JP2009277653A - Electrical insulating paper - Google Patents
Electrical insulating paper Download PDFInfo
- Publication number
- JP2009277653A JP2009277653A JP2009098708A JP2009098708A JP2009277653A JP 2009277653 A JP2009277653 A JP 2009277653A JP 2009098708 A JP2009098708 A JP 2009098708A JP 2009098708 A JP2009098708 A JP 2009098708A JP 2009277653 A JP2009277653 A JP 2009277653A
- Authority
- JP
- Japan
- Prior art keywords
- wet nonwoven
- fibers
- nonwoven fabric
- fiber
- polyphenylene sulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Paper (AREA)
- Organic Insulating Materials (AREA)
Abstract
Description
本発明は、電気絶縁紙に関するものである。 The present invention relates to an electrical insulating paper.
アラミド繊維とポリフェニレンサルファイド繊維とを混抄してなる電気絶縁紙なるものが開示されている(特許文献1、2)。しかし、これらの混抄紙では、通気するほどの貫通孔があり、貫通孔部分で通電するため、絶縁破壊強さを向上できるものではなかった。 An electrically insulating paper obtained by mixing aramid fiber and polyphenylene sulfide fiber is disclosed (Patent Documents 1 and 2). However, these mixed papers have through-holes that allow air to pass therethrough, and since current is passed through the through-hole portions, the dielectric breakdown strength cannot be improved.
また、パルプ状のアラミド繊維と未延伸ポリフェニレンサルファイド繊維とを含む湿式不織布からなる電池セパレーターなるものが特許文献3に開示されている。しかし、この湿式不織布は電気絶縁紙とは異なり、電解液の吸液速度を優れたものとするために、湿式不織布中には空隙が多い。その空隙部分で部分放電を経て絶縁破壊を生じるため、十分な絶縁破壊強さを得ることはできなかった。 Patent Document 3 discloses a battery separator made of a wet nonwoven fabric containing pulp-like aramid fibers and unstretched polyphenylene sulfide fibers. However, unlike the electrically insulating paper, this wet nonwoven fabric has many voids in the wet nonwoven fabric in order to make the liquid absorption rate of the electrolyte excellent. Since the dielectric breakdown occurs through partial discharge in the gap portion, sufficient breakdown strength cannot be obtained.
本発明は、絶縁破壊強さに優れ、かつ、吸湿寸法安定性、熱寸法安定性に優れ、かつ、抄紙時の工程通過性に優れた電気絶縁紙を提供することを目的とする。 An object of the present invention is to provide an electrical insulating paper that is excellent in dielectric breakdown strength, excellent in hygroscopic dimensional stability and thermal dimensional stability, and excellent in process passability during papermaking.
かかる課題を解決すべく鋭意検討の結果、本発明は、主として次の構成を有する。すなわち、フィブリル化したアラミド繊維とポリフェニレンサルファイド短繊維とを含む湿式不織布であって、該ポリフェニレンサルファイド短繊維における未延伸ポリフェニレンサルファイド短繊維の分率が95質量%以上、かつ、湿式不織布における未延伸ポリフェニレンサルファイド短繊維の混率が50〜99質量%であり、絶縁破壊強さが15kV/mm以上である湿式不織布からなることを特徴とする電気絶縁紙、である。 As a result of intensive studies to solve this problem, the present invention mainly has the following configuration. That is, a wet nonwoven fabric comprising fibrillated aramid fibers and polyphenylene sulfide short fibers, wherein the fraction of unstretched polyphenylene sulfide short fibers in the polyphenylene sulfide short fibers is 95% by mass or more, and unstretched polyphenylene in the wet nonwoven fabric An electrically insulating paper comprising a wet nonwoven fabric having a mixed ratio of sulfide short fibers of 50 to 99 mass% and a dielectric breakdown strength of 15 kV / mm or more.
本発明により、絶縁破壊強さに優れ、かつ、吸湿寸法安定性、熱寸法安定性に優れ、かつ、抄紙時の工程通過性に優れた電気絶縁紙を提供することができる。 According to the present invention, it is possible to provide an electrical insulating paper that is excellent in dielectric breakdown strength, excellent in hygroscopic dimensional stability and thermal dimensional stability, and excellent in process passage during papermaking.
本発明の電気絶縁紙は、フィブリル化したアラミド繊維とポリフェニレンサルファイド(以下、PPSという)短繊維とを含む湿式不織布からなり、該PPS短繊維は未延伸PPS短繊維を含むものである。 The electrical insulating paper of the present invention comprises a wet nonwoven fabric containing fibrillated aramid fibers and polyphenylene sulfide (hereinafter referred to as PPS) short fibers, and the PPS short fibers include unstretched PPS short fibers.
フィブリル化したアラミド繊維で湿式不織布中の大きな空隙をなくして小さな空隙にし、未延伸PPS短繊維を溶融して、上記小さな空隙をなくして電気絶縁破壊強さを向上することができる。 The fibrillated aramid fiber can be used to eliminate large voids in the wet nonwoven fabric to form small voids, melt the unstretched PPS short fibers, and eliminate the small voids to improve the electrical breakdown strength.
本発明における湿式不織布は、アラミド繊維を含む。アラミド繊維を含むことで熱寸法安定性や難燃性に優れた湿式不織布を得ることができる。特に、優れた熱寸法安定性を得ることができるので、抄紙して乾燥するときの熱収縮等を抑制し、安定して連続抄紙加工等することができるようになる。 The wet nonwoven fabric in the present invention contains aramid fibers. By including an aramid fiber, a wet nonwoven fabric excellent in thermal dimensional stability and flame retardancy can be obtained. In particular, since excellent thermal dimensional stability can be obtained, heat shrinkage and the like when paper is made and dried are suppressed, and continuous paper making can be stably performed.
アラミド繊維としては、一般的な芳香族ポリアミドであれば特に限定はされず、ポリパラフェニレンテレフタルアミドや、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド、ポリメタフェニレンテレフタルアミド等をあげることができるが、なかでもフィブリル化し易く、耐熱性にも優れたポリパラフェニレンテレフタルアミドが好ましい。 The aramid fiber is not particularly limited as long as it is a general aromatic polyamide, and examples thereof include polyparaphenylene terephthalamide, copolyparaphenylene 3,4′oxydiphenylene terephthalamide, and polymetaphenylene terephthalamide. Among them, polyparaphenylene terephthalamide, which is easy to fibrillate and has excellent heat resistance, is preferable.
アラミド繊維は、その少なくとも一部がフィブリル化していることが好ましい。ここで、フィブリル化とはたて方向に繊維が2本以上に裂け単繊維よりも細い状態となった部分を有することをいう。フィブリル化することで、繊維同士の絡合性が向上し、紙力が向上することで、抄紙時の工程通過性に優れた湿式不織布を得ることができる。また、フィブリルで繊維間の大きな空隙を少なくして緻密な湿式不織布を得ることができる。 The aramid fiber is preferably at least partially fibrillated. Here, fibrillation means that a fiber has a portion that is split into two or more in the vertical direction and is thinner than a single fiber. By forming into fibrils, the entanglement between the fibers is improved, and the paper strength is improved, so that a wet nonwoven fabric excellent in process passability during papermaking can be obtained. Further, a dense wet nonwoven fabric can be obtained by reducing the large gaps between fibers with fibrils.
なお、アラミド繊維は短繊維をフィブリル化したものが好ましい。短繊維の方が水分散性がよく目付けムラの小さな湿式不織布を得やすくなる。 The aramid fiber is preferably a fibrillated short fiber. Short fibers are easier to obtain wet nonwoven fabrics with better water dispersibility and smaller unevenness per unit area.
本発明における湿式不織布は、PPS短繊維を含む。PPS短繊維を含むことで吸湿寸法安定性に優れた湿式不織布を得ることができる。 The wet nonwoven fabric in the present invention contains PPS short fibers. By including PPS short fibers, a wet nonwoven fabric excellent in hygroscopic dimensional stability can be obtained.
PPSは、繰り返し単位としてp−フェニレンサルファイド単位やm−フェニレンサルファイド単位などのフェニレンサルファイド単位を含有するポリマーである。PPSは、これらのいずれかの単位のホモポリマーでもよいし、両方の単位を有する共重合体でもよい。また、他の芳香族サルファイドとの共重合体であってもよい。 PPS is a polymer containing phenylene sulfide units such as p-phenylene sulfide units and m-phenylene sulfide units as repeating units. PPS may be a homopolymer of any of these units, or a copolymer having both units. Moreover, the copolymer with another aromatic sulfide may be sufficient.
また、PPSの重量平均分子量としては、40000〜60000が好ましい。40000以上とすることで、PPS繊維として良好な力学的特性を得ることができる。また、60000以下とすることで、溶融紡糸の溶液の粘度を抑え、特殊な高耐圧仕様の紡糸設備を必要とせずに済む。 Moreover, as a weight average molecular weight of PPS, 40000-60000 are preferable. By setting it to 40,000 or more, good mechanical properties as PPS fibers can be obtained. Further, by setting the viscosity to 60000 or less, the viscosity of the melt spinning solution is suppressed, and a special high pressure resistant spinning equipment is not required.
本発明における湿式不織布におけるPPS短繊維は、未延伸PPS短繊維を含むことが重要である。未延伸PPS短繊維は加熱加圧すると容易に変形するので、空隙をつぶし、湿式不織布を構成するアラミド繊維やPPS短繊維(未延伸PPS短繊維、延伸PPS短繊維)等と融着して、緻密な湿式不織布を得ることができる。このように未延伸PPS短繊維の少なくとも一部が融着していることにより、絶縁破壊強さを向上させ、絶縁破壊強さ15kV/mm以上を達成することができる。 It is important that the PPS short fibers in the wet nonwoven fabric in the present invention include unstretched PPS short fibers. Since unstretched PPS short fibers are easily deformed when heated and pressurized, the voids are crushed and fused with aramid fibers, PPS short fibers (unstretched PPS short fibers, stretched PPS short fibers), etc., constituting the wet nonwoven fabric, A dense wet nonwoven fabric can be obtained. As described above, since at least a part of the unstretched PPS short fibers is fused, the dielectric breakdown strength can be improved and a dielectric breakdown strength of 15 kV / mm or more can be achieved.
湿式不織布に含まれるPPS短繊維における未延伸PPS短繊維の分率は95質量%以上であることが重要である。95質量%以上とすることで、緻密な湿式不織布を得、絶縁破壊強さを向上することができる。 It is important that the fraction of unstretched PPS short fibers in the PPS short fibers contained in the wet nonwoven fabric is 95% by mass or more. By setting it as 95 mass% or more, a dense wet nonwoven fabric can be obtained and a dielectric breakdown strength can be improved.
なお、未延伸PPS繊維とは、エクストルダー型紡糸機等で口金を通して溶融紡糸した後、概ね延伸することなく得たPPS繊維のことをいう。 The unstretched PPS fiber refers to a PPS fiber obtained without being generally stretched after melt spinning through a die with an extruder-type spinning machine or the like.
湿式不織布全体における未延伸PPS短繊維の混率は50〜99質量%であることが好ましい。50質量%未満であると、未延伸PPS短繊維の割合が十分でなく、湿式不織布中の空隙を十分に潰すことができず、目的とする絶縁破壊強さを得ることができない。また、99質量%よりも多いと、アラミド繊維の割合が少なくなりすぎて、十分な寸法安定性を得ることができない。さらには、未延伸PPS短繊維の混率は、湿式不織布全体に対して70〜99質量%であることが好ましい。 The mixing ratio of unstretched PPS short fibers in the entire wet nonwoven fabric is preferably 50 to 99% by mass. If it is less than 50% by mass, the ratio of unstretched PPS short fibers is not sufficient, the voids in the wet nonwoven fabric cannot be sufficiently crushed, and the intended dielectric breakdown strength cannot be obtained. On the other hand, when the amount is more than 99% by mass, the ratio of aramid fibers is too small to obtain sufficient dimensional stability. Furthermore, the mixing ratio of the unstretched PPS short fibers is preferably 70 to 99% by mass with respect to the entire wet nonwoven fabric.
本発明における湿式不織布におけるPPS短繊維の単繊維繊度としては、未延伸繊維及び延伸繊維のいずれも0.05dtex以上5dtex以下が好ましい。0.05dtexよりも細いと繊維同士が絡み易くなり均一に分散するのが難しくなる。5dtexよりも太くなると繊維が太く、硬くなり、繊維同士の絡合力が弱くなるので、十分な紙力が得られず、破れ易い湿式不織布になってしまう。
また、PPS短繊維の繊維長としては、未延伸繊維及び延伸繊維のいずれも0.5〜15mmが好ましく、より好ましくは1〜8mmである。0.5mm以上とすることで、繊維同士の絡合により湿式不織布の強度を高くすることができる。また25mm以下とすることで、繊維同士の絡合がダマになるなどしてムラ等が生じるのを防ぐことができる。
As the single fiber fineness of the PPS short fibers in the wet nonwoven fabric in the present invention, both undrawn fibers and drawn fibers are preferably 0.05 dtex or more and 5 dtex or less. If it is thinner than 0.05 dtex, the fibers are easily entangled and it is difficult to uniformly disperse them. If it is thicker than 5 dtex, the fiber becomes thick and hard, and the entanglement force between the fibers becomes weak, so that sufficient paper strength cannot be obtained, resulting in a wet nonwoven fabric that is easily torn.
Moreover, as a fiber length of a PPS short fiber, 0.5-15 mm is preferable in both undrawn fiber and a drawn fiber, More preferably, it is 1-8 mm. By setting it as 0.5 mm or more, the strength of the wet nonwoven fabric can be increased by entanglement of the fibers. Moreover, by setting it as 25 mm or less, it can prevent that an unevenness etc. arise by the entanglement of fibers becoming lumps.
上記フィブリル化したアラミド繊維とPPS短繊維とを混抄して通常用いられる抄紙機でドライウェブを得、加熱加圧処理して未延伸PPS短繊維を融着して空隙をつぶすことで、15kV/mm以上の電気絶縁紙を得ることができる。絶縁破壊強さが15kV/mm以上になることで、モーターや変圧器等の中に用いる電気絶縁紙として用いることができるようになる。 The fibrillated aramid fiber and the PPS short fiber are mixed and obtained to obtain a dry web by a commonly used paper machine, and heat and pressure treatment is performed to melt the unstretched PPS short fiber, thereby crushing the gap. An electrically insulating paper of mm or more can be obtained. When the dielectric breakdown strength is 15 kV / mm or more, it can be used as electrical insulating paper used in motors, transformers, and the like.
なお、本発明における絶縁破壊強さは、JIS K 6911:1995に則り測定した値を言う。すなわち、試料の異なる5か所から約10cm×10cmの試験片を採取し、直径25mm、質量250gの円盤状の電極で試験片を挟み、試験媒体には空気を用い、0.25kV/秒で電圧を上昇させながら周波数60Hzの交流電圧をかけ、絶縁破壊したときの電圧を測定する。得られた絶縁破壊電圧をあらかじめ測定しておいた中央部の厚さで割り、算出した値を絶縁破壊強さとする。 In addition, the dielectric breakdown strength in this invention says the value measured according to JISK6911: 1995. That is, test specimens of about 10 cm × 10 cm were taken from five different places of the sample, the test specimens were sandwiched between disc-shaped electrodes having a diameter of 25 mm and a mass of 250 g, air was used as the test medium, and the test medium was 0.25 kV / sec. While increasing the voltage, an AC voltage having a frequency of 60 Hz is applied to measure the voltage when dielectric breakdown occurs. The obtained dielectric breakdown voltage is divided by the thickness of the central portion measured in advance, and the calculated value is taken as the dielectric breakdown strength.
次に、本発明の湿式不織布を製造する方法について説明する。 Next, a method for producing the wet nonwoven fabric of the present invention will be described.
未延伸PPS繊維は、PPSポリマーを、エクストルダー型紡糸機等で溶融紡糸し、概ね延伸することなく処理することで得ることができる。また、延伸PPS繊維は、未延伸PPS繊維と同様にPPSポリマーを、エクストルダー型紡糸機等で溶融紡糸し、3.0倍以上、好ましくは5.5倍以下、さらに好ましくは3.5〜5.0倍の範囲で延伸することにより得ることができる。この延伸は1段で延伸してもよいが、2段以上の多段延伸を行ってもよい。2段延伸を用いる場合の1段目の延伸は総合倍率の70%以上、好ましくは75〜85%とし、残りを2段目の延伸で行なうのが好ましい。得られた未延伸糸および延伸糸は捲縮を付与せずにカットしてもよいし、捲縮を付与してカットしてもよい。PPS短繊維における捲縮の有無については、有するものと有しないものとのそれぞれに利点がある。捲縮を有するPPS短繊維は、繊維同士の絡合性が向上して強度の優れた湿式不織布を得るのに適している。一方、捲縮を有しないPPS短繊維は、ムラが小さい均一な湿式不織布を得るのに適している。 The unstretched PPS fiber can be obtained by melt-spinning a PPS polymer with an extruder-type spinning machine or the like and processing it without stretching. Further, the stretched PPS fiber is obtained by melt spinning the PPS polymer with an extruder type spinning machine or the like in the same manner as the unstretched PPS fiber, and is 3.0 times or more, preferably 5.5 times or less, more preferably 3.5 to It can be obtained by stretching in the range of 5.0 times. This stretching may be performed in one stage, but may be performed in two or more stages. In the case of using two-stage stretching, the first stage of stretching is preferably 70% or more of the total magnification, preferably 75 to 85%, and the rest is preferably performed by the second stage of stretching. The obtained undrawn yarn and drawn yarn may be cut without being crimped, or may be cut with crimp. As for the presence or absence of crimp in the PPS short fibers, there are advantages to those having and not having crimps. PPS short fibers having crimps are suitable for obtaining a wet nonwoven fabric having improved strength by improving the entanglement between fibers. On the other hand, short PPS fibers that do not have crimps are suitable for obtaining a uniform wet nonwoven fabric with little unevenness.
次にアラミド繊維について、パラ系アラミド繊維を例として説明する。パラ系アラミド繊維は、高圧ホモジナイザーを用い、パラ系アラミドの懸濁液を高速で小さな径のオリフィスに通過させて吐出させることにより得ることができる。 Next, an aramid fiber will be described by taking a para-aramid fiber as an example. Para-aramid fibers can be obtained by using a high-pressure homogenizer and passing a suspension of para-aramid at a high speed through an orifice having a small diameter and discharging the suspension.
またパラ系アラミド繊維をフィブリル化させる手段としては例えば、前記オリフィスの出口近くに壁を設置し、吐出直後のパラ系アラミド繊維を壁に衝突させて繊維に衝撃を与える方法を用いることができる。また、カットファイバーとした後で、ナイヤガラビーター、ホモジナイザー、ディスクリファイナー、ライカイ機、すり棒とすり鉢、ウォータージェットパンチ等によりすり潰すことによってフィブリル化してもよい。 As a means for fibrillating the para-aramid fiber, for example, a method can be used in which a wall is installed near the outlet of the orifice, and the para-aramid fiber immediately after discharge collides with the wall to give an impact to the fiber. Further, after forming a cut fiber, the fiber may be fibrillated by grinding with a Niagara beater, a homogenizer, a disc refiner, a reiki machine, a mortar and mortar, a water jet punch, or the like.
上記したようなパラ系アラミド繊維とPPS短繊維とを混抄して湿式不織布とする方法の一例を示す。まず、パラ系アラミド繊維とPPS短繊維とを、水中に分散させ、抄紙用分散液をつくる。 An example of a method of blending para-aramid fibers and PPS short fibers as described above into a wet nonwoven fabric will be described. First, para-aramid fibers and short PPS fibers are dispersed in water to form a papermaking dispersion.
抄紙用分散液に対するパラ系アラミド繊維およびPPS繊維の合計量としては、0.005〜5質量%が好ましい。合計量を0.005質量%にすることで、抄紙工程での水を効率よく活用することができる。また、5質量%以下にすることで繊維の分散状態が良くなり均一な湿式不織布を得ることができる。 The total amount of para-aramid fiber and PPS fiber with respect to the papermaking dispersion is preferably 0.005 to 5% by mass. By making the total amount 0.005% by mass, water in the paper making process can be used efficiently. Moreover, by making it 5 mass% or less, the dispersion state of a fiber becomes good and a uniform wet nonwoven fabric can be obtained.
分散液は、予めパラ系アラミド繊維の分散液とPPS繊維の分散液とを別々につくってから両者を抄紙機で混合してもよいし、直接、両方を含む分散液つくってもよい。それぞれの繊維の分散液を別々につくってから両者を混合するのは、それぞれの繊維の形状・特性等に合わせて攪拌時間を別個に制御できる点で好ましく、直接両方を含む分散液を作るのは工程簡略の点で好ましい。 The dispersion may be prepared in advance by separately preparing a dispersion of para-aramid fibers and a dispersion of PPS fibers, and then mixing both with a paper machine, or a dispersion containing both may be made directly. It is preferable to make the dispersion of each fiber separately and then mix them in that the stirring time can be controlled separately according to the shape and characteristics of each fiber. Is preferable in terms of process simplification.
抄紙用分散液には、水分散性を向上するためにカチオン系、アニオン系、ノニオン系などの界面活性剤などからなる分散剤や油剤、また泡の発生を抑制する消泡剤等を添加してもよい。 In order to improve water dispersibility, dispersants for papermaking, such as dispersants and oils composed of cationic, anionic, and nonionic surfactants, and antifoaming agents that suppress foaming are added. May be.
上記のように準備した抄紙用分散液を、丸網式、長網式、傾斜網式などの抄紙機または手漉き抄紙機を用いて抄紙し、これをヤンキードライヤーやロータリードライヤー等で乾燥し、ドライウェブとすることができ、これに加熱・加圧処理を施した湿式不織布を電気絶縁紙とする。なお、本発明においては加熱及び加圧を同時に行うことを加熱・加圧処理と言い、乾燥などの加熱のみで加圧を行わない処理とは区別する。ドライウェブとは、湿式抄造した不織布のうちこの加熱・加圧処理を施していないものを言う。 The paper-making dispersion prepared as described above is used to make paper using a round-mesh type, long-mesh type, inclined net-type paper machine, or hand-made paper machine, and this is dried with a Yankee dryer or a rotary dryer. A wet nonwoven fabric obtained by applying a heating / pressurizing treatment to the web can be used as an electrically insulating paper. In the present invention, simultaneous heating and pressurization is referred to as a heating / pressurizing process, and is distinguished from a process in which no pressure is applied only by heating such as drying. The dry web refers to a non-woven fabric that has been subjected to wet papermaking and that has not been subjected to the heating / pressurizing treatment.
電気絶縁紙の絶縁破壊強さを大きくするために、ドライウェブの結晶化熱量を10J/g以上であることが好ましい。結晶化熱量は、好ましくは15J/g以上である。ドライウェブの結晶化熱量を10J/g以上とするためには、抄紙工程において、未延伸PPS短繊維を完全には結晶化させないことが重要である。具体的には、この結晶化熱量を達成するために抄紙工程における乾燥温度を(未延伸PPS短繊維の結晶化温度+10℃)以下にすることが好ましく、さらに好ましくは、結晶化温度未満にすることが好ましい。特に、結晶化温度〜結晶化温度+10℃では、未延伸PPS短繊維の結晶化が進みやすいので乾燥工程を通過する時間を短くすることが好ましい。ここで、抄紙工程の乾燥温度とは、上記抄紙工程の乾燥時の処理温度(雰囲気温度)の最高温度のことをいう。 In order to increase the dielectric breakdown strength of the electrical insulating paper, the crystallization heat amount of the dry web is preferably 10 J / g or more. The amount of crystallization heat is preferably 15 J / g or more. In order to set the crystallization heat amount of the dry web to 10 J / g or more, it is important that the unstretched PPS short fibers are not completely crystallized in the paper making process. Specifically, in order to achieve this heat of crystallization, it is preferable to set the drying temperature in the paper making process to (the crystallization temperature of unstretched PPS short fibers + 10 ° C.) or less, more preferably less than the crystallization temperature. It is preferable. In particular, at the crystallization temperature to the crystallization temperature + 10 ° C., the crystallization of the unstretched PPS short fibers is likely to proceed, so it is preferable to shorten the time for passing through the drying step. Here, the drying temperature in the papermaking process refers to the maximum processing temperature (atmospheric temperature) during drying in the papermaking process.
(未延伸PPS短繊維の結晶化温度+10℃)以下の温度で乾燥処理をすることで未延伸PPS短繊維の非晶質部分が残留する。非晶質PPSは軟化して塑性変形しやすいため、加熱・加圧処理を施したときに、変形して空隙を埋め、貫通孔などを少なくし、湿式不織布を緻密にすることができ、絶縁破壊強さを向上することができる。なお、乾燥温度が低すぎると水分を蒸発させることができず、乾燥できないので、乾燥温度は80℃以上、さらに好ましくは95℃以上であることがよい。 The amorphous portion of the unstretched PPS short fiber remains by performing a drying treatment at a temperature equal to or lower than (crystallization temperature of unstretched PPS short fiber + 10 ° C.). Amorphous PPS is soft and easily plastically deformed, so when subjected to heat and pressure treatment, it can be deformed to fill voids, reduce the number of through-holes, etc. The breaking strength can be improved. If the drying temperature is too low, the moisture cannot be evaporated and cannot be dried. Therefore, the drying temperature is preferably 80 ° C. or higher, more preferably 95 ° C. or higher.
なお、結晶化温度は後述する実施例の欄の[測定・評価方法](1)項の結晶化熱量測定と同じ条件測定した主発熱ピークの頂点温度を言う。 The crystallization temperature refers to the apex temperature of the main exothermic peak measured under the same conditions as the crystallization calorimetry in the section [Measurement / Evaluation Method] (1) in the column of Examples described later.
本発明の製造においては、フィブリル化したパラ系アラミド繊維と未延伸PPS短繊維を含むPPS短繊維とを混抄したドライウェブに加熱・加圧処理をする工程を含むことが重要である。加熱・加圧処理することで、上記の通り未延伸PPS短繊維を溶融軟化させて空隙を潰して繊維間を融着して、絶縁破壊強さ15kV/mm以上を達成させることができる。加熱・加圧する手段としては、いかなる手段でも良いが、例えば、平板等での熱プレス、カレンダーなどを採用することができる。なかでも、連続して加工することができるカレンダーが好ましい。カレンダーのロールは、金属−金属ロール、金属−紙ロール、金属−ゴムロール等を使用することができる。 In the production of the present invention, it is important to include a step of heating and pressurizing a dry web obtained by mixing fibrillated para-aramid fibers and PPS short fibers including unstretched PPS short fibers. By performing the heating and pressurizing treatment, the unstretched PPS short fibers can be melted and softened as described above, the gaps are crushed and the fibers are fused, and a dielectric breakdown strength of 15 kV / mm or more can be achieved. As a means for heating and pressurizing, any means may be used. For example, a hot press using a flat plate, a calendar, or the like can be employed. Among these, a calendar that can be processed continuously is preferable. As the calendar roll, a metal-metal roll, a metal-paper roll, a metal-rubber roll, or the like can be used.
本発明における湿式不織布では、加熱・加圧処理の温度条件は未延伸PPS短繊維のガラス転移温度以上融点以下の温度がよく、さらに好ましくは160〜250℃であり、さらに好ましくは160〜220℃である。処理温度が未延伸PPPS短繊維のガラス転移温度よりも低いと、繊維同士が熱融着せず緻密な湿式不織布を得ることができない。一方、融点を超えると、未延伸PPS短繊維が軟らかくなりすぎて、カレンダーのロールや熱プレスの板等の加熱加圧装置に貼りついてしまい、安定して量産加工ができない。また、湿式不織布としても、表面が荒れたものができてしまう。 In the wet nonwoven fabric in the present invention, the temperature condition of the heating / pressurizing treatment is preferably a temperature not lower than the glass transition temperature of the unstretched PPS short fibers and not higher than the melting point, more preferably 160 to 250 ° C, and further preferably 160 to 220 ° C. It is. If the treatment temperature is lower than the glass transition temperature of the unstretched short PPPS fibers, the fibers are not heat-sealed and a dense wet nonwoven fabric cannot be obtained. On the other hand, when the melting point is exceeded, the unstretched PPS short fibers become too soft and stick to a heat and pressure apparatus such as a calender roll or a hot press plate, and stable mass production cannot be performed. In addition, a wet nonwoven fabric can be produced with a rough surface.
加熱・加圧処理としてカレンダー加工を採用した場合の圧力としては、98〜7000N/cmが好ましい。98N/cm以上とすることで繊維間の空隙を潰すことができる。一方、7000N/cm以下とすることで、加熱・加圧処理工程における湿式不織布の破れ等を防ぎ、安定して処理を施すことができる。工程速度としては、1〜30m/minが好ましく、より好ましくは2〜20m/minである。1m/min以上とすることで、良好な作業効率を得ることができる。一方、30m/min以下とすることで、湿式不織布の内部の繊維にも熱を伝導させ、繊維の熱融着の実効を得ることができる。 The pressure when calendering is employed as the heating / pressurizing treatment is preferably 98 to 7000 N / cm. The space | interval between fibers can be crushed by setting it as 98 N / cm or more. On the other hand, by setting it to 7000 N / cm or less, it is possible to prevent the wet non-woven fabric from being broken in the heating / pressurizing treatment step and stably perform the treatment. As process speed, 1-30 m / min is preferable, More preferably, it is 2-20 m / min. Good working efficiency can be obtained by setting it as 1 m / min or more. On the other hand, by setting it to 30 m / min or less, heat can also be conducted to the fibers inside the wet nonwoven fabric, and the effect of heat fusion of the fibers can be obtained.
このようにして得られた湿式不織布は絶縁紙として、打ち抜き、折り曲げ加工等して所定の形状にして、モーターに挿入し、ウエッジやスロットライナー、相間紙として用いることができる。また、変圧器において、コイル線間絶縁紙や、層間絶縁紙として用いることもできる。さらに、上記湿式不織布にエポキシ系やポリエステル系の粘着剤を塗布して、コイルや引き出し線の固定等に用いる絶縁テープとして用いることもできる。 The wet nonwoven fabric obtained in this way can be used as insulating paper, punched out, bent into a predetermined shape, inserted into a motor, and used as a wedge, slot liner, or interphase paper. Moreover, in a transformer, it can also be used as insulation paper between coil wires or interlayer insulation paper. Furthermore, an epoxy-based or polyester-based pressure-sensitive adhesive can be applied to the wet nonwoven fabric and used as an insulating tape used for fixing coils and lead wires.
[測定・評価方法]
(1)結晶化熱量
乾燥後(加熱・加圧処理前)のドライウェブサンプルを約2mg精秤し、示差走査熱量計(島津製作所製、DSC−60)で窒素下、昇温速度10℃/分で昇温し、観察される主発熱ピークの発熱量を測定することにより行った。
[Measurement and evaluation method]
(1) Heat of crystallization About 2 mg of dry web sample after drying (before heating and pressure treatment) is precisely weighed and heated at a rate of temperature increase of 10 ° C. under nitrogen with a differential scanning calorimeter (Shimadzu, DSC-60). The temperature was raised in minutes, and the calorific value of the observed main exothermic peak was measured.
(2)目付
JIS L 1906:2000に準じて、20cm×20cmの試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値を1m2当たりの質量(g/m2)で表した。
(2) Basis weight According to JIS L 1906: 2000, three 20 cm × 20 cm test pieces were collected per 1 m width of the sample, each mass (g) in the standard state was measured, and the average value per m 2 Expressed in mass (g / m 2 ).
(3)厚さ
JIS L 1906:2000で準用するJIS L 1096:1999に準じて、試料の異なる10か所について、厚さ測定機を用いて、直径22mmの加圧子による2kPaの加圧下、厚さを落ち着かせるために10秒間待った後に厚さを測定し、平均値を算出した。
(3) Thickness According to JIS L 1906: 2000 applied mutatis mutandis to JIS L 1906: 2000, thickness was measured under a pressure of 2 kPa with a pressurizer having a diameter of 22 mm, using a thickness measuring machine at 10 different locations of the sample. In order to calm the thickness, after waiting for 10 seconds, the thickness was measured, and an average value was calculated.
(4)絶縁破壊強さ
JIS K 6911:1995に則り測定した。試料の異なる5か所から約10cm×10cmの試験片を採取し、直径25mm、質量250gの円盤状の電極で試験片を挟み、試験媒体には空気を用い、0.25kV/秒で電圧を上昇させながら周波数60Hzの交流電圧をかけ、絶縁破壊したときの電圧を測定した。得られた絶縁破壊電圧をあらかじめ測定しておいた中央部の厚さで割り、絶縁破壊強さを算出した。
(4) Dielectric breakdown strength Measured according to JIS K 6911: 1995. Test specimens of about 10 cm × 10 cm are collected from five different specimens, and the specimens are sandwiched between disc-shaped electrodes with a diameter of 25 mm and a mass of 250 g, air is used as the test medium, and a voltage is applied at 0.25 kV / second. While increasing, an AC voltage having a frequency of 60 Hz was applied, and the voltage when dielectric breakdown was measured. The obtained dielectric breakdown voltage was divided by the thickness of the central portion measured in advance, and the dielectric breakdown strength was calculated.
(5)吸湿寸法変化率
試料の異なる3か所からタテ25cm×ヨコ5cmの試験片を採取し、シリカゲルの入ったデシケーター中にて25℃で24時間乾燥し、タテ方向に200.0mmの間隔のしるしをつけた。
(5) Moisture absorption dimensional change rate Test specimens of vertical 25cm x horizontal 5cm were collected from three different specimens, dried in a desiccator containing silica gel for 24 hours at 25 ° C, and spaced 200.0mm apart in the vertical direction. I put a sign of
次いで、相対湿度90%、温度25℃に調整した恒温・恒湿槽内にて上記試験片を6時間放置した後に恒温・恒湿槽から取り出し、10分以内に上記しるしの間隔Lを測定し、寸法変化率を下の式で算出した。その平均値を算出し小数点以下1けたに丸めた。
寸法変化率(%)=(1−L/200.0)×100
ここに、L:相対湿度90%にて放置後のしるしの間隔(mm)。
Next, after leaving the test piece in a constant temperature / humidity chamber adjusted to 90% relative humidity and 25 ° C. for 6 hours, the test piece is taken out from the constant temperature / humidity chamber, and the interval L of the mark is measured within 10 minutes. The dimensional change rate was calculated by the following formula. The average value was calculated and rounded to one decimal place.
Dimensional change rate (%) = (1−L / 200.0) × 100
Here, L: the distance (mm) between the marks after standing at 90% relative humidity.
(6)熱寸法変化率(乾熱収縮率)
試料の異なる3か所から100.0mm×100.0mmの試験片を採取し、180℃の熱風乾燥機中で4時間熱処理し、25℃にて2時間放置後、試験片の面積を測定して、熱寸法変化率を次式によって算出し、その平均値を算出し小数点以下1けたに丸めた。
熱寸法変化率(%)={(10000−A)/10000}×100
ここに、A:熱処理後の試験片の面積(mm2)。
(6) Thermal dimensional change rate (dry heat shrinkage rate)
Samples of 100.0 mm x 100.0 mm were collected from three different specimens, heat-treated in a hot air dryer at 180 ° C for 4 hours, allowed to stand at 25 ° C for 2 hours, and then the area of the test piece was measured. Then, the thermal dimensional change rate was calculated by the following formula, the average value was calculated and rounded to one decimal place.
Thermal dimensional change rate (%) = {(10000−A) / 10000} × 100
Here, A: Area (mm 2 ) of the test piece after the heat treatment.
[実施例1〜6、比較例1〜5]
各繊維の分率・混率及び目付が表1のとおりになるように、以下の方法で湿式不織布をそれぞれ製造した。
[Examples 1-6, Comparative Examples 1-5]
Wet nonwoven fabrics were produced by the following methods so that the fraction / mixing ratio and basis weight of each fiber were as shown in Table 1.
(パラ系アラミド繊維)
フィブリルを有するパラ系アラミド繊維として、デュポン(DuPont)社製‘ケブラー’パルプ、品番1F303を用いた。
(Para-aramid fiber)
As a para-aramid fiber having fibrils, “Kevlar” pulp manufactured by DuPont, product number 1F303 was used.
(パラ系アラミド繊維の分散液)
上記パラ系アラミド繊維を、表1記載の質量分の小数第1位を切り上げた数に概ね等分し、1等分ずつをとり、おのおの水1Lとともに家庭用ジューサーミキサーに投入して攪拌することを繰り返し、分散液とした。攪拌時間としては、15秒とした。
(Para-aramid fiber dispersion)
The above para-aramid fiber is roughly divided into the numbers shown in Table 1 rounded up to the first decimal place, and each portion is divided into 1 aliquot and put into a domestic juicer mixer with 1 L of water. Was repeated to obtain a dispersion. The stirring time was 15 seconds.
(未延伸PPS短繊維)
未延伸PPS短繊維として、単繊維繊度3.0dtex、カット長6mmの東レ社製‘トルコン’、品番S111を用いた。
(Unstretched PPS short fiber)
As the unstretched PPS short fibers, “Torcon” manufactured by Toray with a single fiber fineness of 3.0 dtex and a cut length of 6 mm, product number S111 was used.
(未延伸PPS短繊維の分散液)
上記未延伸PPS短繊維を、それぞれ表1記載の質量分の小数第1位を切り上げた数に概ね等分し、1等分ずつをとり、おのおの水1Lとともに家庭用ジューサーミキサーに投入して攪拌することを繰り返し、分散液とした。攪拌時間としては、繊維同士が絡むのを防ぐために10秒とした。
(Unstretched PPS short fiber dispersion)
The unstretched PPS short fibers are roughly divided into the numbers rounded up to the first decimal place for each mass listed in Table 1, and each aliquot is taken into a household juicer mixer with 1 L of water and stirred. This was repeated to obtain a dispersion. The stirring time was 10 seconds in order to prevent the fibers from getting tangled.
(延伸PPS短繊維)
延伸PPS短繊維として、単繊維繊度1.0dtex、カット長6mmの東レ社製‘トルコン’、品番S301を用いた。
(Drawn PPS short fiber)
As the drawn PPS short fiber, “Torucon” manufactured by Toray Industries, Inc., product number S301 having a single fiber fineness of 1.0 dtex and a cut length of 6 mm was used.
(延伸PPS短繊維の分散液)
上記延伸PPS短繊維を、それぞれ表1記載の質量分の小数第1位を切り上げた数に概ね等分し、1等分ずつをとりおのおの水1Lとともに家庭用ジューサーミキサーに投入して攪拌することを繰り返し、分散液とした。攪拌時間としては、繊維同士が絡むのを防ぐために10秒とした。
(Dispersion of drawn PPS short fibers)
Each of the above drawn PPS short fibers is roughly equally divided into the numbers obtained by rounding up the first decimal place of the mass shown in Table 1, and each equal portion is poured into a domestic juicer mixer together with 1 L of water and stirred. Was repeated to obtain a dispersion. The stirring time was 10 seconds in order to prevent the fibers from getting tangled.
(抄紙)
各実施例・比較例において使用した繊維の分散液を、底に140メッシュで大きさ25cm×25cmの手漉き抄紙網を設置した大きさ25cm×25cm、高さ40cmの手すき抄紙機(熊谷理機工業社製)に投入し、さらに水を追加して抄紙分散液の総量を20Lとし、攪拌棒で十分に攪拌した。
手すき抄紙機の水を抜き、抄紙網に残った湿紙をろ紙に転写した。
(Paper)
The fiber dispersion used in each of the examples and comparative examples is a handmade paper machine having a size of 25 cm × 25 cm and a height of 40 cm in which a handmade paper net having a size of 25 cm × 25 cm is installed at the bottom of 140 mesh (Kumaya Riki Kogyo Co., Ltd.) The total amount of the papermaking dispersion was adjusted to 20 L and sufficiently stirred with a stir bar.
Water from the handsheet paper machine was drained, and the wet paper remaining on the paper web was transferred to filter paper.
(乾燥)
上記湿紙をろ紙ごとロータリー式乾燥機に投入し、工程通過速度0.5m/min、工程長1.25m(処理時間2.5min)にて乾燥する処理を表裏各3回、合計6回繰り返した。なお、乾燥温度は表1に示す。
(Dry)
The above wet paper is put together with the filter paper into a rotary dryer, and the process of drying at a process passing speed of 0.5 m / min and a process length of 1.25 m (processing time 2.5 min) is repeated 3 times for each of the front and back surfaces, a total of 6 times. It was. The drying temperature is shown in Table 1.
(加熱加圧処理)
上記乾燥処理した湿式不織布をろ紙から剥離して、鉄ロールとペーパーロールとからなるカレンダー加工機に通した。カレンダー圧力は100kN/25cm(4kN/cm)とし、表裏各1回の2回処理した。なお、処理温度と加工速度は表1に示す。
(Heat and pressure treatment)
The wet nonwoven fabric subjected to the drying treatment was peeled off from the filter paper and passed through a calendering machine composed of an iron roll and a paper roll. The calendar pressure was 100 kN / 25 cm (4 kN / cm), and the treatment was performed twice, once for each of the front and back surfaces. The processing temperature and processing speed are shown in Table 1.
実施例1〜6において絶縁破壊強さも強く、吸湿寸法安定性、熱寸法安定性に優れた電気絶縁紙を得ることができた。また、試験片表面を電子顕微鏡を用いて倍率300倍で観察したところ、未延伸PPS短繊維による融着が有ることが確認できた。 In Examples 1 to 6, electrical breakdown strength was high, and electrical insulating paper excellent in hygroscopic dimensional stability and thermal dimensional stability could be obtained. Moreover, when the surface of the test piece was observed with an electron microscope at a magnification of 300, it was confirmed that there was fusion with unstretched PPS short fibers.
本発明の電気絶縁紙は、モーター、コンデンサー、変圧器、ケーブル等に用いられる電気絶縁紙として利用可能である。 The electrical insulation paper of the present invention can be used as electrical insulation paper used for motors, capacitors, transformers, cables and the like.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009098708A JP2009277653A (en) | 2008-04-18 | 2009-04-15 | Electrical insulating paper |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008108649 | 2008-04-18 | ||
JP2009098708A JP2009277653A (en) | 2008-04-18 | 2009-04-15 | Electrical insulating paper |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009277653A true JP2009277653A (en) | 2009-11-26 |
Family
ID=41442861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009098708A Pending JP2009277653A (en) | 2008-04-18 | 2009-04-15 | Electrical insulating paper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009277653A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101702346B (en) * | 2009-12-01 | 2011-05-04 | 江苏精达里亚阿尔岗琴工程线有限公司 | Method for humidifying insulation paper |
WO2012033085A1 (en) * | 2010-09-07 | 2012-03-15 | 東レ株式会社 | Nonwoven fabric comprising polyphenylene sulfide fibers |
WO2013167327A1 (en) * | 2012-05-07 | 2013-11-14 | Siemens Aktiengesellschaft | Insulating tape material, method for production and usage thereof |
CN103485241A (en) * | 2013-09-14 | 2014-01-01 | 湖南新科绝缘材料有限公司 | Extra-high voltage composite insulating paper preparation method |
CN103489542A (en) * | 2013-09-14 | 2014-01-01 | 衡阳恒缘电工材料有限公司 | Method for manufacturing extra-high-voltage composite insulation paper board |
WO2014109203A1 (en) * | 2013-01-09 | 2014-07-17 | デュポン帝人アドバンスドペーパー株式会社 | Process for producing raw material for papermaking, obtained raw material for papermaking, and heat-resistant electrical insulating sheet material obtained using said raw material |
JP2015514165A (en) * | 2012-03-30 | 2015-05-18 | サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ | Transformer paper and other non-conductive transformer parts |
WO2018230391A1 (en) | 2017-06-15 | 2018-12-20 | 東レ株式会社 | Wet nonwoven fabric containing meta-aramid and polyphenylene sulfide, and multilayer sheet of same |
-
2009
- 2009-04-15 JP JP2009098708A patent/JP2009277653A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101702346B (en) * | 2009-12-01 | 2011-05-04 | 江苏精达里亚阿尔岗琴工程线有限公司 | Method for humidifying insulation paper |
US8900413B2 (en) | 2010-09-07 | 2014-12-02 | Toray Industries, Inc. | Nonwoven fabric comprising polyphenylene sulfide fiber |
WO2012033085A1 (en) * | 2010-09-07 | 2012-03-15 | 東レ株式会社 | Nonwoven fabric comprising polyphenylene sulfide fibers |
CN103080418A (en) * | 2010-09-07 | 2013-05-01 | 东丽株式会社 | Nonwoven fabric comprising polyphenylene sulfide fibers |
JP2015514165A (en) * | 2012-03-30 | 2015-05-18 | サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ | Transformer paper and other non-conductive transformer parts |
WO2013167327A1 (en) * | 2012-05-07 | 2013-11-14 | Siemens Aktiengesellschaft | Insulating tape material, method for production and usage thereof |
TWI601582B (en) * | 2013-01-09 | 2017-10-11 | Dupont Teijin Advanced Papers (Japan) Ltd | Method for producing raw material for papermaking, raw material for papermaking obtained, and heat-resistant electrical insulating sheet using the same |
JP2014133951A (en) * | 2013-01-09 | 2014-07-24 | Du pont teijin advanced paper co ltd | Manufacturing method of raw material for papermaking, obtained raw material for papermaking, and heat resistance electrical insulation sheet material using the raw material |
WO2014109203A1 (en) * | 2013-01-09 | 2014-07-17 | デュポン帝人アドバンスドペーパー株式会社 | Process for producing raw material for papermaking, obtained raw material for papermaking, and heat-resistant electrical insulating sheet material obtained using said raw material |
KR20150103652A (en) * | 2013-01-09 | 2015-09-11 | 듀폰 테이진 어드밴스드 페이퍼 가부시끼가이샤 | Process for producing raw material for papermaking, obtained raw material for papermaking, and heat-resistant electrical insulating sheet material obtained using said raw material |
KR102110215B1 (en) | 2013-01-09 | 2020-05-13 | 듀폰 테이진 어드밴스드 페이퍼 가부시끼가이샤 | Process for producing raw material for papermaking, obtained raw material for papermaking, and heat-resistant electrical insulating sheet material obtained using said raw material |
CN103489542A (en) * | 2013-09-14 | 2014-01-01 | 衡阳恒缘电工材料有限公司 | Method for manufacturing extra-high-voltage composite insulation paper board |
CN103485241B (en) * | 2013-09-14 | 2015-12-02 | 湖南新科绝缘材料有限公司 | The preparation method of extra-high-voltage composite insulation paper |
CN103485241A (en) * | 2013-09-14 | 2014-01-01 | 湖南新科绝缘材料有限公司 | Extra-high voltage composite insulating paper preparation method |
WO2018230391A1 (en) | 2017-06-15 | 2018-12-20 | 東レ株式会社 | Wet nonwoven fabric containing meta-aramid and polyphenylene sulfide, and multilayer sheet of same |
KR20200019128A (en) | 2017-06-15 | 2020-02-21 | 도레이 카부시키가이샤 | Wet nonwoven fabric containing metaaramid and polyphenylene sulfide and laminated sheet thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009277653A (en) | Electrical insulating paper | |
WO2010007919A1 (en) | Polyphenylene sulfide fiber, process for producing the same, wet-laid nonwoven fabric, and process for producing wet-laid nonwoven fabric | |
KR101876601B1 (en) | Heat-resistant electrically insulating sheet material and method for producing same | |
CN104798144B (en) | Electrically-insulating paper | |
TWI598226B (en) | Aromatic polyamine resin film laminated body and its manufacturing method | |
KR20220154727A (en) | Paper comprising airgel powder and aramid polymer fibrils | |
KR101899188B1 (en) | Method for producing papermaking feedstock, papermaking feedstock obtained thereby, and heat-resistant electrical insulation sheet material using the feedstock | |
JP2007308836A (en) | Heat-resistant electrical insulating paper | |
KR20150103652A (en) | Process for producing raw material for papermaking, obtained raw material for papermaking, and heat-resistant electrical insulating sheet material obtained using said raw material | |
JP5428230B2 (en) | Electrical insulating paper and method for producing electrical insulating paper | |
JP2009133033A (en) | Synthetic fiber paper, electrical insulating paper and method for producing synthetic fiber paper | |
JP2009174090A (en) | Paper comprising polyphenylene sulfide and method for producing the same | |
JP6211882B2 (en) | Wet non-woven fabric and separator | |
CN113316830B (en) | Spacer for solid electrolytic capacitor | |
JP2010133034A (en) | Method for producing electrical insulating paper | |
JP2009030187A (en) | Wet type non-woven fabric | |
JP7176410B2 (en) | Method for producing wet-laid nonwoven fabric containing meta-aramid and polyphenylene sulfide | |
JP2010077544A (en) | Polyphenylene sulfide fiber for papermaking and method for producing the same | |
JPH05272091A (en) | Production of heat-insulating paper | |
JP2004149990A (en) | Para-oriented aromatic polyamide pulp and para-oriented aromatic polyamide fiber paper containing the same | |
KR20210126729A (en) | Method for manufacturing aramid paper | |
KR20180012743A (en) | Aramid paper and its manufacturing method | |
JP2022143094A (en) | Separator for electrolytic capacitor and electrolytic capacitor | |
JP2021001411A (en) | Polyphenylene sulfide fiber-containing wet non-woven fabric | |
JP2010070861A (en) | Polyphenylene sulfide fiber |