JP4694909B2 - Heat-resistant conductive paper and method for producing the same - Google Patents

Heat-resistant conductive paper and method for producing the same Download PDF

Info

Publication number
JP4694909B2
JP4694909B2 JP2005207944A JP2005207944A JP4694909B2 JP 4694909 B2 JP4694909 B2 JP 4694909B2 JP 2005207944 A JP2005207944 A JP 2005207944A JP 2005207944 A JP2005207944 A JP 2005207944A JP 4694909 B2 JP4694909 B2 JP 4694909B2
Authority
JP
Japan
Prior art keywords
conductive
aromatic polyamide
heat
paper
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005207944A
Other languages
Japanese (ja)
Other versions
JP2007023429A (en
Inventor
竜士 藤森
哲也 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Techno Products Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2005207944A priority Critical patent/JP4694909B2/en
Publication of JP2007023429A publication Critical patent/JP2007023429A/en
Application granted granted Critical
Publication of JP4694909B2 publication Critical patent/JP4694909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paper (AREA)

Description

本発明は、耐熱性導電紙およびその製造方法に関する。さらに詳しくは、高い裂断長1を持ち、かつ屈曲疲労性も良好な耐熱性導電紙およびその製造方法に関する。   The present invention relates to a heat-resistant conductive paper and a method for producing the same. More specifically, the present invention relates to a heat-resistant conductive paper having a high tear length 1 and good bending fatigue and a method for producing the same.

導電紙は、従来から電波障害の防止、帯電防止などの目的で、電子機器の包装、制電シートなどで使用されているが、自動車部材や面発熱体など、特殊な環境で使用される用途においては耐熱性導電紙が必要とされている。
従来から、紙に導電性を付与する方法として、カーボンブラックなどの導電性粉末を、ポリアクリルアミド、ポリアクリル酸ソーダなどの定着剤と混合して抄きこむ方法、あるいは抄紙後にラテックスなどの樹脂を塗工あるいは含浸する方法などがある。しかしながら、いずれの方法でも、導電性粉末の混合量に限界があり、半導体領域の紙しか製造できず、また定着剤、ラテックスなどの混合物を用いているので、耐熱性は低下する。
また、炭素繊維、ステンレス繊維などの導電繊維を、セルロース繊維と混抄する方法があるが、セルロース繊維との混抄により裂断長(引張強度の指標)は向上するものの、繊維自体が剛直であるため、屈曲疲労性に乏しく、屈曲疲労性を向上させるためにセルロース繊維の混率を高くすると、導電性と耐熱性を低下させる。
Conductive paper has been used for packaging electronic devices and anti-static sheets for the purpose of preventing radio interference and preventing electrification, but it is used in special environments such as automobile parts and surface heating elements. Requires heat-resistant conductive paper.
Conventionally, as a method of imparting conductivity to paper, a method of mixing conductive powder such as carbon black with a fixing agent such as polyacrylamide or sodium polyacrylate, and making a paper, or applying a resin such as latex after paper making. There are methods such as work or impregnation. However, in any of the methods, there is a limit to the amount of conductive powder to be mixed, and only paper in the semiconductor region can be produced. In addition, since a mixture of a fixing agent and latex is used, heat resistance is lowered.
In addition, there is a method of blending conductive fibers such as carbon fiber and stainless steel fiber with cellulose fiber, but the length of tear (index of tensile strength) is improved by blending with cellulose fiber, but the fiber itself is rigid. When the mixing ratio of the cellulose fibers is increased in order to improve the bending fatigue property, the conductivity and the heat resistance are lowered.

炭素繊維紙の裂断長を向上させる方法として、ポリビニルアルコールなどの結着剤繊維と炭素繊維を混抄し、連続抄紙後に水流交絡を行う方法(特許文献1:特開2002-266217号公報)などが提案されている。しかし、これにより機械的強度は向上するものの、ウェブ形成後に水流を当てることによって平面方向の均一性が低下し、また水流により炭素繊維の切断が起こり、それにより紙から炭素繊維の小片が欠落するなどの問題が発生し、耐熱性導電紙としての機能を十分に満たすことができない。
特開2002-266217号公報
As a method for improving the breaking length of carbon fiber paper, a method of mixing a binder fiber such as polyvinyl alcohol and carbon fiber, and performing hydroentanglement after continuous paper making (Patent Document 1: JP 2002-266217 A), etc. Has been proposed. However, this improves the mechanical strength, but by applying water flow after forming the web, the uniformity in the planar direction is reduced, and the carbon flow is cut by the water flow, thereby missing pieces of carbon fiber from the paper. Problems such as the above occur, and the function as the heat-resistant conductive paper cannot be sufficiently satisfied.
JP 2002-266217 A

本発明は、従来のかかる問題点を解決し、導電性と耐熱性を両立し、かつ裂断長と屈曲疲労性を向上させた耐熱性導電紙を提供することにある。   An object of the present invention is to provide a heat-resistant conductive paper that solves the conventional problems, has both conductivity and heat resistance, and has improved fracture length and bending fatigue.

本発明は、パラ型芳香族ポリアミドおよび導電性材料を主成分とする導電性芳香族ポリアミドパルプからなる耐熱性導電紙であり、該導電性芳香族ポリアミドパルプ中の導電性材料の割合が70〜98重量%の範囲にあり、かつ該導電性芳香族ポリアミドパルプ中の芳香族ポリアミドが、導軍性材料と実質的に接着もしくは導電性材料を実質的に包含して形成されていることを特徴とする耐熱性導電紙に関する。
ここで、上記パラ型芳香族ポリアミドとしては、コポリパラフェニレン・3,4'−オキシジフェニレン・テレフタルアミドが特に好ましい。
記導電性材料としては、導電性カーボンブラック、メソカーボン小球体、黒鉛、炭素繊維ミルド、フラーレン、カーボンナノチューブ、金属粉末、および金属酸化物粉末の群から選ばれた少なくとも1種が好ましい。
上記導電性芳香族ポリアミドパルプの濾水度は、好ましくは30〜300mlである。
本発明の耐熱性導電紙の裂断長は、好ましくは0.5km以上である。
また、本発明は、パラ型芳香族ポリアミド30〜2重量%および導電性材料70〜98重量%からなる導電性芳香族ポリアミドパルプを含むスラリーを湿式抄紙した後、乾燥して得た乾燥紙を、150〜350℃の温度下、50〜500kg/cmの圧力下で加熱加圧加工して、該導電性芳香族ポリアミドパルプを部分的に軟化、および/または溶融させることを特徴とする耐熱性導電紙の製造方法に関する。
The present invention is a heat-resistant conductive paper comprising a conductive aromatic polyamide pulp composed mainly of a para-type aromatic polyamide and a conductive material, and the proportion of the conductive material in the conductive aromatic polyamide pulp is 70 to It is in the range of 98 % by weight, and the aromatic polyamide in the conductive aromatic polyamide pulp is formed by substantially adhering the conductive material or substantially including the conductive material. It relates to a heat-resistant conductive paper.
Here, as the para-type aromatic polyamide, copolyparaphenylene · 3,4'-oxydiphenylene · terephthalamide is particularly preferable.
The upper Kishirube conductive material, conductive carbon black, mesocarbon spherules, graphite, carbon fiber milled, fullerenes, carbon nanotubes, metal powders, and metal oxide powders of at least one selected from the group is preferred.
The freeness of the conductive aromatic polyamide pulp is preferably 30 to 300 ml.
The breaking length of the heat-resistant conductive paper of the present invention is preferably 0.5 km or more.
The present invention also provides a dry paper obtained by wet-making a slurry containing a conductive aromatic polyamide pulp comprising 30 to 2 % by weight of a para-type aromatic polyamide and 70 to 98% by weight of a conductive material and then drying the slurry. , Heat-pressing at a temperature of 150 to 350 ° C. under a pressure of 50 to 500 kg / cm to partially soften and / or melt the conductive aromatic polyamide pulp The present invention relates to a method for producing conductive paper.

本発明の耐熱性導電紙によれば、従来なし得なかった導電性、機械的強度に優れ、かつ導電性材料の脱落がなく、屈曲疲労性も良好な耐熱性導電紙を製造することができる。また、導電性材料の選択およびパルプ形状の調整により、紙の導電性を自由に制御することが可能となる。   According to the heat-resistant conductive paper of the present invention, it is possible to produce a heat-resistant conductive paper that has excellent conductivity and mechanical strength that could not be achieved in the past, has no loss of the conductive material, and has good bending fatigue. . Further, the conductivity of the paper can be freely controlled by selecting the conductive material and adjusting the pulp shape.

本発明は、パラ型芳香族ポリアミド中に導電性材料を所定量包含したパルプを用いることにより、導電性、裂断長、および屈曲疲労性に優れた耐熱性導電紙を得たものである。
一般に、芳香族ポリアミドとは、ポリアミドを構成する繰り返し単位の80モル%以上(好ましくは90モル%以上)が、下記式(1)で表される芳香族ホモポリアミド、または、芳香族コポリアミドからなるものをいう
−NHArNHCOArCO−・・・(1)
ここで、Ar、Arは芳香族基を表し、本発明でいうパラ型芳香族ポリアミドとは、Ar 、及びAr 下記式(2)から選ばれた同一の、または相異なる芳香族基からなるものをいう。ただし、芳香族基の水素原子は、ハロゲン原子、低級アルキル基、フェニル基などで置換されていてもよい。
In the present invention, a heat-resistant conductive paper excellent in conductivity, tearing length, and bending fatigue is obtained by using pulp containing a predetermined amount of a conductive material in a para-type aromatic polyamide.
Generally, the aromatic polyamide is an aromatic homopolyamide represented by the following formula (1) or an aromatic copolyamide in which 80 mol% or more (preferably 90 mol% or more) of the repeating units constituting the polyamide is represented. It refers to become things.
—NHAr 1 NHCOAr 2 CO— (1)
Here, Ar 1 and Ar 2 represent an aromatic group, and the para-type aromatic polyamide referred to in the present invention is the same or different fragrances in which Ar 1 and Ar 2 are selected from the following formula (2): It refers to those made from the family group. However, the hydrogen atom of the aromatic group may be substituted with a halogen atom, a lower alkyl group, a phenyl group, or the like.

Figure 0004694909
Figure 0004694909

のようなパラ型芳香族ポリアミドの好適例としては、コポリパラフェニレン・3,4'−オキシジフェニレン・テレフタルアミドが例示される。
Preferred examples of such para-type aromatic polyamide as this, co polyparaphenylene-3,4'-diphenylene terephthalamide are exemplified.

上記のような耐熱性導電紙を得るためには、このようなパラ型芳香族ポリアミドが上記導電性芳香族ポリアミドパルプ中に占める割合は、2〜30重量%(導電性材料が70〜98重量%)でなければならない。本発明の導電性芳香族ポリアミドパルプ中の上記芳香族ポリアミドの比率が過大の場合には、安定して高い導電性を得ることが困難となり、一方、少なすぎる場合には、紙としての使用に耐えうる十分な裂断長が得られないため好ましくない。 To obtain a heat resistant conductive sheet as described above, the percentage from 2 to 30% by weight (the conductive material is 70 to 98 weight such para-type aromatic polyamide occupied in the electrically conductive aromatic polyamide pulp %)Must. If an excessive proportion of the aromatic polyamide of the conductive aromatic polyamide pulp of the present invention are stable it is difficult to obtain a high conductivity, whereas, if too little name, use as a paper This is not preferable because a sufficient tear length that can withstand the above cannot be obtained.

また、本発明の耐熱性導電紙を構成する導電性芳香族ポリアミドパルプを得るために用いる導電性材料としては、導電性カーボンブラック、メソカーボン小球体、黒鉛、炭素繊維ミルド、フラーレン、カーボンナノチューブ、金属粉末、金属酸化物粉末からなる群から選ばれる1種、もしくは2種以上が好ましく例示される。さらに好ましくは、導電性カーボンブラックである。
このうち、導電性カーボンブラックとしては、公知のものが使用でき、例えば、アセチレンブラック、オイルファーネスブラック、サーマルブラック、チャネルブラック、ケッチェンブラックなどが挙げられる。これらは、通常、微粉末としてマトリックスポリマーに分散して用いることができる。
In addition, as the conductive material used to obtain the conductive aromatic polyamide pulp constituting the heat-resistant conductive paper of the present invention, conductive carbon black, mesocarbon microspheres, graphite, carbon fiber milled, fullerene, carbon nanotube, One or more types selected from the group consisting of metal powders and metal oxide powders are preferably exemplified. More preferred is conductive carbon black.
Among these, as the conductive carbon black, known ones can be used, and examples thereof include acetylene black, oil furnace black, thermal black, channel black, and ketjen black. These can usually be used as fine powder dispersed in a matrix polymer.

本発明に用いられる導電性材料の平均粒径としては、0.001〜100μm、好ましくは0.1〜50μmの範囲である。0.001μm未満の場合には、嵩が大きくなりすぎて、芳香族ポリアミド中に高濃度で充填することが不可能となり、一方、100μmを超える場合には、耐熱性導電紙の外観を均一にできなくなるため好ましくない。
これら導電性材料は、該耐熱性導電紙の性能を損なわない範囲で、焼成条件を調整したり、薬品、ガスなどによる親水化、疎水化処理が施されていてもよい。
As an average particle diameter of the electroconductive material used for this invention, it is 0.001-100 micrometers, Preferably it is the range of 0.1-50 micrometers. If the thickness is less than 0.001 μm, the bulk becomes too large to be filled in the aromatic polyamide at a high concentration. On the other hand, if it exceeds 100 μm, the appearance of the heat-resistant conductive paper is uniform. Since it becomes impossible, it is not preferable.
These conductive materials may be subjected to a baking condition or a hydrophilization or a hydrophobization treatment with a chemical or a gas as long as the performance of the heat-resistant conductive paper is not impaired.

上記導電性芳香族ポリアミドパルプは、芳香族ポリアミドが、導電性材料と実質的に接着もしくは導電性材料を実質的に包含して形成されていることを特徴とする。ここで、芳香族ポリアミドが、導電性材料と実質的に接着もしくは導電性材料を実質的に包含しているとは、例えば、溶融あるいは溶解状態にある芳香族ポリアミド中に導電性材料が混合された状態のまま、固化およびパルプ化の工程を経て、芳香族ポリアミドと導電性材料とが強固に結合された状態を言い、芳香族ポリアミドパルプと導電性材料とを混合してスラリー化して抄紙した場合のように、単にパルプと導電性材料が接触しているだけの状態を除くものである。   The conductive aromatic polyamide pulp is characterized in that the aromatic polyamide is formed by substantially adhering to the conductive material or substantially including the conductive material. Here, the aromatic polyamide substantially adheres to the conductive material or substantially contains the conductive material. For example, the aromatic polyamide is mixed in the molten or dissolved aromatic polyamide. In this state, through the steps of solidification and pulping, the aromatic polyamide and the conductive material are firmly bonded, and the aromatic polyamide pulp and the conductive material are mixed and slurried to make paper. As in the case of the case, the state where the pulp and the conductive material are merely in contact is excluded.

このような導電性芳香族ポリアミドパルプを得る方法としては、まず、アミド系の極性溶媒、例えばN−メチル−2−ピロリドンなどに芳香族ポリアミドを溶解して芳香族ポリアミドのアミド系極性溶媒溶液を作成し、その中に導電性材料を混合した後、特公昭35-11851号公報、特公昭37-5732号公報などに記載された方法により、該溶液を該溶液の沈澱剤と勢断力の存在する系において混合することにより、上記導電性芳香族ポリアミドパルプを得ることができる。このときの芳香族ポリアミドのアミド系極性溶媒溶液中における芳香族ポリアミドの濃度は、0.1〜10重量%、好ましくは0.5〜5重量%である。芳香族ポリアミドの濃度が0.1重量%未満の場合には、芳香族ポリアミドのアミド系極性溶媒溶液を沈殿剤勢断力の存在する系において混合してパルプを得る際に、芳香族ポリアミド中に導電性材料を十分に捕捉できず、一方、10重量%を超えると芳香族ポリアミドのアミド系極性溶媒溶液の粘度が向上し、高濃度の導電性材料の充填が不可能となる。
また、芳香族ポリアミドのアミド系極性溶媒溶液中に導電性材料を充填した後、溶液中に導電性材料を均一に分散させるため、従来公知の工業的な混合方法、具体的には撹拌棒、ニーダー、ボールミル、ジェットミル、ホモジナイザー、ミキサーなどを用いて十分な混合を行うことが肝要である。
As a method for obtaining such a conductive aromatic polyamide pulp, first, an aromatic polyamide is dissolved in an amide polar solvent such as N-methyl-2-pyrrolidone to prepare an amide polar solvent solution of the aromatic polyamide. After preparing and mixing the conductive material therein, the solution is mixed with the precipitating agent of the solution and the breaking force by a method described in JP-B-35-11851, JP-B-37-5732, and the like. By mixing in the existing system, the conductive aromatic polyamide pulp can be obtained. At this time, the concentration of the aromatic polyamide in the amide polar solvent solution of the aromatic polyamide is 0.1 to 10% by weight, preferably 0.5 to 5% by weight. When the concentration of the aromatic polyamide is less than 0.1% by weight, the amide-based polar solvent solution of the aromatic polyamide is mixed in a system in which a precipitating force is present to obtain a pulp. On the other hand, when the content exceeds 10% by weight, the viscosity of the amide polar solvent solution of the aromatic polyamide is improved, and it becomes impossible to fill the conductive material with a high concentration.
In addition, after the conductive material is filled in the amide-based polar solvent solution of the aromatic polyamide, in order to uniformly disperse the conductive material in the solution, a conventionally known industrial mixing method, specifically a stirring rod, It is important to perform sufficient mixing using a kneader, ball mill, jet mill, homogenizer, mixer, or the like.

本発明の耐熱性導電紙は、上記の導電性芳香族ポリアミドパルプを主成分として用いるため、該ポリアミドパルプの濾水度は、好ましくは30〜300m1の範囲である。濾水度が30m1未満の場合には、抄紙時に導電性芳香族ポリアミドパルプが分散斑を引き起こし、一方、濾水度が300m1を超える場合には、ほとんどの場合パルプの粒度が大きすぎる、または径の太い針状となり、平面方向、および厚さ方向に均質な紙を得ることができない。なお、本発明で言う濾水度とは、JIS P−8121(カナダ標準形)に基づいて測定されたものである。
ここで、濾水度を調整する目的で、上記方法にて得たパルプを、ディスクリファイナー、ビーター、ジェットミル、ホモジナイザー、ミキサーなどを用いて叩解処理を行ってもよい。
Since the heat-resistant conductive paper of the present invention uses the above-described conductive aromatic polyamide pulp as a main component, the freeness of the polyamide pulp is preferably in the range of 30 to 300 ml. When the freeness is less than 30 ml, the conductive aromatic polyamide pulp causes dispersion spots at the time of papermaking. On the other hand, when the freeness exceeds 300 ml, the particle size of the pulp is almost too large, or the diameter Thus, it is impossible to obtain a uniform paper in the plane direction and the thickness direction. In addition, the freeness said by this invention is measured based on JIS P-8121 (Canadian standard form).
Here, for the purpose of adjusting the freeness, the pulp obtained by the above method may be subjected to a beating process using a disc refiner, beater, jet mill, homogenizer, mixer or the like.

このようにして得られた導電性芳香族ポリアミドパルプから耐熱性導電紙を製造する方法は、従来公知のいかなる方法で製造してもよく、例えば、導電性芳香族ポリアミドパルプの濃度が約0.15〜0.40重量%となるように水中に投入して均一分散、調整した水性スラリー中に、必要に応じて、分散剤や粘度調整剤を加えた後、長網式や丸網式などの抄紙機による湿式抄造法で湿紙を形成し、乾燥して得た乾燥紙を加熱加圧し、該導電性芳香族ポリアミドパルプを部分的に軟化、および/または溶融させることにより得られる。
上記の加熱加圧を、カレンダーを用いて行う場合は、直径約15〜80cmの5硬質表面ロールと直径約30〜100cmの表面変形可能な弾性ロールとの間で、好ましくは直径約20〜80cmからなる2ヶの硬質表面ロールどうしの間で行えばよい。その際、導電性芳香族ポリアミドパルプを部分的に軟化、および/または溶融させ、耐熱性導電紙の機械的強度を発現させるには、150〜350℃の温度範囲で加熱することが好ましく、より好ましくは180〜320℃、さらに好ましくは200℃〜300℃の温度範囲を採用するのが良い。
The heat-resistant conductive paper can be produced from the conductive aromatic polyamide pulp thus obtained by any conventionally known method. For example, the concentration of the conductive aromatic polyamide pulp is about 0. After adding a dispersing agent and a viscosity adjusting agent to an aqueous slurry which is uniformly dispersed and adjusted by adding it to water so as to be 15 to 0.40% by weight, a long net type, a round net type, etc. It is obtained by forming a wet paper by a wet paper making method using a paper machine and heating and pressurizing the dried paper, and partially softening and / or melting the conductive aromatic polyamide pulp.
When the above heating and pressurization is carried out using a calendar, it is preferably between about 5 to 80 cm in diameter between a 5 hard surface roll having a diameter of about 15 to 80 cm and an elastic roll having a surface deformation of about 30 to 100 cm in diameter. What is necessary is just to carry out between the two hard surface rolls which consist of. At that time, in order to partially soften and / or melt the conductive aromatic polyamide pulp and develop the mechanical strength of the heat-resistant conductive paper, it is preferable to heat in a temperature range of 150 to 350 ° C., Preferably, a temperature range of 180 to 320 ° C, more preferably 200 to 300 ° C is employed.

また、耐熱性導電紙に安定した高導電性を付与するために、圧力は50〜500kg/cmの線圧で加圧することが好ましく、さらに好ましくは100〜300kg/cmの線圧力を採用するのが良い。なお、上記のカレンダー加工は、1段の処理でも良いが、平面方向、厚さ方向により均質な紙を得るためには、予備的に加熱加圧処理を施す2段処理を採用することが好ましい。その際、急激な熱収縮による不均質化を防ぐため、1段目の処理温度は150〜200℃の温度範囲で加熱することが好ましい。200℃を超える温度で処理する場合には、ポリテトラフルオロエチレン(テフロン)シート、ガラスクロスなどの耐熱シートで紙をはさんだ状態で処理することが望ましい。
加熱加圧加工の条件が上記範囲を外れる場合には、得られる耐熱性導電紙の裂断長が0.5km未満となり、またパルプ繊維どうしの接着が不十分なため、導電性も低下し好ましくない。
Further, in order to impart stable high conductivity to the heat-resistant conductive paper, it is preferable to apply a pressure of 50 to 500 kg / cm, more preferably 100 to 300 kg / cm. Is good. The calendering may be a one-step process, but in order to obtain a more uniform paper in the plane direction and the thickness direction, it is preferable to adopt a two-step process that preliminarily heats and presses. . At that time, in order to prevent heterogeneity due to rapid thermal shrinkage, it is preferable to heat the first stage treatment temperature in a temperature range of 150 to 200 ° C. When the treatment is performed at a temperature exceeding 200 ° C., it is desirable to treat the paper with a heat-resistant sheet such as a polytetrafluoroethylene (Teflon) sheet or a glass cloth.
If the heat and pressure processing conditions are outside the above range, the resulting heat-resistant conductive paper has a tear length of less than 0.5 km, and the pulp fibers are not sufficiently bonded to each other. Absent.

このようにして得られる本発明の耐熱性導電紙の裂断長は、0.5km以上、好ましくは0.5〜5.0kmである。裂断長を0.5km以上にするには、上記の加熱加圧加工条件の範囲内にすればよい。   The tear length of the heat-resistant conductive paper of the present invention thus obtained is 0.5 km or more, preferably 0.5 to 5.0 km. In order to set the breaking length to 0.5 km or more, it may be within the range of the heating and pressing process conditions.

なお、本発明の耐熱性導電紙の性能を損なわない範囲で、炭素繊維、ステンレス繊維、またはそれらを粉砕したものなどの導電性繊維状物、あるいは金属粉末、金属酸化物粉末、導電性カーボンブラック、黒鉛などの導電性粉末状物を混合させて抄紙しても良い。これらは単独で使用してもよく、また2種以上を組み合わせて使用してもよい。この場合、全耐熱性導電紙中に占める導電性芳香族ポリアミドパルプの割合は、80重量%以上、より好ましくは90重量%以上である。特に、屈曲疲労性が求められる用途においては、混合しないことが望ましい。   In addition, as long as the performance of the heat-resistant conductive paper of the present invention is not impaired, conductive fiber such as carbon fiber, stainless fiber, or those obtained by pulverizing them, metal powder, metal oxide powder, conductive carbon black Alternatively, paper may be made by mixing conductive powder such as graphite. These may be used alone or in combination of two or more. In this case, the ratio of the conductive aromatic polyamide pulp in the total heat-resistant conductive paper is 80% by weight or more, more preferably 90% by weight or more. In particular, in applications where bending fatigue resistance is required, it is desirable not to mix them.

以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の内容に限定されるものではない。なお、実施例中における%は重量基準である。また、実施例中における物性の評価方法は、以下のとおりである。
(1)坪量
JIS P8124に準拠して測定した。
(2)厚さ
JIS P8118に準拠して測定した。
(3)裂断長
JIS P8113に準拠して測定した。
(4)導電性材料の脱落
JIS P0849に記載の学振形摩擦試験機を用い、乾燥試験を行った。また、判定は下記のようにして行った。
○:白綿布の変色なし
△:白綿布に若干黒く変色
×:白綿布全体が黒く変色
(5)屈曲疲労性
JIS P8115に準拠して測定した。
(6)導電性(固有抵抗)
長さ100mm、幅10mmの試料の長さ方向の両断面に銀ぺ一ストを塗布して電極を作成し、両電極に抵抗測定器の端子をあてがい、得られた電気抵抗から固有抵抗を算出した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following content. In the examples,% is based on weight. Moreover, the evaluation method of the physical property in an Example is as follows.
(1) Basis weight Measured according to JIS P8124.
(2) Thickness Measured according to JIS P8118.
(3) Breaking length Measured according to JIS P8113.
(4) Removal of conductive material A drying test was performed using a Gakushin type friction tester described in JIS P0849. The determination was performed as follows.
○: White cotton cloth has no discoloration △: White cotton cloth turns slightly black ×: White cotton cloth turns black
(5) Bending fatigue property Measured according to JIS P8115.
(6) Conductivity (specific resistance)
An electrode is created by applying silver paste to both cross sections in the length direction of a sample with a length of 100 mm and a width of 10 mm, and a resistance measuring instrument terminal is assigned to both electrodes, and the specific resistance is calculated from the obtained electrical resistance. did.

実施例1
導電性材料として、平均粒径0.3μmのカーボンブラック(MPS−1504B1ack(T);大日精化工業(株)製)を用い、N−メチル−2−ピロリドン(NMP)中に分散させて、濃度10%の分散液を調製した。このカーボンブラック分散液を、コポリパラフェニレン・3,4'−オキシジフェニレン・テレフタルアミドの濃度6%のNMP溶液中に、芳香族ポリアミド/導電性材料=20/80の重量比となるように添加し、また全溶液中の芳香族ポリアミド含有量が1%となるようにNMPを添加し、温度50℃で1時問、撹拌棒にて撹拌混合し、導電性芳香族ポリアミド溶液を得た。
さらに、この芳香族ポリアミド溶液を、NMPを10%混合した水中に吐出し、その後、十分に水洗した後にステンレスメッシュ上にて一晩自然乾燥して、濾水度80m1の導電性芳香族ポリアミドパルプを得た。このときのパルプの水分率は約70%であった。本パルプを光学顕微鏡にて観察したところ、導電性材料が芳香族ポリアミド中に包含されていた。
さらに、この導電性芳香族ポリアミドパルプを水中に離解分散し、繊維濃度0.2%の抄紙用スラリーを作成した。
次に、タッピー式角型シートマシンを用いて、該抄紙用スラリーを使用して抄紙し、軽く加圧脱水後、温度120℃の熱風乾燥機中で30分問乾燥して、紙状物を得た。
さらに、上記紙状物の両側にポリテトラフルオロエチレン(テフロン)製のシートを挟み、直径400mmの一対の硬質表面金属ロールからなるカレンダーを用い、温度220℃、線圧200kg/cmの条件で加熱加圧して、坪量100g/mの耐熱性導電紙を得た。
Example 1
As a conductive material, carbon black having an average particle size of 0.3 μm (MPS-1504B1ack (T); manufactured by Dainichi Seika Kogyo Co., Ltd.) was used and dispersed in N-methyl-2-pyrrolidone (NMP). A dispersion having a concentration of 10% was prepared. This carbon black dispersion is mixed with an NMP solution of copolyparaphenylene, 3,4'-oxydiphenylene terephthalamide at a concentration of 6% so that the weight ratio of aromatic polyamide / conductive material = 20/80. NMP was added so that the aromatic polyamide content in the entire solution was 1%, and the mixture was stirred and mixed with a stirring rod at a temperature of 50 ° C. for 1 hour to obtain a conductive aromatic polyamide solution. .
Furthermore, this aromatic polyamide solution is discharged into water mixed with 10% NMP, then thoroughly washed with water, and then naturally dried overnight on a stainless steel mesh to obtain a conductive aromatic polyamide pulp having a freeness of 80 ml. Got. The moisture content of the pulp at this time was about 70%. When this pulp was observed with an optical microscope, the conductive material was included in the aromatic polyamide.
Further, this conductive aromatic polyamide pulp was disperse-dispersed in water to prepare a papermaking slurry having a fiber concentration of 0.2%.
Next, using a tappy-type square sheet machine, paper is made using the paper slurry, lightly dehydrated under pressure, and then dried in a hot air dryer at a temperature of 120 ° C. for 30 minutes to obtain a paper-like product. Obtained.
Further, a sheet made of polytetrafluoroethylene (Teflon) is sandwiched between both sides of the paper-like material, and a calender composed of a pair of hard surface metal rolls having a diameter of 400 mm is used and heated at a temperature of 220 ° C. and a linear pressure of 200 kg / cm. Pressure was applied to obtain a heat-resistant conductive paper having a basis weight of 100 g / m 2 .

実施例2
実施例1において、カーボンブラック分散液の濃度を20%に変更し、またNMP溶液中の芳香族ポリアミド含有量が2%となるように調整した以外は、実施例1と同様に実施し、導電性芳香族ポリアミド溶液を得た。
さらに、この芳香族ポリアミド溶液を用いて、実施例1と同様の方法にて、濾水度150m1の導電性芳香族ポリアミドパルプを得た。このときのパルプの水分率は約70%であった。このパルプを光学顕微鏡にて観察したところ、導電性材料が芳香族ポリアミド中に包含されていた。
さらに、上記パルプを用いて実施例1と同様の方法で抄紙、カレンダーを行い、坪量101g/mの耐熱性導電紙を得た。
Example 2
The same procedure as in Example 1 was conducted except that the concentration of the carbon black dispersion was changed to 20% and the aromatic polyamide content in the NMP solution was adjusted to 2%. An aromatic polyamide solution was obtained.
Further, using this aromatic polyamide solution, a conductive aromatic polyamide pulp having a freeness of 150 ml was obtained in the same manner as in Example 1. The moisture content of the pulp at this time was about 70%. When this pulp was observed with an optical microscope, the conductive material was included in the aromatic polyamide.
Furthermore, papermaking and calendering were performed using the above pulp in the same manner as in Example 1 to obtain heat-resistant conductive paper having a basis weight of 101 g / m 2 .

実施例3
実施例1で用いた導電性芳香族ポリアミドパルプ、および炭素繊維(単糸径7μm、繊維長3mm)を、導電性芳香族ポリアミドパルプ/炭素繊維=90/10の重量比となるようにスラリー化し、実施例1と同様の条件で抄紙、カレンダー加工を行い、坪量99g/mの耐熱性導電紙を得た。
Example 3
The conductive aromatic polyamide pulp and carbon fiber (single yarn diameter 7 μm, fiber length 3 mm) used in Example 1 were slurried so as to have a weight ratio of conductive aromatic polyamide pulp / carbon fiber = 90/10. Papermaking and calendering were performed under the same conditions as in Example 1 to obtain heat-resistant conductive paper having a basis weight of 99 g / m 2 .

実施例4
実施例3において、炭素繊維を平均粒径0.3μmのカーボンブラック(MPS-1504B1ack(T);大日精化工業(株)製)に変更した以外は、実施例3と同様に実施し、坪量97g/mの耐熱性導電紙を得た。
Example 4
In Example 3, the same procedure as in Example 3 was performed except that the carbon fiber was changed to carbon black having an average particle size of 0.3 μm (MPS-1504B1ack (T); manufactured by Dainichi Seika Kogyo Co., Ltd.). An amount of 97 g / m 2 of heat-resistant conductive paper was obtained.

比較例1
実施例1において、NMP溶液中の芳香族ポリアミド含有量が0.05%となるように調整した以外は、実施例1と同様に実施し、導電性芳香族ポリアミド溶液を得た。
さらに、この芳香族ポリアミド溶液を用いて実施例1と同様の方法にて、濾水度20m1の導電性芳香族ポリアミドパルプを得た。このときのパルプの水分率は約80%であった。しかし、本パルプ作成時に芳香族ポリアミドが導電性材料を十分に捕捉できなかったためか、本パルプの光学顕微鏡からは導電性材料がほとんど観察できなかったうえ、パルプ繊維ごとに導電性材料のバラツキが見られた。
さらに、上記パルプを用いて実施例1と同様の方法で抄紙、カレンダーを行い、坪量100g/mの耐熱性導電紙を得た。
Comparative Example 1
A conductive aromatic polyamide solution was obtained in the same manner as in Example 1, except that the aromatic polyamide content in the NMP solution was adjusted to 0.05% in Example 1.
Furthermore, using this aromatic polyamide solution, a conductive aromatic polyamide pulp having a freeness of 20 ml was obtained in the same manner as in Example 1. The moisture content of the pulp at this time was about 80%. However, because the aromatic polyamide could not capture the conductive material sufficiently at the time of pulp production, the conductive material could hardly be observed from the optical microscope of the pulp, and there was variation in the conductive material for each pulp fiber. It was seen.
Furthermore, papermaking and calendering were performed using the above pulp in the same manner as in Example 1 to obtain heat-resistant conductive paper having a basis weight of 100 g / m 2 .

比較例2
実施例1において、カレンダー加工温度を120℃に変更した以外は、実施例1と同様に実施し、坪量100g/mの耐熱性導電紙を得た。
Comparative Example 2
Example 1 was carried out in the same manner as in Example 1 except that the calendering temperature was changed to 120 ° C., and a heat-resistant conductive paper having a basis weight of 100 g / m 2 was obtained.

以上の各実施例や比較例に示した耐熱性導電紙の製造条件を表1に、上記(1)〜(6)の測定方法により評価した諸特性を表2に示す。   Table 1 shows the manufacturing conditions of the heat-resistant conductive paper shown in the above Examples and Comparative Examples, and Table 2 shows various properties evaluated by the measuring methods (1) to (6).

Figure 0004694909
Figure 0004694909

Figure 0004694909
Figure 0004694909

上記のようにして得られる本発明の耐熱性繊維紙は、導電性、裂断長および耐屈曲性に優れているので、自動車部材、面発熱体などの材料として好適に使用できる。
The heat-resistant fiber paper of the present invention obtained as described above is excellent in conductivity, tear length and bending resistance, and can be suitably used as a material for automobile members, surface heating elements and the like.

Claims (6)

パラ型芳香族ポリアミドおよび導電性材料を主成分とする導電性芳香族ポリアミドパルプからなる耐熱性導電紙であり、該導電性芳香族ポリアミドパルプ中の導電性材料の割合が70〜98重量%の範囲にあり、かつ該導電性芳香族ポリアミドパルプ中の芳香族ポリアミドが、導電性材料と実質的に接着もしくは導電性材料を実質的に包含して形成されていることを特徴とする耐熱性導電紙。 A heat-resistant conductive paper comprising a conductive aromatic polyamide pulp mainly comprising a para-type aromatic polyamide and a conductive material, wherein the proportion of the conductive material in the conductive aromatic polyamide pulp is 70 to 98 % by weight And the aromatic polyamide in the conductive aromatic polyamide pulp is formed by substantially adhering to the conductive material or substantially including the conductive material. paper. パラ型芳香族ポリアミドがコポリパラフェニレン・3,4'−オキシジフェニレン・テレフタルアミドである請求項1記載の耐熱性導電紙。 The heat-resistant conductive paper according to claim 1 , wherein the para-type aromatic polyamide is copolyparaphenylene 3,4'-oxydiphenylene terephthalamide. 導電性材料が、導電性カーボンブラック、メソカーボン小球体、黒鉛、炭素繊維ミルド、フラーレン、カーボンナノチューブ、金属粉末、および金属酸化物粉末の群から選ばれた少なくとも1種である請求項1または2記載の耐熱性導電紙。   The conductive material is at least one selected from the group consisting of conductive carbon black, mesocarbon microspheres, graphite, carbon fiber milled, fullerene, carbon nanotube, metal powder, and metal oxide powder. The heat-resistant conductive paper described. 導電性芳香族ポリアミドパルプの濾水度が30〜300mlである請求項1〜3いずれかに記載の耐熱性導電紙。   The heat-resistant conductive paper according to any one of claims 1 to 3, wherein the freeness of the conductive aromatic polyamide pulp is 30 to 300 ml. 耐熱性導電紙の裂断長が0.5km以上である請求項1〜4いずれかに記載の耐熱性導電紙。 The heat-resistant conductive paper according to any one of claims 1 to 4, wherein the heat-resistant conductive paper has a breaking length of 0.5 km or more. パラ型芳香族ポリアミド30〜2重量%および導電性材料70〜98重量%からなる導電性芳香族ポリアミドパルプを含むスラリーを湿式抄紙した後、乾燥して得た乾燥紙を、150〜350℃の温度下、50〜500kg/cmの圧力下で加熱加圧加工して、該導電性芳香族ポリアミドパルプを部分的に軟化および/または溶融させることを特徴とする耐熱性導電紙の製造方法。 After wet papermaking a slurry containing conductive aromatic polyamide pulp composed of 30 to 2 % by weight of para-type aromatic polyamide and 70 to 98% by weight of conductive material, dry paper obtained by drying is made at 150 to 350 ° C. A method for producing a heat-resistant conductive paper, characterized in that the conductive aromatic polyamide pulp is partially softened and / or melted by heating and pressing under a temperature of 50 to 500 kg / cm.
JP2005207944A 2005-07-19 2005-07-19 Heat-resistant conductive paper and method for producing the same Active JP4694909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207944A JP4694909B2 (en) 2005-07-19 2005-07-19 Heat-resistant conductive paper and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207944A JP4694909B2 (en) 2005-07-19 2005-07-19 Heat-resistant conductive paper and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007023429A JP2007023429A (en) 2007-02-01
JP4694909B2 true JP4694909B2 (en) 2011-06-08

Family

ID=37784577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207944A Active JP4694909B2 (en) 2005-07-19 2005-07-19 Heat-resistant conductive paper and method for producing the same

Country Status (1)

Country Link
JP (1) JP4694909B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016203746A1 (en) * 2015-06-19 2018-04-05 日本ゼオン株式会社 Conductive nonwoven fabric and method for producing the same
CN106448812B (en) * 2016-10-31 2018-01-19 中昊黑元化工研究设计院有限公司 A kind of carbon-based waterborne conductive slurry and preparation method thereof
JP7018945B2 (en) * 2017-06-28 2022-02-14 帝人株式会社 High-concentration particle-containing film and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145295A (en) * 1974-10-16 1976-04-17 Teijin Ltd DODENSHI
JPS5155401A (en) * 1974-11-06 1976-05-15 Teijin Ltd PARUPURYUSHI
JPH08209584A (en) * 1995-01-27 1996-08-13 Teijin Ltd Electro-conductive aramide paper and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145295A (en) * 1974-10-16 1976-04-17 Teijin Ltd DODENSHI
JPS5155401A (en) * 1974-11-06 1976-05-15 Teijin Ltd PARUPURYUSHI
JPH08209584A (en) * 1995-01-27 1996-08-13 Teijin Ltd Electro-conductive aramide paper and its production

Also Published As

Publication number Publication date
JP2007023429A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
EP1885953B1 (en) Electroconductive aramid paper
US8444814B2 (en) Paper comprising PIPD floc and process for making the same
JP4694909B2 (en) Heat-resistant conductive paper and method for producing the same
JP2009277653A (en) Electrical insulating paper
EP1963569B1 (en) Self-bonding polypyridobisimidazole pulp and a process for making same
US8168039B2 (en) Electroconductive aramid paper and tape made therefrom
US6942757B1 (en) Process for preparing para-aromatic polyamide paper
JP5428230B2 (en) Electrical insulating paper and method for producing electrical insulating paper
US8137506B2 (en) Paper comprising PIPD pulp and process for making same
JP4137600B2 (en) Aromatic polyamide fiber paper
JP2009174090A (en) Paper comprising polyphenylene sulfide and method for producing the same
TW318193B (en)
JP2001032189A5 (en)
JPH073693A (en) Production of para-aromatic polyamide paper
JP2543346B2 (en) Synthetic paper
JP2009030187A (en) Wet type non-woven fabric
JP2004079406A (en) Method for manufacturing gas diffusion electrode, and fuel cell
JPH08209584A (en) Electro-conductive aramide paper and its production
JP2004149990A (en) Para-oriented aromatic polyamide pulp and para-oriented aromatic polyamide fiber paper containing the same
JP2001140189A (en) Blend paper of fluororesin fiber and method for producing the same
JP2009114601A (en) Polyarylene sulfide oxide paper and method for producing the same
JP2010133034A (en) Method for producing electrical insulating paper
JP2022114251A (en) Composite paper structure containing aramid nanofiber and manufacturing method thereof
JP2588033B2 (en) Flexible sheet heating element and manufacturing method thereof
JPH0349184A (en) Manufacture of conducting sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350