JPWO2016203746A1 - Conductive nonwoven fabric and method for producing the same - Google Patents

Conductive nonwoven fabric and method for producing the same Download PDF

Info

Publication number
JPWO2016203746A1
JPWO2016203746A1 JP2017524598A JP2017524598A JPWO2016203746A1 JP WO2016203746 A1 JPWO2016203746 A1 JP WO2016203746A1 JP 2017524598 A JP2017524598 A JP 2017524598A JP 2017524598 A JP2017524598 A JP 2017524598A JP WO2016203746 A1 JPWO2016203746 A1 JP WO2016203746A1
Authority
JP
Japan
Prior art keywords
nonwoven fabric
conductive
fibrous carbon
carbon nanostructure
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017524598A
Other languages
Japanese (ja)
Inventor
村上 康之
康之 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2016203746A1 publication Critical patent/JPWO2016203746A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips

Abstract

本発明は、導電性に優れる導電性不織布を提供することを目的とする。本発明の導電性不織布は、カーボンナノチューブ等の繊維状炭素ナノ構造体と、炭素繊維等の導電性繊維とを含む。また、本発明の導電性不織布の製造方法は、繊維状炭素ナノ構造体と、導電性繊維と、分散媒とを含む分散液から分散媒を除去して導電性不織布を形成する工程を含む。An object of this invention is to provide the electroconductive nonwoven fabric excellent in electroconductivity. The conductive nonwoven fabric of the present invention includes fibrous carbon nanostructures such as carbon nanotubes and conductive fibers such as carbon fibers. Moreover, the manufacturing method of the conductive nonwoven fabric of this invention includes the process of removing a dispersion medium from the dispersion liquid containing fibrous carbon nanostructure, a conductive fiber, and a dispersion medium, and forming a conductive nonwoven fabric.

Description

本発明は、導電性不織布および導電性不織布の製造方法に関するものである。   The present invention relates to a conductive nonwoven fabric and a method for producing a conductive nonwoven fabric.

従来、シート状の導電部材として、繊維状の導電性材料を用いて形成した不織布(導電性不織布)が用いられている。そして、導電性不織布としては、導電性や機械的特性に優れる不織布が求められている。   Conventionally, as a sheet-like conductive member, a nonwoven fabric (conductive nonwoven fabric) formed using a fibrous conductive material has been used. And as a conductive nonwoven fabric, the nonwoven fabric excellent in electroconductivity and mechanical characteristics is calculated | required.

そこで、例えば特許文献1では、導電性および機械的特性に優れる材料として注目されているカーボンナノチューブ(以下、「CNT」と称することがある。)をシート状に集合させることにより、導電性および機械的特性に優れる不織布を提供する技術が提案されている。   Thus, for example, in Patent Document 1, carbon nanotubes (hereinafter sometimes referred to as “CNT”) that are attracting attention as materials having excellent electrical conductivity and mechanical properties are aggregated in a sheet shape, thereby providing electrical conductivity and mechanical properties. A technique for providing a nonwoven fabric having excellent mechanical properties has been proposed.

特開2010−105909号公報JP 2010-105909 A

しかし、カーボンナノチューブのみを用いて形成した上記従来の導電性不織布には、導電性を更に向上させることが求められていた。   However, the conventional conductive nonwoven fabric formed using only carbon nanotubes has been required to further improve conductivity.

そこで、本発明は、導電性に優れる導電性不織布を提供することを目的とする。   Then, an object of this invention is to provide the electroconductive nonwoven fabric excellent in electroconductivity.

本発明者は、上記目的を達成するために鋭意検討を行った。そして、本発明者は、導電性に特に優れていると考えられているカーボンナノチューブ等の繊維状炭素ナノ構造体のみを用いて不織布を形成するのではなく、繊維状炭素ナノ構造体と、繊維状炭素ナノ構造体よりも繊維径の大きい導電性繊維との混合物を用いて不織布を形成すると、意外なことに導電性に非常に優れる導電性不織布が得られることを見出し、本発明を完成させた。   The inventor has intensively studied to achieve the above object. And this inventor does not form a nonwoven fabric only using fibrous carbon nanostructures, such as a carbon nanotube considered to be especially excellent in electroconductivity, but fibrous carbon nanostructure and fiber Surprisingly, it was found that forming a non-woven fabric using a mixture with conductive fibers having a larger fiber diameter than the carbon-like carbon nanostructure yields a conductive non-woven fabric that is extremely excellent in electrical conductivity. It was.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の導電性不織布は、繊維状炭素ナノ構造体と、導電性繊維とを含むことを特徴とする。このように、繊維状炭素ナノ構造体と、導電性繊維とを用いれば、導電性に優れる導電性不織布が得られる。
なお、本発明において、「繊維状炭素ナノ構造体」とは、外径(繊維径)が1μm未満の繊維状の炭素構造体を指す。また、本発明において、「繊維」とは、繊維径が1μm以上の繊維状物質を指し、「繊維」には「繊維状炭素ナノ構造体」は含まれない。
That is, this invention aims at solving the said subject advantageously, The conductive nonwoven fabric of this invention is characterized by including a fibrous carbon nanostructure and a conductive fiber. Thus, if a fibrous carbon nanostructure and a conductive fiber are used, a conductive nonwoven fabric excellent in conductivity can be obtained.
In the present invention, the “fibrous carbon nanostructure” refers to a fibrous carbon structure having an outer diameter (fiber diameter) of less than 1 μm. In the present invention, “fiber” refers to a fibrous material having a fiber diameter of 1 μm or more, and “fiber” does not include “fibrous carbon nanostructure”.

ここで、本発明の導電性不織布は、前記繊維状炭素ナノ構造体100質量部当たり、前記導電性繊維を5質量部以上4000質量部以下の割合で含むことが好ましい。導電性繊維の含有量を繊維状炭素ナノ構造体100質量部当たり5質量部以上4000質量部以下とすれば、導電性不織布の導電性を更に向上させることができるからである。   Here, the conductive nonwoven fabric of the present invention preferably contains the conductive fiber at a ratio of 5 parts by mass or more and 4000 parts by mass or less per 100 parts by mass of the fibrous carbon nanostructure. This is because if the conductive fiber content is 5 parts by mass or more and 4000 parts by mass or less per 100 parts by mass of the fibrous carbon nanostructure, the conductivity of the conductive nonwoven fabric can be further improved.

また、本発明の導電性不織布は、前記繊維状炭素ナノ構造体のBET比表面積が600m2/g以下であることが好ましい。繊維状炭素ナノ構造体のBET比表面積が600m2/g以下の場合、繊維状炭素ナノ構造体と導電性繊維とを用いて導電性不織布を形成することにより得られる導電性の向上効果が特に大きいからである。
なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
In the conductive nonwoven fabric of the present invention, the fibrous carbon nanostructure preferably has a BET specific surface area of 600 m 2 / g or less. When the BET specific surface area of the fibrous carbon nanostructure is 600 m 2 / g or less, the effect of improving the conductivity obtained by forming the conductive nonwoven fabric using the fibrous carbon nanostructure and the conductive fiber is particularly effective. Because it is big.
In the present invention, the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.

なお、本発明の導電性不織布において、前記繊維状炭素ナノ構造体としては、カーボンナノチューブを含む繊維状炭素ナノ構造体を用いることができる。
更に、本発明の導電性不織布において、前記導電性繊維としては、炭素繊維を含む導電性繊維を用いることができる。
In the conductive nonwoven fabric of the present invention, a fibrous carbon nanostructure containing carbon nanotubes can be used as the fibrous carbon nanostructure.
Furthermore, in the conductive nonwoven fabric of the present invention, conductive fibers containing carbon fibers can be used as the conductive fibers.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の導電性不織布の製造方法は、上述した導電性不織布の何れかを製造する方法であって、繊維状炭素ナノ構造体と、導電性繊維と、分散媒とを含む分散液から前記分散媒を除去して導電性不織布を形成する工程を含むことが好ましい。このように、繊維状炭素ナノ構造体と、導電性繊維と、分散媒とを含む分散液から分散媒を除去して導電性不織布を形成すれば、導電性に優れる導電性不織布が容易に得られる。   Moreover, this invention aims at solving the said subject advantageously, The manufacturing method of the conductive nonwoven fabric of this invention is a method of manufacturing either of the conductive nonwoven fabric mentioned above, Comprising: It is preferable to include a step of forming a conductive nonwoven fabric by removing the dispersion medium from a dispersion liquid including a carbon-like carbon nanostructure, conductive fibers, and a dispersion medium. Thus, if a dispersion medium is removed from a dispersion liquid containing fibrous carbon nanostructures, conductive fibers, and a dispersion medium to form a conductive nonwoven fabric, a conductive nonwoven fabric excellent in conductivity can be easily obtained. It is done.

そして、本発明の導電性不織布の製造方法は、前記分散媒中に前記繊維状炭素ナノ構造体を添加してなる粗分散液を60MPa以上200MPa以下の圧力で細管流路へと圧送し、前記粗分散液にせん断力を与えて平均粒子径が60μm以下の繊維状炭素ナノ構造体分散液を得た後、前記繊維状炭素ナノ構造体分散液に前記導電性繊維を混合して前記分散液を調製する工程を更に含むことが好ましい。このように、粗分散液にせん断力を与えて得た繊維状炭素ナノ構造体分散液に導電性繊維を混合して分散液を調製すれば、繊維状炭素ナノ構造体および導電性繊維が良好に分散した分散液が得られる。従って、当該分散液を使用して導電性不織布を形成すれば、導電性不織布の導電性を更に向上させることができるからである。
なお、本発明において、繊維状炭素ナノ構造体分散液の「平均粒子径」とは、繊維状炭素ナノ構造体分散液中に含まれている固形物のメジアン径(体積換算値)を指し、粒度分布計を用いて測定することができる。
And the manufacturing method of the electroconductive nonwoven fabric of this invention pumps the rough dispersion liquid formed by adding the said fibrous carbon nanostructure in the said dispersion medium to a capillary channel by the pressure of 60 MPa or more and 200 MPa or less, After applying a shearing force to the coarse dispersion liquid to obtain a fibrous carbon nanostructure dispersion liquid having an average particle size of 60 μm or less, the conductive fibers are mixed with the fibrous carbon nanostructure dispersion liquid to obtain the dispersion liquid. It is preferable to further include a step of preparing Thus, if a dispersion liquid is prepared by mixing the fibrous carbon nanostructure dispersion liquid obtained by applying shear force to the coarse dispersion liquid, the fibrous carbon nanostructure body and the conductive fibers are good. A dispersion liquid dispersed in is obtained. Therefore, if a conductive nonwoven fabric is formed using the dispersion, the conductivity of the conductive nonwoven fabric can be further improved.
In the present invention, the “average particle diameter” of the fibrous carbon nanostructure dispersion refers to the median diameter (volume conversion value) of the solid contained in the fibrous carbon nanostructure dispersion, It can be measured using a particle size distribution meter.

本発明によれば、導電性に優れる導電性不織布を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electroconductive nonwoven fabric excellent in electroconductivity can be provided.

以下、本発明の実施形態について詳細に説明する。
ここで、本発明の導電性不織布は、繊維状炭素ナノ構造体と、導電性繊維とを含む。そして、本発明の導電性不織布は、例えば本発明の導電性不織布の製造方法を用いて製造することができる。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the conductive nonwoven fabric of the present invention includes fibrous carbon nanostructures and conductive fibers. And the conductive nonwoven fabric of this invention can be manufactured, for example using the manufacturing method of the conductive nonwoven fabric of this invention.

(導電性不織布)
本発明の導電性不織布は、通常、複数本の繊維状炭素ナノ構造体と、複数本の導電性繊維とをシート状に集合させて形成した不織布である。なお、導電性不織布には、繊維状炭素ナノ構造体および導電性繊維以外に、導電性不織布の製造時に使用した添加物等のその他の成分が含まれていてもよい。
そして、本発明の導電性不織布は、繊維状炭素ナノ構造体と導電性繊維との双方を含んでいるので、優れた導電性を発揮する。
(Conductive non-woven fabric)
The conductive nonwoven fabric of the present invention is usually a nonwoven fabric formed by assembling a plurality of fibrous carbon nanostructures and a plurality of conductive fibers into a sheet shape. In addition to the fibrous carbon nanostructure and the conductive fiber, the conductive nonwoven fabric may contain other components such as an additive used during the production of the conductive nonwoven fabric.
And since the conductive nonwoven fabric of this invention contains both the fibrous carbon nanostructure and conductive fiber, it exhibits the outstanding electroconductivity.

ここで、繊維状炭素ナノ構造体と導電性繊維とを用いることで導電性に優れる導電性不織布が得られる理由は、明らかではないが、繊維径が互いに異なる繊維状炭素ナノ構造体と導電性繊維とが絡み合って不織布を形成することで、何れか一方のみを用いて不織布を形成した場合と比較し、不織布内に導電パスを良好に形成することができるためであると推察される。   Here, the reason why a conductive nonwoven fabric excellent in conductivity can be obtained by using fibrous carbon nanostructures and conductive fibers is not clear, but the fibrous carbon nanostructures having different fiber diameters and conductivity are not clear. It is inferred that the formation of the nonwoven fabric by intertwining with the fibers makes it possible to form a conductive path in the nonwoven fabric better than when the nonwoven fabric is formed using only one of them.

<繊維状炭素ナノ構造体>
導電性不織布を構成する繊維状炭素ナノ構造体としては、特に限定されることなく、導電性を有する繊維状炭素ナノ構造体を用いることができる。具体的には、繊維状炭素ナノ構造体としては、例えば、カーボンナノチューブ(CNT)等の円筒形状の炭素ナノ構造体や、炭素の六員環ネットワークが扁平筒状に形成されてなる炭素ナノ構造体等の非円筒形状の炭素ナノ構造体を用いることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Fibrous carbon nanostructure>
The fibrous carbon nanostructure constituting the conductive nonwoven fabric is not particularly limited, and a fibrous carbon nanostructure having conductivity can be used. Specifically, as the fibrous carbon nanostructure, for example, a carbon nanostructure having a cylindrical shape such as a carbon nanotube (CNT), or a carbon nanostructure in which a carbon six-membered ring network is formed in a flat cylindrical shape. A non-cylindrical carbon nanostructure such as a body can be used. These may be used individually by 1 type and may use 2 or more types together.

そして、上述した中でも、繊維状炭素ナノ構造体としては、CNTを含む繊維状炭素ナノ構造体を用いることがより好ましい。CNTを含む繊維状炭素ナノ構造体を使用すれば、導電性不織布の導電性を更に向上させることができるからである。   And among the above-mentioned, as a fibrous carbon nanostructure, it is more preferable to use the fibrous carbon nanostructure containing CNT. This is because if the fibrous carbon nanostructure containing CNT is used, the conductivity of the conductive nonwoven fabric can be further improved.

ここで、CNTを含む繊維状炭素ナノ構造体は、CNTのみからなるものであってもよいし、CNTと、CNT以外の繊維状炭素ナノ構造体との混合物であってもよい。
そして、繊維状炭素ナノ構造体中のCNTとしては、特に限定されることなく、単層カーボンナノチューブおよび/または多層カーボンナノチューブを用いることができるが、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。カーボンナノチューブの層数が少ないほど、導電性不織布の導電性が向上するからである。
Here, the fibrous carbon nanostructure containing CNT may be composed of only CNT, or may be a mixture of CNT and fibrous carbon nanostructure other than CNT.
The CNT in the fibrous carbon nanostructure is not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used. Preferably, it is a single-walled carbon nanotube. This is because the smaller the number of carbon nanotube layers, the better the conductivity of the conductive nonwoven fabric.

なお、CNTを含む繊維状炭素ナノ構造体は、特に限定されることなく、アーク放電法、レーザーアブレーション法、化学的気相成長法(CVD法)などの既知のCNTの合成方法を用いて製造することができる。具体的には、CNTを含む繊維状炭素ナノ構造体は、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に原料化合物およびキャリアガスを供給し、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。
そして、スーパーグロース法により製造したCNTを含む繊維状炭素ナノ構造体は、SGCNTのみから構成されていてもよいし、SGCNTに加え、例えば、非円筒形状の炭素ナノ構造体等の他の炭素ナノ構造体が含まれていてもよい。
In addition, the fibrous carbon nanostructure containing CNT is not particularly limited, and is manufactured using a known CNT synthesis method such as an arc discharge method, a laser ablation method, a chemical vapor deposition method (CVD method), or the like. can do. Specifically, a fibrous carbon nanostructure containing CNTs, for example, supplies a raw material compound and a carrier gas onto a substrate having a catalyst layer for producing carbon nanotubes on the surface, and chemical vapor deposition (CVD) Method), when a CNT is synthesized by a method, the catalyst activity of the catalyst layer is dramatically improved by making a small amount of oxidizing agent (catalyst activating substance) present in the system (super growth method; International Publication No. 2006). / 011655), and can be produced efficiently. Hereinafter, the carbon nanotube obtained by the super growth method may be referred to as “SGCNT”.
And the fibrous carbon nanostructure containing CNT manufactured by the super growth method may be comprised only from SGCNT, and in addition to SGCNT, other carbon nanostructures, such as a non-cylindrical carbon nanostructure, for example A structure may be included.

また、繊維状炭素ナノ構造体の平均直径は、0.5nm以上であることが好ましく、1nm以上であることがより好ましく、15nm以下であることが好ましく、10nm以下であることがより好ましい。繊維状炭素ナノ構造体の平均直径が0.5nm以上であれば、繊維状炭素ナノ構造体の凝集を抑制して、均質で導電性に優れる導電性不織布を形成することができる。また、繊維状炭素ナノ構造体の平均直径が15nm以下であれば、導電性不織布の導電性を高めることができる。
なお、本発明において、繊維状炭素ナノ構造体の平均直径は、透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体100本の直径(外径)を測定して求めることができる。また、繊維状炭素ナノ構造体の平均直径は、繊維状炭素ナノ構造体の製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られた繊維状炭素ナノ構造体を複数種類組み合わせることにより調整してもよい。
The average diameter of the fibrous carbon nanostructure is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 15 nm or less, and more preferably 10 nm or less. If the average diameter of the fibrous carbon nanostructure is 0.5 nm or more, it is possible to suppress the aggregation of the fibrous carbon nanostructure and form a conductive nonwoven fabric that is homogeneous and excellent in conductivity. Moreover, if the average diameter of fibrous carbon nanostructure is 15 nm or less, the electroconductivity of a conductive nonwoven fabric can be improved.
In the present invention, the average diameter of fibrous carbon nanostructures can be determined by measuring the diameter (outer diameter) of 100 fibrous carbon nanostructures selected at random using a transmission electron microscope. it can. Moreover, the average diameter of the fibrous carbon nanostructure may be adjusted by changing the production method and production conditions of the fibrous carbon nanostructure, or the fibrous carbon nanostructure obtained by a different production method may be used. You may adjust by combining multiple types.

更に、繊維状炭素ナノ構造体は、合成時における構造体の平均長さが、1μm以上であることが好ましく、100μm以上であることがより好ましく、5000μm以下であることが好ましい。平均長さが1μm以上であれば、導電性に優れる導電性不織布を良好に形成することができる。なお、合成時の構造体の長さが長いほど、導電性不織布を形成する過程で繊維状炭素ナノ構造体に破断や切断などの損傷が発生し易いので、合成時の構造体の平均長さは5000μm以下であることが好ましい。   Furthermore, in the fibrous carbon nanostructure, the average length of the structure at the time of synthesis is preferably 1 μm or more, more preferably 100 μm or more, and preferably 5000 μm or less. If average length is 1 micrometer or more, the conductive nonwoven fabric excellent in electroconductivity can be formed favorably. Note that the longer the structure length during synthesis, the more easily the fibrous carbon nanostructure is damaged during the process of forming the conductive nonwoven fabric. Is preferably 5000 μm or less.

また、導電性の高い導電性不織布を得る観点からは、繊維状炭素ナノ構造体は、BET比表面積が、200m2/g以上であることが好ましく、800m2/g以上であることが更に好ましく、2500m2/g以下であることが好ましく、1200m2/g以下であることが更に好ましい。繊維状炭素ナノ構造体のBET比表面積が200m2/g以上であれば、導電性不織布の導電性を十分に高めることができる。また、繊維状炭素ナノ構造体のBET比表面積が2500m2/g以下であれば、繊維状炭素ナノ構造体の凝集を抑制して、均質で導電性に優れる導電性不織布を形成することができる。Further, from the viewpoint of obtaining a conductive non-woven fabric with high conductivity, the fibrous carbon nanostructure preferably has a BET specific surface area of 200 m 2 / g or more, more preferably 800 m 2 / g or more. It is preferably 2500 m 2 / g or less, and more preferably 1200 m 2 / g or less. When the BET specific surface area of the fibrous carbon nanostructure is 200 m 2 / g or more, the conductivity of the conductive nonwoven fabric can be sufficiently increased. In addition, if the BET specific surface area of the fibrous carbon nanostructure is 2500 m 2 / g or less, the aggregation of the fibrous carbon nanostructure can be suppressed, and a conductive nonwoven fabric excellent in conductivity can be formed. .

一方、繊維状炭素ナノ構造体と導電性繊維との双方を用いて導電性不織布を形成することで繊維状炭素ナノ構造体のみを用いて導電性不織布を形成した場合と比較して導電性不織布の導電性が向上する効果(以下、「導電性向上効果」と称することがある。)を十分に得る観点からは、繊維状炭素ナノ構造体は、BET比表面積が600m2/g以下であることが好ましく、400m2/g以下であることが更に好ましい。
なお、一般に、BET比表面積が小さい繊維状炭素ナノ構造体は互いに絡み合い難く、BET比表面積が小さい繊維状炭素ナノ構造体のみでは自立性に優れる不織布を形成し難いと考えられている。しかし、繊維状炭素ナノ構造体と導電性繊維との双方を使用すれば、BET比表面積が小さい繊維状炭素ナノ構造体を使用した場合であっても、自立性に優れる導電性不織布を容易に形成することができる。
On the other hand, the conductive nonwoven fabric is formed using only the fibrous carbon nanostructure by forming the conductive nonwoven fabric using both the fibrous carbon nanostructure and the conductive fiber. From the viewpoint of sufficiently obtaining the effect of improving the conductivity (hereinafter, sometimes referred to as “conductivity improvement effect”), the fibrous carbon nanostructure has a BET specific surface area of 600 m 2 / g or less. It is preferably 400 m 2 / g or less.
In general, fibrous carbon nanostructures having a small BET specific surface area are unlikely to be entangled with each other, and it is considered difficult to form a nonwoven fabric excellent in self-supporting property by using only a fibrous carbon nanostructure having a small BET specific surface area. However, if both fibrous carbon nanostructures and conductive fibers are used, even when fibrous carbon nanostructures having a small BET specific surface area are used, a conductive nonwoven fabric excellent in self-supporting properties can be easily obtained. Can be formed.

<導電性繊維>
導電性不織布を構成する導電性繊維としては、特に限定されることなく、導電性を有する既知の繊維を用いることができる。具体的には、導電性繊維としては、例えば、金属繊維や炭素繊維などを用いることができる。また、導電性繊維としては、炭素繊維、樹脂繊維およびガラス繊維等の繊維状材料の表面を金属で被覆してなる金属被覆繊維も用いることができる。なお、繊維状材料の表面を被覆する金属としては、例えば、ニッケル、イッテルビウム、金、銀、銅などが挙げられる。また、繊維状材料の表面に金属を被覆する方法としては、例えば、メッキ法、CVD法、PVD法、イオンプレーティング法、蒸着法などを用いることができる
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Conductive fiber>
The conductive fiber constituting the conductive nonwoven fabric is not particularly limited, and a known fiber having conductivity can be used. Specifically, as the conductive fiber, for example, a metal fiber or a carbon fiber can be used. In addition, as the conductive fiber, a metal-coated fiber formed by coating the surface of a fibrous material such as carbon fiber, resin fiber, and glass fiber with a metal can also be used. In addition, as a metal which coat | covers the surface of a fibrous material, nickel, ytterbium, gold | metal | money, silver, copper etc. are mentioned, for example. In addition, as a method of coating the surface of the fibrous material with metal, for example, a plating method, a CVD method, a PVD method, an ion plating method, a vapor deposition method, or the like can be used. Alternatively, two or more kinds may be used in combination.

そして、上述した中でも、導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維、黒鉛繊維などの炭素繊維を用いることが好ましく、ピッチ系炭素繊維または黒鉛繊維を用いることがより好ましく、ピッチ系炭素繊維を用いることが更に好ましい。   Among the above-described conductive fibers, carbon fibers such as PAN-based carbon fibers, pitch-based carbon fibers, and graphite fibers are preferably used, and pitch-based carbon fibers or graphite fibers are more preferably used. More preferably, carbon fiber is used.

なお、一般に、炭素繊維などの導電性繊維は、カーボンナノチューブなどの繊維状炭素ナノ構造体よりも導電性が低いと考えられている。しかし、繊維状炭素ナノ構造体と導電性繊維とを用いて形成した導電性不織布は、驚くべきことに、繊維状炭素ナノ構造体と、当該繊維状炭素ナノ構造体よりも導電性の低い導電性繊維とを用いた場合であっても、繊維状炭素ナノ構造体のみを用いて形成した導電性不織布よりも優れた導電性を発揮することができる。この理由は、明らかではないが、繊維状炭素ナノ構造体と導電性繊維とが良好に絡み合うことで不織布内に導電パスが良好に形成されるためであると推察される。   In general, conductive fibers such as carbon fibers are considered to have lower conductivity than fibrous carbon nanostructures such as carbon nanotubes. However, the conductive nonwoven fabric formed using the fibrous carbon nanostructure and the conductive fiber is surprisingly a fibrous carbon nanostructure and a conductive material having lower conductivity than the fibrous carbon nanostructure. Even when a conductive fiber is used, it is possible to exhibit conductivity superior to that of a conductive nonwoven fabric formed using only fibrous carbon nanostructures. The reason for this is not clear, but it is presumed that the conductive carbon nanostructure and the conductive fiber are intertwined well so that a conductive path is formed well in the nonwoven fabric.

ここで、導電性繊維の平均繊維径は、3μm以上であることが好ましく、5μm以上であることがより好ましく、50μm以下であることが好ましく、25μm以下であることがより好ましい。導電性繊維の平均繊維径が上記範囲内であれば、導電性不織布の導電性を更に向上させることができる。
なお、本発明において、導電性繊維の平均繊維径は、走査型電子顕微鏡を用いて無作為に選択した導電性繊維100本の繊維径を測定して求めることができる。
Here, the average fiber diameter of the conductive fibers is preferably 3 μm or more, more preferably 5 μm or more, preferably 50 μm or less, and more preferably 25 μm or less. When the average fiber diameter of the conductive fibers is within the above range, the conductivity of the conductive nonwoven fabric can be further improved.
In the present invention, the average fiber diameter of the conductive fibers can be determined by measuring the fiber diameter of 100 conductive fibers selected at random using a scanning electron microscope.

また、導電性繊維の平均繊維径は、繊維状炭素ナノ構造体の平均直径の100倍以上5000倍以下であることが好ましく、100倍以上1000倍以下であることがより好ましい。導電性繊維の平均繊維径が繊維状炭素ナノ構造体の平均直径の100倍以上5000倍以下であれば、繊維状炭素ナノ構造体と導電性繊維とが良好に絡み合い、導電性不織布の導電性を更に向上させることができる。   In addition, the average fiber diameter of the conductive fibers is preferably 100 to 5000 times the average diameter of the fibrous carbon nanostructure, and more preferably 100 to 1000 times. If the average fiber diameter of the conductive fiber is 100 times or more and 5000 times or less than the average diameter of the fibrous carbon nanostructure, the fibrous carbon nanostructure and the conductive fiber are entangled well, and the conductivity of the conductive nonwoven fabric Can be further improved.

更に、導電性繊維の平均長さは、10μm以上であることが好ましく、50μm以上であることがより好ましい。また、導電性繊維の平均長さは、2000μm以下であることが好ましく、1000μm以下であることがより好ましい。平均長さが上記範囲内の導電性繊維を使用すれば、得られる導電性不織布の導電性を更に向上させることができる。   Furthermore, the average length of the conductive fibers is preferably 10 μm or more, and more preferably 50 μm or more. Further, the average length of the conductive fibers is preferably 2000 μm or less, and more preferably 1000 μm or less. If conductive fibers having an average length within the above range are used, the conductivity of the conductive nonwoven fabric obtained can be further improved.

そして、導電性不織布に含まれている導電性繊維の量は、上述した繊維状炭素ナノ構造体100質量部当たり、5質量部以上であることが好ましく、25質量部以上であることがより好ましく、200質量部以上であることが更に好ましく、300質量部以上であることが特に好ましく、4000質量部以下であることが好ましく、1600質量部以下であることがより好ましく、800質量部以下であることが更に好ましく、600質量部以下であることが特に好ましい。導電性繊維の量が上記範囲内であれば、導電性不織布の導電性をより一層向上させることができる。   The amount of the conductive fibers contained in the conductive nonwoven fabric is preferably 5 parts by mass or more, more preferably 25 parts by mass or more per 100 parts by mass of the fibrous carbon nanostructure described above. 200 parts by mass or more, more preferably 300 parts by mass or more, particularly preferably 4000 parts by mass or less, more preferably 1600 parts by mass or less, and 800 parts by mass or less. More preferably, it is particularly preferably 600 parts by mass or less. When the amount of the conductive fiber is within the above range, the conductivity of the conductive nonwoven fabric can be further improved.

<その他の成分>
なお、導電性不織布に任意に含有され得るその他の成分としては、特に限定されることなく、導電性不織布の調製時に使用した分散剤などの既知の添加剤が挙げられる。そして、導電性不織布は、分散剤などの添加剤を実質的に含有せず、繊維状炭素ナノ構造体および導電性繊維のみで構成されていることが好ましい。ここで、「添加剤を実質的に含有しない」とは、製造上の問題により導電性不織布中に不可避的に残留してしまう添加剤以外の添加剤を含有しないことを指す。
<Other ingredients>
In addition, as another component which can be contained arbitrarily in a conductive nonwoven fabric, well-known additives, such as a dispersing agent used at the time of preparation of a conductive nonwoven fabric, are mentioned, without being specifically limited. And it is preferable that an electroconductive nonwoven fabric does not contain additives, such as a dispersing agent, but is comprised only with the fibrous carbon nanostructure and the electroconductive fiber. Here, “substantially no additives” means that no additives other than the additives that inevitably remain in the conductive nonwoven fabric due to manufacturing problems are not contained.

(導電性不織布の製造方法)
本発明の導電性不織布の製造方法は、上述した導電性不織布の製造に用いることができる。そして、本発明の導電性不織布の製造方法は、繊維状炭素ナノ構造体と、導電性繊維と、分散媒とを含有し、任意に分散剤などの添加剤を更に含有する分散液から分散媒を除去して導電性不織布を形成する工程(不織布形成工程)を含むことを特徴とする。なお、本発明の導電性不織布の製造方法は、導電性不織布の形成に用いられる上記分散液を調製する工程(分散液調製工程)を不織布形成工程の前に含んでいてもよい。
そして、本発明の導電性不織布の製造方法を用いて得られる導電性不織布は、繊維状炭素ナノ構造体と導電性繊維との双方を含んでいるので、優れた導電性を発揮する。
(Method for producing conductive nonwoven fabric)
The manufacturing method of the conductive nonwoven fabric of this invention can be used for manufacture of the conductive nonwoven fabric mentioned above. And the manufacturing method of the electroconductive nonwoven fabric of this invention is a dispersion medium from the dispersion liquid which contains fibrous carbon nanostructure, an electroconductive fiber, and a dispersion medium, and further further contains additives, such as a dispersing agent. And a step of forming a conductive nonwoven fabric (nonwoven fabric formation step). In addition, the manufacturing method of the conductive nonwoven fabric of this invention may include the process (dispersion liquid preparation process) of preparing the said dispersion liquid used for formation of a conductive nonwoven fabric before a nonwoven fabric formation process.
And since the conductive nonwoven fabric obtained using the manufacturing method of the conductive nonwoven fabric of this invention contains both the fibrous carbon nanostructure and conductive fiber, it exhibits the outstanding electroconductivity.

<分散液調製工程>
分散液調製工程では、上述した繊維状炭素ナノ構造体および導電性繊維と、任意の添加剤とを分散媒に分散または溶解させて分散液を調製する。なお、分散媒に分散させる繊維状炭素ナノ構造体および導電性繊維の量の比率は、通常、分散液を用いて形成される導電性不織布に含有させる繊維状炭素ナノ構造体および導電性繊維の量の比率と同じにする。
<Dispersion preparation process>
In the dispersion preparation step, the above-described fibrous carbon nanostructure and conductive fibers and any additive are dispersed or dissolved in a dispersion medium to prepare a dispersion. The ratio of the amount of fibrous carbon nanostructures and conductive fibers to be dispersed in the dispersion medium is usually the same as that of the fibrous carbon nanostructures and conductive fibers contained in the conductive nonwoven fabric formed using the dispersion liquid. Same as the ratio of quantity.

ここで、分散液調製工程では、繊維状炭素ナノ構造体と、導電性繊維と、任意の添加剤とを分散媒に添加して得た粗分散液に対して分散処理を施して分散液を調製してもよいが、繊維状炭素ナノ構造体と任意の添加剤とを分散媒に添加して得た粗分散液に対して分散処理を施して繊維状炭素ナノ構造体分散液を得た後、繊維状炭素ナノ構造体分散液に導電性繊維を混合することにより分散液を調製することが好ましい。凝集し易くて分散し難い繊維状炭素ナノ構造体を予め分散させた後に導電性繊維と混合すれば、繊維状炭素ナノ構造体および導電性繊維が良好に分散した分散液を得ることができるからである。そして、繊維状炭素ナノ構造体および導電性繊維が良好に分散した分散液を使用すれば、均質で導電性に優れる導電性不織布を形成することができる。   Here, in the dispersion preparation step, a dispersion treatment is performed on a coarse dispersion obtained by adding fibrous carbon nanostructures, conductive fibers, and optional additives to the dispersion medium. Although it may be prepared, a dispersion treatment is performed on the coarse dispersion obtained by adding the fibrous carbon nanostructure and an optional additive to the dispersion medium to obtain a fibrous carbon nanostructure dispersion. Thereafter, it is preferable to prepare a dispersion by mixing conductive fibers with the fibrous carbon nanostructure dispersion. If fibrous carbon nanostructures that are easy to aggregate and difficult to disperse are dispersed in advance and then mixed with conductive fibers, a dispersion in which the fibrous carbon nanostructures and conductive fibers are well dispersed can be obtained. It is. And if the dispersion liquid with which the fibrous carbon nanostructure and the conductive fiber were disperse | distributed favorably is used, the conductive nonwoven fabric which is homogeneous and excellent in electroconductivity can be formed.

そこで、以下では、分散液調製工程において分散液を調製する方法の一例として、繊維状炭素ナノ構造体分散液を得た後、繊維状炭素ナノ構造体分散液に導電性繊維を混合することにより分散液を調製する方法について詳細に説明する。   Therefore, in the following, as an example of a method for preparing a dispersion in the dispersion preparation step, after obtaining a fibrous carbon nanostructure dispersion, by mixing conductive fibers into the fibrous carbon nanostructure dispersion A method for preparing the dispersion will be described in detail.

[粗分散液の調製]
繊維状炭素ナノ構造体と任意の添加剤とを含む粗分散液は、分散媒に対して繊維状炭素ナノ構造体および任意の添加剤を添加した後、任意にホモジナイザーなどの混合器を用いて混合することにより調製することができる。
[Preparation of coarse dispersion]
The coarse dispersion liquid containing the fibrous carbon nanostructure and the optional additive is added to the dispersion medium after adding the fibrous carbon nanostructure and the optional additive, and optionally using a mixer such as a homogenizer. It can be prepared by mixing.

[[分散剤]]
ここで、分散剤としては、繊維状炭素ナノ構造体を分散可能であり、後述する分散媒に溶解可能であれば、特に限定されないが、界面活性剤、合成高分子または天然高分子を用いることができる。
具体的には、界面活性剤としては、ドデシルスルホン酸ナトリウム、デオキシコール酸ナトリウム、コール酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムなどが挙げられる。
また、合成高分子としては、例えば、ポリエーテルジオール、ポリエステルジオール、ポリカーボネートジオール、ポリビニルアルコール、部分けん化ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、アセタール基変性ポリビニルアルコール、ブチラール基変性ポリビニルアルコール、シラノール基変性ポリビニルアルコール、エチレン−ビニルアルコール共重合体、エチレン−ビニルアルコール−酢酸ビニル共重合樹脂、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、アクリル系樹脂、エポキシ樹脂、変性エポキシ系樹脂、フェノキシ樹脂、変性フェノキシ系樹脂、フェノキシエーテル樹脂、フェノキシエステル樹脂、フッ素系樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、ポリアクリルアミド、ポリアクリル酸、ポリスチレンスルホン酸、ポリエチレングリコール、ポリビニルピロリドンなどが挙げられる。
更に、天然高分子としては、例えば、多糖類であるデンプン、プルラン、デキストラン、デキストリン、グアーガム、キサンタンガム、アミロース、アミロペクチン、アルギン酸、アラビアガム、カラギーナン、コンドロイチン硫酸、ヒアルロン酸、カードラン、キチン、キトサン、セルロース、並びに、その塩または誘導体が挙げられる。なお、「誘導体」とは、エステルやエーテルなどの従来公知の化合物を意味する。
これらの分散剤は、1種単独でまたは2種以上を混合して用いることができる。
[[Dispersant]]
Here, the dispersant is not particularly limited as long as it can disperse the fibrous carbon nanostructure and can be dissolved in the dispersion medium described later. However, a surfactant, a synthetic polymer, or a natural polymer is used. Can do.
Specifically, examples of the surfactant include sodium dodecyl sulfonate, sodium deoxycholate, sodium cholate, sodium dodecylbenzene sulfonate, and the like.
Examples of the synthetic polymer include polyether diol, polyester diol, polycarbonate diol, polyvinyl alcohol, partially saponified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, acetal group-modified polyvinyl alcohol, butyral group-modified polyvinyl alcohol, and silanol group-modified. Polyvinyl alcohol, ethylene-vinyl alcohol copolymer, ethylene-vinyl alcohol-vinyl acetate copolymer resin, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, acrylic resin, epoxy resin, modified epoxy resin, phenoxy resin, modified phenoxy system Resin, phenoxy ether resin, phenoxy ester resin, fluorine resin, melamine resin, alkyd resin, phenol resin, Polyacrylamide, polyacrylic acid, polystyrene sulfonic acid, polyethylene glycol, and polyvinylpyrrolidone.
Furthermore, examples of natural polymers include polysaccharides such as starch, pullulan, dextran, dextrin, guar gum, xanthan gum, amylose, amylopectin, alginic acid, gum arabic, carrageenan, chondroitin sulfate, hyaluronic acid, curdlan, chitin, chitosan, Examples thereof include cellulose and salts or derivatives thereof. The “derivative” means a conventionally known compound such as ester or ether.
These dispersants can be used singly or in combination of two or more.

[[分散媒]]
また、分散媒としては、特に限定されることなく、例えば、水、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコールなどのアルコール類、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類、N,N−ジメチルホルムアミド、N−メチルピロリドンなどのアミド系極性有機溶媒、トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類などが挙げられる。これらは1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
[[Dispersion medium]]
Further, the dispersion medium is not particularly limited, and examples thereof include water, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, heptanol, octanol, nonanol, Alcohols such as decanol and amyl alcohol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, esters such as ethyl acetate and butyl acetate, ethers such as diethyl ether, dioxane and tetrahydrofuran, N, N-dimethylformamide, N-methyl Examples include amide polar organic solvents such as pyrrolidone, and aromatic hydrocarbons such as toluene, xylene, chlorobenzene, orthodichlorobenzene, and paradichlorobenzene. These may be used alone or in combination of two or more.

[繊維状炭素ナノ構造体分散液の調製]
粗分散液に対して分散処理を施して繊維状炭素ナノ構造体分散液を調製する際の分散処理としては、特に限定されることなく、既知の分散処理を用いることができる。具体的には、分散処理としては、キャビテーション効果または解砕効果が得られる分散処理を用いることができる。なお、キャビテーション効果が得られる分散処理は、液体に高エネルギーを付与した際、液中に生じた真空の気泡が破裂することにより生じる衝撃波を利用した分散方法である。そして、キャビテーション効果が得られる分散処理の具体例としては、超音波ホモジナイザーによる分散処理、ジェットミルによる分散処理および高剪断撹拌装置による分散処理が挙げられる。また、解砕効果が得られる分散処理は、粗分散液にせん断力を与えて繊維状炭素ナノ構造体の凝集体を解砕・分散させ、さらに粗分散液に背圧を負荷することで、気泡の発生を抑制しつつ、繊維状炭素ナノ構造体を分散媒中に均一に分散させる分散方法である。そして、解砕効果が得られる分散処理は、市販の分散システム(例えば、製品名「BERYU SYSTEM PRO」(株式会社美粒製)など)を用いて行うことができる。
[Preparation of fibrous carbon nanostructure dispersion]
The dispersion treatment for preparing the fibrous carbon nanostructure dispersion by subjecting the coarse dispersion to a dispersion treatment is not particularly limited, and a known dispersion treatment can be used. Specifically, as the dispersion process, a dispersion process capable of obtaining a cavitation effect or a crushing effect can be used. In addition, the dispersion process which can obtain a cavitation effect is a dispersion method using a shock wave generated when a vacuum bubble generated in the liquid bursts when high energy is applied to the liquid. Specific examples of the dispersion treatment that can provide a cavitation effect include dispersion treatment using an ultrasonic homogenizer, dispersion treatment using a jet mill, and dispersion treatment using a high shear stirrer. In addition, the dispersion treatment that can obtain the crushing effect is to apply shear force to the coarse dispersion to crush and disperse the aggregates of the fibrous carbon nanostructures, and further to apply a back pressure to the coarse dispersion. This is a dispersion method in which fibrous carbon nanostructures are uniformly dispersed in a dispersion medium while suppressing the generation of bubbles. And the dispersion | distribution process from which a crushing effect is acquired can be performed using a commercially available dispersion | distribution system (For example, product name "BERYU SYSTEM PRO" (product made from a beautiful grain) etc.).

中でも、繊維状炭素ナノ構造体分散液を調製する際の分散処理としては、細管流路を備える分散処理装置を使用し、粗分散液を細管流路に圧送して粗分散液にせん断力を与えることで繊維状炭素ナノ構造体を分散させる分散処理が好ましい。粗分散液を細管流路に圧送して粗分散液にせん断力を与えることで繊維状炭素ナノ構造体を分散させれば、繊維状炭素ナノ構造体の損傷の発生を抑制しつつ、繊維状炭素ナノ構造体を良好に分散させることができる。   In particular, as a dispersion treatment when preparing a fibrous carbon nanostructure dispersion liquid, a dispersion treatment apparatus having a thin tube flow path is used, and the coarse dispersion liquid is pumped to the thin tube flow path to apply shear force to the coarse dispersion liquid. Dispersion treatment in which the fibrous carbon nanostructure is dispersed is preferable. If the fibrous carbon nanostructure is dispersed by pumping the coarse dispersion liquid into the capillary channel and applying shear force to the coarse dispersion liquid, the occurrence of damage to the fibrous carbon nanostructure is suppressed and the fibrous carbon nanostructure is suppressed. The carbon nanostructure can be well dispersed.

ここで、細管流路を備える分散処理装置としては、例えば、湿式ジェットミル(例えば、製品名「JN5」、「JN10」、「JN20」、「JN100」、「JN1000」(いずれも株式会社常光製)など)および上述した分散システム(株式会社美粒製、製品名「BERYU SYSTEM PRO」)などが挙げられる。   Here, as a dispersion processing apparatus provided with a thin tube flow path, for example, a wet jet mill (for example, product names “JN5”, “JN10”, “JN20”, “JN100”, “JN1000” (all manufactured by Joko Corporation) And the above-mentioned dispersion system (product name “BERYU SYSTEM PRO” manufactured by Mie Co., Ltd.) and the like.

そして、上記分散処理装置が備える細管流路は、単一の細管流路であってもよいし、下流側の任意の位置に合流部を有する複数の細管流路であってもよい。但し、粗分散液同士をより効果的に衝突させてせん断力を付与する観点からは、分散処理装置が備える細管流路は、下流側の任意の位置に合流部を有する複数の細管流路であることが好ましい。   And the single thin tube flow path with which the said dispersion processing apparatus is provided may be a single thin tube flow path, and may be a plurality of thin tube flow paths having a merging portion at an arbitrary position on the downstream side. However, from the viewpoint of imparting shear force by colliding the coarse dispersions more effectively, the capillary channels provided in the dispersion treatment apparatus are a plurality of capillary channels having a merging portion at an arbitrary position on the downstream side. Preferably there is.

更に、分散処理装置が備える細管流路の直径は、特に限定されないが、粗分散液が目詰まりすることなく粗分散液に高速流せん断を効果的に付与する観点から、50μm以上1000μm以下であることが好ましく、50μm以上600μm以下であることがより好ましい。   Further, the diameter of the narrow channel provided in the dispersion processing device is not particularly limited, but is 50 μm or more and 1000 μm or less from the viewpoint of effectively imparting high-speed shear to the coarse dispersion without clogging the coarse dispersion. It is preferably 50 μm or more and 600 μm or less.

また、細管流路に粗分散液を圧送する手段としては、特に限定されることなく、高圧ポンプやピストン構造を有するシリンダを用いることができる。   Further, the means for pumping the coarse dispersion liquid into the narrow channel is not particularly limited, and a high-pressure pump or a cylinder having a piston structure can be used.

そして、細管流路に粗分散液を圧送する際の圧力は、特に限定されることなく、60MPa以上200MPa以下とすることが好ましい。粗分散液を圧送する際の圧力を上記範囲内とすれば、繊維状炭素ナノ構造体の損傷の発生を十分に抑制しつつ、繊維状炭素ナノ構造体を良好に分散させることができる。   And the pressure at the time of pumping a rough dispersion liquid to a thin tube flow path is not specifically limited, It is preferable to set it as 60 Mpa or more and 200 Mpa or less. If the pressure at the time of pumping the coarse dispersion is within the above range, the fibrous carbon nanostructure can be satisfactorily dispersed while sufficiently suppressing the occurrence of damage to the fibrous carbon nanostructure.

また、細管流路を用いた分散処理の条件(圧力、処理回数など)は、得られる繊維状炭素ナノ構造体分散液中に1mm以上の凝集体が目視で確認されない条件とすることが好ましく、粒度分布計で測定した際のメジアン径(体積換算の平均粒子径)の値が60μm以下となるレベルで繊維状炭素ナノ構造体が分散する条件とすることがより好ましい。繊維状炭素ナノ構造体を良好に分散させれば、繊維状炭素ナノ構造体分散液を用いて形成した導電性不織布の導電性を更に向上させることができる。   Moreover, it is preferable that the conditions (pressure, the number of treatments, etc.) of the dispersion treatment using the narrow tube flow path are such that aggregates of 1 mm or more are not visually confirmed in the obtained fibrous carbon nanostructure dispersion liquid, More preferably, the condition is such that the fibrous carbon nanostructures are dispersed at a level where the median diameter (average particle diameter in terms of volume) when measured with a particle size distribution meter is 60 μm or less. If the fibrous carbon nanostructure is well dispersed, the conductivity of the conductive nonwoven fabric formed using the fibrous carbon nanostructure dispersion can be further improved.

[導電性繊維の混合(分散液の調製)]
繊維状炭素ナノ構造体分散液と導電性繊維との混合は、特に限定されることなく、例えばホモジナイザーなどの混合器を用いて行うことができる。
[Mixing of conductive fibers (preparation of dispersion)]
Mixing of the fibrous carbon nanostructure dispersion liquid and the conductive fiber is not particularly limited, and can be performed using, for example, a mixer such as a homogenizer.

<不織布形成工程>
不織布形成工程では、繊維状炭素ナノ構造体と、導電性繊維と、分散媒と、任意の添加剤とを含有する上記分散液から分散媒を除去して、導電性不織布を形成する。具体的には、不織布形成工程では、例えば多孔質基材を用いて分散液をろ過し、得られたろ過物を乾燥させることにより、導電性不織布を形成する。
なお、分散液をろ過して得られたろ過物は、乾燥させる前に、水やアルコールなどを用いて洗浄してもよい。
<Nonwoven fabric formation process>
In the nonwoven fabric forming step, the dispersion medium is removed from the dispersion containing the fibrous carbon nanostructure, the conductive fibers, the dispersion medium, and any additive to form a conductive nonwoven fabric. Specifically, in the non-woven fabric forming step, for example, a conductive non-woven fabric is formed by filtering the dispersion using a porous substrate and drying the obtained filtrate.
In addition, you may wash | clean the filtrate obtained by filtering a dispersion liquid using water, alcohol, etc., before making it dry.

ここで、多孔質基材としては、特に限定されることなく、ろ紙や、セルロース、ニトロセルロース、アルミナ等よりなる多孔質シートを挙げることができる。
また、ろ過方法としては、自然ろ過、減圧ろ過、加圧ろ過、遠心ろ過などの既知のろ過方法を用いることができる。
Here, the porous substrate is not particularly limited, and examples thereof include a filter sheet, and a porous sheet made of cellulose, nitrocellulose, alumina or the like.
Moreover, as a filtration method, known filtration methods, such as natural filtration, reduced pressure filtration, pressure filtration, and centrifugal filtration, can be used.

更に、ろ過物を乾燥する方法としては、公知の乾燥方法を採用できる。具体的には、乾燥方法としては、熱風乾燥法、真空乾燥法、熱ロール乾燥法、赤外線照射法等が挙げられる。乾燥温度は、特に限定されないが、通常、室温〜200℃であり、乾燥時間は、特に限定されないが、通常、0.1〜150分である。   Furthermore, as a method for drying the filtrate, a known drying method can be employed. Specifically, examples of the drying method include a hot air drying method, a vacuum drying method, a hot roll drying method, and an infrared irradiation method. Although a drying temperature is not specifically limited, Usually, it is room temperature-200 degreeC, and although drying time is not specifically limited, Usually, it is 0.1 to 150 minutes.

<導電性不織布の性状>
そして、上記不織布形成工程を経て得られた導電性不織布は、自立性に優れており、多孔質基材から剥離して自立膜として用いることができる。なお、導電性不織布は、厚さが10nm〜3μm、面積が1mm2〜100cm2のサイズにおいて支持体無しで不織布としての形状を保つことが好ましい。
<Properties of conductive nonwoven fabric>
And the conductive nonwoven fabric obtained through the said nonwoven fabric formation process is excellent in self-supporting property, can peel from a porous base material, and can be used as a self-supporting film | membrane. The conductive nonwoven has a thickness 10Nm~3myuemu, it is preferable to maintain the shape of the nonwoven fabric without a support in a size area of 1 mm 2 100 cm 2.

また、上記不織布形成工程を経て得られた導電性不織布は、ろ過の際に繊維状炭素ナノ構造体と導電性繊維とが絡み合うことで形成されており、通常、密度が1.0g/cm3以下、好ましくは0.5g/cm3以下、より好ましくは0.3g/cm3以下と軽量である。Moreover, the conductive nonwoven fabric obtained through the nonwoven fabric formation step is formed by entanglement of the fibrous carbon nanostructure and the conductive fiber during filtration, and the density is usually 1.0 g / cm 3. Hereinafter, the weight is preferably 0.5 g / cm 3 or less, more preferably 0.3 g / cm 3 or less.

以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
実施例および比較例において、導電性不織布の導電率は、以下の方法を使用して測定した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In the examples and comparative examples, the conductivity of the conductive nonwoven fabric was measured using the following method.

<導電率>
作製した導電性不織布から寸法10mm×10mmの正方形の試験片を4個切り出し、測定サンプルとした。
そして、低抵抗率計(三菱化学アナリテック社製、製品名「ロレスタ(登録商標)GPMCP−T610」)を用い、JIS K7194に準拠した方法で測定サンプルの導電率を測定した。具体的には、測定サンプルを絶縁ボードの上に固定し、測定サンプルの中心位置(縦5mm、横5mmの位置)にLSPプローブを押し当て、10Vの電圧をかけて各測定サンプルの導電率を測定した。そして、測定値の平均値を求めて導電性不織布の導電率とした。
<Conductivity>
Four square test pieces having a size of 10 mm × 10 mm were cut out from the produced conductive nonwoven fabric and used as measurement samples.
And the electrical conductivity of the measurement sample was measured by the method based on JISK7194 using the low resistivity meter (the Mitsubishi Chemical Analytech Co., Ltd. make, product name "Loresta (trademark) GPMCP-T610"). Specifically, the measurement sample is fixed on the insulating board, the LSP probe is pressed against the center position of the measurement sample (vertical 5 mm, horizontal 5 mm), and a voltage of 10 V is applied to determine the conductivity of each measurement sample. It was measured. And the average value of the measured value was calculated | required and it was set as the electrical conductivity of the conductive nonwoven fabric.

(実施例1−1)
<CNTを含む繊維状炭素ナノ構造体Aの調製>
スーパーグロース法(国際公開第2006/011655号参照)に準じてSGCNTを調製し、繊維状炭素ナノ構造体Aとした。
なお、透過型電子顕微鏡(日立ハイテクノロジーズ製、H−7650)を用いて測定した繊維状炭素ナノ構造体Aの平均直径は、3nmであった。また、比表面積計(ベックマンコールター製、SA−3100)を用いて測定した繊維状炭素ナノ構造体AのBET比表面積は800m2/gであった。
<導電性繊維の準備>
導電性繊維としてピッチ系炭素繊維(三菱樹脂株式会社製、ダイアリード(登録商標)K223HM)を準備した。
なお、走査型電子顕微鏡(日立ハイテクノロジーズ製、S−4300)を用いて測定したピッチ系炭素繊維の平均繊維径は、10μmであった。
<分散液の調製>
400mgの繊維状炭素ナノ構造体Aを2Lのメチルエチルケトン中に投入し、ホモジナイザーにより2分間撹拌して粗分散液を調製した。
次に、得られた粗分散液を、直径0.5mmの細管流路を備えた湿式ジェットミル(株式会社常光製、JN20)に100MPaの圧力で2サイクル通過させ、繊維状炭素ナノ構造体Aをメチルエチルケトン中に分散させて濃度0.20%の繊維状炭素ナノ構造体分散液Aを得た。なお、レーザー回折/散乱式粒子径分布測定装置(堀場製作所製、LA−960)にて繊維状炭素ナノ構造体分散液A中の繊維状炭素ナノ構造体Aのメジアン径(体積換算の平均粒子径)を測定したところ、メジアン径は60μmであった。
その後、得られた繊維状炭素ナノ構造体分散液Aに対し、導電性繊維としてのピッチ系炭素繊維を1600mg投入し、ホモジナイザーにより2分間撹拌して分散液を得た。
<導電性不織布の製造>
得られた分散液16gをキリヤマろ紙(No.5A、直径3cm)を用いて減圧ろ過し、ろ物を温度80℃の雰囲気下で60分間乾燥させてシート状の導電性不織布(密度0.23g/cm3)を得た。そして、室温まで冷却した後、導電性不織布をろ紙から剥がし、導電性不織布の導電率を測定した。結果を表1に示す。
(Example 1-1)
<Preparation of fibrous carbon nanostructure A containing CNT>
SGCNT was prepared according to the super growth method (see International Publication No. 2006/011655) to obtain a fibrous carbon nanostructure A.
The average diameter of the fibrous carbon nanostructure A measured with a transmission electron microscope (H-7650, manufactured by Hitachi High-Technologies Corporation) was 3 nm. Moreover, the BET specific surface area of the fibrous carbon nanostructure A measured using a specific surface area meter (SA-3100, manufactured by Beckman Coulter) was 800 m 2 / g.
<Preparation of conductive fiber>
Pitch-based carbon fiber (manufactured by Mitsubishi Plastics, DIALEAD (registered trademark) K223HM) was prepared as the conductive fiber.
In addition, the average fiber diameter of the pitch-type carbon fiber measured using the scanning electron microscope (Hitachi High-Technologies make, S-4300) was 10 micrometers.
<Preparation of dispersion>
400 mg of fibrous carbon nanostructure A was put into 2 L of methyl ethyl ketone and stirred for 2 minutes with a homogenizer to prepare a crude dispersion.
Next, the obtained coarse dispersion is passed through a wet jet mill (manufactured by Joko Co., Ltd., JN20) having a narrow tube flow path having a diameter of 0.5 mm for two cycles at a pressure of 100 MPa, so that the fibrous carbon nanostructure A Was dispersed in methyl ethyl ketone to obtain a fibrous carbon nanostructure dispersion liquid A having a concentration of 0.20%. In addition, the median diameter (average particle in terms of volume) of the fibrous carbon nanostructure A in the fibrous carbon nanostructure dispersion A using a laser diffraction / scattering particle size distribution measuring apparatus (LA-960, manufactured by Horiba, Ltd.) As a result, the median diameter was 60 μm.
Thereafter, 1600 mg of pitch-based carbon fibers as conductive fibers were added to the obtained fibrous carbon nanostructure dispersion liquid A, and stirred for 2 minutes with a homogenizer to obtain a dispersion liquid.
<Manufacture of conductive nonwoven fabric>
16 g of the obtained dispersion was filtered under reduced pressure using Kiriyama filter paper (No. 5A, diameter 3 cm), and the filtrate was dried in an atmosphere at a temperature of 80 ° C. for 60 minutes to give a sheet-like conductive nonwoven fabric (density 0.23 g). / Cm 3 ). And after cooling to room temperature, the electroconductive nonwoven fabric was peeled off from the filter paper, and the electrical conductivity of the electroconductive nonwoven fabric was measured. The results are shown in Table 1.

(実施例1−2〜1−6)
導電性繊維としてのピッチ系炭素繊維の配合量を、それぞれ40mg(実施例1−2)、100mg(実施例1−3)、200mg(実施例1−4)、800mg(実施例1−5)、3200mg(実施例1−6)に変更した以外は実施例1−1と同様にして、分散液および導電性不織布を製造した。そして、実施例1−1と同様にして評価を行った。結果を表1に示す。
(Examples 1-2 to 1-6)
The compounding amounts of pitch-based carbon fibers as conductive fibers are 40 mg (Example 1-2), 100 mg (Example 1-3), 200 mg (Example 1-4), and 800 mg (Example 1-5), respectively. A dispersion and a conductive nonwoven fabric were produced in the same manner as in Example 1-1 except that the amount was changed to 3200 mg (Example 1-6). And it evaluated similarly to Example 1-1. The results are shown in Table 1.

(比較例1−1)
ピッチ系炭素繊維を使用することなく、濃度0.20%の繊維状炭素ナノ構造体分散液Aのみを用いて導電性不織布を製造した。具体的には、16gの繊維状炭素ナノ構造体分散液Aをキリヤマろ紙(No.5A、直径3cm)を用いて減圧ろ過し、ろ物を温度80℃の雰囲気下で60分間乾燥させてシート状の導電性不織布を製造した。そして、実施例1−1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 1-1)
A conductive nonwoven fabric was produced using only the fibrous carbon nanostructure dispersion liquid A having a concentration of 0.20% without using pitch-based carbon fibers. Specifically, 16 g of fibrous carbon nanostructure dispersion liquid A was filtered under reduced pressure using Kiriyama filter paper (No. 5A, diameter 3 cm), and the filtrate was dried for 60 minutes in an atmosphere at a temperature of 80 ° C. A conductive nonwoven fabric was produced. And it evaluated similarly to Example 1-1. The results are shown in Table 1.

Figure 2016203746
Figure 2016203746

表1より、繊維状炭素ナノ構造体Aとピッチ系炭素繊維とを用いて形成した、実施例1−1〜1−6の導電性不織布は、繊維状炭素ナノ構造体Aのみを用いて形成した比較例1−1の導電性不織布よりも優れた導電性を発揮することが分かる。中でも、実施例1−1、1−4および1−5の導電性不織布は、特に優れた導電性を発揮することが分かる。   From Table 1, the conductive nonwoven fabrics of Examples 1-1 to 1-6 formed using fibrous carbon nanostructures A and pitch-based carbon fibers were formed using only fibrous carbon nanostructures A. It turns out that the electroconductivity superior to the electroconductive nonwoven fabric of the comparative example 1-1 which performed was demonstrated. Especially, it turns out that the electroconductive nonwoven fabric of Examples 1-1, 1-4, and 1-5 exhibits the especially outstanding electroconductivity.

(実施例2−1)
繊維状炭素ナノ構造体Aに替えて市販の多層CNT(クムホ製、製品名「K-NANO」)よりなる繊維状炭素ナノ構造体Bを使用した以外は実施例1−1と同様にして、濃度0.20%の繊維状炭素ナノ構造体分散液B、分散液および導電性不織布を製造した。そして、実施例1−1と同様にして評価を行った。結果を表2に示す。
なお、透過型電子顕微鏡(日立ハイテクノロジーズ製、H−7650)を用いて測定した繊維状炭素ナノ構造体Bの平均直径は、13nmであった。また、比表面積計(ベックマンコールター製、SA−3100)を用いて測定した繊維状炭素ナノ構造体BのBET比表面積は266m2/gであった。
(Example 2-1)
In the same manner as in Example 1-1, except that a fibrous carbon nanostructure B made of a commercially available multilayer CNT (product name “K-NANO”) was used instead of the fibrous carbon nanostructure A, A fibrous carbon nanostructure dispersion liquid B having a concentration of 0.20%, a dispersion liquid, and a conductive nonwoven fabric were produced. And it evaluated similarly to Example 1-1. The results are shown in Table 2.
The average diameter of the fibrous carbon nanostructure B measured using a transmission electron microscope (H-7650, manufactured by Hitachi High-Technologies Corporation) was 13 nm. Further, the BET specific surface area of the fibrous carbon nanostructure B measured using a specific surface area meter (SA-3100, manufactured by Beckman Coulter) was 266 m 2 / g.

(実施例2−2〜2−7)
導電性繊維としてのピッチ系炭素繊維の配合量を、それぞれ40mg(実施例2−2)、100mg(実施例2−3)、200mg(実施例2−4)、800mg(実施例2−5)、3200mg(実施例2−6)、6400mg(実施例2−7)に変更した以外は実施例2−1と同様にして、分散液および導電性不織布を製造した。そして、実施例2−1と同様にして評価を行った。結果を表2に示す。
(Examples 2-2 to 2-7)
The compounding amounts of pitch-based carbon fibers as conductive fibers are 40 mg (Example 2-2), 100 mg (Example 2-3), 200 mg (Example 2-4), and 800 mg (Example 2-5), respectively. A dispersion and a conductive nonwoven fabric were produced in the same manner as in Example 2-1, except that they were changed to 3200 mg (Example 2-6) and 6400 mg (Example 2-7). And it evaluated similarly to Example 2-1. The results are shown in Table 2.

(比較例2−1)
ピッチ系炭素繊維を使用することなく、濃度0.20%の繊維状炭素ナノ構造体分散液Bのみを用いて導電性不織布を製造した。具体的には、16gの繊維状炭素ナノ構造体分散液Bをキリヤマろ紙(No.5A、直径3cm)を用いて減圧ろ過し、ろ物を温度80℃の雰囲気下で60分間乾燥させてシート状の導電性不織布を製造した。そして、実施例2−1と同様にして評価を行った。結果を表2に示す。
なお、比較例2−1の導電性不織布は、乾燥時に収縮およびヒビ割れが発生しており、実施例2−1〜2−7の導電性不織布と比較して自立性に劣っていた。
(Comparative Example 2-1)
A conductive nonwoven fabric was produced using only the fibrous carbon nanostructure dispersion liquid B having a concentration of 0.20% without using pitch-based carbon fibers. Specifically, 16 g of fibrous carbon nanostructure dispersion B was filtered under reduced pressure using Kiriyama filter paper (No. 5A, diameter 3 cm), and the filtrate was dried for 60 minutes in an atmosphere at a temperature of 80 ° C. A conductive nonwoven fabric was produced. And it evaluated similarly to Example 2-1. The results are shown in Table 2.
In addition, the conductive nonwoven fabric of Comparative Example 2-1 contracted and cracked when dried, and was inferior in self-supporting property as compared with the conductive nonwoven fabrics of Examples 2-1 to 2-7.

Figure 2016203746
Figure 2016203746

表2より、繊維状炭素ナノ構造体Bとピッチ系炭素繊維とを用いて形成した、実施例2−1〜2−7の導電性不織布は、繊維状炭素ナノ構造体Bのみを用いて形成した比較例2−1の導電性不織布よりも優れた導電性を発揮することが分かる。中でも、実施例2−1および2−3〜2−7の導電性不織布は、特に優れた導電性を発揮することが分かる。   From Table 2, the conductive nonwoven fabrics of Examples 2-1 to 2-7 formed using fibrous carbon nanostructures B and pitch-based carbon fibers were formed using only fibrous carbon nanostructures B. It turns out that the electroconductivity superior to the electroconductive nonwoven fabric of the comparative example 2-1 which performed was demonstrated. Especially, it turns out that the conductive nonwoven fabrics of Examples 2-1 and 2-3 to 2-7 exhibit particularly excellent conductivity.

また、表1および表2より、BET比表面積の大きいSGCNTを使用した実施例1−1〜1−6の導電性不織布は、BET比表面積の小さい多層CNTを使用した実施例2−1〜2−7の導電性不織布よりも高い導電性を有していることが分かる。
一方、表1および表2より、BET比表面積の小さい多層CNTを使用した実施例2−1〜2−7の導電性不織布は、繊維状炭素ナノ構造体のみを用いて形成した比較例2−1の導電性不織布に対する導電率の向上幅が非常に大きいことが分かる。
Moreover, from Table 1 and Table 2, the conductive nonwoven fabrics of Examples 1-1 to 1-6 using SGCNT having a large BET specific surface area are Examples 2-1 to 2 using multilayer CNT having a small BET specific surface area. It turns out that it has conductivity higher than the conductive nonwoven fabric of -7.
On the other hand, from Table 1 and Table 2, the conductive nonwoven fabrics of Examples 2-1 to 2-7 using multi-walled CNTs having a small BET specific surface area were comparative examples 2 formed using only fibrous carbon nanostructures. It can be seen that the range of improvement in conductivity with respect to 1 conductive nonwoven fabric is very large.

本発明によれば、導電性に優れる導電性不織布を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electroconductive nonwoven fabric excellent in electroconductivity can be provided.

Claims (7)

繊維状炭素ナノ構造体と、導電性繊維とを含む、導電性不織布。   A conductive nonwoven fabric comprising a fibrous carbon nanostructure and conductive fibers. 前記繊維状炭素ナノ構造体100質量部当たり、前記導電性繊維を5質量部以上4000質量部以下の割合で含む、請求項1に記載の導電性不織布。   The conductive nonwoven fabric according to claim 1, wherein the conductive fiber is contained in a proportion of 5 parts by mass or more and 4000 parts by mass or less per 100 parts by mass of the fibrous carbon nanostructure. 前記繊維状炭素ナノ構造体のBET比表面積が600m2/g以下である、請求項1または2に記載の導電性不織布。The conductive nonwoven fabric according to claim 1 or 2, wherein the fibrous carbon nanostructure has a BET specific surface area of 600 m 2 / g or less. 前記繊維状炭素ナノ構造体がカーボンナノチューブを含む、請求項1〜3の何れかに記載の導電性不織布。   The electrically conductive nonwoven fabric in any one of Claims 1-3 in which the said fibrous carbon nanostructure contains a carbon nanotube. 前記導電性繊維が炭素繊維を含む、請求項1〜4の何れかに記載の導電性不織布。   The electroconductive nonwoven fabric in any one of Claims 1-4 in which the said electroconductive fiber contains carbon fiber. 請求項1〜5の何れかに記載の導電性不織布の製造方法であって、
繊維状炭素ナノ構造体と、導電性繊維と、分散媒とを含む分散液から前記分散媒を除去して導電性不織布を形成する工程を含む、導電性不織布の製造方法。
A method for producing a conductive nonwoven fabric according to any one of claims 1 to 5,
The manufacturing method of an electroconductive nonwoven fabric including the process of removing the said dispersion medium from the dispersion liquid containing a fibrous carbon nanostructure, an electroconductive fiber, and a dispersion medium, and forming an electroconductive nonwoven fabric.
前記分散媒中に前記繊維状炭素ナノ構造体を添加してなる粗分散液を60MPa以上200MPa以下の圧力で細管流路へと圧送し、前記粗分散液にせん断力を与えて平均粒子径が60μm以下の繊維状炭素ナノ構造体分散液を得た後、前記繊維状炭素ナノ構造体分散液に前記導電性繊維を混合して前記分散液を調製する工程を更に含む、請求項6に記載の導電性不織布の製造方法。   A coarse dispersion obtained by adding the fibrous carbon nanostructure to the dispersion medium is pumped to a capillary channel at a pressure of 60 MPa or more and 200 MPa or less, and a shear force is applied to the coarse dispersion to obtain an average particle size. The method further comprises a step of preparing the dispersion by mixing the conductive fiber with the fibrous carbon nanostructure dispersion after obtaining a dispersion of the fibrous carbon nanostructure having a thickness of 60 μm or less. A method for producing a conductive nonwoven fabric.
JP2017524598A 2015-06-19 2016-06-10 Conductive nonwoven fabric and method for producing the same Pending JPWO2016203746A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015124038 2015-06-19
JP2015124038 2015-06-19
PCT/JP2016/002819 WO2016203746A1 (en) 2015-06-19 2016-06-10 Electroconductive nonwoven fabric and process for producing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021028918A Division JP7218770B2 (en) 2015-06-19 2021-02-25 Conductive nonwoven fabric and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPWO2016203746A1 true JPWO2016203746A1 (en) 2018-04-05

Family

ID=57545555

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017524598A Pending JPWO2016203746A1 (en) 2015-06-19 2016-06-10 Conductive nonwoven fabric and method for producing the same
JP2021028918A Active JP7218770B2 (en) 2015-06-19 2021-02-25 Conductive nonwoven fabric and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021028918A Active JP7218770B2 (en) 2015-06-19 2021-02-25 Conductive nonwoven fabric and manufacturing method thereof

Country Status (2)

Country Link
JP (2) JPWO2016203746A1 (en)
WO (1) WO2016203746A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157283A (en) * 2018-03-07 2019-09-19 日本ゼオン株式会社 Non-woven fabric and manufacturing method thereof
KR102555710B1 (en) * 2018-12-31 2023-07-14 주식회사 성창오토텍 Wet electrostatic nonwoven
JPWO2022118562A1 (en) 2020-12-04 2022-06-09
CN115354522B (en) * 2022-08-19 2024-01-19 中国科学院金属研究所 Preparation method of high-conductivity carbon nanotube fiber non-woven fabric

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103403A (en) * 2002-09-10 2004-04-02 Noritake Co Ltd Porous carbon sheet material and its manufacturing method
JP2010037660A (en) * 2006-11-30 2010-02-18 Hokkaido Univ Method for production of paper containing carbon nanotube
JP2010105909A (en) * 2008-09-30 2010-05-13 Nippon Chemicon Corp High-density carbon nanotube assembly and method for producing the same
JP2011241501A (en) * 2010-05-18 2011-12-01 Sumitomo Precision Prod Co Ltd Method of manufacturing oriented carbon fiber sheet
WO2015015758A1 (en) * 2013-07-31 2015-02-05 日本ゼオン株式会社 Method for producing carbon nanotube dispersion, method for producing composite material composition, method for producing composite material, composite material, and composite-material molded product

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694909B2 (en) 2005-07-19 2011-06-08 帝人テクノプロダクツ株式会社 Heat-resistant conductive paper and method for producing the same
CN100554577C (en) 2006-11-14 2009-10-28 东华大学 The preparation of carbon nano tube/acrylic carbon fiber composite carbon fiber paper and purposes
KR20100080803A (en) 2007-10-23 2010-07-12 도쿠슈 페이퍼 매뉴팩츄어링 가부시키가이샤 Sheet-like article and method for producing the same
JP2009132574A (en) 2007-11-30 2009-06-18 Ching-Ling Pan Carbon nanocrystal material and method for manufacturing hot plate using the same
US20110111279A1 (en) 2009-11-09 2011-05-12 Florida State University Research Foundation Inc. Binder-free nanocomposite material and method of manufacture
JP5753469B2 (en) 2011-10-03 2015-07-22 東邦テナックス株式会社 Conductive sheet and manufacturing method thereof
JP6364764B2 (en) 2013-12-24 2018-08-01 日本ケミコン株式会社 Production method of carbon composite sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103403A (en) * 2002-09-10 2004-04-02 Noritake Co Ltd Porous carbon sheet material and its manufacturing method
JP2010037660A (en) * 2006-11-30 2010-02-18 Hokkaido Univ Method for production of paper containing carbon nanotube
JP2010105909A (en) * 2008-09-30 2010-05-13 Nippon Chemicon Corp High-density carbon nanotube assembly and method for producing the same
JP2011241501A (en) * 2010-05-18 2011-12-01 Sumitomo Precision Prod Co Ltd Method of manufacturing oriented carbon fiber sheet
WO2015015758A1 (en) * 2013-07-31 2015-02-05 日本ゼオン株式会社 Method for producing carbon nanotube dispersion, method for producing composite material composition, method for producing composite material, composite material, and composite-material molded product

Also Published As

Publication number Publication date
JP2021088804A (en) 2021-06-10
WO2016203746A1 (en) 2016-12-22
JP7218770B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
JP7218770B2 (en) Conductive nonwoven fabric and manufacturing method thereof
JP7256502B2 (en) Sheet and its manufacturing method
US20220185669A1 (en) Carbon sheet
US10392254B2 (en) Carbon film and method for producing the same
WO2020067203A1 (en) Electromagnetic wave absorbing sheet and method for manufacturing same
JP6648423B2 (en) Nonwoven fabric and method for producing the same
JP2016190772A (en) Carbon film, and method for producing the same
JP2016183395A (en) Metal matrix composite and production method thereof
JP6455336B2 (en) Thermal conductive sheet and manufacturing method thereof
KR102543599B1 (en) Carbon film and manufacturing method thereof, and fibrous carbon nanostructure dispersion liquid and manufacturing method thereof
JP6664200B2 (en) Manufacturing method of composite material
JP7277338B2 (en) Electromagnetic wave shield sheet manufacturing method and electromagnetic wave shield sheet
WO2017038413A1 (en) Method for manufacturing composite material, and composite material
KR20220131972A (en) Electromagnetic wave shielding sheet manufacturing method and electromagnetic wave shielding sheet
JP2017119586A (en) Fibrous carbon nanostructure dispersion and production method of the same, production method of carbon film, as well as carbon film
JPWO2015045417A1 (en) Method for producing carbon nanotube dispersion
JP7264370B2 (en) Composite manufacturing method
KR20240049650A (en) Carbon sheet
Wang et al. Surface decoration and dispersibility of carbon nanofibers in aqueous surfactant solution
JPWO2016143299A1 (en) Method for producing composite material and composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201201