JP2022114251A - Composite paper structure containing aramid nanofiber and manufacturing method thereof - Google Patents

Composite paper structure containing aramid nanofiber and manufacturing method thereof Download PDF

Info

Publication number
JP2022114251A
JP2022114251A JP2021010468A JP2021010468A JP2022114251A JP 2022114251 A JP2022114251 A JP 2022114251A JP 2021010468 A JP2021010468 A JP 2021010468A JP 2021010468 A JP2021010468 A JP 2021010468A JP 2022114251 A JP2022114251 A JP 2022114251A
Authority
JP
Japan
Prior art keywords
aramid
composite paper
paper
paper structure
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021010468A
Other languages
Japanese (ja)
Other versions
JP7538055B2 (en
Inventor
悠生 水田
Hisao Mizuta
哲也 赤松
Tetsuya Akamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2021010468A priority Critical patent/JP7538055B2/en
Publication of JP2022114251A publication Critical patent/JP2022114251A/en
Application granted granted Critical
Publication of JP7538055B2 publication Critical patent/JP7538055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paper (AREA)

Abstract

To provide a composite paper structure with improved mechanical properties and flame resistance and a manufacturing method thereof.SOLUTION: A composite paper structure of the invention comprises: a paper base material containing cellulose fibers; and aramid nanofibers composed of para-type wholly aromatic polyamides having an average fiber diameter of 100 nm or less. The composite paper structure has a thickness of 100 to 1000 μm, has a LOI value of 20 to 30 specified in JIS L 1091, and has a tensile strength of 7.0 to 15.0 MPa when a sample having a width of 10 mm and a length of 100 mm is measured at a test speed of 50 mm/min, a distance between chucks of 50 mm, a temperature of 20°C, and a relative humidity of 60% using a Tensilon universal material testing machine.SELECTED DRAWING: Figure 3

Description

本発明は、アラミドナノファイバーを含有する複合紙構造体およびその製造方法に関する。 The present invention relates to a composite paper structure containing aramid nanofibers and a method for producing the same.

紙・不織布構造は高表面積性、柔軟性、力学的等方性など、その構造に由来する様々な特徴を有する。このような特徴を生かした機能発現により、印刷物や布帛としての利用のみならず、電材など緻密かつ高度な技術を必要とする分野においても積極的に利用される。電材などの分野での展開や発展を考える上で、紙構造体そのものの特徴を維持しつつ、高力学特性、難燃性、高耐熱性をいかに付与するかが重要な課題となる。 Paper and non-woven fabric structures have various characteristics derived from their structures, such as high surface area, flexibility, and mechanical isotropy. Due to the functional manifestation of such characteristics, it is not only used as printed materials and fabrics, but also actively used in fields such as electrical materials that require precise and advanced technology. When considering the expansion and development in fields such as electrical materials, it is important to find out how to impart high mechanical properties, flame resistance, and high heat resistance while maintaining the characteristics of the paper structure itself.

紙構造体の難燃化でいえば、例えば特許文献1のように、紙構造体内に無機粒子を添加・導入させる方法が考えられる。一般的に無機物は耐熱性が高いことが多いため難燃性・耐熱性向上においては有効な手段である。しかし、繊維と無機粒子との接触は基本的に点接触となるため、分子間力相互作用の大きさは多くは望めず、従って、経時での繰り返し使用などで無機粒子が繊維構造から脱落してしまう。無機粒子の脱落は、付与した機能の低下を意味するため、好ましくない。 In terms of making a paper structure flame-retardant, for example, a method of adding/introducing inorganic particles into the paper structure is conceivable, as in Patent Document 1. Inorganic substances generally have high heat resistance, so they are an effective means for improving flame retardancy and heat resistance. However, since the contact between the fiber and the inorganic particles is basically point contact, the magnitude of the intermolecular force interaction cannot be expected to be large. end up Detachment of the inorganic particles is not preferable because it means a decrease in the function imparted.

紙構造体の力学特性、難燃性および熱的特性向上の別の考え方として、例えば特許文献2のように耐熱性繊維との混合抄紙がある。即ち、主要繊維と耐熱繊維とを水中で撹拌・混合し、抄紙工程を経ることで耐熱繊維が含有した紙構造体が得られる。上述した無機微粒子添加とは異なり繊維同士の接触面積は大きくなり、また、繊維同士の物理的な交絡作用が利用できるため、高疲労であり強靭な構造を形成することが可能である。 As another way of thinking about improving the mechanical properties, flame retardancy and thermal properties of paper structures, there is mixed paper making with heat-resistant fibers, as in Patent Document 2, for example. Specifically, main fibers and heat-resistant fibers are stirred and mixed in water, and a paper structure containing heat-resistant fibers is obtained through a papermaking process. Unlike the addition of the inorganic fine particles described above, the contact area between the fibers increases, and the physical entanglement of the fibers can be used, so that it is possible to form a strong structure with high fatigue.

しかし、異種繊維を均一に抄紙することは難しい。例えば繊維間での比重差異があると、濾水時の繊維が受ける重力が異なるため積層速度に差が生じ、結果として均質な紙構造が得られない場合がある。また、繊維の表面特性が異なれば水中の分散性や凝集性も変わるため、均質な水分散液自体の作が困難であり、これを改善するためには添加する分散剤や凝集剤の種類や組み合わせ、添加量、添加タイミングなど様々な技術的ノウハウの蓄積が必要となる。 However, it is difficult to uniformly make paper from different types of fibers. For example, if there is a difference in specific gravity between fibers, the fibers will receive different gravitational forces during drainage, resulting in a difference in lamination speed, and as a result, a homogeneous paper structure may not be obtained. In addition, if the surface properties of the fibers differ, the dispersibility and flocculation properties in water will also change, making it difficult to create a homogeneous aqueous dispersion itself. It is necessary to accumulate various technical know-how such as combination, addition amount, addition timing, etc.

特開2019-137948号公報JP 2019-137948 A 特開2011-127252号公報JP 2011-127252 A

本発明が解決しようとする課題は、力学物性および耐炎性を向上させた複合紙構造体およびその製造方法を提供することにある。 The problem to be solved by the present invention is to provide a composite paper structure with improved mechanical properties and flame resistance, and a method for producing the same.

本発明者らは鋭意検討の結果、セルロース繊維と、特定の繊維径を有するパラ型全芳香族ポリアミドからなるアラミドナノファイバーを使用することにより、高い力学特性および耐炎性を有する複合紙構造体が得られることを見出し、本発明に到達した。 As a result of intensive studies, the present inventors have found that a composite paper structure having high mechanical properties and flame resistance can be obtained by using cellulose fibers and aramid nanofibers composed of para-type wholly aromatic polyamide having a specific fiber diameter. We have found that it is possible to achieve the present invention.

すなわち、本発明によれば、下記構成(1)~(4)が提供される。
(1)セルロース繊維を含む紙基材と、平均繊維径が100nm以下のパラ型全芳香族ポリアミドからなるアラミドナノファイバー、を含み、
厚さが100~1000μmであり、かつ、JIS L1091に規定されるLOI値が20~30であり、かつ、幅10mm、長さ100mmであるサンプルを、テンシロン万能材料試験機を用いて、試験速度50mm/分、チャック間距離50mm、温度20度、相対湿度60%の条件下で測定した引張強度が7.0~15.0Mpaであることを特徴とする複合紙構造体。
(2)セルロース繊維が紙基材の全重量に対して50重量%を超えて含まれる前構成(1)に記載の複合紙構造体。
(3)アラミドナノファイバーが紙基材の全重量に対して0.1~50重量%含まれる前構成(1)または(2)に記載の複合紙構造体。
(4)セルロース繊維を含む紙基材に、パラ型全芳香族ポリアミド繊維またはパルプを、非プロトン性極性溶媒下に強塩基性物質を添加し、ナノファイバー化して得られる平均繊維径が100nm以下のアラミドナノファイバーを分散させた分散液を浸漬させた後、水浸漬、乾燥工程を経ることで得られる前構成(1)から(3)のいずれか一つに記載の複合紙構造体の製造方法。
That is, according to the present invention, the following configurations (1) to (4) are provided.
(1) Paper substrate containing cellulose fibers and aramid nanofibers made of para-type wholly aromatic polyamide with an average fiber diameter of 100 nm or less,
A sample having a thickness of 100 to 1000 μm, an LOI value of 20 to 30 as specified in JIS L1091, and a width of 10 mm and a length of 100 mm was measured using a Tensilon universal material testing machine at a test speed. A composite paper structure having a tensile strength of 7.0 to 15.0 Mpa measured under conditions of 50 mm/min, a distance between chucks of 50 mm, a temperature of 20 degrees and a relative humidity of 60%.
(2) The composite paper structure according to the previous configuration (1), wherein the cellulose fibers are contained in an amount exceeding 50% by weight based on the total weight of the paper substrate.
(3) A composite paper structure according to the previous configuration (1) or (2), wherein the aramid nanofibers are contained in an amount of 0.1 to 50% by weight based on the total weight of the paper substrate.
(4) A paper substrate containing cellulose fibers is added with para-type wholly aromatic polyamide fibers or pulp in the presence of an aprotic polar solvent, and a strongly basic substance is added to form nanofibers, resulting in an average fiber diameter of 100 nm or less. Manufacture of the composite paper structure according to any one of the previous configurations (1) to (3) obtained by immersing the dispersion liquid in which the aramid nanofibers are dispersed in and then immersing in water and drying. Method.

本発明によれば、セルロース繊維を含む紙基材と、特定の繊維径を有するパラ型全芳香族ポリアミドからなるアラミドナノファイバーを使用することにより、高い力学特性および耐炎性を有する複合紙構造体を提供することができる。 According to the present invention, a composite paper structure having high mechanical properties and flame resistance by using a paper base material containing cellulose fibers and aramid nanofibers made of para-type wholly aromatic polyamide having a specific fiber diameter. can be provided.

本発明で使用されるアラミドナノファイバーの構造観察画像を示した一例である。It is an example which showed the structural observation image of the aramid nanofiber used by this invention. 平均繊維径算出用に、図1を拡大した構造観察画像を示した一例である。It is an example which showed the structure observation image which expanded FIG. 1 for average fiber diameter calculation. 本発明のセルロース繊維及びアラミドナノファイバーを含む複合紙構造体の断面観察画像を示した一例である。1 is an example showing a cross-sectional observation image of a composite paper structure containing cellulose fibers and aramid nanofibers of the present invention. 図3を拡大した観察画像の一例である。4 is an example of an observation image in which FIG. 3 is enlarged. 平均繊維径の算出方法に関する説明図である。It is explanatory drawing regarding the calculation method of an average fiber diameter.

以下、本発明の詳細について説明する。 The details of the present invention will be described below.

<複合紙構造体>
本発明の複合紙構造体は、セルロース繊維を含む紙基材と、平均繊維径が100nm以下のパラ型全芳香族ポリアミドからなるアラミドナノファイバーとを含み、厚さが100~1000μm(より好ましくは100~500μm、さらに好ましくは100~300μm)であり、かつ、JIS L1091に規定されるLOI値が20~30(より好ましくは22~30)であり、かつ、幅10mm、長さ100mmであるサンプルを、テンシロン万能材料試験機を用いて、試験速度50mm/分、チャック間距離50mm、温度20度、相対湿度60%の条件下で測定した引張強度が7.0~15.0Mpa(より好ましくは8.0~15.0Mpa)である。
<Composite paper structure>
The composite paper structure of the present invention includes a paper base material containing cellulose fibers and aramid nanofibers made of para-type wholly aromatic polyamide having an average fiber diameter of 100 nm or less, and has a thickness of 100 to 1000 μm (more preferably 100 to 500 μm, more preferably 100 to 300 μm), an LOI value specified in JIS L1091 of 20 to 30 (more preferably 22 to 30), and a width of 10 mm and a length of 100 mm. The tensile strength measured using a Tensilon universal material testing machine under the conditions of a test speed of 50 mm / min, a distance between chucks of 50 mm, a temperature of 20 degrees, and a relative humidity of 60% is 7.0 to 15.0 Mpa (more preferably 8.0 to 15.0 MPa).

本発明の複合紙構造体は、複合紙構造体のアラミドナノファイバーの重量比率(含有割合)が、好ましくは0.1重量部~50重量部であり、より好ましくは1重量部~30重量部であり、さらに好ましくは5重量部~25重量部、最も好ましくは8量部~20重量部である。このような範囲であれば、高い力学特性および耐炎性を得ることができる。アラミドナノファイバー含有率は紙基材に含浸させる際の液中のアラミドナノファイバー濃度で制御可能である。含有率が0.1重量%未満であれば、含浸させる液中のアラミドナ
ノファイバー濃度を低くする必要があるが、含浸後の貧溶媒中浸漬時の溶媒交換量が多くなり、結果として大きな空隙を含む高次構造が形成され力学補強効果が十分期待できないことがある。また、含有率が50重量%以上であれば、力学補強効果は期待されるものの、含浸させる液中のアラミドナノファイバー濃度を過度に高くする必要があり、それに相まって液粘度が高くなるため塗工・含浸作業性が低下することがある。
In the composite paper structure of the present invention, the weight ratio (content ratio) of aramid nanofibers in the composite paper structure is preferably 0.1 to 50 parts by weight, more preferably 1 to 30 parts by weight. , more preferably 5 to 25 parts by weight, most preferably 8 to 20 parts by weight. Within such a range, high mechanical properties and flame resistance can be obtained. The aramid nanofiber content rate can be controlled by the aramid nanofiber concentration in the liquid when impregnating the paper substrate. If the content is less than 0.1% by weight, it is necessary to lower the concentration of aramid nanofibers in the liquid to be impregnated, but the amount of solvent exchange during immersion in a poor solvent after impregnation increases, resulting in large voids. In some cases, a higher-order structure containing Also, if the content is 50% by weight or more, although a mechanical reinforcing effect is expected, it is necessary to excessively increase the concentration of aramid nanofibers in the liquid to be impregnated.・The impregnation workability may decrease.

また、本発明の複合紙構造体に使用される紙基材は、セルロース繊維が紙基材の全重量に対して好ましくは50重量%、より好ましくは70重量%、さらに好ましくは75重量%、特に好ましくは80重量%を超えて含まれる。
セルロース繊維としては、例えば、針葉樹や、広葉樹からなる木材パルプであってもよいし、ケナフなどからなる非木材パルプであっても良い。
In addition, the paper substrate used in the composite paper structure of the present invention preferably contains 50% by weight, more preferably 70% by weight, and even more preferably 75% by weight of cellulose fibers relative to the total weight of the paper substrate. More than 80% by weight is particularly preferred.
Cellulose fibers may be, for example, wood pulp made from softwood or hardwood, or non-wood pulp made from kenaf or the like.

なお、本発明の複合紙構造体に使用される紙基材は、必要に応じて、他の繊維をさらに含んでいてもよい。他の繊維は、目的に応じて適切に選択され得る。例えば機械的強度の向上を目的とする場合には、高強度繊維が混合され得る。さらに、目的に応じた繊維(例えば、放熱性繊維、導電性繊維など)が混合され得る。 The paper substrate used in the composite paper structure of the present invention may further contain other fibers, if necessary. Other fibers can be appropriately selected depending on the purpose. For example, if the purpose is to improve mechanical strength, high-strength fibers can be mixed. Furthermore, purpose-suitable fibers (eg, heat-dissipating fibers, conductive fibers, etc.) may be mixed.

なお、本発明の複合紙構造体は、必要に応じて、他成分を含んでいても良い。具体的な他成分として、例えば、シリコン、シリコンカーバイト(SiC)、ゲルマニウムなどの半導体材料、窒化ケイ素(シリコンナイトライド)、窒化アルミニウム(アルミニウムナイトライド)、窒化ホウ素(ボロンナイトライド)などの窒化化合物、カーボンブラック、ダイヤモンド、グラフェン、フラーレン、カーボンナノチューブ、カーボンナノファイバ、グラファイトなどの炭素材料等の無機物を挙げることができる。また、カオリン、タルク、クレー、ハイドロタルサイト、珪藻土などの鉱物微粒子を用いることもできる。また、粒子としては上記に挙げたものに加えて、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、水酸化アルミニウム、水酸化マグネシウム、酸化カルシウム、酸化マグネシウム、酸化チタン、アルミナ、マイカ、ゼオライト、ガラス等を用いることもできる。アラミドナノファイバーの有する高比表面積が有効に作用し、成分の把持材として機能させることも可能である。 In addition, the composite paper structure of the present invention may contain other components as necessary. Specific other components include, for example, silicon, silicon carbide (SiC), semiconductor materials such as germanium, silicon nitride (silicon nitride), aluminum nitride (aluminum nitride), boron nitride (boron nitride), etc. Compounds, carbon black, diamond, graphene, fullerene, carbon nanotubes, carbon nanofibers, inorganic substances such as carbon materials such as graphite. Mineral fine particles such as kaolin, talc, clay, hydrotalcite and diatomaceous earth can also be used. In addition to the particles listed above, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, aluminum hydroxide, magnesium hydroxide, calcium oxide, magnesium oxide, titanium oxide, and alumina. , mica, zeolite, glass, etc. can also be used. The high specific surface area of the aramid nanofibers works effectively, and it is also possible to function as a component holding material.

<アラミドナノファイバー>
本発明の複合紙構造体に使用されるアラミドナノファイバーは、平均繊維径が100nm以下であり、好ましくは50nm以下であり、より好ましくは25nm以下である。平均直径の下限は1nm以上、好ましくは3nm以上であることが好ましい。また、アラミドナノファイバーは500nm以上の直径のものを有さないことが好ましい。平均繊維径が100nmを超えると、ナノファイバーの表面積が小さくなり、ナノファイバー間の交絡密度及び接触面積が小さくなるため、水素結合を含む分子間力相互作用が小さくなる結果、アラミドナノファイバーで構成される高次構造の十分な力学強度発現に至らないため好ましくない。
<Aramid nanofiber>
The aramid nanofibers used in the composite paper structure of the present invention have an average fiber diameter of 100 nm or less, preferably 50 nm or less, and more preferably 25 nm or less. The lower limit of the average diameter is preferably 1 nm or more, preferably 3 nm or more. Also, the aramid nanofibers preferably do not have a diameter greater than 500 nm. When the average fiber diameter exceeds 100 nm, the surface area of the nanofibers becomes small, and the entanglement density and contact area between the nanofibers become small, so that the intermolecular force interaction including hydrogen bonding becomes small. It is not preferable because it does not lead to sufficient mechanical strength expression of the higher-order structure.

本発明におけるアラミドナノファイバーは、繊維長/繊維径で表されるアスペクト比が好ましくは10以上1、000以下であり、より好ましくは10以上500以下であり、さらに好ましくは10以上100以下である。アスペクト比が10未満であると、繊維の交絡構造が発現しにくく、それゆえに期待される特性発現が困難になる場合がある。 The aramid nanofiber in the present invention preferably has an aspect ratio represented by fiber length/fiber diameter of 10 or more and 1,000 or less, more preferably 10 or more and 500 or less, and still more preferably 10 or more and 100 or less. . If the aspect ratio is less than 10, it may be difficult to develop an entangled structure of the fibers, thereby making it difficult to develop the expected properties.

また、本発明におけるアラミドナノファイバーは、パラ型全芳香族ポリアミドである。パラ型全芳香族ポリアミドとしては、ポリ-p-フェニレンテレフタルアミド、ポリ-p-ベンズアミド、ポリ-p-アミドヒドラジド、ポリ-p-フェニレンテレフタルアミド-3,4-ジフェニルエーテルテレフタルアミドなどが好ましく、配向結晶性(紡糸溶液中で液晶構造のドメインを形成)を有するポリ-p-フェニレンテレフタルアミド繊維で
あることが好ましい。
Moreover, the aramid nanofiber in the present invention is a para-type wholly aromatic polyamide. As the para-type wholly aromatic polyamide, poly-p-phenylene terephthalamide, poly-p-benzamide, poly-p-amide hydrazide, poly-p-phenylene terephthalamide-3,4-diphenyl ether terephthalamide and the like are preferable and oriented. Poly-p-phenylene terephthalamide fibers having crystallinity (forming domains of liquid crystal structure in the spinning solution) are preferred.

なお、パラ型全芳香族ポリアミドを用いた繊維としては、ポリ-p-フェニレンテレフタルアミド繊維(市販品では、帝人株式会社製「トワロン(登録商標)」、東レ・デュポン株式会社製「ケブラー(登録商標)」など)や、コパラフェニレン・3、4’オキシジフェニレンテレフタルアミド繊維(市販品では、帝人株式会社製「テクノーラ(登録商標)」など)が挙げられる。 As fibers using para-type wholly aromatic polyamide, poly-p-phenylene terephthalamide fiber (commercially available products are Twaron (registered trademark) manufactured by Teijin Limited, Kevlar (registered trademark) manufactured by Toray DuPont Co., Ltd. Trademark)”, etc.), and coparaphenylene/3,4′-oxydiphenylene terephthalamide fibers (commercially available products such as “Technora (registered trademark)” manufactured by Teijin Limited).

<アラミドナノファイバーの製造>
本発明におけるアラミドナノファイバーの製造は、パラ型芳香族ポリアミド繊維を原料とし、当該繊維を親和性の高い溶媒中にて浸漬・膨潤し、さらに強塩基物質を添加することで水素結合部を切断し、その結果生成される。本発明で好ましく用いることのできるパラ型全芳香族ポリアミドは、1種または2種以上の2価の芳香族基がアミド結合により連結されたポリマーであって、芳香族基には2個以上の芳香環が存在してもよく、その芳香環は直接結合していても、酸素や硫黄を介して結合していてもよい。また、2価の芳香族基の水素原子は、ハロゲン化物、低級アルキル基、フェニル基で置換されていてもよい。また、アラミドナノファイバー生成時に使用する溶媒としては、非プロトン性極性溶媒が好ましく、具体的には、ジメチルスルホキシド、ジメチルアセトアミド、N-メチル―2-ピロリドンなどが挙げられる。アラミドナノファイバー生成時に使用する強塩基物質としては、水酸化カリウム、水酸化ナトリウム、水酸化バリウム、水酸化カルシウムなどが挙げられる。
<Production of aramid nanofibers>
Aramid nanofibers in the present invention are produced by using para-type aromatic polyamide fibers as a raw material, soaking and swelling the fibers in a solvent with high affinity, and further breaking hydrogen bonds by adding a strong basic substance. and the resulting The para-type wholly aromatic polyamide that can be preferably used in the present invention is a polymer in which one or more divalent aromatic groups are linked by amide bonds, and the aromatic group has two or more Aromatic rings may be present and the aromatic rings may be attached directly or through oxygen or sulfur. Also, the hydrogen atom of the divalent aromatic group may be substituted with a halide, a lower alkyl group, or a phenyl group. As the solvent used for producing aramid nanofibers, aprotic polar solvents are preferred, and specific examples include dimethylsulfoxide, dimethylacetamide, N-methyl-2-pyrrolidone and the like. Potassium hydroxide, sodium hydroxide, barium hydroxide, calcium hydroxide, etc., are examples of strong basic substances used in producing aramid nanofibers.

本発明におけるアラミドナノファイバーの製造は、具体的にパラ型全芳香族ポリアミド(例えば、ポリ-p-フェニレンテレフタルアミド)繊維またはパルプをアルカリ性に調整したジメチルスルホキシド中に浸漬することで製造することができる。 Aramid nanofibers in the present invention can be produced by immersing para-type wholly aromatic polyamide (for example, poly-p-phenylene terephthalamide) fibers or pulp in dimethyl sulfoxide adjusted to alkalinity. can.

パラ型全芳香族ポリアミド(例えば、ポリ-p-フェニレンテレフタルアミド)は紡糸溶液中で液晶構造のドメインを形成し、キャピラリーより吐出した後、紡糸溶媒を水洗することにより得られる。得られた繊維を前記手法により繊維を構成する液晶ドメイン間の弱い結合をアルカリ条件により切断した後、得られた繊維を相溶性の高い溶媒中に遊離させることで、高弾性かつ高強度の切断された繊維を得ることができる。次いで、得られた切断された繊維を分散溶媒である貧溶媒(水、アルコール、アセトンなど)に投入することでアラミドナノファイバーを単離することが可能である。 A para-type wholly aromatic polyamide (eg, poly-p-phenylene terephthalamide) is obtained by forming a domain of a liquid crystal structure in a spinning solution, discharging it from a capillary, and washing the spinning solvent with water. After the weak bonds between the liquid crystal domains constituting the fiber are cut by the above-mentioned method under alkaline conditions, the obtained fiber is liberated in a highly compatible solvent, so that the fiber can be cut with high elasticity and high strength. You can get the fiber that has been made. Then, the aramid nanofibers can be isolated by putting the resulting cut fibers into a poor solvent (water, alcohol, acetone, etc.) as a dispersion solvent.

なお、直径10~20μmのパラ型全芳香族ポリアミド(例えば、ポリ-p-フェニレンテレフタルアミド)繊維を数mmにカットし、水中で相互にせん断付与するリファイナー処理を行うことで得られるパラ型全芳香族ポリアミド(例えば、ポリ-p-フェニレンテレフタルアミド)パルプを得ることができる。このようなリファイナー処理では、液晶界面のせん断破壊により繊維表面より微細化した繊維は完全に分離せず分岐した状態となり、該該微細化繊維の直径は100~1000nmとなり、原料繊維の中心部の直径は数μmとなる。リファイナー処理されたパルプを上記の処理により、アラミドナノファイバー化させることもできる。 In addition, a para-type whole aromatic polyamide (for example, poly-p-phenylene terephthalamide) fiber having a diameter of 10 to 20 μm is cut into several mm and subjected to a refiner treatment in which mutual shearing is performed in water. Aromatic polyamide (eg, poly-p-phenylene terephthalamide) pulp can be obtained. In such a refiner treatment, the fibers that are finer from the fiber surface due to the shear fracture at the liquid crystal interface are not completely separated and are in a branched state, and the diameter of the finer fibers is 100 to 1000 nm. The diameter is several μm. Refined pulp can also be converted into aramid nanofibers by the above treatment.

アラミド素材のその他微細化手法としては、上述したような化学処理ではなく、機械的なせん断力を付与する手法も考えられるが、当該手法ではナノオーダーの繊維径を有するフィブリル構造が部分的に得られるにとどまる。従って、フィブリル化していないマイクロオーダーの構造体も含むことになるため、ナノオーダーでの均質な交絡構造が得られずに期待されるような物性が発現しない。本発明においては、部分的なナノ化ではなく、均質にナノ化した繊維による交絡構造の形成が好ましい。 As another method for refining the aramid material, instead of the chemical treatment as described above, a method of applying a mechanical shearing force can be considered, but this method partially obtains a fibril structure with a nano-order fiber diameter Stay as long as you can. Therefore, since a non-fibrillated micro-order structure is also included, a homogeneous entangled structure on the nano-order cannot be obtained, and expected physical properties are not exhibited. In the present invention, it is preferable to form an entangled structure with uniformly nanoized fibers instead of partial nanoization.

本発明における複合紙構造体は、セルロース繊維を含む紙基材に、パラ型全芳香族ポリアミド繊維またはパルプを、非プロトン性極性溶媒下に強塩基性物質を添加し、ナノファイバー化して得られる平均繊維径が100nm以下のアラミドナノファイバーを分散させた分散液を塗工等により浸漬させた後、水に浸漬し、乾燥工程を経ることで得られる。例えば、パラ型全芳香族ポリアミド繊維またはパルプを、非プロトン性極性溶媒下に強塩基性物質を添加し、ナノファイバー化して得られる平均繊維径が100nm以下のアラミドナノファイバーを分散させた分散液をガラス板上に塗布した後、セルロース繊維を含む紙基材を、当該塗布された面に被せ、その上から前記分散液を塗布し、その後、紙基材ごと水などの貧溶媒に浸漬し、乾燥工程を経ることで複合紙構造体を得ることができる。 The composite paper structure in the present invention is obtained by adding para-type wholly aromatic polyamide fibers or pulp to a paper base material containing cellulose fibers, adding a strongly basic substance in the presence of an aprotic polar solvent, and making nanofibers. It is obtained by immersing in a dispersion liquid in which aramid nanofibers having an average fiber diameter of 100 nm or less are dispersed by coating or the like, followed by immersion in water and a drying process. For example, para-type wholly aromatic polyamide fiber or pulp is added with a strongly basic substance in an aprotic polar solvent to form nanofibers, and aramid nanofibers having an average fiber diameter of 100 nm or less are dispersed. is coated on a glass plate, a paper base material containing cellulose fibers is placed on the coated surface, the dispersion is applied from above, and then the paper base material is immersed in a poor solvent such as water. , a composite paper structure can be obtained through a drying process.

なお、紙基材作製時にナノファイバーを添加し湿式混合抄紙する方法では、紙基材を構成する汎用繊維とナノファイバーとの水中での親和性を適宜選択・制御する必要が生じる。また、ナノファイバーのような微細な構造体を添加すると物質の比重差による影響や濾水時間の増大により、均一な混合抄紙を得ることが困難である。そのため、紙基材への後加工プロセスとすることが好ましい。 In addition, in the method of wet-mixing papermaking by adding nanofibers at the time of manufacturing the paper substrate, it is necessary to appropriately select and control the affinity in water between the general-purpose fibers constituting the paper substrate and the nanofibers. In addition, when fine structures such as nanofibers are added, it is difficult to obtain uniform mixed papermaking due to the influence of the difference in the specific gravity of the substances and the increase in drainage time. Therefore, it is preferable to use a post-processing process for the paper substrate.

以下、実施例及び比較例により、本発明を詳細に説明するが、本発明の範囲は、以下の実施例及び比較例に制限されるものではない。なお、実施例中の各特性値は下記の方法で測定した。 The present invention will be described in detail below with reference to Examples and Comparative Examples, but the scope of the present invention is not limited to the following Examples and Comparative Examples. Each characteristic value in the examples was measured by the following method.

<厚み>
得られた複合紙を30cm角に切断し、計5か所の厚みを厚み計(ONO-SOKKI製DG-925)で測定し、その平均値を算出した。
<Thickness>
The resulting composite paper was cut into 30 cm squares, and the thickness at five points in total was measured with a thickness meter (DG-925 manufactured by ONO-SOKKI), and the average value was calculated.

<目付>
得られた複合紙を30cm角に切断し、その重量を測定することで目付(g/m)を計算した。
<Metsuke>
The obtained composite paper was cut into 30 cm squares, and the basis weight (g/m 2 ) was calculated by measuring the weight.

<複合紙構造体中のアラミドナノファイバー重量比率>
複合紙構造体中のアラミドナノファイバー重量比率(WAramid)は以下式にて算出した。
WAramid=(Whp-Wp)/Whp
ここで、
Whp:複合紙構造体目付(g/m
Wp:紙基材目付(g/m
<Aramid nanofiber weight ratio in composite paper structure>
The aramid nanofiber weight ratio (WAramid) in the composite paper structure was calculated by the following formula.
WAramid = (Whp-Wp)/Whp
here,
Whp: composite paper structure basis weight (g/m 2 )
Wp: paper base basis weight (g/m 2 )

<引張試験>
得られた複合紙を幅10mm、長さ100mmの短冊状に切断し、平板チャックにてサンプル両端を挟んでチャック間距離を50mmとし、試験速度50mm/分、温度20度、相対湿度60%で、引張試験を実施した。引張試験機としては、テンシロン万能材料試験機(RTFシリーズ)を使用し、引張強度、引張弾性率、破断伸度を測定した。
<Tensile test>
The resulting composite paper was cut into strips with a width of 10 mm and a length of 100 mm, and both ends of the sample were sandwiched between flat plate chucks with a distance between the chucks of 50 mm. , a tensile test was performed. A Tensilon Universal Material Testing Machine (RTF Series) was used as a tensile tester, and tensile strength, tensile modulus and elongation at break were measured.

<酸素指数(LOI)測定>
得られた複合紙を縦150mm・横63mmにカットし、JIS L1091に準拠し最小酸素濃度(%)を測定した。測定装置はスガ試験機(型式:ON-2N)を使用した。
<Oxygen index (LOI) measurement>
The obtained composite paper was cut into a size of 150 mm long and 63 mm wide, and the minimum oxygen concentration (%) was measured according to JIS L1091. A Suga tester (model: ON-2N) was used as a measuring device.

<平均繊維径>
走査型電子顕微鏡(日本電子株式会社製、品番:JSM-6330F)を用い、サンプ
ルの構造を観察した。50,000倍の倍率設定で観察した画像から、横1,800nm~2,000nm、縦1,200nm~1,500nmの画像領域を選択し、当該画像領域をさらに縦に4分割、横に4分割して得られる計16箇所のグリッド領域A1-D4を定義し、各グリッド領域内に存在するサンプルを1点選択し、選択したサンプルの繊維径を画像上で計測した平均値を平均繊維径として採用した(図2、図5)。
<Average fiber diameter>
The structure of the sample was observed using a scanning electron microscope (manufactured by JEOL Ltd., product number: JSM-6330F). From the image observed at a magnification setting of 50,000 times, select an image area of 1,800 nm to 2,000 nm in width and 1,200 nm to 1,500 nm in length, and divide the image area into 4 vertically and 4 horizontally. A total of 16 grid areas A1-D4 obtained by division are defined, one sample present in each grid area is selected, and the average value of the fiber diameter of the selected sample measured on the image is the average fiber diameter. (Figs. 2 and 5).

[実施例1]
<アラミドナノファイバーの作製>
・帝人アラミド社製のトワロン(登録商標)パルプ(品番:タイプ1094):266g
※うち、固形分重量:50g 水分重量:216g
・水酸化カリウム:100g
・ジメチルスルホキシド(DMSO):1,950g
上記材料をそれぞれ2Lのポリ容器内に入れ、70℃に設定した乾燥機内にて3時間加熱した。混合液中の色が黄色から赤褐色に変わり、パルプ状の物質が観察されなくなり、常温下での粘度が混合直後と比較し上昇していることを目視にて確認された時点でアラミドナノファイバーが得られたと簡易的に判断した。尚、上述した組成から得られた液中のアラミドナノファイバー濃度は2.5wt%となる。
[Example 1]
<Production of aramid nanofibers>
・ Twaron (registered trademark) pulp manufactured by Teijin Aramid Co., Ltd. (product number: type 1094): 266 g
* Solid weight: 50g Moisture weight: 216g
・ Potassium hydroxide: 100 g
・Dimethyl sulfoxide (DMSO): 1,950 g
Each of the above materials was placed in a 2 L plastic container and heated in a dryer set at 70° C. for 3 hours. The color of the mixed liquid changed from yellow to reddish brown, no pulp-like substance was observed, and when it was visually confirmed that the viscosity at room temperature had increased compared to immediately after mixing, aramid nanofibers were formed. It was easy to judge that it was obtained. The concentration of aramid nanofibers in the liquid obtained from the composition described above is 2.5 wt %.

<紙基材へのアラミドナノファイバー含浸>
紙基材として、セルロース繊維を含む紙基材である東洋濾紙株式会社製のFilter
paper「ADVANTEC」を使用した。液中のアラミドナノファイバー濃度が計算上1.0wt%となるようジメチルスルホキシドで希釈したアラミドナノファイバー分散液を調製し、ガラス板上に当該分散液を塗布し、ガラス棒で薄く伸ばした。
<Aramid nanofiber impregnation on paper substrate>
As a paper base, Filter manufactured by Toyo Roshi Kaisha, Ltd., which is a paper base containing cellulose fibers
A paper "ADVANTEC" was used. An aramid nanofiber dispersion diluted with dimethyl sulfoxide was prepared so that the aramid nanofiber concentration in the liquid was calculated to be 1.0 wt %, and the dispersion was applied onto a glass plate and spread thinly with a glass rod.

その上に紙基材を被せ、さらにその上からアラミドナノファイバー分散液を追加塗布し、ガラス棒で紙基材表面に塗工した。目安として、30cm角の紙基材に対して50gの分散液を使用した。その後、ガラス板ごと常温・常圧下の水中に入れ、アラミドナノファイバーを凝固させた。 A paper base material was placed thereon, and an aramid nanofiber dispersion was additionally applied thereon, followed by coating on the surface of the paper base material with a glass rod. As a guideline, 50 g of the dispersion liquid was used for a 30 cm square paper substrate. After that, the whole glass plate was placed in water at normal temperature and normal pressure to solidify the aramid nanofibers.

10分間の水中浸漬を経てから紙を取り出し、厚めの濾紙で軽く水気を切ってから70℃の防爆型乾燥機内で乾燥させ、アラミドナノファイバーが含有した複合紙構造体を得た。 After being immersed in water for 10 minutes, the paper was taken out, lightly drained with thick filter paper, and dried in an explosion-proof dryer at 70°C to obtain a composite paper structure containing aramid nanofibers.

アラミドナノファイバーを含有させることで紙基材の力学物性が向上することが確認された。また、アラミド自体の高い耐炎性が反映された結果、高い酸素指数(LOI)が得られた。 It was confirmed that the inclusion of aramid nanofibers improved the mechanical properties of the paper substrate. A high oxygen index (LOI) was obtained as a result of reflecting the high flame resistance of the aramid itself.

[実施例2]
紙基材に塗布する際のアラミドナノファイバー分散液について、分散液中のアラミドナノファイバー濃度が2.5wt%である液を使用し、それ以外は実施例1と同様の手順にて複合紙構造体を作製し評価した。
[Example 2]
Regarding the aramid nanofiber dispersion when applying to the paper base material, a composite paper structure was prepared in the same manner as in Example 1 except that a liquid having an aramid nanofiber concentration in the dispersion liquid of 2.5 wt% was used. A body was prepared and evaluated.

アラミドナノファイバーを含有させることで紙基材の力学物性が向上することが確認された。また、アラミドナノファイバーの添加量が多いほど複合紙の力学物性はより向上する傾向であることも合わせて確認された。また、アラミド自体の高い耐炎性が反映された結果、高い酸素指数(LOI)が得られた。 It was confirmed that the inclusion of aramid nanofibers improved the mechanical properties of the paper substrate. It was also confirmed that the more the amount of aramid nanofiber added, the more the mechanical properties of the composite paper tended to improve. A high oxygen index (LOI) was obtained as a result of reflecting the high flame resistance of the aramid itself.

[比較例1]
紙基材そのものを用い、実施例1と同様の手順にて評価した。
[Comparative Example 1]
Evaluation was performed in the same manner as in Example 1 using the paper substrate itself.

[比較例2]
紙基材に塗布する液として、共重合パラアラミドポリマーをN-メチル―2-ピロリドン中に溶解させた溶解液(溶解液中のポリマー濃度:1wt%)を使用し、それ以外は実施例1と同様の手順にて複合紙構造体を作製し評価した。
[Comparative Example 2]
As the liquid to be applied to the paper substrate, a solution obtained by dissolving a copolymerized para-aramid polymer in N-methyl-2-pyrrolidone (polymer concentration in the solution: 1 wt%) was used. A composite paper structure was produced and evaluated in the same procedure as.

共重合パラアラミドを紙基材に含有させる方法でも紙基材の力学物性は向上したが、酸素指数(LOI)は20以下であった。共重合パラアラミドポリマーの添加によって、アラミド自体の耐炎性が発揮されると予想されたが、実際は未添加の紙基材と同様、酸素濃度20wt%下で複合紙構造体自体が燃焼した。これは、耐炎性の高いアラミド部分の高次構造が空隙を多く抱えた疎な構造であり、アラミド存在下であっても紙基材を構成する可燃性繊維との接炎が生じたためと考えられる。 Although the mechanical properties of the paper substrate were also improved by the method of incorporating the copolymerized para-aramid into the paper substrate, the oxygen index (LOI) was 20 or less. It was expected that the addition of the copolymerized para-aramid polymer would bring out the flame resistance of the aramid itself. This is thought to be because the high-order structure of the aramid portion, which has high flame resistance, is a sparse structure with many voids. be done.

[比較例3]
紙基材に塗布する液として、共重合パラアラミドポリマーをN-メチル―2-ピロリドン中に溶解させた溶解液(溶解液中のポリマー濃度:2.5wt%)を使用し、それ以外は実施例1と同様の手順にて複合紙構造体を作製し評価した。
[Comparative Example 3]
As the liquid to be applied to the paper substrate, a solution obtained by dissolving a copolymerized para-aramid polymer in N-methyl-2-pyrrolidone (polymer concentration in the solution: 2.5 wt%) was used. A composite paper structure was produced and evaluated in the same procedure as in Example 1.

共重合パラアラミドを紙基材に含有させる方法でも紙基材の力学物性は向上したが、酸素指数(LOI)は20以下であった。共重合パラアラミドポリマーの添加によって、アラミド自体の耐炎性が発揮されると予想されたが、実際は未添加の紙基材と同様、酸素濃度20wt%下で複合紙構造体自体が燃焼した。これは、耐炎性の高いアラミド部分の高次構造が空隙を多く抱えた疎な構造であり、アラミド存在下であっても紙基材を構成する可燃性繊維との接炎が生じたためと考えられる。 Although the mechanical properties of the paper substrate were also improved by the method of incorporating the copolymerized para-aramid into the paper substrate, the oxygen index (LOI) was 20 or less. It was expected that the addition of the copolymerized para-aramid polymer would bring out the flame resistance of the aramid itself. This is thought to be because the high-order structure of the aramid portion, which has high flame resistance, is a sparse structure with many voids. be done.

[比較例4]
紙基材に塗布する液として、実施例1と同様のポリマー構造を有するパラアラミドポリマーをN-メチル―2-ピロリドン中に溶解させた溶解液(溶解液中のポリマー濃度:1wt%)を使用した。本比較例の組成では、パラアラミドポリマー溶解液の安定性が低く、経時で早期にゲル化が進行したため紙基材への塗工による複合紙構造体を作製ができなかった。
[Comparative Example 4]
As the liquid to be applied to the paper substrate, a solution obtained by dissolving a para-aramid polymer having the same polymer structure as in Example 1 in N-methyl-2-pyrrolidone (polymer concentration in the solution: 1 wt%) is used. did. With the composition of this comparative example, the stability of the para-aramid polymer solution was low, and gelation progressed quickly over time, so a composite paper structure could not be produced by coating a paper substrate.

Figure 2022114251000002
Figure 2022114251000002

本発明の複合紙構造体は、力学物性および耐炎性に優れることから、産業資材分野、電気電子分野、農業資材分野、光学材料分野、航空機・自動車・船舶分野などをはじめとして多くの用途に極めて有効に使用することができる。 Since the composite paper structure of the present invention is excellent in mechanical properties and flame resistance, it is extremely useful in many fields such as industrial materials, electrical and electronic fields, agricultural materials, optical materials, aircraft, automobiles, and ships. can be used effectively.

Claims (4)

セルロース繊維を含む紙基材と、平均繊維径が100nm以下のパラ型全芳香族ポリアミドからなるアラミドナノファイバー、を含み、
厚さが100~1000μmであり、かつ、JIS L1091に規定されるLOI値が20~30であり、かつ、幅10mm、長さ100mmであるサンプルを、テンシロン万能材料試験機を用いて、試験速度50mm/分、チャック間距離50mm、温度20度、相対湿度60%の条件下で測定した引張強度が7.0~15.0Mpaであることを特徴とする複合紙構造体。
A paper base material containing cellulose fibers, and aramid nanofibers made of para-type wholly aromatic polyamide having an average fiber diameter of 100 nm or less,
A sample having a thickness of 100 to 1000 μm, an LOI value of 20 to 30 as specified in JIS L1091, and a width of 10 mm and a length of 100 mm was measured using a Tensilon universal material testing machine at a test speed. A composite paper structure having a tensile strength of 7.0 to 15.0 Mpa measured under conditions of 50 mm/min, a distance between chucks of 50 mm, a temperature of 20 degrees and a relative humidity of 60%.
セルロース繊維が紙基材の全重量に対して50重量%を超えて含まれる請求項1に記載の複合紙構造体。 The composite paper structure of Claim 1, wherein the cellulose fibers comprise more than 50% by weight of the total weight of the paper substrate. アラミドナノファイバーが紙基材の全重量に対して0.1~50重量%含まれる請求項1または2に記載の複合紙構造体。 3. The composite paper structure according to claim 1, wherein the aramid nanofibers are contained in an amount of 0.1 to 50% by weight based on the total weight of the paper substrate. セルロース繊維を含む紙基材に、パラ型全芳香族ポリアミド繊維またはパルプを、非プロトン性極性溶媒下に強塩基性物質を添加し、ナノファイバー化して得られる平均繊維径が100nm以下のアラミドナノファイバーを分散させた分散液を浸漬させた後、水浸漬、乾燥工程を経ることで得られる、請求項1~3のいずれか一つに記載の複合紙構造体の製造方法。 Aramid nanoparticles with an average fiber diameter of 100 nm or less obtained by adding a strongly basic substance to a paper base material containing cellulose fibers and adding a strongly basic substance in an aprotic polar solvent to a paper base material containing cellulose fibers. 4. The method for producing a composite paper structure according to any one of claims 1 to 3, which is obtained by immersing the dispersion in which the fibers are dispersed, followed by immersion in water and drying.
JP2021010468A 2021-01-26 2021-01-26 Composite paper structure containing aramid nanofibers and method for producing same Active JP7538055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021010468A JP7538055B2 (en) 2021-01-26 2021-01-26 Composite paper structure containing aramid nanofibers and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021010468A JP7538055B2 (en) 2021-01-26 2021-01-26 Composite paper structure containing aramid nanofibers and method for producing same

Publications (2)

Publication Number Publication Date
JP2022114251A true JP2022114251A (en) 2022-08-05
JP7538055B2 JP7538055B2 (en) 2024-08-21

Family

ID=82658493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021010468A Active JP7538055B2 (en) 2021-01-26 2021-01-26 Composite paper structure containing aramid nanofibers and method for producing same

Country Status (1)

Country Link
JP (1) JP7538055B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029921A (en) 2003-07-11 2005-02-03 Toho Tenax Co Ltd Oxidized fiber mixed paper and method for producing the same
JP4866332B2 (en) 2007-03-13 2012-02-01 帝人テクノプロダクツ株式会社 Water-swellable fibrillated fiber and sheet-like material using the same
JP2011021057A (en) 2009-07-13 2011-02-03 Teijin Techno Products Ltd Heat-resistant resin molded article
US11427962B2 (en) 2011-01-04 2022-08-30 Teijin Aramid B.V. Paper comprising microfilaments

Also Published As

Publication number Publication date
JP7538055B2 (en) 2024-08-21

Similar Documents

Publication Publication Date Title
Li et al. Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature
JP5686688B2 (en) Aramid paper blend
JP4651041B2 (en) Para-aramid film-like fibrid particles
JP4338224B2 (en) Chitosan-coated pulp, paper using this pulp and method for producing the same
CN110528314A (en) A kind of composite sheet and its preparation method and application of the polyphenylene sulfide superfine fiber containing melt-blown
WO2016135385A1 (en) Process for producing shaped articles based on cellulose
Khiari Valorization of agricultural residues for cellulose nanofibrils production and their use in nanocomposite manufacturing
Dai et al. Electrospun polyvinyl alcohol/waterborne polyurethane composite nanofibers involving cellulose nanofibers
JP2007308836A (en) Heat-resistant electrical insulating paper
Sheykhnazari et al. Multilayer bacterial cellulose/resole nanocomposites: Relationship between structural and electro-thermo-mechanical properties
Li et al. Reducing formation time while improving transparency and strength of cellulose nanostructured paper with polyvinylpyrrolidone and Laponite
JP4183710B2 (en) Totally aromatic polyamide fiber and method for producing the same
Eom et al. Multiscale hybridization of natural silk–nanocellulose fibrous composites with exceptional mechanical properties
JP2014227639A (en) Fine cellulose fiber-containing material and method for producing the same, and composite material and method for producing the same
JP5073525B2 (en) Electromagnetic wave suppression paper
JP2007246590A (en) Friction material
JP7538055B2 (en) Composite paper structure containing aramid nanofibers and method for producing same
JP2005256221A (en) Method for coating carbon nanotube onto natural fiber
KR101788634B1 (en) Method for Producing Carbon NanoTube Fiber
JP4852328B2 (en) Beater sheet gasket
JP2005264400A (en) Method for covering natural fiber with carbon nanotube
Xu et al. Superhydrophobic modification of collagen fiber: a potential substitute for tanning
JP4694909B2 (en) Heat-resistant conductive paper and method for producing the same
TW318193B (en)
JP2022017796A (en) Sheet for speaker diaphragm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231023

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240808

R150 Certificate of patent or registration of utility model

Ref document number: 7538055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150