethylene.

黒鉛粉末とセラミックス粉末の配合比率を上記の範囲に
設定した理由は、セラミ・7クス粉末の配合量が4重量
%未満では抵抗特性の変化が顕著に現出せず、他方70
重量%を越えると薄膜のシート化が困難となるからであ
る。また、繊維化性のポリテトラフルオロエチレンの配
合量を1〜20重量%にしたのは、1重量未満ではソー
ト形成ができなくなり、20重量%を越えると必要な導
電性能が得られなくなるからである。
The reason why the blending ratio of graphite powder and ceramic powder was set in the above range is that if the blending amount of ceramic 7x powder is less than 4% by weight, no noticeable change in resistance characteristics will occur;
This is because if the amount exceeds % by weight, it becomes difficult to form a thin film into a sheet. In addition, the blending amount of polytetrafluoroethylene, which can form fibers, was set at 1 to 20% by weight because if it is less than 1% by weight, sort formation will not be possible, and if it exceeds 20% by weight, the necessary conductive performance will not be obtained. be.

なお、繊維化性のポリテトラフルオロエチレンは1通常
、粉末あるいはサスペンションの形fJj4で市販され
ているが、本発明の目的には粒径0.5μm以下の微粉
末を適用することが望ましい。この粒径が0.5μmを
越すと形成される繊維径が太くなって局部的な電気抵抗
の増大を招くことがある。
Fiberizable polytetrafluoroethylene is usually commercially available in the form of powder or suspension fJj4, but for the purpose of the present invention, it is desirable to use fine powder with a particle size of 0.5 μm or less. If this particle size exceeds 0.5 μm, the diameter of the formed fibers becomes thick, which may lead to a local increase in electrical resistance.

これらの7昆合粉に添加される混練助剤としては、例え
ばグリセリン、ツルヘントナフサ、低粘度エポキシ樹脂
、ケロシン等が使用可能であるが、温水中で容易に除去
することができるグリセリンを用いることが処理の効率
化を図るために良結果を得る。これら混練助剤の添加量
は、概ね黒鉛粉末量の0.5〜2倍の範囲とすることが
適当である。
As the kneading aid added to these 7-containing powders, for example, glycerin, turgent naphtha, low-viscosity epoxy resin, kerosene, etc. can be used, but it is preferable to use glycerin, which can be easily removed in warm water. Obtain good results to improve processing efficiency. It is appropriate that the amount of these kneading aids added is approximately 0.5 to 2 times the amount of graphite powder.

混練助剤を加えた上記3rIi、分の漠合粉は、回転翼
ニーグーのような剪断力がかかる7五線機に入れて十分
に層線する。混練の条件は特に限定されるものではない
が、温度を100°C以上に保持した加熱状態でIOr
pmを越えない低い回転数により処理したときに最も細
繊化が進行し、シート強度が上昇する。上記の混練物は
l系列(2本)または複数系列のロール間を通過させる
ロール圧延により、厚さ100〜2000μm程度の薄
膜状シートに成形する。成形されたシートは、引続き適
宜な溶媒中で洗浄することにより混練助剤成分を除去し
、乾燥する。
The above-mentioned 3rIi mixed powder with the addition of the kneading aid is thoroughly layered in a 7-line machine that is subjected to shearing force, such as a rotary vane Nigu machine. The kneading conditions are not particularly limited, but the IOr
When processed at a low rotational speed that does not exceed pm, fibrillation progresses the most and sheet strength increases. The above-mentioned kneaded material is formed into a thin film-like sheet having a thickness of about 100 to 2000 μm by rolling the kneaded product between one series (two rolls) or a plurality of series of rolls. The formed sheet is subsequently washed in a suitable solvent to remove the kneading aid component, and then dried.

洗浄後のシートは、必要に応し温度200 ’C以上、
圧力10kI!/cm2以上の条件で熱圧処理をおこな
って本発明の可撓性面状発熱体を得る。
After cleaning, the sheet should be heated to a temperature of 200'C or higher, if necessary.
Pressure 10kI! The flexible planar heating element of the present invention is obtained by performing heat-pressure treatment under conditions of /cm2 or more.

〔作 用] 本発明によれば、予め発熱体の抵抗特性を検量して設定
された配合比率で黒鉛粉末とセラミックス粉末を?捏合
することで所望の抵抗値に定めることができる。これら
成分に添加した繊維化性のポリテトラフルオロエチレン
は、混練過程で混練助剤が介在する剪断力の負荷環境で
急速に繊維に転化して黒鉛粉末とセラミックス粉末との
&11織中に均等に分散し、その絡み合い作用によって
成分物質を捕捉結合して一体に保持する機能をなす。つ
いで混練物をロール圧延する段階で繊維化したポリテト
ラフルオロエチレンは一層細繊化が進み、直径1.2〜
2.0μm、長さ120〜2000μmの繊維形態を呈
して網状の&[l織形態を形成する。
[Function] According to the present invention, graphite powder and ceramic powder are mixed at a blending ratio determined by measuring the resistance characteristics of the heating element in advance. A desired resistance value can be determined by kneading. The fibrous polytetrafluoroethylene added to these components is rapidly converted into fibers under the shearing force applied by the kneading aid during the kneading process, and is evenly distributed in the &11 weave of graphite powder and ceramic powder. It disperses and functions to capture and bind component substances and hold them together through their entangled action. Next, the polytetrafluoroethylene fiberized at the stage of rolling the kneaded material becomes even finer, with a diameter of 1.2~
The fibers have a fiber shape of 2.0 μm and a length of 120 to 2000 μm, forming a reticulated & [l woven shape.

このような工程機構を経て、所望の抵抗特性を保持し、
低温から高温域に至る範囲内で均一な導電性能が付与さ
れた自由に屈曲し得る可撓性シート状の面状発熱体が製
造されるが、導電性物質が黒船主体で構成されているた
め低電圧で高熱性を得ることが可能となる。
Through this process mechanism, the desired resistance characteristics are maintained,
A flexible sheet-like planar heating element that can be freely bent and has uniform conductive performance in a range from low to high temperatures is manufactured, but because the conductive material is mainly composed of black ships, It becomes possible to obtain high heat resistance with low voltage.

また、セラミックス粉末の配合は、これら物質固有の遠
赤外線放射作用に基づいて発熱時に遠赤外線を放射する
副次的効果ももたらされる。
In addition, the combination of ceramic powder also brings about the secondary effect of emitting far infrared rays when generating heat based on the far infrared rays emitting action inherent to these materials.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明する。 Examples of the present invention will be described below in comparison with comparative examples.

実施例1〜6、比較例1〜4 導電性物質として平均粒子径0.5μmの人造黒鉛微粉
末〔東海カーボン■製、TCP−05)および導電性カ
ーボンブラック(CB)(東海カーボン■製、トーカブ
ランク#5500) 、セラミックス粉末として粒子径
10μm以下のアルミナ微粉末〔日本軽金属■製)、繊
維化性のポリテトラフルオロエチレン(PTFE)(三
井デュポンフロロケξカル■製、KIO−J )の3戒
分を表1に示す各種の配合割合になるように秤取し、5
0%エタノール水溶液中に入れて十分に攪拌混合したの
ち、濾過・乾燥(80°C)  した。
Examples 1 to 6, Comparative Examples 1 to 4 As conductive substances, artificial graphite fine powder with an average particle diameter of 0.5 μm [manufactured by Tokai Carbon ■, TCP-05] and conductive carbon black (CB) (manufactured by Tokai Carbon ■, Talker blank #5500), fine alumina powder with a particle size of 10 μm or less as ceramic powder (manufactured by Nippon Light Metal), and fibrous polytetrafluoroethylene (PTFE) (manufactured by Mitsui DuPont Fluoroque ξCal, KIO-J). Weigh out the three precepts in the various proportions shown in Table 1, and
The mixture was poured into a 0% aqueous ethanol solution and thoroughly stirred and mixed, followed by filtration and drying (80°C).

表 この混合粉に黒鉛粉末の0゜ 7倍に相当する量 のグリセリンを混練助剤として添加し、プラスト ミルl昆練機により、温度100°C1回転速度5rp
inの条件で層線した。
Table: Glycerin in an amount equivalent to 0.7 times the amount of graphite powder was added as a kneading aid to this mixed powder, and the mixture was heated at a temperature of 100°C and a rotation speed of 5 rpm using a Plastomill kneader.
Layer wiring was carried out under the condition of in.

ついで、混練物を1系列(2本)ロール間を通してシー
ト化した。成形したシートを60°Cの温水中に1時間
浸してグリセリン成分を除去し、乾燥したのち、上下面
にガラス繊維紙を敷き温度200′C1圧力30 kg
/cm2の条件で熱圧処理を施した。
Then, the kneaded material was passed through one series (two rolls) of rolls to form a sheet. The formed sheet was immersed in hot water at 60°C for 1 hour to remove the glycerin component, and after drying, glass fiber paper was placed on the top and bottom surfaces and the temperature was 200°C and the pressure was 30 kg.
Heat and pressure treatment was performed under the condition of /cm2.

このようにして、縦横250mm、l’Jさ200μm
(平均)の薄膜シート状の面状発熱体を製造した。
In this way, the length and width are 250mm, and the l'J is 200μm.
(average) thin film sheet-like planar heating elements were manufactured.

得られた各面状発熱体の電気比抵抗、引張強度、伸び等
の物理特性を測定し、その結果を表2に示した。
Physical properties such as electrical specific resistance, tensile strength, and elongation of each sheet heating element obtained were measured, and the results are shown in Table 2.

また、実施例2の面状発熱体について測定した200°
C発熱時のシート温度分布を第1図に、同面状発熱体の
温度と電気抵抗との関係を第2図に示した。なお、これ
らの測定はいずれも30V以下の電圧でおこなった。
In addition, 200° measured for the sheet heating element of Example 2
FIG. 1 shows the sheet temperature distribution during C heating, and FIG. 2 shows the relationship between the temperature and electrical resistance of the same-planar heating element. Note that all of these measurements were performed at a voltage of 30V or less.

表 表2の結果から、実施例による面状発熱体はいずれも所
望の比抵抗値を有する可撓性シートで、第1図および第
2図に準した均一の温度分布と抵抗値を示すものであっ
た。
From the results in Table 2, it can be seen that all of the planar heating elements according to the examples are flexible sheets with desired specific resistance values, and exhibit uniform temperature distribution and resistance values in accordance with Figures 1 and 2. Met.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によれば黒鉛粉末、セラミンクス
粉末繊維化ポリテトラフルオロエチレンの成分配合比を
変えることによって所望の抵抗特性を付与することがで
き、そのうえ低電圧により高度かつ均一な発熱性、高強
度性、可1尭性など要求される具備要件を悉く満足する
薄膜シート状の面状発熱体を製造することができる。し
たがって、低温から高温までの所定温度に均一発熱する
面状発熱体を効率よく量産することができる。
As described above, according to the present invention, desired resistance characteristics can be imparted by changing the component blending ratio of graphite powder and ceramic powder fiberized polytetrafluoroethylene, and in addition, high and uniform heat generation properties can be achieved by low voltage. It is possible to produce a thin sheet-like planar heating element that satisfies all required requirements such as high strength and flexibility. Therefore, planar heating elements that uniformly generate heat at a predetermined temperature ranging from low to high temperatures can be efficiently mass-produced.

【図面の簡単な説明】[Brief explanation of drawings]

図は実施例により得られた面状発熱体の電気的特性を示
すもので、第1図は発熱温度分布の状態図、第2図は温
度と電気比抵抗との関係図である。
The figures show the electrical characteristics of the planar heating element obtained in the example, where FIG. 1 is a state diagram of heat generation temperature distribution, and FIG. 2 is a diagram of the relationship between temperature and electrical specific resistance.

Claims (1)

【特許請求の範囲】 1、黒鉛粉末95〜10重量%、セラミックス粉末4〜
70重量%および繊維化性のポリテトラフルオロエチレ
ン1〜20重量%の範囲内で配合した成分粉末に混練助
剤を加えて混練し、混練物をロール圧延によりシート化
することを特徴とする可撓性面状発熱体の製造方法。 2、黒鉛粉末にカーボンブラックを混合する請求項1記
載の可撓性面状発熱体の製造方法。
[Claims] 1. Graphite powder 95-10% by weight, ceramic powder 4-10% by weight
A kneading agent is added to a component powder containing 70% by weight and 1 to 20% by weight of fibrous polytetrafluoroethylene and kneaded, and the kneaded product is formed into a sheet by roll rolling. A method for manufacturing a flexible planar heating element. 2. The method for manufacturing a flexible planar heating element according to claim 1, wherein carbon black is mixed with graphite powder.
JP31859389A 1989-12-07 1989-12-07 Manufacture of flexible facial heating element Pending JPH03179687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31859389A JPH03179687A (en) 1989-12-07 1989-12-07 Manufacture of flexible facial heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31859389A JPH03179687A (en) 1989-12-07 1989-12-07 Manufacture of flexible facial heating element

Publications (1)

Publication Number Publication Date
JPH03179687A true JPH03179687A (en) 1991-08-05

Family

ID=18100873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31859389A Pending JPH03179687A (en) 1989-12-07 1989-12-07 Manufacture of flexible facial heating element

Country Status (1)

Country Link
JP (1) JPH03179687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536231A (en) * 2016-11-22 2019-12-12 ジェンサーム ゲーエムベーハー Film heater and method of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536231A (en) * 2016-11-22 2019-12-12 ジェンサーム ゲーエムベーハー Film heater and method of making the same

Similar Documents

Publication Publication Date Title
Lee et al. Effect of multiwalled carbon nanotube (M-CNT) loading on M-CNT distribution behavior and the related electromechanical properties of the M-CNT dispersed ionomeric nanocomposites
DE69922289T2 (en) Polymeric fuel cell separator and method of manufacture
CN108495385A (en) A kind of flexible membrane of graphene-containing and preparation method thereof
TWI552955B (en) Graphene nanoparticles as conductive filler for resistor materials and a method of preparation
TWI533767B (en) Graphene printed pattern circuit structure
JP2009132574A (en) Carbon nanocrystal material and method for manufacturing hot plate using the same
CN109130441B (en) Controllable preparation method of gradient HDPE electromagnetic shielding film with multilayer structure
Goyal et al. Electrical properties of novel three-phase polymer nanocomposites with a high dielectric constant
Rasoolzadeh et al. Structure dependent piezoelectricity in electrospun PVDF-SiC nanoenergy harvesters
DE102005013827B4 (en) Electrically conductive paste and method for producing a stacked piezoelectric element
Liu et al. Highly tunable negative permittivity of carbon nanofiber/alumina metacomposites at different external temperatures
JP3564758B2 (en)   PTC composition
JPH03179687A (en) Manufacture of flexible facial heating element
JP2588033B2 (en) Flexible sheet heating element and manufacturing method thereof
JPH0349184A (en) Manufacture of conducting sheet
JPH0439814A (en) Manufacture of conductive sheet
CN114672250A (en) PPTC (polymeric positive temperature coefficient) nano coating material for normal-temperature thermal control and preparation method thereof
JP4694909B2 (en) Heat-resistant conductive paper and method for producing the same
JP2005060204A (en) Conductive material-covered expanded graphite, graphite based conductive filler, conductive rubber material, rubber molding and method for producing rubber molding
JPH03234751A (en) Production of plane heating element with high electrical resistance
JPH0349181A (en) Far infrared radiating sheet heating element
TWI325902B (en)
JP2004079406A (en) Method for manufacturing gas diffusion electrode, and fuel cell
KR101551180B1 (en) Manufacturing method of electrically conductive composition for coating plane heater, and electrically conductive composition for coating plane heater
Cheng et al. A study on the functional and tensile properties of polyurethane composite film with carbon nanotube fibers