JP2022079977A - Abrasive grain dispersion liquid - Google Patents

Abrasive grain dispersion liquid Download PDF

Info

Publication number
JP2022079977A
JP2022079977A JP2020190889A JP2020190889A JP2022079977A JP 2022079977 A JP2022079977 A JP 2022079977A JP 2020190889 A JP2020190889 A JP 2020190889A JP 2020190889 A JP2020190889 A JP 2020190889A JP 2022079977 A JP2022079977 A JP 2022079977A
Authority
JP
Japan
Prior art keywords
silica
particles
polishing
based particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020190889A
Other languages
Japanese (ja)
Inventor
智顕 村上
Tomoaki Murakami
達也 向井
Tatsuya Mukai
和洋 中山
Kazuhiro Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2020190889A priority Critical patent/JP2022079977A/en
Publication of JP2022079977A publication Critical patent/JP2022079977A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Silicon Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

To provide an abrasive grain dispersion liquid capable of polishing at high speed and achieving high face accuracy and by which settleability of abrasive grains, redispersibility of the precipitated grains or residue of the grains is improved.SOLUTION: An abrasive grain dispersion liquid comprises dispersing a dispersant comprising polycarboxylate in a silica-based grain dispersion liquid including the silica-based grain group consisting of irregular-shape and non-irregular shape silica-based grains. Besides, the dispersion liquid satisfies the following conditions: the weight average grain size, average grain size in specific surface area conversion and irregular shape degree of the silica-based grain group are in a specific range, respectively: the volume-based grain size distribution of the silica-based grain group becomes multi-peak in waveform separation; the weight average molecular weight of polycarboxylate is in a specific range; the number of carbon atoms directly bonded to carbonyl carbon is in the specific range; and the mass ratio of polycarboxylate to the silica-based grain group is in a specific range.SELECTED DRAWING: None

Description

本発明は、シリカ系粒子分散液等に関する。詳細には、研磨材として好ましい粒子径、粒子径分布、異形度等を有するシリカ系粒子群を含み、例えば、磁気ディスク製造においてNiPメッキされた被研磨基板およびシリカ系基板を化学機械的研磨(ケミカルメカニカルポリッシング、CMP)により平坦化するための研磨用砥粒分散液として好適なシリカ系粒子分散液等に関する。 The present invention relates to a silica-based particle dispersion liquid and the like. Specifically, a silica-based particle group having a preferable particle size, particle size distribution, irregularity, etc. as an abrasive is included, and for example, a NiP-plated substrate to be polished and a silica-based substrate are chemically mechanically polished (for example, in the production of a magnetic disk). The present invention relates to a silica-based particle dispersion liquid suitable as an abrasive grain dispersion liquid for polishing for flattening by chemical mechanical polishing (CMP).

磁気ディスクや半導体などの製造プロセスでは、Siウエハ、ガラスHD、アルミHDなどの基板を平坦化させるために、化学機械的研磨(CMP)が適用されている。この化学機械的研磨では、シリカやセリアなどの砥粒を水に分散させ、さらに研磨性能を制御するためにケミカル成分を添加した、いわゆる研磨スラリーが用いられている。特に、砥粒は研磨性能に大きな影響を及ぼすことが知られており、砥粒に求められる性能としては、高い研磨速度を得ることができ且つ研磨面にスクラッチ(線条痕)などのディフェクト(欠陥)が生じない事が挙げられる。 In the manufacturing process of magnetic disks, semiconductors, etc., chemical mechanical polishing (CMP) is applied to flatten substrates such as Si wafers, glass HD, and aluminum HD. In this chemical mechanical polishing, a so-called polishing slurry in which abrasive grains such as silica and ceria are dispersed in water and a chemical component is added to control the polishing performance is used. In particular, it is known that the abrasive grains have a great influence on the polishing performance, and as the performance required for the abrasive grains, a high polishing speed can be obtained and the polished surface has defects such as scratches (streak marks). Defects) do not occur.

高い研磨速度を得る方法としては、大きな粒子径の砥粒を使用する事が一般的である。しかし、砥粒の粒子径が大きくなり過ぎると、質量当たりの砥粒個数が減少するため逆に研磨速度が低下し、さらにスクラッチも増加する傾向にある。そこで、スクラッチを増加させることなく高い研磨速度を得るために、砥粒を非球形とする、つまり砥粒を異形形状の粒子(異形粒子)とすることが有効である事が知られている。 As a method of obtaining a high polishing rate, it is common to use abrasive grains having a large particle size. However, if the particle size of the abrasive grains becomes too large, the number of abrasive grains per mass decreases, so that the polishing speed decreases and the scratch tends to increase. Therefore, in order to obtain a high polishing rate without increasing scratches, it is known that it is effective to make the abrasive grains non-spherical, that is, to make the abrasive grains irregularly shaped particles (odd particles).

研磨材に適した粒子径を有する異形シリカ粒子を含むシリカ粒子群を調製する方法としては、水ガラスを原料として核生成時にシリカ粒子を凝集させる方法や、この方法などから調製した異形のシード粒子に珪酸液を添加して粒子径を大きく成長させる方法(特許文献1)が従来から知られている。 As a method for preparing a silica particle group containing irregularly shaped silica particles having a particle size suitable for an abrasive material, a method of aggregating silica particles at the time of nucleation using water glass as a raw material, or a method of aggregating silica particles at the time of nucleation, or an irregularly shaped seed particle prepared by this method or the like. A method of adding a silicic acid solution to a large particle size to grow a large particle size (Patent Document 1) has been conventionally known.

また、異形シリカゾルは粒子径が大きい程、静置した場合の粒子沈降が生じ易く、例えば、異形シリカゾルの保存容器底部には、硬質化した沈降物が溜まることが知られている。この様な粒子沈降が生じた場合、再分散させるために長時間の撹拌が必要となるので、特に比較的大きな異形シリカゾルにおいては、実用的な使用を妨げる要因となっていた。粒子沈降の抑止の手段として、各種分散剤の使用が知られており、例えば、ビニルアルコール重合体及びその誘導体、ベタイン、ラウリルベタイン、ラウリルジメチルアミンオキサイド等(特許文献2)が従来から知られている。 Further, it is known that the larger the particle size of the deformed silica sol, the more likely it is that the particles settle when left to stand. For example, it is known that the hardened settling accumulates at the bottom of the storage container of the deformed silica sol. When such particle sedimentation occurs, long-term stirring is required for redispersion, which has been a factor that hinders practical use, especially in a relatively large variant silica sol. The use of various dispersants is known as a means for suppressing particle precipitation, and for example, vinyl alcohol polymers and derivatives thereof, betaine, laurylbetaine, lauryldimethylamine oxide and the like (Patent Document 2) have been conventionally known. There is.

特許第5,127,452号公報Japanese Patent No. 5,127,452 特許第5,862,720号公報Japanese Patent No. 5,862,720

異形粒子においては、異形度(重量平均粒子径と比表面積換算粒子径との比)も研磨性能に大きく影響を与える。具体的には異形度が大きな粒子は研磨速度が高い傾向にある。一方で、異形度が小さい粒子は、真球状あるいは楕円状に近い粒子であるため、研磨速度が低くなる傾向にある。しかし、異形粒子はその形状が非球形であることから、通常は、球形または略球形の粒子(非異形粒子)と比較するとスクラッチが発生しやすい傾向にあり、特に、異形度が高い場合にその傾向が顕著となる。 For irregularly shaped particles, the degree of irregularity (ratio of weight average particle diameter to specific surface area equivalent particle diameter) also greatly affects the polishing performance. Specifically, particles with a large degree of deformation tend to have a high polishing rate. On the other hand, particles having a small degree of deformation tend to have a low polishing rate because they are spherical or nearly elliptical particles. However, since the irregularly shaped particles are non-spherical in shape, they are usually more prone to scratches than spherical or substantially spherical particles (non-irregular particles), especially when the degree of irregularity is high. The tendency becomes remarkable.

また、一般に、研磨砥粒の粒子径と、粒子径分布が研磨性能に大きく影響することが知られており、粒子径が比較的大きな砥粒を研磨用途に用いた場合、比較的高い研磨速度を示すものの、研磨後の研磨基板の面精度(表面粗さ、うねり、スクラッチ等)は悪化する傾向にある。一方で、粒子径が比較的小さな砥粒を研磨用途に用いた場合、基板表面を平滑に仕上げることができ、スクラッチも生じ難いが、研磨速度は比較的遅くなる。これは球形粒子に限らず、異形粒子の場合も同様に見られる傾向である。
異形粒子の粒子径分布は多様であるが、通常、粒子径が比較的大きな粒子を砥粒として用いた場合、研磨速度が比較的高くなるので、より高い研磨速度が必要とされる場合は、できるだけ平均粒子径が大きい異形粒子が用いられる。しかし、平均粒子径が比較的大きな異形粒子の場合、粒子径分布の裾が大粒子径側に大きく広がる傾向にあり、平均粒子径に比して粗大な粒子を微量ながら含むことが多い。そして、このような粗大な粒子に起因して、研磨後の基板にスクラッチが生じたり、基板の表面粗さやうねりが悪化したりする傾向にある。そのため、高い研磨速度が必要とされる研磨用途に使用する砥粒として、平均粒子径が比較的大きく、且つ粗粒や過剰な大粒子(これらは総称して「粗大粒子」と呼ばれる)が極めて少ない異形粒子が望まれる。
Further, it is generally known that the particle size of the abrasive grains and the particle size distribution greatly affect the polishing performance, and when the abrasive grains having a relatively large particle size are used for polishing, the polishing speed is relatively high. However, the surface accuracy (surface roughness, waviness, scratches, etc.) of the polished substrate after polishing tends to deteriorate. On the other hand, when abrasive grains having a relatively small particle size are used for polishing, the surface of the substrate can be finished smoothly and scratches are unlikely to occur, but the polishing speed is relatively slow. This tends to be seen not only in spherical particles but also in irregular particles.
The particle size distribution of the irregularly shaped particles is diverse, but usually, when particles with a relatively large particle size are used as abrasive grains, the polishing speed is relatively high, so if a higher polishing speed is required, Variant particles with as large an average particle diameter as possible are used. However, in the case of irregularly shaped particles having a relatively large average particle size, the tail of the particle size distribution tends to spread widely toward the large particle size side, and often contains a small amount of particles coarser than the average particle size. Then, due to such coarse particles, scratches are generated on the polished substrate, and the surface roughness and waviness of the substrate tend to be deteriorated. Therefore, as abrasive particles used for polishing applications that require a high polishing speed, coarse particles and excessive large particles (these are collectively referred to as "coarse particles") having a relatively large average particle diameter are extremely large. A small number of irregularly shaped particles are desired.

さらに、粒子径が比較的小さい粒子を砥粒として用いた場合は、球状粒子又は異形粒子を問わず、砥粒1個の研磨量が小さいことから研磨速度が低くなる傾向にある。また、粒子径が比較的小さい粒子からなる砥粒は、研磨後に砥粒が基板上に残留し易い(これは「砥粒残り」と呼ばれる)。この砥粒残りは、研磨後の洗浄工程でも除去し難い傾向にある。この傾向は平均粒子径が比較的大きな異形粒子からなる砥粒においても同様に見られるものであり、粒子径分布の裾が小粒子径側に広がったような分布の異形粒子からなる砥粒は、砥粒残りが発生し易いといえる。
したがって、高い研磨速度と高い面精度を両立する好適な化学機械的研磨を実現するために、比較的大きな異形粒子を含む砥粒であって、質量当たりの有効な砥粒個数が多く、研磨性能を低下させるような粗大粒子をできるだけ含まず、更に砥粒残りの原因となるような比較的小さい粒子をできるだけ含まない砥粒が望まれる。
Further, when particles having a relatively small particle diameter are used as the abrasive grains, the polishing rate tends to be low because the polishing amount of one abrasive grain is small regardless of whether it is spherical particles or irregularly shaped particles. Further, in the case of abrasive grains composed of particles having a relatively small particle size, the abrasive grains tend to remain on the substrate after polishing (this is called "abrasive grain residue"). This abrasive grain residue tends to be difficult to remove even in the cleaning step after polishing. This tendency is also seen in the abrasive grains made of deformed particles having a relatively large average particle size, and the abrasive grains made of deformed particles having a distribution in which the tail of the particle size distribution spreads toward the small particle size It can be said that abrasive grain residue is likely to occur.
Therefore, in order to realize suitable chemical mechanical polishing that achieves both high polishing speed and high surface accuracy, the abrasive grains contain relatively large irregularly shaped particles, and the number of effective abrasive grains per mass is large, and the polishing performance is high. It is desired that the abrasive grains contain as little coarse particles as possible, which may reduce the amount of abrasive grains, and also contain as little as possible relatively small particles that cause residual abrasive grains.

しかしながら、水ガラスを原料とし、シリカ粒子を凝集させることにより、粒子成長のための核粒子を生成させる工程を含む異形シリカ粒子の製造方法では、比表面積換算平均粒子径が100nm以上の異形シリカ粒子を得ることは困難であった。さらに、この製造方法では、核生成時のシリカ粒子凝集工程において、一部の核粒子が暴走反応を生じ、粗大な凝集体を生じることがあり、この様な粗大な凝集体がスクラッチ発生の原因となることがあった。また、この製造方法で得られるような比表面積換算平均粒子径100nm以下の異形シリカ粒子をシード粒子として用い、このシード粒子に珪酸液を添加して粒子径を大きく成長させようとすると、シード粒子は球状または略球状に成長するため、異形のシード粒子を異形のまま成長させて比較的大きな異形シリカ粒子を得ることは困難であった。 However, in the method for producing deformed silica particles including the step of generating nuclear particles for particle growth by using water glass as a raw material and aggregating the silica particles, the deformed silica particles having an average particle diameter of 100 nm or more in terms of specific surface area are used. Was difficult to obtain. Further, in this production method, in the silica particle aggregation step at the time of nucleation, some nucleus particles may cause a runaway reaction to generate coarse aggregates, and such coarse aggregates may cause scratches. It sometimes became. Further, when irregular silica particles having an average particle diameter of 100 nm or less in terms of specific surface area as obtained by this production method are used as seed particles and a silicic acid solution is added to the seed particles to increase the particle size, the seed particles are grown. Since it grows spherically or substantially spherically, it is difficult to grow irregularly shaped seed particles in a deformed state to obtain relatively large irregularly shaped silica particles.

さらに、本発明者らは、異形シリカ粒子を含むシリカ粒子群を調製する別の方法として、湿式シリカを粉砕することにより異形シリカ粒子を得る方法を検討したところ、異形シリカ粒子は得られたものの、ゲル構造の湿式シリカは、粉砕あるいは解砕によって粒子径や粒度分布制御を行うにはその粒子強度が弱く、また得られた異形シリカ粒子も同じく粒子強度が弱いため、この異形シリカ粒子を含むシリカ粒子群を砥粒として使用した場合、必要な研磨速度を得ることができなかった。 Furthermore, the present inventors investigated a method for obtaining deformed silica particles by pulverizing wet silica as another method for preparing a group of silica particles containing deformed silica particles, and although the deformed silica particles were obtained. Wet silica with a gel structure contains these deformed silica particles because its particle strength is weak for controlling the particle size and particle size distribution by crushing or crushing, and the obtained deformed silica particles also have weak particle strength. When the silica particle group was used as the abrasive particles, the required polishing rate could not be obtained.

本発明は、研磨用途に適用した場合、例えば、シリカ系基板あるいはNiPメッキされた被研磨基板等に対して、実用可能な研磨速度及び面精度を達成することが可能なシリカ系粒子群(比較的大きな異形粒子を含む砥粒であって、特定の粒子径分布を示す、異形シリカ系粒子を含むシリカ系粒子群)と、特定の分散剤を含む研磨用砥粒分散液を提供することを目的とする。
このような本発明の研磨用砥粒分散液は、重量換算粒子径が最大で600nmのような比較的大きな異形シリカ系粒子からなる砥粒を含むにもかかわらず、砥粒の沈降抑制性能に優れ(砥粒の沈降率が低い)、研磨用砥粒分散液のうち、沈降し容易に分散しない成分の割合(残存率)が低く、それでいて研磨用砥粒分散液の粘度は、その濾過性やハンドリングのし易さに影響しない程度であり、加えて砥粒の再分散率、研磨速度及び面精度(例えば、研磨基板上でのうねりの発生の抑制)は実用的な水準にある。
また、本発明の研磨用砥粒分散液は粘度が低いため、研磨処理中あるいは濾過中での泡の発生は認められず、研磨用砥粒分散液のハンドリングし易さは低下することなく、良好な状態が維持される。
When applied to polishing applications, the present invention is a group of silica-based particles (comparative) capable of achieving practical polishing speed and surface accuracy with respect to, for example, a silica-based substrate or a NiP-plated substrate to be polished. To provide an abrasive grain dispersion liquid containing a specific dispersant and a silica-based particle group containing atypical silica-based particles, which is an abrasive grain containing a large irregularly shaped particle and exhibits a specific particle size distribution. The purpose.
Although the abrasive grain dispersion liquid for polishing of the present invention contains abrasive grains composed of relatively large irregularly shaped silica-based particles having a maximum weight-equivalent particle size of 600 nm, it has an ability to suppress sedimentation of the abrasive grains. Excellent (low sedimentation rate of abrasive grains), low proportion (residual rate) of components that settle and do not easily disperse in the abrasive grain dispersion liquid for polishing, yet the viscosity of the abrasive grain dispersion liquid for polishing is its filterability. In addition, the redispersion rate of the abrasive grains, the polishing speed, and the surface accuracy (for example, suppressing the generation of waviness on the polished substrate) are at a practical level.
Further, since the polishing abrasive grain dispersion liquid of the present invention has a low viscosity, no bubbles are observed during the polishing treatment or filtration, and the ease of handling of the polishing abrasive grain dispersion liquid does not decrease. Good condition is maintained.

本発明者は上記課題を解決するため、高異形シリカ系ゲルからなる粒子を用い、珪酸液を加えて、加温し、該シード粒子を成長させる方法を検討した。
この高異形シリカ系ゲルからなる粒子は、原料として比表面積が比較的大きく(典型的には100m2/g以上)、一次粒子径が比較的小さな(典型的には27nm以下)シリカ系ゲル粒子を用い、それをアルカリ性下で湿式解砕して得ることができる。
この原料シリカ系ゲル粒子は、前記のとおり一次粒子径が比較的小さく、一次粒子径がより大きいシリカゲル粒子に比べて、粒子強度は強く、難解砕である。しかし、ビーズミルによって粗大粒子を優先的に解砕することにより、粗大粒子を殆ど含まない高異形シリカ系ゲルからなる粒子を得ることができる。
In order to solve the above problems, the present inventor has investigated a method for growing seed particles by using particles made of a highly deformed silica-based gel, adding a silicic acid solution, and heating the particles.
The particles made of this highly deformed silica-based gel have a relatively large specific surface area (typically 100 m 2 / g or more) and a relatively small primary particle diameter (typically 27 nm or less) as a raw material. Can be obtained by wet crushing it under alkaline conditions.
As described above, the raw material silica-based gel particles have a relatively small primary particle diameter and have a stronger particle strength than silica gel particles having a larger primary particle diameter, and are difficult to crush. However, by preferentially crushing the coarse particles with a bead mill, particles made of a highly deformed silica-based gel containing almost no coarse particles can be obtained.

このような高異形シリカ系ゲルからなる粒子を、より小さなサイズに解砕し、シード粒子として用い、珪酸液の共存下で、加温してシード粒子を成長させることにより、珪酸はシード粒子の一次粒子間の細孔(一次粒子間の凹部)から優先的に沈着する。ここでシード粒子の一次粒子はサイズが小さいため、細孔を珪酸で完全に埋めることができる。このため、粒子強度が強く、かつ高い異形度を保ったまま粒子成長し、異形シリカ系粒子を得ることができたものと推察される。
前記異形シリカ系粒子を含むシリカ系粒子群を砥粒として使用することで、研磨速度が比較的高く、且つ研磨面を高面精度(例えば、うねりが小さい研磨面が得られること)とすることができることを見出した。
The particles made of such a highly deformed silica-based gel are crushed to a smaller size and used as seed particles, and the seed particles are heated in the coexistence of a silicic acid solution to grow the seed particles. It is preferentially deposited from the pores between the primary particles (recesses between the primary particles). Here, since the primary particles of the seed particles are small in size, the pores can be completely filled with silicic acid. Therefore, it is presumed that the particles grew while maintaining a high particle strength and a high degree of deformation, and the deformed silica-based particles could be obtained.
By using the silica-based particle group containing the irregularly shaped silica-based particles as abrasive grains, the polishing speed is relatively high and the polished surface has high surface accuracy (for example, a polished surface with small waviness can be obtained). I found that I could do it.

前記知見に基づき、本発明者は、研磨材として好適な粒子径、粒子径分布、異形度および粒子強度を有する異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群と特定の分散剤とを含む研磨用砥粒分散液である本発明を完成させた。 Based on the above findings, the present inventor has a silica-based particle group consisting of deformed silica-based particles and non-deformed silica-based particles having a particle size, particle size distribution, irregularity and particle strength suitable as an abrasive, and a specific dispersant. The present invention, which is an abrasive grain dispersion liquid for polishing containing and, has been completed.

本発明は以下の(1)~(8)である。
(1)異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を含むシリカ系粒子分散液に、ポリカルボン酸塩からなる分散剤が分散してなり、下記[1]~[5]を満たす研磨用砥粒分散液。
[1]前記シリカ系粒子群の重量平均粒子径(D1)が50~600nmであり、比表面積換算平均粒子径(D2)が15~300nmであること。
[2]前記シリカ系粒子群の重量平均粒子径(D1)と比表面積換算粒子径(D2)との比で表される異形度D(D=D1/D2)が1.1~10の範囲にあること。
[3]前記シリカ系粒子群の体積基準粒子径分布を波形分離すると、分離ピークが3つ以上検出される多峰分布となること。
[4]前記ポリカルボン酸塩は、重量平均分子量が20,000~400,000の範囲にあり、カルボニル炭素に直接結合する炭素原子の個数をm、カルボニル炭素に直接結合しない炭素原子の個数をnとしたとき、m/(m+n)×100の値が40~50%の範囲にあること。
[5]前記シリカ系粒子群と、前記ポリカルボン酸塩の質量比が100:0.1~100:10の範囲にあること。
(2)前記分散剤がポリアクリル酸塩からなることを特徴とする、上記(1)に記載の研磨用砥粒分散液。
(3)前記シリカ系粒子群の体積基準粒子径分布における歪度が-20~20の範囲にあることを特徴とする、上記(1)または(2)に記載の研磨用砥粒分散液。
(4)前記シリカ系粒子群の体積基準粒子径分布を波形分離した結果得られた分離ピークのうち、最大粒子成分の体積割合が75%以下であることを特徴とする、上記(1)~(3)のいずれかに記載の研磨用砥粒分散液。
(5)前記シリカ系粒子群のSEM画像解析により得られる個数基準粒子径分布において、小粒子側成分のアスペクト比が1.05~5.0の範囲にあることを特徴とする、上記(1)~(4)のいずれかに記載の研磨用砥粒分散液。
(6)前記シリカ系粒子群の体積基準粒子径分布の粒子径の変動係数が30%以上であることを特徴とする、上記(1)~(5)の何れかに記載の研磨用砥粒分散液。
(7)前記シリカ系粒子群における、画像解析法による平均面積(S1)に対する画像解析法による平均外周長と等価な円の面積(S2)の比であらわされる平滑度S(S=S2/S1)が1.1~5.0の範囲にあることを特徴とする、上記(1)~(6)のいずれかに記載の研磨用砥粒分散液。
(8)前記シリカ系粒子群の体積基準粒子径分布において、全体積(Q1)に対する0.7μm以上の粒子の体積(Q2)の割合Q(Q=Q2/Q1)が5.0%以下であることを特徴とする、上記(1)~(7)のいずれかに記載の研磨用砥粒分散液。
The present invention is the following (1) to (8).
(1) A dispersant made of a polycarboxylate is dispersed in a silica-based particle dispersion liquid containing a silica-based particle group composed of atypical silica-based particles and a non-deformed silica-based particle, and the following [1] to [5] Abrasive particle dispersion for polishing that meets the requirements.
[1] The weight average particle diameter (D 1 ) of the silica-based particle group is 50 to 600 nm, and the specific surface area-equivalent average particle diameter (D 2 ) is 15 to 300 nm.
[2] The degree of deformation D (D = D 1 / D 2 ) represented by the ratio of the weight average particle diameter (D 1 ) of the silica-based particle group to the specific surface area equivalent particle diameter (D 2 ) is 1.1. Must be in the range of ~ 10.
[3] When the volume-based particle size distribution of the silica-based particle group is waveform-separated, a multi-peak distribution in which three or more separation peaks are detected is obtained.
[4] The polycarboxylate has a weight average molecular weight in the range of 20,000 to 400,000, and has m the number of carbon atoms directly bonded to carbonyl carbon and the number of carbon atoms not directly bonded to carbonyl carbon. When n, the value of m / (m + n) × 100 is in the range of 40 to 50%.
[5] The mass ratio of the silica-based particle group to the polycarboxylate is in the range of 100: 0.1 to 100:10.
(2) The abrasive grain dispersion liquid for polishing according to (1) above, wherein the dispersant is made of polyacrylic acid salt.
(3) The abrasive grain dispersion liquid for polishing according to (1) or (2) above, wherein the skewness in the volume-based particle size distribution of the silica-based particle group is in the range of −20 to 20.
(4) Among the separation peaks obtained as a result of waveform-separating the volume-based particle size distribution of the silica-based particle group, the volume ratio of the maximum particle component is 75% or less. The abrasive grain dispersion for polishing according to any one of (3).
(5) The aspect ratio of the small particle side component is in the range of 1.05 to 5.0 in the number-based particle size distribution obtained by SEM image analysis of the silica-based particle group (1). )-(4). The abrasive grain dispersion for polishing.
(6) The abrasive grain for polishing according to any one of (1) to (5) above, wherein the coefficient of variation of the particle size of the volume-based particle size distribution of the silica-based particle group is 30% or more. Dispersion solution.
(7) Smoothness S (S = S) represented by the ratio of the area of a circle (S 2 ) equivalent to the average outer peripheral length by the image analysis method to the average area (S 1 ) by the image analysis method in the silica-based particle group. The abrasive grain dispersion for polishing according to any one of (1) to (6) above, wherein 2 / S 1 ) is in the range of 1.1 to 5.0.
(8) In the volume-based particle size distribution of the silica-based particle group, the ratio Q (Q = Q 2 / Q 1 ) of the volume (Q 2 ) of particles of 0.7 μm or more to the total volume (Q 1 ) is 5. The abrasive grain dispersion for polishing according to any one of (1) to (7) above, which is characterized by having a content of 0% or less.

本発明の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群は、研磨材として好適な粒子径、粒子径分布、異形度および粒子強度を有しているので、これと特定の分散剤とを含む研磨用砥粒分散液を用いて研磨した場合、例えば、対象がNiPメッキされた被研磨被膜およびシリカ系基板であっても、実用可能な速度で研磨することができ、砥粒の基材への突き刺さりが無く、同時に実用可能な面精度(被研磨基板上のスクラッチが少ない、被研磨基板の表面粗さ(Ra)が小さいあるいはうねり(Wa)が小さいなど)を達成することができる。
また、本発明の研磨用砥粒分散液に含まれるシリカ系粒子群は、その表面が平滑でなく、微小な突起を有しており、研磨時に発生する研磨屑やイオン成分、オリゴマー成分、有機物等を吸着するスカベンジャー効果も備えている。そのため、研磨基板へのこれらの成分の再付着を防止でき、残渣の少ない研磨表面を達成することができる。
The silica-based particle group composed of the deformed silica-based particles and the non-deformed silica-based particles of the present invention has a particle size, a particle size distribution, a degree of deformation, and a particle strength suitable as an abrasive, and thus has a specific dispersion. When polishing with an abrasive grain dispersion liquid containing an agent, for example, even if the target is a NiP-plated film to be polished and a silica-based substrate, it can be polished at a practical speed, and the abrasive grains can be polished. Achieves practical surface accuracy (less scratches on the substrate to be polished, small surface roughness (Ra) of the substrate to be polished, small waviness (Wa), etc.) without sticking into the base material. Can be done.
Further, the silica-based particle group contained in the abrasive grain dispersion liquid for polishing of the present invention has a non-smooth surface and has minute protrusions, and polishing debris, ionic components, oligomer components, and organic substances generated during polishing. It also has a scavenger effect that adsorbs such things. Therefore, it is possible to prevent the reattachment of these components to the polishing substrate, and it is possible to achieve a polished surface with a small amount of residue.

本発明の研磨用砥粒分散液は、前記の様な実用的な研磨性能を示す研磨用砥粒分散液でありながら、研磨用砥粒分散液に含まれる特定の分散剤の働きにより砥粒分散液としての実用上の問題、即ち、1)砥粒の沈降性が高い(沈降率が高い)、2)研磨用砥粒分散液中成分であって、沈降し容易に分散しない成分の割合(残留率)が高い、3)研磨用砥粒分散液の高粘度化による濾過性の低下やハンドリングし易さの低下といった問題の全てを解決したものである。 The polishing abrasive grain dispersion liquid of the present invention is a polishing abrasive grain dispersion liquid exhibiting practical polishing performance as described above, but the abrasive grains are acted on by the action of a specific dispersant contained in the polishing abrasive grain dispersion liquid. Practical problems as a dispersion, that is, 1) high sedimentation property of abrasive grains (high sedimentation rate), 2) ratio of components in the abrasive grain dispersion liquid for polishing that settle and do not easily disperse. It solves all of the problems such as high (residual rate), 3) deterioration of filterability and ease of handling due to high viscosity of the abrasive grain dispersion for polishing.

粒子径分布における尖度の説明図Explanatory diagram of kurtosis in particle size distribution 粒子径分布における歪度の説明図Explanatory diagram of skewness in particle size distribution

本発明の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群、およびこれを含むシリカ系粒子分散液、更には、本発明の特定のポリカルボン酸塩からなる分散剤、および本発明の研磨用砥粒分散液について具体的に説明する。なお、本発明において「粒子群」の文言は、多数の粒子の集合を意味する。また、本発明の研磨用砥粒分散液を「スラリー」と表記する場合がある。 A silica-based particle group composed of modified silica-based particles and non-modified silica-based particles of the present invention, a silica-based particle dispersion liquid containing the same, a dispersant composed of a specific polycarboxylate of the present invention, and the present invention. The abrasive grain dispersion liquid for polishing will be specifically described. In the present invention, the word "particle swarm" means a set of a large number of particles. Further, the abrasive grain dispersion liquid for polishing of the present invention may be referred to as "slurry".

<重量平均粒子径(D1)>
本発明のシリカ系粒子群の重量平均粒子径(D)は50~600nmであり、60~400nmが好ましく、80~300nmであることが最も好ましい。重量平均粒子径(D)が50~600nmの範囲にあるシリカ系粒子群を砥粒として用いた場合は、高い研磨速度を得ることができ、且つスクラッチが発生しにくい。なお、重量平均粒子径(D)が50nm未満であるシリカ系粒子群を砥粒として用いた場合は、必要な研磨速度が得にくく、さらに小さな粒子が研磨後の基板に残留しやすい傾向にある。また、重量平均粒子径(D)が600nm超であるシリカ系粒子群を砥粒として用いた場合は、スクラッチが発生しやすい傾向にあり、また重量平均粒子径をこれ以上大きくしても質量当たりの砥粒個数が減少するため、研磨速度が向上しない場合がある。
<Weight average particle size (D 1 )>
The weight average particle diameter (D 1 ) of the silica-based particle group of the present invention is 50 to 600 nm, preferably 60 to 400 nm, and most preferably 80 to 300 nm. When a silica-based particle group having a weight average particle diameter (D 1 ) in the range of 50 to 600 nm is used as the abrasive grains, a high polishing rate can be obtained and scratches are less likely to occur. When a silica-based particle group having a weight average particle diameter (D 1 ) of less than 50 nm is used as the abrasive grains, it is difficult to obtain the required polishing rate, and smaller particles tend to remain on the polished substrate. be. Further, when a silica-based particle group having a weight average particle diameter (D 1 ) of more than 600 nm is used as an abrasive grain, scratches tend to occur, and even if the weight average particle diameter is made larger than this, the mass tends to occur. Since the number of abrasive particles per hit is reduced, the polishing speed may not be improved.

ここで、本発明において重量平均粒子径(D1)とは、測定対象である研磨用砥粒分散液を0.05質量%ドデシル硫酸ナトリウム水溶液で希釈し、固形分濃度で2質量%としたものを、従来公知のディスク遠心式粒子径分布測定装置(例えば、CPS Instriment社製など)に0.1ml、シリンジで注入して、8%から24%のショ糖の密度勾配溶液中で18000rpmの条件で測定して得た重量基準粒子径分布から求める平均粒子径である。つまり、本発明においては、この重量平均粒子径(D)は「重量換算粒子径分布の重量平均粒子径」を意味する。 Here, in the present invention, the weight average particle diameter (D 1 ) is defined as 2% by mass in terms of solid content concentration by diluting the abrasive grain dispersion for polishing to be measured with a 0.05% by mass sodium dodecyl sulfate aqueous solution. Inject 0.1 ml into a conventionally known disc centrifugal particle size distribution measuring device (for example, manufactured by CPS Instrument) with a syringe, and in an 8% to 24% sucrose density gradient solution at 18,000 rpm. It is an average particle diameter obtained from the weight-based particle diameter distribution obtained by measuring under the conditions. That is, in the present invention, this weight average particle size (D 1 ) means "weight average particle size of weight conversion particle size distribution".

<比表面積換算平均粒子径(D2)>
本発明のシリカ系粒子群の比表面積換算平均粒子径(D2)は15~300nmであり、20~200nmが好ましく、22~100nmであることがより好ましく、25~80nmであることが最も好ましい。比表面積換算平均粒子径(D2)が15~300nmの範囲にあるシリカ系粒子群を砥粒として用いた場合は、高い研磨速度を得ることができ、且つスクラッチが発生しにくい。なお、比表面積換算平均粒子径(D2)が15nm未満であるシリカ系粒子群を砥粒として用いた場合は、必要な研磨速度が得にくく、さらに小さな粒子が研磨後の基板に残留しやすい傾向にある。また、比表面積換算平均粒子径(D2)が300nm超であるシリカ系粒子群を砥粒として用いた場合は、スクラッチが発生したり研磨後の基板の表面粗さが悪化したりする傾向にある。さらに、比表面積換算平均粒子径(D2)をこれ以上大きくしても、質量当たりの砥粒個数が減少するため、逆に研磨速度が低下する傾向にある。
<Average particle size in terms of specific surface area (D 2 )>
The specific surface area equivalent average particle diameter (D 2 ) of the silica-based particle group of the present invention is 15 to 300 nm, preferably 20 to 200 nm, more preferably 22 to 100 nm, and most preferably 25 to 80 nm. .. When a silica-based particle group having a specific surface area conversion average particle diameter (D 2 ) in the range of 15 to 300 nm is used as the abrasive grains, a high polishing rate can be obtained and scratches are less likely to occur. When a silica-based particle group having a specific surface area-equivalent average particle diameter (D 2 ) of less than 15 nm is used as the abrasive grains, it is difficult to obtain the required polishing rate, and smaller particles tend to remain on the substrate after polishing. There is a tendency. Further, when a silica-based particle group having a specific surface area equivalent average particle diameter (D 2 ) of more than 300 nm is used as an abrasive grain, scratches tend to occur and the surface roughness of the substrate after polishing tends to deteriorate. be. Further, even if the average particle diameter (D 2 ) converted to the specific surface area is made larger than this, the number of abrasive grains per mass decreases, so that the polishing rate tends to decrease.

なお、本発明において比表面積換算平均粒子径(D2)とは、比表面積換算の平均粒子径を意味し、BET法により測定される比表面積(SA:m2/g)と、粒子の密度(ρ)[シリカの場合ρ=2.2]を用い、D2=6000/(SA×ρ)の式から算出される。
ここでBET法とは、次のような方法である。
初めに、測定対象であるシリカゾル(研磨用砥粒分散液)50mlを硝酸によりpHを3.5に調整し、これに1-プロパノールを40ml加えて110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成して測定用試料とする。そして、公知の比表面積測定装置(例えばユアサアイオニクス製、型番マルチソーブ12など)を使用し、窒素吸着法(BET法)を用いて窒素の吸着量からBET1点法により比表面積を算出する。比表面積測定装置では、焼成後の試料0.5gを測定セルに取り、窒素30vol%/ヘリウム70vol%混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次いで、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により試料中のシリカ微粒子の比表面積(SA)を算出する。
In the present invention, the specific surface area-equivalent average particle diameter (D 2 ) means the specific surface area-equivalent average particle diameter, and the specific surface area (SA: m 2 / g) measured by the BET method and the density of the particles. (Ρ) Using [in the case of silica ρ = 2.2], it is calculated from the formula D 2 = 6000 / (SA × ρ).
Here, the BET method is the following method.
First, adjust the pH of 50 ml of silica sol (abrasive grain dispersion for polishing) to be measured to 3.5 with nitric acid, add 40 ml of 1-propanol to it, and dry the sample at 110 ° C for 16 hours in a mortar. After crushing, it is fired at 500 ° C. for 1 hour in a muffle furnace to prepare a sample for measurement. Then, using a known specific surface area measuring device (for example, manufactured by Yuasa Ionics, model number Multisorb 12, etc.), the specific surface area is calculated from the amount of nitrogen adsorbed by the BET 1-point method using the nitrogen adsorption method (BET method). In the specific surface area measuring device, 0.5 g of the sample after firing is taken in a measuring cell, degassed in a mixed gas stream of nitrogen 30 vol% / helium 70 vol% at 300 ° C. for 20 minutes, and then the sample is subjected to the above mixed gas. Keep the liquid nitrogen temperature in the air stream and allow nitrogen to equilibrate and adsorb to the sample. Next, the sample temperature is gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that period is detected, and the specific surface area (SA) of the silica fine particles in the sample is calculated from a calibration curve prepared in advance. ..

また、シリカ系粒子群の比表面積が高い場合には、BET法における焼成時に焼結が進むため、その比表面積(SA)が100m2/g以上となる場合には、タイトレーション法により比表面積(SA)を求める。
ここでタイトレーション法とは、次のような方法である。
まず初めに、SiO2として1.5gに相当する試料をビーカーに採取してから、恒温反応槽(25℃)に移し、純水を加えて液量を90mlにする(以下の操作は、25℃に保持した恒温反応槽中にて行う)。次に、pH3.6になるように0.1モル/L塩酸水溶液をここに加える。さらに、塩化ナトリウムを30g加え、純水で150mlに希釈し、10分間攪拌する。そして、pH電極をセットし、攪拌しながら0.1モル/L水酸化ナトリウム溶液を滴下してpH4.0に調整する。さらに、pH4.0に調整した試料を0.1モル/L水酸化ナトリウム溶液で滴定し、pH8.7~9.3の範囲での滴定量とpH値を4点以上記録して、0.1モル/L水酸化ナトリウム溶液の滴定量をX軸、その時のpH値をY軸として、検量線を作る。そして、V=(A×f×100×1.5)/(W×C)の式からSiO21.5g当たりのpH4.0~9.0までに要する0.1モル/L水酸化ナトリウム溶液の消費量V(ml)を求め、これを用いて、SA=29.0V-28の式に従って比表面積を求める。
なお、上記式中において、AはSiO21.5g当たりpH4.0~9.0までに要する0.1モル/L水酸化ナトリウム溶液の滴定量(ml)、fは0.1モル/L水酸化ナトリウム溶液の力価、Cは試料のSiO2濃度(%)、Wは試料採取量(g)を意味する。
Further, when the specific surface area of the silica-based particle group is high, sintering proceeds during firing in the BET method, so when the specific surface area (SA) is 100 m 2 / g or more, the specific surface area is determined by the titration method. Find (SA).
Here, the titration method is the following method.
First, a sample corresponding to 1.5 g of SiO 2 is collected in a beaker, then transferred to a constant temperature reaction tank (25 ° C.), and pure water is added to make the liquid volume 90 ml (the following operation is 25). Perform in a constant temperature reaction tank maintained at ° C). Next, a 0.1 mol / L hydrochloric acid aqueous solution is added here so as to have a pH of 3.6. Further, 30 g of sodium chloride is added, diluted with pure water to 150 ml, and stirred for 10 minutes. Then, the pH electrode is set, and a 0.1 mol / L sodium hydroxide solution is added dropwise with stirring to adjust the pH to 4.0. Further, the sample adjusted to pH 4.0 was titrated with a 0.1 mol / L sodium hydroxide solution, and the drip quantification and the pH value in the range of pH 8.7 to 9.3 were recorded at 4 points or more, and 0. A calibration line is prepared with the titration amount of 1 mol / L sodium hydroxide solution as the X-axis and the pH value at that time as the Y-axis. Then, from the formula of V = (A × f × 100 × 1.5) / (W × C), 0.1 mol / L sodium hydroxide required from pH 4.0 to 9.0 per 1.5 g of SiO 2 The amount of solution V (ml) is determined, and the specific surface area is determined using the formula of SA = 29.0V-28.
In the above formula, A is a titration amount (ml) of a 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 1.5 g of SiO 2 , and f is 0.1 mol / L. The titer of the sodium hydroxide solution, C means the SiO 2 concentration (%) of the sample, and W means the sampling amount (g).

<異形度>
異形度は、前述の重量平均粒子径(D1)の値を、比表面積換算粒子径(D2)の値で除することにより求められる。
<Degree of irregularity>
The degree of deformation is obtained by dividing the value of the weight average particle diameter (D 1 ) described above by the value of the specific surface area equivalent particle diameter (D 2 ).

本発明のシリカ系粒子群は、異形度D(D=D1/D2)が1.1~10の範囲であり、1.5~8.0の範囲が好ましく、1.6~7.0の範囲がより好ましい。異形度が高いシリカ系粒子群とは、すなわち粒子群の平均アスペクト比(「最小内接四角の長径/短径比」の平均値)が高い事を示しており、この平均アスペクト比が高い場合、研磨時にはおもに粒子の長径において基板と接触し、基板との接触面積が高くなり、研磨速度が高くなるため好ましいが、この異形度が10超の場合は、これ以上異形度を高めても研磨速度は向上せず、さらにスクラッチやうねりが発生しやすい傾向にある。また、この異形度が1.1未満の場合は、粒子の形状が真球状に近い形状であることを示しており、そのようなシリカ系粒子群を含むシリカ系粒子分散液を用いて研磨を行った場合、研磨速度が低下する傾向にある。
なお、ここでアスペクト比は粒子が内接する長方形(正方形を含む)の中で最も面積が小さいものにおける、長辺と短辺の比(長辺/短辺)を意味する。また、平均アスペクト比は、50個以上の粒子のアスペクト比の単純平均値を意味する。
The silica-based particle group of the present invention has a degree of deformation D (D = D 1 / D 2 ) in the range of 1.1 to 10, preferably in the range of 1.5 to 8.0, and preferably in the range of 1.6 to 7. A range of 0 is more preferred. A silica-based particle group having a high degree of deformation indicates that the average aspect ratio of the particle group (the average value of the "major axis / minor axis ratio of the minimum inscribed square") is high, and when this average aspect ratio is high. At the time of polishing, it is preferable because it comes into contact with the substrate mainly on the major axis of the particles, the contact area with the substrate becomes large, and the polishing speed becomes high. The speed does not improve, and scratches and swells tend to occur more easily. Further, when the degree of deformation is less than 1.1, it indicates that the shape of the particles is close to a spherical shape, and polishing is performed using a silica-based particle dispersion liquid containing such a silica-based particle group. If done, the polishing rate tends to decrease.
Here, the aspect ratio means the ratio of the long side to the short side (long side / short side) in the rectangle (including the square) inscribed by the particles and having the smallest area. Further, the average aspect ratio means a simple average value of the aspect ratios of 50 or more particles.

なお、本発明に係るシリカ系粒子群を含むシリカ系粒子分散液に含まれる、異形シリカ系粒子の割合は、前記[1]、[2]及び[3]の要件を満たす限り、格別に制限されるものではないが、アスペクト比が1.1以上の異形シリカ系粒子の個数が全体(前記シリカ系粒子群)に占める割合として、50%以上が好ましく、70%以上が更に好ましく、90%以上が最も推奨される。
なお、アスペクト比が1.1以上である異形シリカ系粒子の個数割合の測定方法は、後述する実施例に示す通りである。
The proportion of the deformed silica-based particles contained in the silica-based particle dispersion liquid containing the silica-based particle group according to the present invention is particularly limited as long as the requirements of [1], [2] and [3] are satisfied. However, the ratio of the number of deformed silica-based particles having an aspect ratio of 1.1 or more to the whole (the silica-based particle group) is preferably 50% or more, more preferably 70% or more, still more preferably 90%. The above is the most recommended.
The method for measuring the number ratio of the deformed silica-based particles having an aspect ratio of 1.1 or more is as shown in Examples described later.

<尖度>
本発明のシリカ系粒子群の体積基準粒子径分布における尖度は-20~20であることが好ましく、-10~10がより好ましく、-5~3が最も好ましい。尖度がこの範囲であるシリカ系粒子群を砥粒として用いた場合は、より高い研磨速度を得ることができ、且つ研磨後においてより平滑な(表面粗さ(Ra)が小さく、基板のうねり(Wa)も小さく、スクラッチが少ない)表面の基板を得ることができる。
<Kurtosis>
The kurtosis in the volume-based particle size distribution of the silica-based particle group of the present invention is preferably −20 to 20, more preferably −10 to 10, and most preferably −5 to 3. When a silica-based particle group having a kurtosis in this range is used as an abrasive grain, a higher polishing rate can be obtained, and after polishing, the surface is smoother (the surface roughness (Ra) is small and the waviness of the substrate is small). It is possible to obtain a substrate having a surface (Wa) is also small and scratches are small.

ここで尖度とは、粒子の形状や大きさには関係なく、粒子径分布のみから算出されるものであり、尖度がゼロ(正規分布)に近い場合は、正規分布に近い粒子径分布であることを示している。また尖度がゼロよりも大きな値を取る粒子径分布は、ピークの中央が正規分布と比較して尖り、分布の裾の左右が広がった分布である事を示し(図1(a))、尖度がゼロよりも小さな値を示す粒子径分布は、ピークが平坦で分布の裾の左右が広がっていない形状である事を示している(図1(b))。 Here, the kurtosis is calculated only from the particle size distribution regardless of the shape and size of the particles, and when the kurtosis is close to zero (normal distribution), the particle size distribution is close to the normal distribution. It shows that it is. The particle size distribution in which the kurtosis is larger than zero indicates that the center of the peak is sharper than the normal distribution and the left and right sides of the tail of the distribution are widened (Fig. 1 (a)). The particle size distribution showing a kurtosis smaller than zero indicates that the peak is flat and the left and right sides of the hem of the distribution are not widened (FIG. 1 (b)).

本発明においては、シリカ系粒子群の体積基準粒子径分布における尖度は、負の値でも構わない。尖度が負の場合は、ピークが平坦で分布の左右の小粒子および大粒子成分が少なく、ピークが平坦な比較的粒度の揃った粒子径分布であることを示している。このような小粒子成分および大粒子成分が少ないシリカ系粒子群を砥粒として用いた場合、砥粒残りも少なく研磨速度も高いため、好ましい。 In the present invention, the kurtosis in the volume-based particle size distribution of the silica-based particle group may be a negative value. A negative kurtosis indicates that the peak is flat, the left and right small particles and large particle components are few, and the peak is flat and the particle size distribution is relatively uniform. When such a silica-based particle group having a small amount of small particle components and a small amount of large particle components is used as the abrasive grains, it is preferable because the amount of remaining abrasive grains is small and the polishing speed is high.

<歪度>
本発明のシリカ系粒子群の体積基準粒子径分布における歪度は-20~20であることが好ましく、-15~15がより好ましく、-10~10が最も好ましい。歪度がこの範囲であるシリカ系粒子群を砥粒として用いた場合は、より高い研磨速度を得ることができ、且つ研磨後においてより平滑な(表面粗さ(Ra)が小さく、基板のうねり(Wa)も小さく、スクラッチが少ない)表面の基板を得ることができる。
<Skewness>
The skewness in the volume-based particle size distribution of the silica-based particle group of the present invention is preferably −20 to 20, more preferably −15 to 15, and most preferably −10 to 10. When a silica-based particle group having a skewness in this range is used as an abrasive grain, a higher polishing rate can be obtained, and after polishing, the surface is smoother (the surface roughness (Ra) is small and the waviness of the substrate is small). It is possible to obtain a substrate having a surface (Wa) is also small and scratches are small.

ここで歪度とは、尖度と同様に粒子の形状や大きさには関係なく、粒子径分布からのみ算出されるものであり、歪度がゼロに近い場合は正規分布に近い粒子径分布であることを示している。また歪度がゼロよりも大きな値を取る粒子径分布は、分布の左側(粒子径が小さい側)にピークを有し、右に裾の長い分布である事を示している(図2(a))のに対し、歪度がゼロよりも小さな値を取る粒子径分布は、分布の右側(粒子径が大きい側)にピークを有して、左に裾の長い分布である事を示している(図2(b))。 Here, the skewness is calculated only from the particle size distribution regardless of the shape and size of the particles like the kurtosis, and when the skewness is close to zero, the particle size distribution is close to the normal distribution. It shows that it is. The particle size distribution in which the skewness is larger than zero shows that the distribution has a peak on the left side (smaller particle size side) of the distribution and a long tail on the right side (Fig. 2 (a)). )) On the other hand, the particle size distribution in which the skewness is smaller than zero shows that the distribution has a peak on the right side of the distribution (the side with the larger particle size) and has a long tail on the left side. (Fig. 2 (b)).

通常、解砕および粉砕法によって得たシリカ系粒子群の体積基準粒子径分布における歪度は正の値を取る事が多く、ビルドアップ法で得た粒子は正規分布となり易いことから歪度はゼロに近い値を取る事が多い。歪度が正の場合の粒子径分布は、粒子径がやや小さめの位置にピークがあり、大粒子径側に裾が広い分布である。このように小粒子径側にピークがある粒子径分布を有するシリカ系粒子群を砥粒として使用すると、粒子径が小さめの成分が多いため、研磨後に平滑な表面が得られやすい傾向にある。一方で歪度が著しく大きなシリカ系粒子群は、大粒子径側に裾が大きく広がった粒子径分布となり、平均粒子径にもよるが、砥粒として使用すると、スクラッチが発生しやすい傾向にある。 Usually, the skewness in the volume-based particle size distribution of the silica-based particle group obtained by the crushing and crushing method often takes a positive value, and the skewness is easy because the particles obtained by the build-up method tend to have a normal distribution. It often takes a value close to zero. When the skewness is positive, the particle size distribution has a peak at a position where the particle size is slightly smaller and a wide tail on the large particle size side. When a silica-based particle group having a particle size distribution having a peak on the small particle size side is used as an abrasive grain, a smooth surface tends to be easily obtained after polishing because many components have a small particle size. On the other hand, the silica-based particle group having a remarkably large skewness has a particle size distribution in which the hem is greatly widened toward the large particle size side, and although it depends on the average particle size, scratches tend to occur easily when used as abrasive grains. ..

本発明においては、シリカ系粒子群の体積基準粒子径分布における歪度は、負の値であっても構わない。歪度が負の値のシリカ系粒子群は、粒子径が大きめの位置にピークがあり、小粒子側に裾が広がった粒子径分布となるが、粒子径分布の大粒子側のきれが良いため(すなわち著しい大粒子が少ないため)、砥粒として使用してもスクラッチは発生しにくい。しかし歪度が-20よりも小さいシリカ系粒子群は、小粒子側の裾が広くなり過ぎた粒子径分布となり、小粒子成分が増えるため、砥粒として使用すると砥粒残りが発生する傾向にある。 In the present invention, the skewness in the volume-based particle size distribution of the silica-based particle group may be a negative value. The silica-based particle group having a negative strain degree has a peak at a position where the particle size is large and has a particle size distribution in which the hem is widened on the small particle side, but the particle size distribution on the large particle side is good. Therefore (that is, because there are few remarkably large particles), scratches are unlikely to occur even when used as abrasive grains. However, in the silica-based particle group having a skewness of less than -20, the hem on the small particle side becomes too wide and the particle size distribution increases, and the small particle component increases. be.

<体積基準粒子径分布の測定および尖度・歪度の算出方法>
本発明では、シリカ系粒子群の体積基準粒子径分布を遠心沈降法によって測定する。例えば、シリカ系粒子分散液を0.05質量%ドデシル硫酸ナトリウム水溶液で希釈し、固形分濃度で2質量%に調整し、公知のディスク遠心式粒子径分布測定装置(例えば、CPS Instriment社製など)を用いて体積基準粒子径分布を測定することができる。
このようにして得られた体積基準粒子径分布の平均値や標準偏差等から従来公知の式によって尖度および歪度を算出する。例えば、SAS Institute Japan社製JMP Ver.13.2を用いて尖度および歪度を算出できる。なお、体積基準粒子径粒度分布において、まれに所定の粒子径の頻度が負の値を取る事があるが、そのような場合は頻度をゼロとして算出する。
<Measurement of volume-based particle size distribution and calculation method of kurtosis / skewness>
In the present invention, the volume-based particle size distribution of the silica-based particle group is measured by the centrifugal sedimentation method. For example, a silica-based particle dispersion is diluted with a 0.05 mass% sodium dodecyl sulfate aqueous solution to adjust the solid content concentration to 2 mass%, and a known disc centrifugal particle size distribution measuring device (for example, manufactured by CPS Instrument) or the like is used. ) Can be used to measure the volume-based particle size distribution.
The kurtosis and skewness are calculated from the mean value and standard deviation of the volume reference particle size distribution thus obtained by a conventionally known formula. For example, JMP Ver. Manufactured by SAS Institute Japan. The kurtosis and skewness can be calculated using 13.2. In rare cases, the frequency of a predetermined particle size may take a negative value in the volume-based particle size distribution, and in such a case, the frequency is calculated as zero.

<多峰分布>
本発明のシリカ系粒子群の体積基準粒子径分布は、下記の方法で波形分離すると、分離ピークが3つ以上検出される多峰分布となる。単峰分布となる粒子群の場合は、粒子径に応じた研磨速度とうねりが発生し、粒子径が大きい場合は研磨速度は高いがうねりが大きくなり、粒子径が小さい場合はうねりは良化するが研磨速度は低くなる。これに対して多峰分布となる粒子群の場合は、それぞれの成分の粒子径に応じた研磨痕を残しながら研磨が進行し、これらの総和がうねりおよび研磨速度となる。従って、大粒子成分と同時に、小粒子成分が十分な研磨速度を示すような分布(小粒子も大粒子も多く含まれているような、例えば台形の分布で、波形分離すると多峰となる分布)であれば、研磨速度とうねりが両立できる。しかし、本発明のシリカ系粒子群のように小粒子側成分のアスペクト比が高くない場合は、すなわち球状粒子が多い場合は、多峰分布であっても研磨速度が遅くなるため、大粒子によって生じた悪化した表面粗さやスクラッチを修復して基板表面を平滑化する作用が弱いため、平滑な表面が得られ難い傾向にある。
<Multi-peak distribution>
The volume-based particle size distribution of the silica-based particle group of the present invention is a multi-peak distribution in which three or more separation peaks are detected when waveforms are separated by the following method. In the case of a particle group with a single peak distribution, polishing speed and swell are generated according to the particle size, when the particle size is large, the polishing speed is high but the swell is large, and when the particle size is small, the swell is improved. However, the polishing speed is low. On the other hand, in the case of a particle group having a multi-peak distribution, polishing proceeds while leaving polishing marks corresponding to the particle diameter of each component, and the sum of these becomes the waviness and the polishing rate. Therefore, at the same time as the large particle component, the distribution in which the small particle component shows a sufficient polishing rate (for example, a trapezoidal distribution containing many small particles and large particles, and a distribution with multiple peaks when the waveform is separated). ), Both polishing speed and waviness can be achieved. However, if the aspect ratio of the small particle side component is not high as in the silica-based particle group of the present invention, that is, if there are many spherical particles, the polishing rate will be slow even with a multi-peak distribution, so depending on the large particles. Since the effect of repairing the deteriorated surface roughness and scratches and smoothing the surface of the substrate is weak, it tends to be difficult to obtain a smooth surface.

波形分離は、前述のディスク遠心式粒子径分布測定装置にて得られた体積基準粒子径分布を、グラフ作成・データ解析ソフト Origin(OriginLab Corporation社製)のピークアナライザを使用して解析することにより行う。まず、基線を0、ピークタイプをGaussianに設定し、粒度分布の極大点をピーク位置として選択して、重み付けなしでピークフィッティングを行い、算出されたピークが以下の条件1および2から逸脱していないことを確認し、逸脱している場合は、下記条件1および2を満たすまでピーク位置を分布範囲内の任意の位置にずらしてピークフィッティングを繰り返す。その後、補正R二乗値が0.99以下である場合は分布範囲内の任意の位置にピークを追加し、補正R二乗値が0.99以上になるまでピークフィッティングを繰り返す。このときの分離されたピークの数をピークの個数とする。
条件1:算出されたそれぞれのピークが元の分布より大きい値を取らないこと。
条件2:算出されたそれぞれのピークが負の値を取らないこと。
Waveform separation is performed by analyzing the volume-based particle size distribution obtained by the above-mentioned disk centrifugal type particle size distribution measuring device using a peak analyzer of the graph creation / data analysis software Origin (manufactured by OriginLab Corporation). conduct. First, the baseline is set to 0, the peak type is set to Gaussian, the maximum point of the particle size distribution is selected as the peak position, peak fitting is performed without weighting, and the calculated peak deviates from the following conditions 1 and 2. If it does not deviate, the peak position is shifted to an arbitrary position within the distribution range until the following conditions 1 and 2 are satisfied, and peak fitting is repeated. After that, if the corrected R-squared value is 0.99 or less, a peak is added at an arbitrary position in the distribution range, and peak fitting is repeated until the corrected R-squared value becomes 0.99 or more. The number of separated peaks at this time is defined as the number of peaks.
Condition 1: Each calculated peak does not take a value larger than the original distribution.
Condition 2: Each calculated peak does not take a negative value.

このような体積基準粒子径分布が多峰分布となるシリカ系粒子群は、大粒子から小粒子まで分布が幅広く(分布がブロードであり)、より好適な研磨性能を有する。
具体的には、波形分離した最大粒子成分の体積割合が、全体の体積のうち75%以下である事が望ましい。最大粒子成分の体積割合が75%以下の場合は、分布がブロードになり、波形分離した場合、分離ピークが3以上の多峰分布となる傾向にあるからである。
この最大ピークの体積割合が75%超の場合は、実質的に単峰分布に近い分布であり、このような体積基準粒子径分布を波形分離しても、分離ピークは3未満となる傾向にある。
The silica-based particle group having such a volume-based particle size distribution with multiple peaks has a wide distribution from large particles to small particles (the distribution is broad), and has more suitable polishing performance.
Specifically, it is desirable that the volume ratio of the maximum particle component waveform-separated is 75% or less of the total volume. This is because when the volume ratio of the maximum particle component is 75% or less, the distribution becomes broad, and when the waveform is separated, the separation peak tends to be a multi-peak distribution of 3 or more.
When the volume ratio of this maximum peak exceeds 75%, the distribution is substantially close to a single peak distribution, and even if such a volume reference particle size distribution is waveform-separated, the separation peak tends to be less than 3. be.

さらには、本発明のシリカ系粒子群は、その体積基準粒子径分布を波形分離した際に検出された分離ピークのうち、最大粒子成分の体積割合が75%以下であることが好ましく、73%以下であることがより好ましい。このようなシリカ系粒子群を砥粒として使用すると、大粒子成分が少ないことにより、研磨時において基板の表面粗さやうねりがより良化する。ここで、本発明において「最大粒子成分」とは、シリカ系粒子群の体積基準粒子径分布を波形分離した際に、粒子径が最も大きい粒子側にある分離ピークに含まれる粒子成分を意味する。 Further, in the silica-based particle group of the present invention, the volume ratio of the maximum particle component among the separation peaks detected when the volume reference particle size distribution is waveform-separated is preferably 75% or less, preferably 73%. The following is more preferable. When such a silica-based particle group is used as an abrasive grain, the surface roughness and waviness of the substrate are further improved during polishing due to the small amount of large particle components. Here, the "maximum particle component" in the present invention means a particle component included in the separation peak on the particle side having the largest particle size when the volume-based particle size distribution of the silica-based particle group is waveform-separated. ..

<小粒子側成分のアスペクト比>
本発明のシリカ系粒子群は、SEM画像解析の結果、得られる個数基準粒子径分布において、小粒子側成分のアスペクト比が1.05~5.0の範囲にあることが好ましく、1.05~3.0の範囲にあることがより好ましく、1.05~2.0の範囲にあることがより好ましく、1.05~1.5の範囲にあることが更に好ましい。なお、SEM画像解析により得られる個数基準粒子径分布における小粒子側成分のアスペクト比とは、以下のような方法により測定、算出されたものである。まず、公知の走査型電子顕微鏡(SEM)および公知の画像解析システムを用いて、倍率3000倍で1視野当たり1.1×10-3mm2の面積で15視野撮影し、シリカ系粒子群の総粒子数をカウントする。また、各粒子の面積を、その面積と等しい面積の円の直径を求め、それを粒子径とする。そして、得られた粒子径をサイズ順にならべ、小さい側から数えて粒子個数の1/3までの粒子を小粒子側成分とし、小粒子側成分の粒子の各々についてアスペクト比(最小内接四角の長径/短径比)を求め、それらの単純平均値を「小粒子側成分のアスペクト比」とする。
<Aspect ratio of small particle side components>
In the silica-based particle group of the present invention, the aspect ratio of the small particle side component is preferably in the range of 1.05 to 5.0 in the number-based particle size distribution obtained as a result of SEM image analysis, and 1.05. It is more preferably in the range of ~ 3.0, more preferably in the range of 1.05 to 2.0, and even more preferably in the range of 1.05 to 1.5. The aspect ratio of the small particle side component in the number-based particle size distribution obtained by SEM image analysis is measured and calculated by the following method. First, using a known scanning electron microscope (SEM) and a known image analysis system, 15 fields of view were taken with an area of 1.1 × 10 -3 mm 2 per field of view at a magnification of 3000 times, and the silica-based particle group was photographed. Count the total number of particles. Further, the area of each particle is obtained by determining the diameter of a circle having an area equal to the area, and this is used as the particle diameter. Then, the obtained particle diameters are arranged in order of size, and the particles up to 1/3 of the number of particles counted from the small side are set as the small particle side component, and the aspect ratio (minimum inscribed square) is used for each of the particles of the small particle side component. Major axis / minor axis ratio) is obtained, and the simple average value thereof is defined as the "aspect ratio of the small particle side component".

本発明のシリカ系粒子群の小粒子側成分のアスペクト比は、通常、シリカ系粒子群の平均アスペクト比よりも小さくなる。小粒子側成分のアスペクト比が1.05未満の場合、そのような粒子は実質的に球形粒子と同等であるため研磨速度が低く、シリカ系粒子群の研磨速度も低下する傾向にある。しかし、小粒子側成分のアスペクト比が1.05以上であるシリカ系粒子群を砥粒として使用すると、小粒子側成分も高い研磨速度を示すため、シリカ系粒子群の研磨速度をより高くすることができ、ディフェクト等も生じにくく、高い面精度が得られる傾向にある。また、小粒子側成分のアスペクト比が5.0より大きい場合、シリカ系粒子群全体の平均アスペクト比もさらに高くなるので、研磨速度は高くなるものの、基板にディフェクトが生じやすくなり、更に基板表面の粗さと、基板表面のうねりも悪化する傾向にある。 The aspect ratio of the small particle side component of the silica-based particle group of the present invention is usually smaller than the average aspect ratio of the silica-based particle group. When the aspect ratio of the small particle side component is less than 1.05, such particles are substantially equivalent to spherical particles, so that the polishing rate is low and the polishing rate of the silica-based particle group tends to be low. However, when a silica-based particle group having an aspect ratio of the small particle-side component of 1.05 or more is used as the abrasive grains, the small-particle-side component also exhibits a high polishing rate, so that the polishing rate of the silica-based particle group is further increased. It is possible to prevent defects and the like, and high surface accuracy tends to be obtained. Further, when the aspect ratio of the component on the small particle side is larger than 5.0, the average aspect ratio of the entire silica-based particle group is also higher, so that the polishing speed is higher, but the substrate is more likely to be defective, and the surface of the substrate is further increased. Roughness and waviness of the substrate surface also tend to worsen.

ここで、単粒子が結合したアスペクト比が高い粒子を作る方法としては、例えば数十nmの粒子をイオン強度調整や高分子などを利用して会合させてアスペクト比を高める方法や、粒子の調合時に核生成と同時にイオン強度等を調整することで粒子を会合させ、更に生成した異形シード粒子を粒子成長させてアスペクト比が高い粒子を得る方法がある。しかし、これらの方法の場合、アスペクト比が高い粒子が生成すると同時に、会合しない粒子も残存し易いため、粒子径の小さな粒子は、球形に近くアスペクト比が小さな粒子となる傾向にあり、球形粒子は研磨速度が低いため、粒子群全体として、研磨速度が低くなる傾向にある。これに対し、本発明の異形シリカ系粒子を含むシリカ系粒子群は、解砕工程で、原料シリカ系ゲル粒子がビーズから受ける衝撃エネルギーによって異方的な形状(非球状)に解砕されるため、小粒子側成分も異形粒子となることから、高い研磨速度を得ることができる。 Here, as a method for producing particles having a high aspect ratio in which single particles are bonded, for example, a method of associating particles having a diameter of several tens of nm using ion intensity adjustment or a polymer to increase the aspect ratio, or preparation of particles. Sometimes, there is a method of associating particles by adjusting the ionic strength and the like at the same time as nucleation, and further growing the generated irregular seed particles to obtain particles having a high aspect ratio. However, in the case of these methods, particles having a high aspect ratio are generated, and at the same time, particles that do not associate are likely to remain. Since the polishing speed is low, the polishing speed of the entire particle group tends to be low. On the other hand, the silica-based particle group including the deformed silica-based particles of the present invention is crushed into an irregular shape (non-spherical) by the impact energy received from the beads by the raw material silica-based gel particles in the crushing step. Therefore, since the small particle side component is also a deformed particle, a high polishing rate can be obtained.

<変動係数(CV値)>
本発明に係るシリカ系粒子群の体積基準粒子径分布の粒子径の変動係数は、30%以上であることが好ましく、50%以上であることがより好ましい。前記変動係数を所定の範囲とすることで、体積基準粒子径分布がブロードとなり、つまり幅広い粒子径分布を有するシリカ系粒子群となり、より好適な研磨性能(例えば、被研磨基板上でのうねりの発生の抑止等)を発揮する。なお、本発明において「変動係数(CV値)」とは、その標準偏差を平均値(重量平均)で割った値を百分率で示したものであり、相対的なばらつきを示している。
なお、本発明のCV値は、ディスク遠心式粒子径分布測定装置(CPS Instriment社製)を用いた体積基準粒子径分布から求めたものとする。
なお、前記変動係数は、好適には30%~250%の範囲が推奨される。変動係数250%以上では、研磨性能が低下する場合がある。
<Coefficient of variation (CV value)>
The coefficient of variation of the particle size of the volume-based particle size distribution of the silica-based particle group according to the present invention is preferably 30% or more, and more preferably 50% or more. By setting the coefficient of variation within a predetermined range, the volume-based particle size distribution becomes broad, that is, a silica-based particle group having a wide particle size distribution, and more suitable polishing performance (for example, waviness on a substrate to be polished). Demonstrate the suppression of occurrence, etc.). In the present invention, the "coefficient of variation (CV value)" is the value obtained by dividing the standard deviation by the average value (weight average) as a percentage, and indicates relative variation.
The CV value of the present invention is determined from the volume-based particle size distribution using a disk centrifugal particle size distribution measuring device (manufactured by CPS Instrument).
The coefficient of variation is preferably in the range of 30% to 250%. If the coefficient of variation is 250% or more, the polishing performance may deteriorate.

<平滑度S>
本発明のシリカ系粒子群における、画像解析法による平均面積(S1)に対する画像解析法による平均外周長と等価な円の面積(S2)の比であらわされる平滑度S(S=S2/S1)は、1.1~5.0の範囲であることが好ましく、1.3~4.0の範囲であることがより好ましい。S値が1.0よりも高い場合は、シリカ系粒子群に含まれる異形シリカ系粒子の表面が平滑でなく微小な凹凸を有した形状であることを示している。これは異形シード粒子が一次粒子の集合体であり、多孔質であるため、このシード粒子の表面も微小な突起を有しており、このシード粒子を粒子成長させた異形シリカ系粒子は、微小な突起が維持された形状となるからである。さらに異形シリカ系粒子表面に適度な微小突起を有する異形シリカ系粒子を含むシリカ系粒子群を研磨砥粒として用いた場合、突起部に研磨圧力が集中するため、高い研磨速度が得られる。なお、粒子表面の突起が過剰な場合は、研磨後の基板表面の表面粗さやうねりは悪化しないが、砥粒が摩耗し易く、研磨速度が低下する傾向にある。
<Smoothness S>
In the silica-based particle group of the present invention, the smoothness S (S = S 2 ) represented by the ratio of the area of a circle (S 2 ) equivalent to the average outer peripheral length by the image analysis method to the average area (S 1 ) by the image analysis method. / S1) is preferably in the range of 1.1 to 5.0, and more preferably in the range of 1.3 to 4.0. When the S value is higher than 1.0, it indicates that the surface of the deformed silica-based particles contained in the silica-based particle group is not smooth and has a shape having minute irregularities. This is because the deformed seed particles are an aggregate of primary particles and are porous, so that the surface of the seed particles also has minute protrusions, and the deformed silica-based particles obtained by growing the seed particles are fine. This is because the shape is such that the protrusions are maintained. Further, when a silica-based particle group containing irregular silica-based particles having appropriate fine protrusions on the surface of the deformed silica-based particles is used as the polishing abrasive grains, the polishing pressure is concentrated on the protrusions, so that a high polishing rate can be obtained. When the protrusions on the surface of the particles are excessive, the surface roughness and waviness of the surface of the substrate after polishing do not deteriorate, but the abrasive grains are easily worn and the polishing speed tends to decrease.

ここで、シリカ系粒子群における、画像解析法による平均面積(S1)および画像解析法による平均外周長と等価な円の面積(S2)の測定および算出について説明する。
これらは、以下のような方法で測定、算出されたものである。初めに、公知の走査型電子顕微鏡(SEM)を用いて、粒子表面の任意の箇所を、倍率3000倍で1視野当たり1.1×10-3mm2の面積で15視野撮影する。この各視野において撮影された個々の画像に含まれる全てのシリカ微粒子について、公知の画像解析システムを用いて各粒子の面積および外周長を測定し、この測定された各面積および各外周長データから平均面積(S1)(単純平均値)および平均外周長(単純平均値)を算出し、さらにこの平均外周長から、平均外周長と等価な円(平均外周長と同じ円周である円)の面積(S2)を算出する。
Here, the measurement and calculation of the average area (S 1 ) by the image analysis method and the area of the circle (S 2 ) equivalent to the average outer peripheral length by the image analysis method in the silica-based particle group will be described.
These are measured and calculated by the following methods. First, using a known scanning electron microscope (SEM), an arbitrary part of the particle surface is photographed in 15 fields with an area of 1.1 × 10 -3 mm 2 per field at a magnification of 3000 times. For all the silica fine particles contained in the individual images taken in each of the visual fields, the area and the outer peripheral length of each particle were measured using a known image analysis system, and the measured area and the outer peripheral length data were used. The average area (S 1 ) (simple average value) and the average outer circumference length (simple average value) are calculated, and from this average outer circumference length, a circle equivalent to the average outer circumference length (a circle having the same circumference as the average outer circumference length). The area of (S 2 ) is calculated.

<Q2/Q1
本発明のシリカ系粒子群は、その体積基準粒子径分布において、全体積(Q1)に対する0.7μm以上の粒子の体積(Q2)の割合Q(Q=Q2/Q1、百分率により表示)が
5.0%以下であることが好ましく、3.0%以下であることがより好ましい。このようなシリカ系粒子群は、粗大粒子の割合が少ないことにより、研磨時においてスクラッチなどのディフェクトがより発生しにくく、研磨基板の表面粗さをより小さくすることができる。
<Q 2 / Q 1 >
In the volume-based particle size distribution of the silica-based particle group of the present invention, the ratio Q (Q = Q 2 / Q 1 ) of the volume (Q 2 ) of particles of 0.7 μm or more to the total volume (Q 1 ) is based on the percentage. Display) is preferably 5.0% or less, and more preferably 3.0% or less. In such a silica-based particle group, since the proportion of coarse particles is small, defects such as scratches are less likely to occur during polishing, and the surface roughness of the polished substrate can be further reduced.

なお、本発明のシリカ系粒子群の体積基準粒子径分布における全体積(Q1)、これを波形分離した結果得られた分離ピークの各成分の体積割合、最大粒子成分の体積割合および0.7μm以上の粒子の体積(Q2)についても、前述のディスク遠心式粒子径分布測定装置を用いた方法により測定することができる。 The total volume ( Q1 ) in the volume-based particle size distribution of the silica-based particle group of the present invention, the volume ratio of each component of the separation peak obtained as a result of waveform separation, the volume ratio of the maximum particle component, and 0. The volume (Q 2 ) of particles of 7 μm or more can also be measured by the method using the above-mentioned disc centrifugal particle size distribution measuring device.

<分散剤>
本発明の研磨用砥粒分散液は、前記異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を含むシリカ系粒子分散液を含み、更に特定のポリカルボン酸塩からなる分散剤を含むものである。
係る特定のポリカルボン酸塩からなる分散剤は、重量平均分子量が20,000~400,000の範囲にある。
また、係るポリカルボン酸における、カルボニル炭素に直接結合する炭素原子の個数をm、カルボニル炭素に直接結合しない炭素原子の個数をnとしたとき、m/(m+n)×100の値が40~50%の範囲にあり、45~49%の範囲にあることが好ましい。このような範囲内であると、本発明の研磨用砥粒分散液は、実用的な粘度範囲でありながら、砥粒の沈降率、残存率がより優れたものとなる。
なお、m、nの測定方法は後述する。
<Dispersant>
The abrasive grain dispersion liquid for polishing of the present invention contains a silica-based particle dispersion liquid containing a silica-based particle group composed of the deformed silica-based particles and non-deformed silica-based particles, and further comprises a dispersant made of a specific polycarboxylate. It includes.
Dispersants made of such specific polycarboxylates have a weight average molecular weight in the range of 20,000 to 400,000.
Further, when the number of carbon atoms directly bonded to the carbonyl carbon in the polycarboxylic acid is m and the number of carbon atoms not directly bonded to the carbonyl carbon is n, the value of m / (m + n) × 100 is 40 to 50. It is in the range of%, preferably in the range of 45 to 49%. Within such a range, the abrasive grain dispersion liquid for polishing of the present invention has a more excellent sedimentation rate and residual rate of the abrasive grains while having a practical viscosity range.
The measurement method of m and n will be described later.

ポリカルボン酸塩の重量平均分子量が20,000~400,000の範囲の場合、ポリカルボン酸からなる分散剤を添加しない場合に比べて、砥粒の沈降率が低くなり、砥粒等の残存率が低く抑えられる。
ポリカルボン酸塩の重量平均分子量が20,000未満の場合は、ポリカルボン酸塩の界面活性剤としての性質が発現し、研磨用砥粒分散液の液面で発泡が発生するため、研磨スラリーとして適さない。重量平均分子量が400,000を超える場合は、スラリー粘度が上昇し、濾過性やハンドリングし易さを低下させ、実用に供し難くなる。
係る重量平均分子量は、50,000~200,000の範囲が更に好ましい。更に好ましくは、70,000~180,000の範囲が推奨される。
When the weight average molecular weight of the polycarboxylic acid salt is in the range of 20,000 to 400,000, the sedimentation rate of the abrasive grains is lower than that when the dispersant composed of the polycarboxylic acid is not added, and the abrasive grains and the like remain. The rate is kept low.
When the weight average molecular weight of the polycarboxylate is less than 20,000, the properties of the polycarboxylate as a surfactant are exhibited and foaming occurs on the liquid surface of the abrasive grain dispersion for polishing, so that the polishing slurry is formed. Not suitable as. When the weight average molecular weight exceeds 400,000, the viscosity of the slurry increases, the filterability and the ease of handling are lowered, and it becomes difficult to put it into practical use.
The weight average molecular weight is more preferably in the range of 50,000 to 200,000. More preferably, the range of 70,000 to 180,000 is recommended.

本発明の研磨用砥粒分散液において、前記シリカ系粒子群と、前記ポリカルボン酸塩の質量比は100:0.1~100:10の範囲にあることが好ましい。係る質量比がこの範囲にあれば、実用的な水準の研磨性能を示し、更に砥粒の沈降率、残存率などに優れた性能を示すことができる。
シリカ系粒子群100質量部に対し、前記ポリカルボン酸塩0.1質量部未満では、カルボン酸塩が過少のため、分散剤添加による、砥粒の沈降率の抑制、残存率の抑制などの効果が見られない。他方、同じく前記ポリカルボン酸塩が10質量部を超えると、カルボン酸塩が過剰となり、塩濃度が上昇するため粒子が凝集しやすくなる傾向にあり、実用に供し難くなる。
本発明の研磨用砥粒分散液における前記シリカ系粒子群と、前記ポリカルボン酸塩の質量比は、好ましくは100:0.5~100:2の範囲が推奨される。
In the abrasive grain dispersion liquid for polishing of the present invention, the mass ratio of the silica-based particle group to the polycarboxylic acid salt is preferably in the range of 100: 0.1 to 100:10. If the mass ratio is within this range, it is possible to exhibit a practical level of polishing performance, and further to exhibit excellent performance in the sedimentation rate, residual rate, and the like of the abrasive grains.
If the amount of the polycarboxylic acid salt is less than 0.1 part by mass with respect to 100 parts by mass of the silica-based particle group, the amount of the carboxylate salt is too small. No effect is seen. On the other hand, when the polycarboxylate exceeds 10 parts by mass, the carboxylate becomes excessive and the salt concentration increases, so that the particles tend to aggregate easily, which makes it difficult to put into practical use.
The mass ratio of the silica-based particle group to the polycarboxylate in the abrasive grain dispersion liquid for polishing of the present invention is preferably in the range of 100: 0.5 to 100: 2.

本発明の研磨用砥粒分散液における前記分散剤の使用量は、研磨用砥粒分散液の1L中、0.001~10gとすることが好ましく、0.01~5gとすることがより好ましく0.1~3gとすることが特に好ましい。
なお、界面活性剤および/または親水性化合物の含有量は、充分な効果を得る上で、研磨用砥粒分散液の1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。
The amount of the dispersant used in the polishing abrasive grain dispersion liquid of the present invention is preferably 0.001 to 10 g, more preferably 0.01 to 5 g in 1 L of the polishing abrasive grain dispersion liquid. It is particularly preferable to use 0.1 to 3 g.
The content of the surfactant and / or the hydrophilic compound is preferably 0.001 g or more in 1 L of the abrasive grain dispersion for polishing, and 10 g or less from the viewpoint of preventing a decrease in the polishing speed in order to obtain a sufficient effect. Is preferable.

本発明の研磨用砥粒分散液に分散剤として使用されるカルボン酸塩としてはポリアクリル酸塩が好ましく、具体的には、ポリアクリル酸ナトリウム塩、ポリアクリル酸アンモニウム塩、ポリアクリル酸カリウム塩、ポリアクリル酸リチウム塩、などを挙げることができる。 Polyacrylate is preferable as the carboxylate used as a dispersant in the abrasive grain dispersion of the present invention, and specifically, sodium polyacrylate, ammonium polyacrylate, and potassium polyacrylate. , Polyacrylic acid lithium salt, and the like.

本発明のシリカ系粒子群を分散溶媒に分散したシリカ系粒子分散液(本発明のシリカ系粒子群を含むシリカ系粒子分散液)に、ポリカルボン酸塩からなる分散剤が分散してなるは、研磨用砥粒分散液(以下では「本発明の研磨用砥粒分散液」ともいう)として好ましく用いることができる。
特に、磁気ディスクを研磨するために好ましく用いることができる。さらに、SiO2絶縁膜が形成された半導体基板の平坦化用の研磨用砥粒分散液として好適に使用することができる。また、研磨性能を制御するためにケミカル成分を添加し、研磨スラリーとしても好適に用いることができる。
A dispersant made of a polycarboxylate is dispersed in a silica-based particle dispersion (a silica-based particle dispersion containing the silica-based particle group of the present invention) in which the silica-based particle group of the present invention is dispersed in a dispersion solvent. , Can be preferably used as an abrasive grain dispersion liquid for polishing (hereinafter, also referred to as "abrasive particle dispersion liquid for polishing" of the present invention).
In particular, it can be preferably used for polishing a magnetic disk. Further, it can be suitably used as a polishing abrasive grain dispersion liquid for flattening a semiconductor substrate on which a SiO 2 insulating film is formed. Further, a chemical component can be added to control the polishing performance, and the polishing slurry can be suitably used.

そして、本発明の研磨用砥粒分散液は磁気ディスクや半導体基板などを研磨する際の研磨速度が高く、また研磨時に研磨面のスクラッチが少ない、基板への砥粒の残留が少ないなどの効果に優れ、研磨作業の効率を格段に高めることができる。 The polishing abrasive grain dispersion liquid of the present invention has effects such as high polishing speed when polishing a magnetic disk or a semiconductor substrate, less scratches on the polished surface during polishing, and less residual abrasive grains on the substrate. Excellent, and the efficiency of polishing work can be significantly improved.

本発明の研磨用砥粒分散液は、分散溶媒として水および/または有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の研磨用砥粒分散液に、研磨性能を制御するための添加剤として、研磨促進剤、界面活性剤、複素環化合物、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を添加することで、研磨スラリーとしてより好適に用いられる。 The abrasive grain dispersion liquid for polishing of the present invention contains water and / or an organic solvent as a dispersion solvent. As the dispersion solvent, it is preferable to use water such as pure water, ultrapure water, and ion-exchanged water. Further, the polishing abrasive grain dispersion liquid of the present invention is selected from the group consisting of a polishing accelerator, a surfactant, a heterocyclic compound, a pH adjuster and a pH buffer as an additive for controlling the polishing performance1. By adding seeds or more, it is more preferably used as a polishing slurry.

<研磨促進剤>
本発明の研磨用砥粒分散液に、被研磨材の種類によっても異なるが、必要に応じて従来公知の研磨促進剤を添加することで研磨スラリーとして、使用することができる。この様な例としては、過酸化水素、過酢酸、過酸化尿素など及びこれらの混合物を挙げることができる。このような過酸化水素等の研磨促進剤を含む研磨材組成物を用いると、被研磨材が金属の場合には効果的に研磨速度を向上させることができる。
<Abrasive accelerator>
Although it depends on the type of the material to be polished, it can be used as a polishing slurry by adding a conventionally known polishing accelerator to the abrasive grain dispersion liquid for polishing of the present invention, if necessary. Examples of such include hydrogen peroxide, peracetic acid, urea peroxide and the like, and mixtures thereof. When such an abrasive composition containing a polishing accelerator such as hydrogen peroxide is used, the polishing rate can be effectively improved when the material to be polished is a metal.

研磨促進剤の別の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸等の無機酸、酢酸等の有機酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩、アミン塩およびこれらの混合物などを挙げることができる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。 Other examples of polishing accelerators include inorganic acids such as sulfuric acid, nitrate, phosphoric acid, oxalic acid and hydrofluoric acid, organic acids such as acetic acid, or sodium salts, potassium salts, ammonium salts, amine salts and the like of these acids. And the like. In the case of a polishing composition containing these polishing accelerators, when polishing a material to be polished composed of a composite component, by accelerating the polishing rate for a specific component of the material to be polished, finally flat polishing is performed. You can get a face.

本発明の研磨用砥粒分散液が研磨促進剤を含有する場合、その含有量としては、0.1~10質量%であることが好ましく、0.5~5質量%であることがより好ましい。 When the abrasive grain dispersion liquid for polishing of the present invention contains a polishing accelerator, the content thereof is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass. ..

<界面活性剤>
本発明の研磨用砥粒分散液は、前記の特定のカルボン酸塩を含むので、それ以外に分散性向上を目的とした分散剤の添加は不要であるが、研磨用砥粒分散液の適用用途あるいは研磨用砥粒分散液に更に他の成分を添加した場合等においては、本発明の研磨用砥粒分散液の性能を低下させない範囲で、他の公知の分散剤(カチオン系、アニオン系、ノニオン系、両性系の界面活性剤または親水性化合物等)を添加することができる。
<Surfactant>
Since the abrasive grain dispersion liquid for polishing of the present invention contains the above-mentioned specific carboxylate, it is not necessary to add a dispersant for the purpose of improving dispersibility, but application of the abrasive grain dispersion liquid for polishing Other known dispersants (cationic, anionic) dispersants (cationic, anionic) as long as the performance of the abrasive abrasive dispersion of the present invention is not deteriorated when other components are added to the application or the abrasive grain dispersion for polishing. , Nonionic, amphoteric surfactants, hydrophilic compounds, etc.) can be added.

<複素環化合物>
本発明の研磨用砥粒分散液については、被研磨基材に金属が含まれる場合に、金属に不動態層または溶解抑制層を形成させて、被研磨基材の侵食を抑制する目的で、複素環化合物を含有させても構わない。ここで、「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子、または水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、およびホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾールなどを用いることができる。より具体的には、1,2,3,4-テトラゾール、5-アミノ-1,2,3,4-テトラゾール、5-メチル-1,2,3,4-テトラゾール、1,2,3-トリアゾール、4-アミノ-1,2,3-トリアゾール、4,5-ジアミノ-1,2,3-トリアゾール、1,2,4-トリアゾール、3-アミノ1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾールなどを挙げることができるが、これらに限定されるものではない。
<Heterocyclic compound>
The abrasive grain dispersion liquid of the present invention has the purpose of forming a passivation layer or a dissolution suppressing layer on the metal when the base material to be polished contains a metal to suppress erosion of the base material to be polished. Heterocyclic compounds may be contained. Here, the "heterocyclic compound" is a compound having a heterocycle containing one or more heteroatoms. Heteroatom means an atom other than a carbon atom or a hydrogen atom. The heterocycle means a cyclic compound having at least one heteroatom. Heteroatoms refer only to the atoms that form the constituents of the heterocyclic ring system, and may be located outside the ring system, separated from the ring system by at least one unconjugated single bond, or the ring system. It does not mean an atom that is part of a further substituent of. Preferred heteroatoms include, but are not limited to, nitrogen atoms, sulfur atoms, oxygen atoms, selenium atoms, tellurium atoms, phosphorus atoms, silicon atoms, and boron atoms. As an example of the heterocyclic compound, imidazole, benzotriazole, benzothiazole, tetrazole and the like can be used. More specifically, 1,2,3,4-tetrazole, 5-amino-1,2,3,4-tetrazole, 5-methyl-1,2,3,4-tetrazole, 1,2,3- Triazole, 4-amino-1,2,3-triazole, 4,5-diamino-1,2,3-triazole, 1,2,4-triazole, 3-amino1,2,4-triazole, 3,5 -Diamino-1,2,4-triazole and the like can be mentioned, but the present invention is not limited thereto.

本発明の研磨用砥粒分散液に複素環化合物を配合する場合の含有量については、0.001~1.0質量%であることが好ましく、0.001~0.7質量%であることがより好ましく、0.002~0.4質量%であることがさらに好ましい。 The content of the heterocyclic compound in the abrasive grain dispersion for polishing of the present invention is preferably 0.001 to 1.0% by mass, preferably 0.001 to 0.7% by mass. Is more preferable, and 0.002 to 0.4% by mass is further preferable.

<pH調整剤>
上記各添加剤の効果を高めるためなどに必要に応じて酸または塩基およびそれらの塩類化合物を添加して研磨用組成物のpHを調節することができる。
<pH adjuster>
The pH of the polishing composition can be adjusted by adding an acid or a base and a salt compound thereof, if necessary, in order to enhance the effect of each of the above additives.

本発明の研磨用砥粒分散液をpH7以上に調整するときは、pH調整剤として、アルカリ性のものを使用する。望ましくは、水酸化ナトリウム、アンモニア水、炭酸アンモニウム、エチルアミン、メチルアミン、トリエチルアミン、テトラメチルアミンなどのアミンが使用される。 When adjusting the polishing abrasive grain dispersion of the present invention to pH 7 or higher, an alkaline pH adjusting agent is used. Desirably, amines such as sodium hydroxide, aqueous ammonia, ammonium carbonate, ethylamine, methylamine, triethylamine, tetramethylamine and the like are used.

本発明の研磨用砥粒分散液をpH7未満に調整するときは、pH調整剤として、酸性のものが使用される。例えば、酢酸、乳酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸などのヒドロキシ酸類の様な、塩酸、硝酸などの鉱酸が使用される。 When the polishing abrasive grain dispersion of the present invention is adjusted to a pH of less than 7, an acidic pH adjusting agent is used. For example, mineral acids such as hydrochloric acid and nitric acid such as hydroxy acids such as acetic acid, lactic acid, citric acid, malic acid, tartaric acid and glyceric acid are used.

<pH緩衝剤>
本発明の研磨用砥粒分散液のpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和水などのリン酸塩およびホウ酸塩または有機酸塩などを使用することができる。
<pH buffer>
A pH buffer may be used to keep the pH value of the abrasive grain dispersion for polishing of the present invention constant. As the pH buffering agent, for example, phosphates such as ammonium dihydrogen phosphate, diammonium hydrogen phosphate, ammo tetrahydrate tetrahydrate, and borates or organic acid salts can be used.

また、本発明の研磨用砥粒分散液の分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n-ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2-ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、3,4-ジヒドロ-2H-ピランなどのエーテル類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2-メトキシエチルアセテート、2-エトキシエチルアセテート、2-ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2-ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N-メチル-2-ピロリドン、N-オクチル-2-ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。 Further, as the dispersion solvent of the abrasive grain dispersion liquid for polishing of the present invention, for example, alcohols such as methanol, ethanol, isopropanol, n-butanol, methylisocarbinol; acetone, 2-butanone, ethyl amylketone, diacetone alcohol, etc. Ketones such as isophorone and cyclohexanone; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, 3,4-dihydro-2H-pyran and the like. Ethers; Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether; Glycol ether acetates such as 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate Kind; Ethers such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, ethylene carbonate; Fragrant hydrocarbons such as benzene, toluene, xylene; Fat group hydrocarbons such as hexane, heptane, isooctane, cyclohexane Classes; halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, chlorbenzene; sulfoxides such as dimethylsulfoxide; pyrrolidones such as N-methyl-2-pyrrolidone, N-octyl-2-pyrrolidone. And other organic solvents can be used. These may be mixed with water and used.

本発明の研磨用砥粒分散液に含まれる固形分濃度は0.3~55質量%の範囲にあることが好ましい。この固形分濃度が低すぎると研磨速度が低下する可能性がある。逆に固形分濃度が高すぎても研磨速度はそれ以上向上する場合は少ないので、不経済となり得る。 The solid content concentration contained in the abrasive grain dispersion liquid for polishing of the present invention is preferably in the range of 0.3 to 55% by mass. If this solid content concentration is too low, the polishing rate may decrease. On the contrary, even if the solid content concentration is too high, the polishing rate is rarely improved further, which may be uneconomical.

<本発明の研磨用砥粒分散液の製造方法>
次に、本発明の研磨用砥粒分散液の製造方法を具体的に説明する。
<Manufacturing Method of Abrasive Grain Dispersion Liquid for Polishing of the Present Invention>
Next, a method for producing the abrasive grain dispersion liquid for polishing of the present invention will be specifically described.

これは、シリカ系ゲルをアルカリ性下で湿式解砕して高異形シリカ系ゲルからなる粒子を含む溶液にする工程aと、前記高異形シリカ系ゲルからなる粒子を含む溶液にアルカリ性下で珪酸液を添加して加温し、前記高異形シリカ系ゲルからなる粒子の一次粒子間を前記珪酸液に含まれる珪酸との反応によって埋めながら高い異形度のまま粒子を成長させて異形シリカ系粒子を含むシリカ系粒子群にする工程bと、成長した前記異形シリカ系粒子を含むシリカ系粒子群を濃縮して、回収する工程cと、前記工程で得られたシリカ系粒子群を含むシリカ系粒子分散液に特定のポリカルボン酸からなる分散液を分散させる工程dとを備える方法である。 This includes a step a of wet crushing the silica-based gel under alkaline conditions to obtain a solution containing particles composed of highly deformed silica-based gels, and a silicate solution under alkaline conditions in the solution containing particles composed of the highly deformed silica-based gels. Is added and heated, and the particles are grown with a high degree of deformation while filling the space between the primary particles of the particles made of the highly deformed silica-based gel by the reaction with the silicic acid contained in the silicic acid solution to grow the deformed silica-based particles. A step b for forming a silica-based particle group containing the silica-based particle group, a step c for concentrating and recovering the silica-based particle group containing the grown irregular silica-based particle group, and a silica-based particle group containing the silica-based particle group obtained in the above step. This method includes a step d of dispersing a dispersion liquid made of a specific polycarboxylic acid in the dispersion liquid.

〔工程a〕
この工程は、出発原料としてシリカ系ゲルを用いる。シリカ系ゲルはシリカ系のゲルであれば、シリカゲルだけでなく、シリカ・アルミナゲル、シリカ・チタニアゲル、シリカ・ジルコニアゲルなどの複合体ゲルであっても構わない。またゲルの状態は、ヒドロゲルであってもキセロゲルであっても、オルガノゲルであっても構わない。そして、このようなシリカ系ゲルをアルカリ性下で湿式解砕して、高異形シリカ系ゲルからなる粒子を含む溶液にする工程である。シリカ系ゲルを粉砕してシード粒子として使用することによって、このシード粒子は高い異形度を備えたシリカゲルとなり、また、このシード粒子は真球状のものがほとんど得られず、高異形粒子となる。
そして、後の工程bにおいて、添加する珪酸液が高異形シリカ系ゲルからなる粒子(シード粒子)のシリカ表面および内部に侵入しながら沈積し、一次粒子間の細孔と優先的に反応して該細孔が埋められながら、粒子外表面にシリカが沈着して、粒子の成長を促す(以下の説明において、これをビルドアップという)。このビルドアップによって、粒子外表面の凸部はより外径の増加に寄与し、凹部は外形への寄与が小さいので、成長粒子の強度が高くなると共に粒子の異形が崩れるのが抑制され、高い異形度を備えた異形シリカ系粒子を製造することができる。
[Step a]
This step uses a silica-based gel as a starting material. The silica-based gel may be a composite gel such as silica-alumina gel, silica-titania gel, or silica-zirconia gel as long as it is a silica-based gel. The gel state may be hydrogel, xerogel, or organogels. Then, such a silica-based gel is wet-crushed under alkaline conditions to obtain a solution containing particles composed of a highly deformed silica-based gel. By pulverizing the silica-based gel and using it as seed particles, the seed particles become silica gel having a high degree of deformation, and the seed particles are hardly spherical and become highly deformed particles.
Then, in the subsequent step b, the silicic acid solution to be added deposits while invading the silica surface and the inside of the particles (seed particles) made of highly deformed silica-based gel, and reacts preferentially with the pores between the primary particles. While the pores are filled, silica is deposited on the outer surface of the particles to promote the growth of the particles (this is referred to as build-up in the following description). By this build-up, the convex part of the outer surface of the particle contributes to the increase of the outer diameter more, and the concave part contributes less to the outer shape, so that the strength of the grown particle is increased and the deformation of the particle is suppressed, which is high. It is possible to produce irregularly shaped silica-based particles having a degree of irregularity.

また、本発明では製造原料として比表面積が比較的大きく(典型的には100m2/g以上)、一次径が比較的小さな(典型的には27nm以下)シリカ系ゲルを用いているため、その強度は強い。そのため、シリカ系ゲルを重量平均粒子径が数百nmとなるように微細化の目的で粉砕を繰り返す。なお、粉砕時に数十nm程度の微粒も同時に発生する。したがって、シリカ系ゲルを製造原料として使用した場合、その粉砕によって得られた粒子は小粒子から大粒子まで幅広い。そのため、本発明のシリカ系粒子群は、重量平均粒子径が大きく、微粒も同時に備えるため、歪度および尖度が高くなる。 Further, in the present invention, a silica-based gel having a relatively large specific surface area (typically 100 m 2 / g or more) and a relatively small primary diameter (typically 27 nm or less) is used as a manufacturing raw material. The strength is strong. Therefore, the silica-based gel is repeatedly pulverized for the purpose of miniaturization so that the weight average particle size is several hundred nm. At the time of pulverization, fine particles of about several tens of nm are also generated at the same time. Therefore, when a silica-based gel is used as a raw material for production, the particles obtained by the pulverization range from small particles to large particles. Therefore, the silica-based particle group of the present invention has a large weight average particle diameter and also has fine particles at the same time, so that the skewness and the kurtosis are high.

ここで製造原料として使用するシリカ系ゲルは、解砕され易いゲルが好ましく、例えば、水ガラス法のゲルを洗浄したウエットのヒドロゲルや、そのヒドロゲル等を乾燥して得られる乾燥シリカゲル、キセロゲル、ホワイトカーボン、沈降法シリカ、沈降法ゲルタイプシリカ、ゲル法シリカ、アルコキシド法によるゲルなどが好ましい。アルコキシド法によるゲルは、脱水縮合する水酸基が少ないためその乾燥パウダーは軟らかく、生産性の良い乾燥パウダーとして用いることができる。シリカ系ゲルを解砕して得られる異形シリカ系ゲルからなる粒子の粒度分布は、一定範囲に制御されていることが好ましく、解砕し難い大きなゲルの塊であると、粗大粒子の解砕に時間がかかるため好ましくない。 The silica-based gel used as a raw material for production is preferably a gel that is easily crushed. For example, a wet hydrogel obtained by washing a gel of a water glass method, a dry silica gel obtained by drying the hydrogel, or a white gel. Carbon, precipitation method silica, precipitation method gel type silica, gel method silica, gel by alkoxide method and the like are preferable. Since the gel obtained by the alkoxide method has few hydroxyl groups that dehydrate and condense, the dry powder is soft and can be used as a highly productive dry powder. The particle size distribution of the particles composed of the irregular silica gel obtained by crushing the silica gel is preferably controlled within a certain range, and if it is a large gel mass that is difficult to crush, the coarse particles are crushed. It is not preferable because it takes time.

本発明で使用するシリカ系ゲルは、比表面積が100~600m2/gの範囲が好ましい。比表面積が100m2/gより小さいと、シリカ系ゲルの一次粒子間の細孔が少ないため、解砕して得た異形シリカ系ゲルからなる粒子を含む溶液に珪酸液を添加したときに、異形シリカ系ゲルからなる粒子の一次粒子間の細孔に浸透する珪酸の量が少なく、添加した珪酸液は粒子を丸く成長させるように消費され、異形を保ち難くなる傾向がある。
また、比表面積が600m2/gより大きいと、粒子強度が強すぎて難解砕となり、粗大粒子を低減させるため、あるいは所定の粒子径に調整するために長時間の解砕が必要となり、結果的に、異形度が低くなる傾向にある。
またシリカ系ゲルのサイズ(粒子径)は、1μm~10mmの範囲が望ましい。
The silica-based gel used in the present invention preferably has a specific surface area in the range of 100 to 600 m 2 / g. When the specific surface area is smaller than 100 m 2 / g, the pores between the primary particles of the silica-based gel are small. The amount of silicic acid that permeates the pores between the primary particles of the irregularly shaped silica-based gel is small, and the added silicic acid solution is consumed so as to grow the particles in a round shape, which tends to make it difficult to maintain the irregular shape.
If the specific surface area is larger than 600 m 2 / g, the particle strength is too strong and difficult to crush, and long-time crushing is required to reduce coarse particles or to adjust the particle size to a predetermined size. In particular, the degree of deformation tends to be low.
The size (particle size) of the silica-based gel is preferably in the range of 1 μm to 10 mm.

そして、前記シリカ系ゲルは、アルカリ性下で湿式解砕して高異形シリカ系ゲルからなる粒子にするが、特に比表面積が100~600m2/g程度のシリカ系ゲルをビーズミルなどの強いシェアの下で変形と解砕を同時に行うことによって、異形シリカ系ゲルからなる粒子を高い異形度を備えた粒子に調製できる。解砕は、例えば、ガラスメジアを入れたサンドミル粉砕機やビーズミルなどを用いると良い。解砕はできるだけ短い時間で行うのが好ましい。 The silica-based gel is wet-crushed under alkaline conditions to form particles composed of a highly deformed silica-based gel. In particular, a silica-based gel having a specific surface area of about 100 to 600 m 2 / g has a strong share such as a bead mill. By simultaneously deforming and crushing underneath, particles made of atypical silica-based gel can be prepared into particles having a high degree of atypical. For crushing, for example, a sand mill crusher containing a glass medium or a bead mill may be used. Crushing is preferably performed in the shortest possible time.

通常、ビーズミルなどで粉体を粉砕する場合には、粉砕時間に比例して粉体の粒子径が小さくなるが、比表面積が大きく(典型的には100m2/g以上)、一次径が小さな(典型的には27nm以下)シリカ系ゲルを重量平均粒子径が40~550nm程度の粒子に解砕すると、この高異形シリカ系ゲルからなる粒子は解砕前の比表面積を保ったまま、一次粒子間のネックをかなり多く含んだ粗な構造を有している。従って、この粒子をそのまま研磨材として用いても、強度不足のため崩れやすく、実用可能な研磨速度は得られない。
そこで、本発明では、後の工程bにおいて、高異形シリカ系ゲルからなる粒子を含む溶液に珪酸液を添加して、異形シリカ系ゲルからなる粒子内部の一次粒子間の細孔を珪酸液でビルドアップして埋めることによって粒子の強度を高めている。ここで、ビルドアップに使用する珪酸液は、アルコキシド由来であっても、珪酸ナトリウム由来であっても、珪酸アミンであっても構わない。また一次粒子間を埋めることができれば珪酸に限定されず、珪酸のアルカリ塩、アルカリ土類塩などの珪酸塩類であっても構わない。
Normally, when powder is crushed with a bead mill or the like, the particle size of the powder becomes smaller in proportion to the crushing time, but the specific surface area is large (typically 100 m 2 / g or more) and the primary diameter is small. When the silica-based gel (typically 27 nm or less) is crushed into particles having a weight average particle diameter of about 40 to 550 nm, the particles made of this highly deformed silica-based gel are primary while maintaining the specific surface area before crushing. It has a coarse structure containing a considerable number of necks between particles. Therefore, even if these particles are used as they are as an abrasive, they tend to collapse due to insufficient strength, and a practical polishing rate cannot be obtained.
Therefore, in the present invention, in the subsequent step b, the silicic acid solution is added to the solution containing the particles made of the highly deformed silica gel, and the pores between the primary particles inside the particles made of the deformed silica gel are filled with the silicic acid solution. The strength of the particles is increased by building up and filling. Here, the silicic acid solution used for build-up may be derived from alkoxide, sodium silicate, or amine silicate. Further, it is not limited to silicic acid as long as it can fill the space between the primary particles, and may be silicic acid salts such as an alkaline salt of silicic acid and an alkaline earth salt.

工程aにおいて、シリカ系ゲルはアルカリ性下、つまりアルカリ性条件で湿式解砕し、そのアルカリ性はpH8.0~11.5の範囲が好ましい。pHがアルカリ領域より下がるにつれて徐々にマイナスの電位が下がり、中性領域~酸性領域では不安定になるため、解砕により生じた粒子が安定に存在できずに直ぐ凝集してしまう傾向がある。また、pHが11.5超であるとシリカの溶解が促進されるため、やはり凝集する傾向がある。前記湿式解砕時のpHは好適には、8.5~11.0の範囲が推奨される。
なお、ここでpHを調整する方法は特に限定されない。例えば水酸化ナトリウムなどを添加して調整することができる。
In step a, the silica-based gel is wet-crushed under alkaline conditions, that is, under alkaline conditions, and the alkalinity is preferably in the range of pH 8.0 to 11.5. As the pH drops below the alkaline region, the negative potential gradually decreases and becomes unstable in the neutral to acidic regions, so that the particles generated by crushing cannot exist stably and tend to aggregate immediately. Further, when the pH is higher than 11.5, the dissolution of silica is promoted, so that the silica tends to aggregate. The pH at the time of wet crushing is preferably in the range of 8.5 to 11.0.
The method of adjusting the pH here is not particularly limited. For example, it can be adjusted by adding sodium hydroxide or the like.

前記湿式解砕により得られた高異形シリカ系ゲルからなる粒子の重量平均粒子径は40~550nmの範囲であることが好ましい。高異形シリカ系ゲルからなる粒子の重量平均粒子径が40nmより小さいと、その後、珪酸液を添加して粒子を成長させても、研磨材に適する大きさの粒子径にするのが難しい場合がある。また、高異形シリカ系ゲルからなる粒子の重量平均粒子径が550nmより大きいと、研磨材に適する粒子径を超える場合があるのであまり好ましくない。このような研磨材に適する粒子径を超える粗大な粒子は、スクラッチの原因となる可能性がある。解砕によって粗大粒子や大粒子は優先的に解砕される傾向にあるが、高異形シリカ系ゲルに残存した粗大粒子を除去することを目的として、遠心分離を行っても構わない。前記高異形シリカ系ゲルからなる粒子の重量平均粒子径は好ましくは60~400nmの範囲が推奨される。 The weight average particle diameter of the particles made of the highly deformed silica-based gel obtained by the wet crushing is preferably in the range of 40 to 550 nm. If the weight average particle size of the particles made of a highly deformed silica-based gel is smaller than 40 nm, it may be difficult to obtain a particle size suitable for the abrasive even if the particles are subsequently added with a silicic acid solution to grow the particles. be. Further, if the weight average particle size of the particles made of the highly deformed silica-based gel is larger than 550 nm, the particle size suitable for the abrasive may be exceeded, which is not so preferable. Coarse particles larger than the particle size suitable for such abrasives can cause scratches. Although coarse particles and large particles tend to be preferentially crushed by crushing, centrifugation may be performed for the purpose of removing the coarse particles remaining in the highly deformed silica-based gel. The weight average particle size of the particles made of the highly deformed silica-based gel is preferably in the range of 60 to 400 nm.

ここで高異形シリカ系ゲルからなる粒子の重量平均粒子径は、前述のシリカ系粒子群の重量平均粒子径(D1)と同様の方法によって測定して得た値を意味するものとする。 Here, the weight average particle size of the particles made of the highly deformed silica-based gel means a value obtained by measuring by the same method as the weight average particle size (D 1 ) of the silica-based particle group described above.

なお、この解砕は、材質、大きさの異なるメジアで多段階に行うことができる。例えば、シリカ系ゲルをサイズの大きなジルコニアメジアで解砕を行うと、強い剪断力により、高速で短時間に1段目解砕を行うことができる。次に1段目よりもサイズの小さなガラスメジアで2段目の解砕を行うと、中程度の剪断力によって解砕が進行し、所望の粒子径に調整することができる。この際、一次粒子間の強度の弱い部分から破壊されるため、微細化と同時に形状の異形化が生じる傾向にある。またアルカリ性条件下での湿式解砕であるため、高異形シリカ系ゲルからなる粒子の一部が溶解し、一次粒子間のネック部を優先的に埋めることができるため、解砕時には過度な微細化は進まない。 This crushing can be performed in multiple stages using media of different materials and sizes. For example, when a silica-based gel is crushed with a large-sized zirconia medium, the first-stage crushing can be performed at high speed and in a short time due to a strong shearing force. Next, when the second stage of crushing is performed with a glass medium having a size smaller than that of the first stage, the crushing proceeds with a moderate shearing force, and the particle size can be adjusted to a desired value. At this time, since the primary particles are destroyed from the weak portion, the shape tends to be deformed at the same time as the miniaturization. In addition, since the wet crushing is performed under alkaline conditions, some of the particles made of highly deformed silica-based gel are dissolved, and the neck portion between the primary particles can be preferentially filled, so that the particles are excessively fine during crushing. The conversion does not progress.

〔工程b〕
この工程は、高異形シリカ系ゲルからなる粒子を含む溶液にアルカリ性下で珪酸液を添加して加温し、高異形シリカ系ゲルからなる粒子の一次粒子間の細孔を珪酸との反応によって埋めると共に異形のまま粒子を成長させるビルドアップ工程である。前記高異形シリカ系ゲルからなる粒子を含む溶液のSiO2濃度は、1~10質量%の範囲が好ましい。高異形シリカ系ゲルからなる粒子を含む溶液のSiO2濃度が1質量%より少ないと、異形シリカ系粒子を製造する効率が低下する傾向がある。また、SiO2濃度が10質量%より多いと、微小シリカ核が発生し、異形シリカ系粒子の粒子成長が不均一になりやすい傾向がある。
なお、この工程bは、高異形シリカ系ゲルからなる粒子を水熱処理しながら珪酸液を添加する方法で行ってもよい。この方法では、添加した珪酸液によって過飽和となり、さらに粒子の一部の溶解も生じながら、シリカが沈着して粒子成長するが、一次粒子間のネック部は溶解よりも沈着速度が早いため、一次粒子間の細孔が優先的に埋まっていく。
[Step b]
In this step, a silicic acid solution is added to a solution containing particles made of a highly deformed silica gel under alkaline conditions to heat the solution, and the pores between the primary particles of the particles made of the highly deformed silica gel are reacted with silicic acid. It is a build-up process that grows particles while filling them in a deformed shape. The SiO 2 concentration of the solution containing the particles composed of the highly deformed silica-based gel is preferably in the range of 1 to 10% by mass. If the SiO 2 concentration of the solution containing the particles composed of the highly deformed silica-based gel is less than 1% by mass, the efficiency of producing the deformed silica-based particles tends to decrease. Further, when the SiO 2 concentration is more than 10% by mass, fine silica nuclei are generated, and the particle growth of the irregular silica-based particles tends to be non-uniform.
In addition, this step b may be performed by a method of adding a silicic acid solution while hydrothermally treating particles made of a highly deformed silica-based gel. In this method, the added silicic acid solution causes supersaturation, and while some particles are dissolved, silica is deposited and the particles grow. However, the neck portion between the primary particles has a faster deposition rate than the dissolution, so that the primary particles are deposited. The pores between the particles are preferentially filled.

前記加温温度は60℃~170℃の範囲が好ましい。60℃より低いと高異形シリカ系ゲルからなる粒子の成長が遅い傾向があり、170℃より高いと得られる異形シリカ系粒子が球状になりやすいからである。前記加温温度は、より好適には60℃~100℃の範囲が推奨される。 The heating temperature is preferably in the range of 60 ° C to 170 ° C. This is because if the temperature is lower than 60 ° C, the growth of the particles made of the highly deformed silica gel tends to be slow, and if the temperature is higher than 170 ° C, the obtained deformed silica particles tend to be spherical. The heating temperature is more preferably in the range of 60 ° C to 100 ° C.

さらに、高異形シリカ系ゲルからなる粒子を含む溶液に珪酸液を添加する時のpHは9~12.5の範囲が好ましい。pHが9未満ではシリカの溶解度が低いため、過飽和度が著しく高くなり、添加した珪酸液は粒子成長に消費されずに微粒子として生成し易い。また負に帯電した粒子の表面電位もゼロに近づくため、粒子が凝集し易くなる。さらに、水酸基の解離が不十分なので一次粒子との反応性が低下し、ネック部の補強が十分でなくなる。また、pH12.5より高いとシリカの溶解が促進される可能性がある。 Further, the pH when the silicic acid solution is added to the solution containing the particles composed of the highly deformed silica-based gel is preferably in the range of 9 to 12.5. When the pH is less than 9, the solubility of silica is low, so that the degree of supersaturation becomes extremely high, and the added silicic acid solution is not consumed for particle growth and tends to be produced as fine particles. Further, since the surface potential of the negatively charged particles also approaches zero, the particles tend to aggregate. Further, since the dissociation of the hydroxyl group is insufficient, the reactivity with the primary particles is lowered, and the reinforcement of the neck portion is not sufficient. Further, if the pH is higher than 12.5, the dissolution of silica may be promoted.

高異形シリカ系ゲルからなる粒子を含む溶液は、pHを前述の範囲とするために、必要に応じてpHを調整する。調整手段は格別に制限されるものではないが、通常はアルカリ性物質を添加して調整する。この様なアルカリ性物質の例としては、水酸化ナトリウム、水ガラス、アミン類などを挙げることができる。高異形シリカ系ゲルからなる粒子を含む溶液に珪酸液を添加する時のpHとして好適には、9.0~12.5の範囲が推奨される。 The pH of the solution containing the particles of the highly deformed silica-based gel is adjusted as necessary in order to keep the pH in the above range. The adjusting means is not particularly limited, but it is usually adjusted by adding an alkaline substance. Examples of such alkaline substances include sodium hydroxide, water glass, amines and the like. The pH when the silicic acid solution is added to the solution containing the particles of the highly deformed silica gel is preferably in the range of 9.0 to 12.5.

珪酸液の添加量は、前記高異形シリカ系ゲルからなる粒子を含む溶液のSiO2モル濃度に対して該珪酸液のSiO2モル濃度が0.5~20モル倍になる範囲が好ましい。珪酸液の添加量が前記範囲より少ないと、一次粒子間の強度を十分に高めることができないため、粒子の強度が低下する傾向にあるからである。また珪酸液などを添加して、粒子成長させると、通常、異形度やアスペクト比が低下するが、珪酸液の添加量が前記範囲よりも多いと、粒子の異形度が著しく低下し、所望の異形度が保てなくなる傾向にあるからである。
また、珪酸液は連続的または断続的に添加することが望ましい。
The amount of the silicic acid solution added is preferably in a range in which the SiO 2 molar concentration of the silicic acid solution is 0.5 to 20 mol times the SiO 2 molar concentration of the solution containing the particles of the highly deformed silica-based gel. This is because if the amount of the silicic acid solution added is less than the above range, the strength between the primary particles cannot be sufficiently increased, so that the strength of the particles tends to decrease. Further, when the particles are grown by adding a silicic acid solution or the like, the degree of deformation and the aspect ratio are usually lowered, but when the amount of the silicic acid solution added is larger than the above range, the degree of deformation of the particles is significantly lowered, which is desired. This is because the degree of irregularity tends to be unmaintainable.
Further, it is desirable to add the silicic acid solution continuously or intermittently.

珪酸液は、高異形シリカ系ゲルからなる粒子の一次粒子間の細孔を通じて粒子内部に浸透し、該粒子のネック部に沈着し比表面積を小さくすることで、該粒子の強度を高める。この工程bによって得られる異形シリカ系粒子を含むシリカ系粒子群の比表面積は、182m2/g以下、より好ましくは比表面積9m2/g~182m2/gの範囲にすることが望ましい。異形シリカ系ゲルからなる粒子の比表面積が182m2/gより大きいと、得られる異形シリカ系粒子のサイズが小さ過ぎるため、研磨速度が遅くなる傾向にある。
なお、異形シリカ系ゲルからなる粒子の比表面積は、後記の実施例の「比表面積の測定」に記したとおり、BET法によって測定する。
The silicic acid solution permeates the inside of the particles through the pores between the primary particles of the particles made of a highly deformed silica-based gel, and deposits on the neck portion of the particles to reduce the specific surface area, thereby increasing the strength of the particles. The specific surface area of the silica-based particle group including the deformed silica-based particles obtained by this step b is preferably 182 m 2 / g or less, more preferably in the range of 9 m 2 / g to 182 m 2 / g. If the specific surface area of the particles made of the irregular silica gel is larger than 182 m 2 / g, the size of the obtained irregular silica particles is too small, and the polishing rate tends to be slow.
The specific surface area of the particles made of the irregular silica gel is measured by the BET method as described in "Measurement of specific surface area" of the examples described later.

外部から滴下される珪酸液は、液相から一様に異形シリカ系ゲルの表面に降り注ぎ、異形シリカ系ゲルからなる粒子の外表面に結合して粒子の外形を成長させるので、異形を保ったままで粒子径の大きな異形シリカ系粒子を得ることができる。粒子成長後の異形シリカ系粒子の粒子径は、重量平均粒子径50~600nmの範囲となることが好ましい。ここで異形シリカ系粒子の重量平均粒子径は、前述のシリカ系粒子群の重量平均粒子径(D1)と同様の方法によって測定して得た値を意味するものとする。 The silicic acid solution dropped from the outside uniformly falls from the liquid phase onto the surface of the deformed silica gel and binds to the outer surface of the particles made of the deformed silica gel to grow the outer shape of the particles, so that the deformed shape is maintained. It is possible to obtain irregular silica-based particles having a large particle size. The particle size of the deformed silica-based particles after the particle growth is preferably in the range of a weight average particle size of 50 to 600 nm. Here, the weight average particle diameter of the irregularly shaped silica-based particles means a value obtained by measuring by the same method as the weight average particle diameter (D 1 ) of the silica-based particle group described above.

〔工程c〕
この工程は、成長した異形シリカ系粒子を含むシリカ系粒子群を濃縮し、回収する工程である。具体的には、例えば、成長した異形シリカ系粒子を含む溶液を室温~40℃程度に冷却し、限外ろ過膜などを用いて濃縮し、エバポレータなどを用いてさらに濃縮して残ったシリカ系粒子群を回収すればよい。さらに粗大な粒子を除去するために、遠心分離をしてもよい。乾燥による粗大な凝集塊が生じ難いという観点から、濃縮は、限外ろ過膜による濃縮が好ましい。
[Step c]
This step is a step of concentrating and recovering a group of silica-based particles containing grown irregular silica-based particles. Specifically, for example, a solution containing grown irregular silica-based particles is cooled to about room temperature to 40 ° C., concentrated using an ultrafiltration membrane or the like, and further concentrated using an evaporator or the like to remain silica-based. All you have to do is collect the particles. Centrifugation may be performed to remove even coarser particles. From the viewpoint that coarse agglomerates are unlikely to occur due to drying, concentration by an ultrafiltration membrane is preferable.

〔工程d〕
前工程で得られたシリカ系粒子群を含むシリカ系粒子分散液に、前記の特定のカルボン酸塩からなる分散剤を添加し攪拌して本発明の研磨用砥粒分散液を得ることができる。ここで攪拌条件としては、室温で卓上撹拌装置を使用して、1時間ほど撹拌する程度で構わない。
[Step d]
The abrasive grain dispersion for polishing of the present invention can be obtained by adding a dispersant composed of the above-mentioned specific carboxylate to the silica-based particle dispersion containing the silica-based particle group obtained in the previous step and stirring the mixture. .. Here, the stirring condition may be about 1 hour using a tabletop stirring device at room temperature.

以下、本発明の実施例を比較例と共に示す。なお、実施例および比較例において、
研磨用砥粒分散液における砥粒の沈降率、残存率、砥粒の再分散率およびポリカルボン酸塩の分子量等の測定、ならびに、シリカ系粒子群の比表面積の測定、比表面積換算平均粒子径(D2)の算出、重量平均粒子径(D1)の測定、体積基準粒子径分布における歪度・尖度の算出、体積基準粒子径分布の波形分離、体積基準粒子径分布における体積の測定、小粒子側成分のアスペクト比算出、変動係数の算出、平均面積(S1)・平均外周長と等価な円の面積(S2)の測定・算出、シリカ系ゲルのサイズの測定、異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を含むシリカ系粒子分散液に含まれる、異形シリカ系粒子の割合の測定および研磨試験は以下のように行った。
Hereinafter, examples of the present invention will be shown together with comparative examples. In the examples and comparative examples,
Measurement of abrasive grain sedimentation rate, residual rate, abrasive grain redispersion rate, molecular weight of polycarboxylate, etc. in abrasive grain dispersion liquid for polishing, measurement of specific surface area of silica-based particle group, specific surface area conversion average particle Calculation of diameter (D 2 ), measurement of weight average particle diameter (D 1 ), calculation of strain / sharpness in volume-based particle diameter distribution, waveform separation of volume-based particle diameter distribution, volume in volume-based particle diameter distribution Measurement, aspect ratio calculation of small particle side component, calculation of fluctuation coefficient, measurement / calculation of average area (S 1 ) / area of circle equivalent to average outer circumference length (S 2 ), measurement of silica gel size, irregular shape The measurement and polishing test of the ratio of the deformed silica-based particles contained in the silica-based particle dispersion liquid containing the silica-based particles group composed of the silica-based particles and the non-deformed silica-based particles were performed as follows.

[研磨用砥粒分散液の沈降率(沈降率の定義と測定方法)]
研磨用砥粒分散液の沈降性を沈降率(%)で評価した。沈降率は全スラリー量(g)に対する沈降量(g)の割合である。
各実施例および比較例において得られた研磨用砥粒分散液500gを入れた500ml容器を1か月静置し、その後、上澄みを除去した。そして、残余を沈降分(沈降成分A)として計量し、沈降率を算出した。
[Settling rate of abrasive grain dispersion for polishing (definition and measuring method of settling rate)]
The sedimentation property of the abrasive grain dispersion for polishing was evaluated by the sedimentation rate (%). The sedimentation rate is the ratio of the sedimentation rate (g) to the total slurry volume (g).
A 500 ml container containing 500 g of the abrasive grain dispersion obtained in each Example and Comparative Example was allowed to stand for one month, and then the supernatant was removed. Then, the residue was weighed as the sedimentation component (sedimentation component A), and the sedimentation rate was calculated.

[研磨用砥粒分散液の再分散性および残存率]
沈降率算出時に除去した上澄みを500ml容器に戻し、超音波処理を1時間行い、再分散させた。そして、容器の上下を逆さとした状態で1分間静置した後、再び上澄み成分を除去した。
そして、残余を再分散できなかった沈降分(沈降成分B)として計量し、以下の式より、再分散率を求めた。
また、超音波処理後も再分散できなかった沈降分(沈降成分B)を残存固形分とし、最初に導入した全スラリー量で除して、以下の式より残存率を求めた。
・再分散率=(沈降成分A-沈降成分B)/沈降成分A
・残存率=沈降成分B/500g(全スラリー量)
[Redispersibility and residual ratio of abrasive grain dispersion for polishing]
The supernatant removed when calculating the sedimentation rate was returned to a 500 ml container, sonicated for 1 hour, and redispersed. Then, the container was allowed to stand upside down for 1 minute, and then the supernatant component was removed again.
Then, the residue was weighed as the sediment that could not be redispersed (precipitation component B), and the redispersion rate was obtained from the following formula.
Further, the sedimentation content (precipitation component B) that could not be redispersed even after the ultrasonic treatment was taken as the residual solid content, and divided by the total amount of the slurry introduced first, and the residual ratio was obtained from the following formula.
-Redispersion rate = (precipitation component A-precipitation component B) / sedimentation component A
・ Residual rate = sedimentation component B / 500g (total amount of slurry)

[ポリカルボン酸塩からなる分散剤の分子量等の測定方法の説明]
ポリカルボン酸塩からなる分散剤の重量平均分子量は、GPC測定にて求めた。測定条件は以下の通りとした。
・分析方法:GPC測定
・装置:Water社製、2695 HPLC
・カラム:Water Ultrahydrogen 500 + Water Ultrahydrogen 120 カラム温度40℃
・試料注入量:20μml
・移動相:50mlリン酸ナトリウム水溶液(pH=7):アセトニトリル=9:1、流量0.8mL/min
・検出器:Water社製 2410RI
・標準物質:ポリエチレングリコール
[Explanation of measurement method for molecular weight, etc. of dispersant composed of polycarboxylate]
The weight average molecular weight of the dispersant composed of the polycarboxylate was determined by GPC measurement. The measurement conditions were as follows.
・ Analytical method: GPC measurement ・ Equipment: Water, 2695 HPLC
・ Column: Water Ultrahydrogen 500 + Water Ultrahydrogen 120 Column temperature 40 ℃
・ Sample injection amount: 20 μml
-Mobile phase: 50 ml aqueous sodium phosphate solution (pH = 7): acetonitrile = 9: 1, flow rate 0.8 mL / min
・ Detector: Water 2410RI
・ Standard substance: Polyethylene glycol

サンプル0.2mlに重水0.4mlを加え、5分間超音波分散を行った液体を5mmφのパイレックス試料管に入れ、NMR装置(日本電子製ECZ-400R)の液体用プローブにて、Hについてシングルパルス法で測定した。パルスのフリップ角は45°、パルス繰り返し時間は5秒、積算回数は16回とした。シフト標準としてテトラメチルシランの5%重クロロホルム溶液を用い、ピーク位置を0ppmとした。得られたスペクトルについて装置に付属するソフトDeltaにて各ピークの積分比を算出した。そして、1.8~3.0ppm間の積分比をカルボニル酸素に直結する炭素源原子とし、その個数をmとし、1.0~1.8ppm間の積分比をカルボニル炭素に直結しない炭素原子とし、その個数をnとした。
このようにして求めたm、nを用いて、m/(m+n)×100を算出した。
0.4 ml of heavy water was added to 0.2 ml of the sample, and the liquid that had been ultrasonically dispersed for 5 minutes was placed in a 5 mmφ Pylex sample tube, and the liquid probe of an NMR device (ECZ-400R manufactured by JEOL Ltd.) was used for 1 H. It was measured by the single pulse method. The flip angle of the pulse was 45 °, the pulse repetition time was 5 seconds, and the number of integrations was 16. A 5% deuterated chloroform solution of tetramethylsilane was used as the shift standard, and the peak position was set to 0 ppm. For the obtained spectrum, the integration ratio of each peak was calculated by the software Delta attached to the apparatus. Then, the integral ratio between 1.8 and 3.0 ppm is defined as a carbon source atom directly connected to carbonyl oxygen, the number thereof is defined as m, and the integral ratio between 1.0 and 1.8 ppm is defined as a carbon atom not directly linked to carbonyl carbon. , The number was set to n.
Using m and n thus obtained, m / (m + n) × 100 was calculated.

[比表面積の測定]
実施例1および比較例1~3については、工程aにおいて投入する多孔質シリカゲルおよび工程bにおいて得られる異形シリカ系粒子の比表面積をBET法により測定、算出した。具体的には、測定対象物の50mlを硝酸によりpHを3.5に調整し、これに1-プロパノールを40ml加えて110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成して測定用試料とした。そして、比表面積測定装置(ユアサアイオニクス製、型番マルチソーブ12)を使用し、窒素吸着法(BET法)を用いて窒素の吸着量からBET1点法により比表面積を算出した。
比表面積測定装置では、焼成後の試料0.5gを測定セルに取り、窒素30v%/ヘリウム70v%混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させた。次いで、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により試料中のシリカ微粒子の比表面積を算出した。
[Measurement of specific surface area]
For Examples 1 and Comparative Examples 1 to 3, the specific surface areas of the porous silica gel charged in step a and the deformed silica-based particles obtained in step b were measured and calculated by the BET method. Specifically, the pH of 50 ml of the object to be measured was adjusted to 3.5 with nitric acid, 40 ml of 1-propanol was added thereto, and the sample dried at 110 ° C. for 16 hours was crushed in a mortar and then placed in a muffle furnace. It was calcined at 500 ° C. for 1 hour to prepare a sample for measurement. Then, using a specific surface area measuring device (manufactured by Yuasa Ionics, model number Multisorb 12), the specific surface area was calculated from the amount of nitrogen adsorbed by the BET 1-point method using the nitrogen adsorption method (BET method).
In the specific surface area measuring device, 0.5 g of the sample after firing is taken in a measuring cell, degassed in a mixed gas stream of nitrogen 30 v% / helium 70 v% at 300 ° C. for 20 minutes, and then the sample is subjected to the above mixed gas. The temperature was maintained at the liquid nitrogen temperature in the air stream, and nitrogen was equilibrium-adsorbed to the sample. Next, the sample temperature was gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that period was detected, and the specific surface area of the silica fine particles in the sample was calculated from a calibration curve prepared in advance.

[比表面積換算平均粒子径(D2)の算出]
上記のBET法によって測定した比表面積(SA)と、粒子の密度(ρ=2.2)を用い、D2=6000/(SA×ρ)の式から、シリカ系粒子群の比表面積換算平均粒子径(D2)を算出した。
[Calculation of average particle size (D 2 ) converted to specific surface area]
Using the specific surface area (SA) measured by the above BET method and the particle density (ρ = 2.2), the specific surface area conversion average of the silica-based particle group is obtained from the formula D 2 = 6000 / (SA × ρ). The particle size (D 2 ) was calculated.

[重量平均粒子径(D1)の測定]
シリカ系粒子分散液を0.05質量%ドデシル硫酸ナトリウム水溶液で希釈し、固形分濃度で2質量%としたものを、ディスク遠心式粒子径分布測定装置(型番:DC24000UHR、CPS instruments社製)に、0.1mlをシリンジで注入して、8~24質量%のショ糖の密度勾配溶液中で18000rpmの条件で重量平均粒子径(D1)の測定を行った。多孔質シリカ系ゲルの解砕品(異形多孔質シリカ系ゲルからなる粒子)についても、同様の方法で測定を行った。
[Measurement of weight average particle size (D 1 )]
A silica-based particle dispersion diluted with a 0.05 mass% sodium dodecyl sulfate aqueous solution to a solid content concentration of 2 mass% was used in a disk centrifugal particle size distribution measuring device (model number: DC24000UHR, manufactured by CPS instruments). , 0.1 ml was injected with a syringe, and the weight average particle size (D 1 ) was measured under the condition of 18000 rpm in a density gradient solution of 8 to 24% by mass of sucrose. The crushed product of the porous silica-based gel (particles made of the irregularly shaped porous silica-based gel) was also measured by the same method.

[体積基準粒子径分布における尖度・歪度の算出]
前述のディスク遠心式粒子径分布測定装置を用いた方法により、体積基準粒子径分布も測定した。そして、得られた体積基準粒子径分布データを使用して、SAS Institute Japan社製JMP Ver.13.2を用いて尖度および歪度を算出した。なお、体積基準粒子径粒度分布において、所定の粒子径の頻度が負の値の場合は、頻度をゼロとして算出した。
[Calculation of kurtosis / skewness in volume-based particle size distribution]
The volume-based particle size distribution was also measured by the method using the above-mentioned disk centrifugal particle size distribution measuring device. Then, using the obtained volume-based particle size distribution data, JMP Ver. Kurtosis and skewness were calculated using 13.2. In the volume-based particle size distribution, when the frequency of the predetermined particle size was a negative value, the frequency was set to zero.

[体積基準粒子径分布の波形分離]
前述の体積基準粒子径分布測定データを、グラフ作成・データ解析ソフト Origin(OriginLab Corporation社製)のピークアナライザを使用して解析した。まず、基線を0、ピークタイプをGaussianに設定し、粒度分布の極大点をピーク位置として選択して、重み付けなしでピークフィッティングを行い、算出されたピークが以下の条件1および2から逸脱していないことを確認し、逸脱している場合は、下記条件1および2を満たすまでピーク位置を分布範囲内の任意の位置にずらしてピークフィッティングを繰り返した。その後、補正R二乗値が0.99以下である場合は分布範囲内の任意の位置にピークを追加し、補正R二乗値が0.99超になるまでピークフィッティングを繰り返した。このときの分離されたピークの数をピークの個数とした。
条件1:算出されたそれぞれのピークが元の分布より大きい値を取らないこと。
条件2:算出されたそれぞれのピークが負の値を取らないこと。
[Waveform separation of volume-based particle size distribution]
The above-mentioned volume-based particle size distribution measurement data was analyzed using a peak analyzer of the graph creation / data analysis software Origin (manufactured by OriginLab Corporation). First, the baseline is set to 0, the peak type is set to Gaussian, the maximum point of the particle size distribution is selected as the peak position, peak fitting is performed without weighting, and the calculated peak deviates from the following conditions 1 and 2. It was confirmed that there was no deviation, and if it deviated, the peak position was shifted to an arbitrary position within the distribution range until the following conditions 1 and 2 were satisfied, and peak fitting was repeated. After that, when the corrected R-squared value was 0.99 or less, a peak was added at an arbitrary position in the distribution range, and peak fitting was repeated until the corrected R-squared value exceeded 0.99. The number of separated peaks at this time was taken as the number of peaks.
Condition 1: Each calculated peak does not take a value larger than the original distribution.
Condition 2: Each calculated peak does not take a negative value.

[体積基準粒子径分布における体積の測定]
シリカ系粒子群の体積基準粒子径分布における全体積(Q1)、これを波形分離した結果得られた分離ピークの各成分の体積割合、最大粒子成分の体積割合および0.7μm以上の粒子の体積(Q2)は、前述のディスク遠心式粒子径分布測定装置を用いて測定した。
[Measurement of volume in volume-based particle size distribution]
The total volume ( Q1 ) in the volume-based particle size distribution of the silica-based particle group, the volume ratio of each component of the separation peak obtained as a result of waveform separation, the volume ratio of the maximum particle component, and the volume ratio of particles of 0.7 μm or more. The volume (Q 2 ) was measured using the above-mentioned disk centrifugal particle size distribution measuring device.

[小粒子側成分のアスペクト比算出]
小粒子側成分のアスペクト比は、初めに、走査型電子顕微鏡(SEM)および画像解析システムを用いてシリカ系粒子群の総粒子数をカウントし、また、各粒子の面積を算出し、その面積と等しい面積の円の直径を求め、それを粒子径とした。そして、得られた粒子径をサイズ順にならべ、小さい側から数えて粒子個数の1/3までの粒子を小粒子側成分とし、そのアスペクト比(最小内接四角の長径/短径比)の平均値を「小粒子側成分のアスペクト比」とした。
[Aspect ratio calculation of small particle side component]
For the aspect ratio of the small particle side component, first, the total number of particles in the silica-based particle group is counted using a scanning electron microscope (SEM) and an image analysis system, and the area of each particle is calculated and the area thereof. The diameter of the circle having the same area as was obtained, and it was used as the particle diameter. Then, the obtained particle diameters are arranged in order of size, and particles up to 1/3 of the number of particles counted from the small side are used as small particle side components, and the aspect ratio (major axis / minor axis ratio of the minimum inscribed square) is averaged. The value was set as "aspect ratio of small particle side component".

[変動係数の算出]
シリカ系粒子群の体積基準粒子径分布の粒子径の変動係数は、前述の体積基準粒子径分布測定データからそれぞれの標準偏差および平均値を算出し、この標準偏差を前記平均値で割り、これを百分率で示すことにより算出した。
[Calculation of coefficient of variation]
For the coefficient of variation of the particle size of the volume-based particle size distribution of the silica-based particle group, each standard deviation and average value are calculated from the above-mentioned volume-based particle size distribution measurement data, and this standard deviation is divided by the average value. Was calculated by showing the percentage.

[平均面積(S1)・平均外周長と等価な円の面積(S2)の測定・算出]
シリカ系粒子群における平均面積(S1)および平均外周長と等価な円の面積(S2)の測定は、画像解析法により行った。具体的には、まず走査型電子顕微鏡(SEM)を用いて、シリカ系粒子表面の任意の箇所を、倍率3000倍で1視野当たり1.1×10-3mm2の面積で15視野撮影した。そして、この各視野において撮影された個々の画像に含まれる全てのシリカ微粒子について、画像解析システムを用いた画像解析法によってそれぞれ面積および外周長を測定し、この測定された各面積および各外周長データから平均面積(S1)および平均外周長(単純平均値)を算出し、さらにこの平均外周長から、平均外周長と等価な円(平均外周長と同じ円周である円)の面積(S2)を算出した。
[Measurement / calculation of the area of a circle (S 2 ) equivalent to the average area (S 1 ) / average outer circumference length]
The measurement of the average area (S 1 ) and the area of the circle equivalent to the average outer peripheral length (S 2 ) in the silica-based particle group was performed by an image analysis method. Specifically, first, using a scanning electron microscope (SEM), an arbitrary part of the surface of silica-based particles was photographed in 15 fields with an area of 1.1 × 10 -3 mm 2 per field at a magnification of 3000 times. .. Then, the area and the outer peripheral length of all the silica fine particles contained in the individual images taken in each of the visual fields are measured by an image analysis method using an image analysis system, and the measured areas and the outer peripheral lengths are measured. The average area (S 1 ) and the average outer circumference length (simple average value) are calculated from the data, and from this average outer circumference length, the area of the circle equivalent to the average outer circumference length (the circle having the same circumference as the average outer circumference length) ( S 2 ) was calculated.

[シリカ系ゲルのサイズ測定方法]
シリカ系ゲルのサイズ測定は、HORIBA社製LA-950を用いて、以下の測定条件により行った。
LA-950V2のバージョンは7.02、アルゴリズムオプションは標準演算、固体の屈折率1.450、溶媒(純水)の屈折率1.333、反復回数は15回、サンプル投入バスの循環速度は5、撹拌速度は2とし、あらかじめこれらを設定した測定シーケンスを使用して測定を行った。そして、測定サンプルをスポイトを使用して原液のまま装置のサンプル投入口に投入した。ここで、透過率(R)の数値が90%になるように投入した。そして、透過率(R)の数値が安定した後、超音波を5分間照射し粒子径の測定を行った。
[Silica gel size measurement method]
The size of the silica-based gel was measured using LA-950 manufactured by HORIBA under the following measurement conditions.
The version of LA-950V2 is 7.02, the algorithm option is standard calculation, the refractive index of solid is 1.450, the refractive index of solvent (pure water) is 1.333, the number of repetitions is 15, and the circulation speed of the sample input bus is 5. The stirring speed was set to 2, and the measurement was performed using a measurement sequence in which these were set in advance. Then, the measurement sample was put into the sample inlet of the apparatus as the undiluted solution using a dropper. Here, it was input so that the numerical value of the transmittance (R) became 90%. Then, after the value of the transmittance (R) became stable, ultrasonic waves were irradiated for 5 minutes to measure the particle size.

[異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を含むシリカ系粒子分散液に含まれる、異形シリカ系粒子の割合の測定方法]
電子顕微鏡(日立製作所社製、型番「S-5500」)により、シリカ系粒子分散液を倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、任意の100個の粒子について、それぞれのアスペクト比(最小内接四角の長径/短径比)を求めた。ここでアスペクトが1.1以上であった粒子が異形シリカ系粒子である。そして、アスペクト比が1.1以上の粒子の個数と、測定した粒子の個数(100個)から、前記異形シリカ系粒子の割合を求めた。
[Method for measuring the proportion of deformed silica-based particles contained in a silica-based particle dispersion containing a group of silica-based particles composed of deformed silica-based particles and non-deformed silica-based particles]
Arbitrary 100 pieces in a photographic projection obtained by taking a photograph of a silica-based particle dispersion at a magnification of 250,000 times (or 500,000 times) with an electronic microscope (manufactured by Hitachi, Ltd., model number "S-5500"). For each particle, the aspect ratio (major axis / minor axis ratio of the minimum inscribed square) was determined. Here, the particles having an aspect of 1.1 or more are irregular silica-based particles. Then, the ratio of the deformed silica-based particles was determined from the number of particles having an aspect ratio of 1.1 or more and the number of measured particles (100 particles).

[研磨試験]
被研磨基板
被研磨基板として、ハードディスク用ニッケルメッキをコーティングしたアルミ基板(東洋鋼鈑社製ニッケルメッキサブストレート)を使用した。本基板はドーナツ形状の基板である(外径95mmφ、内径25mmφ、厚さ1.27mm)。
研磨試験
各実施例および比較例について、9質量%の研磨用砥粒分散液344gを作製し、これに31質量%過酸化水素水を5.65g加えた後に10質量%硝酸にてpHを1.5に調整して研磨スラリーを作製した。
上記被研磨基板を研磨装置(ナノファクター社製:NF300)にセットし、研磨パッド(FILWEL社製「ベラトリックスNO178」)を使用し、基板荷重0.05MPa、定盤回転数50rpm、ヘッド回転数50rpmで、研磨スラリーを40g/分の速度で供給しながら1μm研磨を行った。
研磨速度
研磨前後の研磨基板の重量差と研磨時間より研磨速度を算出した。
うねり
研磨したドーナツ状のアルミ基板において、その外円と内円を2等分する任意の箇所についてうねり波長数十~数百μmでの微少な凹凸の振幅を測定した。
次にその測定箇所とドーナツ状のアルミ基板における中心点とを結ぶ直線上であって、その中心点がその測定箇所との2等分点となる箇所においても、同様にうねり波長数十~数百μmでの微少な凹凸の振幅を測定した。そして、これら2つの値の平均値をうねりの測定値とした。測定条件は下記の通りである。
機器:ZygoNewView7200
レンズ:2.5倍
ズーム比:1.0
フィルター:50~500μm
測定エリア:3.75mm×2.81mm
[Polishing test]
Substrate to be polished An aluminum substrate coated with nickel plating for hard disks (nickel-plated substrate manufactured by Toyo Kohan Co., Ltd.) was used as the substrate to be polished. This substrate is a donut-shaped substrate (outer diameter 95 mmφ, inner diameter 25 mmφ, thickness 1.27 mm).
Polishing test For each Example and Comparative Example, 344 g of an abrasive grain dispersion for polishing of 9% by mass was prepared, 5.65 g of 31% by mass hydrogen peroxide solution was added thereto, and then the pH was adjusted to 1 with 10% by mass of nitric acid. The polishing slurry was prepared by adjusting to 5.5.
The substrate to be polished is set in a polishing device (Nanofactor: NF300), and a polishing pad (FILWEL "Veratrix NO178") is used, and the substrate load is 0.05 MPa, the surface plate rotation speed is 50 rpm, and the head rotation speed is increased. At 50 rpm, 1 μm polishing was performed while supplying the polishing slurry at a rate of 40 g / min.
Polishing speed
The polishing speed was calculated from the weight difference of the polishing substrate before and after polishing and the polishing time.
undulation
In a polished donut-shaped aluminum substrate, the amplitude of minute irregularities at an undulating wavelength of several tens to several hundreds of μm was measured at an arbitrary portion that divides the outer circle and the inner circle into two equal parts.
Next, on a straight line connecting the measurement point and the center point of the donut-shaped aluminum substrate, and at the point where the center point is bisected with the measurement point, the swell wavelength is similarly several tens to several tens. The amplitude of the minute unevenness at 100 μm was measured. Then, the average value of these two values was used as the measured value of the swell. The measurement conditions are as follows.
Equipment: ZygoNewView7200
Lens: 2.5x Zoom ratio: 1.0
Filter: 50-500 μm
Measurement area: 3.75 mm x 2.81 mm

[合成例DS1(分散剤)]
攪拌機、還流冷却器、滴下ロート、窒素ガス導入管を備えた500ml四口丸底フラスコに、n-ヘキサン228mlを採り、ついで、これに界面活性剤としてソルビタンモノステアレ-ト1.8gを添加して溶解した後、窒素ガスを吹き込んで溶存酸素を追い出した。
別に、三角フラスコ中にアクリル酸を30g採り、冷却しながら、水26g及び48%化成ソーダ26gを加え、アクリル酸ナトリウム塩水溶液を調製した。
この水溶液に過硫酸ナトリウム0.1gを溶解した後、窒素ガスを吹き込んで水溶液中に存在する酸素を除去した。
このようにして得られたアクリル酸ナトリウム塩水溶液を、前記の界面活性剤を溶解したn-ヘキサン中に加えて分散させ、窒素ガスを少しずつ導入しながら、65℃で6時間撹拌して重合を行った。
得られたポリアクリル酸ナトリウム塩(DS1)は直鎖状で、重量平均分子量が84,000であった。また、カルボキシル基のカルボニル炭素原子に直接結合した炭素原子の割合(m/(m+n)×100の値)は47%であった。
[Synthesis Example DS1 (Dispersant)]
Take 228 ml of n-hexane in a 500 ml round-bottom flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and then add 1.8 g of sorbitan monosteerate as a surfactant. After dissolving, nitrogen gas was blown in to expel the dissolved oxygen.
Separately, 30 g of acrylic acid was taken in an Erlenmeyer flask, and 26 g of water and 26 g of 48% chemical soda were added while cooling to prepare an aqueous solution of sodium acrylic acid.
After dissolving 0.1 g of sodium persulfate in this aqueous solution, nitrogen gas was blown into the aqueous solution to remove oxygen present in the aqueous solution.
The aqueous sodium acrylic acid salt solution thus obtained was added to n-hexane in which the above-mentioned surfactant was dissolved to disperse it, and while introducing nitrogen gas little by little, the mixture was stirred at 65 ° C. for 6 hours for polymerization. Was done.
The obtained sodium polyacrylic acid salt (DS1) was linear and had a weight average molecular weight of 84,000. The ratio of carbon atoms directly bonded to the carbonyl carbon atom of the carboxyl group (value of m / (m + n) × 100) was 47%.

[合成例DS2(分散剤)]
攪拌機、還流冷却器、滴下ロート、窒素ガス導入管を備えた500ml四口丸底フラスコに、n-ヘキサン228mlを採り、ついで、これに界面活性剤としてソルビタンモノステアレ-ト1.8gを添加して溶解した後、窒素ガスを吹き込んで溶存酸素を追い出した。
別に、三角フラスコ中にアクリル酸を30g採り、冷却しながら、水26g及び48%化成ソーダ26gを加えアクリル酸ナトリウム塩水溶液を調製した。
この水溶液に過硫酸ナトリウム1.0gを溶解した後、窒素ガスを吹き込んで水溶液中に存在する酸素を除去した。
このようにして得られたアクリル酸ナトリウム塩水溶液を、前記の界面活性剤を溶解したn-ヘキサン中に加えて分散させ、窒素ガスを少しずつ導入しながら、65℃で6時間撹拌して重合を行った。
得られたポリアクリル酸ナトリウム塩(DS2)は直鎖状で、重量平均分子量が13,000であった。また、カルボキシル基のカルボニル炭素原子に直接結合した炭素原子の割合(m/(m+n)×100の値)は47%であった。
[Synthesis Example DS2 (Dispersant)]
Take 228 ml of n-hexane in a 500 ml round-bottom flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and then add 1.8 g of sorbitan monosteerate as a surfactant. After dissolving, nitrogen gas was blown in to expel the dissolved oxygen.
Separately, 30 g of acrylic acid was taken in an Erlenmeyer flask, and 26 g of water and 26 g of 48% chemical soda were added while cooling to prepare an aqueous solution of sodium acrylic acid.
After dissolving 1.0 g of sodium persulfate in this aqueous solution, nitrogen gas was blown into the aqueous solution to remove oxygen present in the aqueous solution.
The aqueous sodium acrylic acid salt solution thus obtained was added to n-hexane in which the above-mentioned surfactant was dissolved to disperse it, and while introducing nitrogen gas little by little, the mixture was stirred at 65 ° C. for 6 hours for polymerization. Was done.
The obtained sodium polyacrylic acid salt (DS2) was linear and had a weight average molecular weight of 13,000. The ratio of carbon atoms directly bonded to the carbonyl carbon atom of the carboxyl group (value of m / (m + n) × 100) was 47%.

[合成例DS3(分散剤)]
攪拌機、還流冷却器、滴下ロート、窒素ガス導入管を備えた500ml四口丸底フラスコに、n-ヘキサン228mlを採り、ついで、これに界面活性剤としてソルビタンモノステアレ-ト1.8gを添加して溶解した後、窒素ガスを吹き込んで溶存酸素を追い出した。
別に、三角フラスコ中にアクリル酸を30g採り、冷却しながら、水26g及び28%アンモニア水溶液19gを加えアクリル酸アンモニウム塩水溶液を調製した。
この水溶液に過硫酸ナトリウム0.05gを溶解した後、窒素ガスを吹き込んで水溶液中に存在する酸素を除去した。
このようにして得られたアクリル酸アンモニウム塩水溶液を、前記の界面活性剤を溶解したn-ヘキサン中に加えて分散させ、窒素ガスを少しずつ導入しながら、65℃で6時間撹拌して重合を行った。
得られたポリアクリル酸アンモニウム塩(DS3)は直鎖状で、重量平均分子量が150,000であった。また、カルボキシル基のカルボニル炭素原子に直接結合した炭素原子の割合(m/(m+n)×100の値)は48%であった。
[Synthesis Example DS3 (Dispersant)]
Take 228 ml of n-hexane in a 500 ml round-bottom flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and then add 1.8 g of sorbitan monosteerate as a surfactant. After dissolving, nitrogen gas was blown in to expel the dissolved oxygen.
Separately, 30 g of acrylic acid was taken in an Erlenmeyer flask, and 26 g of water and 19 g of a 28% aqueous ammonia solution were added while cooling to prepare an aqueous ammonium acrylate salt solution.
After dissolving 0.05 g of sodium persulfate in this aqueous solution, nitrogen gas was blown into the aqueous solution to remove oxygen present in the aqueous solution.
The aqueous solution of ammonium acrylic acid thus obtained is added to n-hexane in which the above-mentioned surfactant is dissolved to disperse it, and while introducing nitrogen gas little by little, the mixture is stirred at 65 ° C. for 6 hours for polymerization. Was done.
The obtained polyacrylic acid ammonium salt (DS3) was linear and had a weight average molecular weight of 150,000. The ratio of carbon atoms directly bonded to the carbonyl carbon atom of the carboxyl group (value of m / (m + n) × 100) was 48%.

[合成例DS4(分散剤)]
攪拌機、還流冷却器、滴下ロート、窒素ガス導入管を備えた500ml四口丸底フラスコに、n-ヘキサン228mlを採り、ついで、これに界面活性剤としてソルビタンモノステアレ-ト1.8gを添加して溶解した後、窒素ガスを吹き込んで溶存酸素を追い出した。
別に、三角フラスコ中にアクリル酸を30g採り、冷却しながら、水26g及び48%苛性ソーダ26gを加え、アクリル酸ナトリウム塩水溶液を調製した。
この水溶液に過硫酸ナトリウム0.01gを溶解した後、窒素ガスを吹き込んで水溶液中に存在する酸素を除去した。
このようにして得られたアクリル酸ナトリウム塩水溶液を、前記の界面活性剤を溶解したn-ヘキサン中に加えて分散させ、窒素ガスを少しずつ導入しながら、65℃で6時間撹拌して重合を行った。
得られたポリアクリル酸ナトリウム塩(DS4)は直鎖状で、重量平均分子量が500,000であった。また、カルボキシル基のカルボニル炭素原子に直接結合した炭素原子の割合(m/(m+n)×100の値)は48%であった。
[Synthesis Example DS4 (Dispersant)]
Take 228 ml of n-hexane in a 500 ml round-bottom flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and then add 1.8 g of sorbitan monosteerate as a surfactant. After dissolving, nitrogen gas was blown in to expel the dissolved oxygen.
Separately, 30 g of acrylic acid was taken in an Erlenmeyer flask, and 26 g of water and 26 g of 48% caustic soda were added while cooling to prepare an aqueous solution of sodium acrylic acid.
After dissolving 0.01 g of sodium persulfate in this aqueous solution, nitrogen gas was blown into the aqueous solution to remove oxygen present in the aqueous solution.
The aqueous sodium acrylic acid salt solution thus obtained was added to n-hexane in which the above-mentioned surfactant was dissolved to disperse it, and while introducing nitrogen gas little by little, the mixture was stirred at 65 ° C. for 6 hours for polymerization. Was done.
The obtained sodium polyacrylic acid salt (DS4) was linear and had a weight average molecular weight of 500,000. The ratio of carbon atoms directly bonded to the carbonyl carbon atom of the carboxyl group (value of m / (m + n) × 100) was 48%.

<シリカゲルの調製>
珪酸ナトリウムを水に溶解し、SiO2換算で24重量%の珪酸ナトリウム水溶液を調整した。24重量%珪酸ナトリウム水溶液を25重量%の硫酸200.0gにpHが4.0となるように添加することでシリカヒドロゲルを含む溶液を得た。このシリカヒドロゲル溶液を、恒温槽で40℃の温度に維持し、2.75時間静置して熟成を行った後、シリカヒドロゲルに含まれるSiO2としての珪素に対し、硫酸ナトリウムの含有量が0.05重量%となるまで純水で洗浄して精製シリカヒドロゲルを得た。この精製シリカヒドロゲルの濃度は、SiO2含有量(濃度)が5重量%であった。また比表面積は350m2/gであった。
精製シリカヒドロゲルを110℃で乾燥することで、シリカゲル(組成[SiO2:88.9質量%、Na:0.3質量%、SO4:0.4質量%、H2O:残部]、平均粒子径14μm、比表面積350m2/g)を得た。
<Preparation of silica gel>
Sodium silicate was dissolved in water to prepare a 24 wt% sodium silicate aqueous solution in terms of SiO 2 . A solution containing silica hydrogel was obtained by adding a 24 wt% sodium silicate aqueous solution to 200.0 g of 25 wt% sulfuric acid so as to have a pH of 4.0. After maintaining this silica hydrogel solution at a temperature of 40 ° C. in a constant temperature bath and allowing it to stand for 2.75 hours for aging, the content of sodium sulfate is higher than that of silicon as SiO 2 contained in the silica hydrogel. Purified silica hydrogel was obtained by washing with pure water until the content became 0.05% by weight. The concentration of this purified silica hydrogel was 5% by weight in SiO 2 content (concentration). The specific surface area was 350 m 2 / g.
By drying the purified silica hydrogel at 110 ° C, silica gel (composition [SiO 2 : 88.9% by mass, Na: 0.3% by mass, SO 4 : 0.4% by mass, H 2 O: balance], average. A particle size of 14 μm and a specific surface area of 350 m 2 / g) were obtained.

<高異形シリカ系ゲル微粒子分散液(1)>
精製シリカヒドロゲルを110℃で乾燥して得られたシリカゲル28gと純水472gとを2Lのガラスビーカーに入れ、さらに4.8質量%水酸化ナトリウム水溶液を添加してpH10.0に調整した。これに1mmφのジルコニアメジアを2390g加え、サンドミル粉砕機にかけて、重量平均粒子径が426nmになるまで解砕を行い(1段目粉砕)、SiO2濃度4.0質量%の高異形シリカ系ゲル微粒子分散液(1)を得た。
<Highly deformed silica-based gel fine particle dispersion (1)>
28 g of silica gel and 472 g of pure water obtained by drying the purified silica hydrogel at 110 ° C. were placed in a 2 L glass beaker, and a 4.8 mass% sodium hydroxide aqueous solution was further added to adjust the pH to 10.0. 2390 g of zirconia medium having a diameter of 1 mm was added thereto, and the gel was crushed by a sand mill crusher until the weight average particle size became 426 nm (first stage crushing), and a highly deformed silica-based gel having a SiO 2 concentration of 4.0% by mass was obtained. A fine particle dispersion liquid (1) was obtained.

<高異形シリカ系ゲル微粒子分散液(2)>
次に高異形シリカ系ゲル微粒子分散液(1)に0.5mmφのガラスメジアを1135g加え、サンドミル粉砕機にかけて、重量平均粒子径が249nmになるまで解砕を行い(2段目粉砕)、SiO2濃度3.5質量%の高異形シリカ系ゲル微粒子分散液(2)を得た。
<Highly deformed silica-based gel fine particle dispersion (2)>
Next, 1135 g of 0.5 mmφ glass medium was added to the highly deformed silica-based gel fine particle dispersion (1), and the mixture was crushed by a sandmill crusher until the weight average particle size became 249 nm (second stage crushing), and SiO 2 was used. A highly deformed silica-based gel fine particle dispersion (2) having a concentration of 3.5% by mass was obtained.

<高異形シリカ系ゲル微粒子分散液(3)>
次に高異形シリカ系ゲル微粒子分散液(2)に0.25mmφのガラスメジアを1135g加え、サンドミル粉砕機にかけて、重量平均粒子径が135nmになるまで解砕を行い(3段目粉砕)、SiO2濃度3.0質量%の高異形シリカ系ゲル微粒子分散液(3)を得た。
<Highly deformed silica-based gel fine particle dispersion (3)>
Next, 1135 g of 0.25 mmφ glass medium was added to the highly deformed silica-based gel fine particle dispersion (2), and the mixture was crushed with a sandmill crusher until the weight average particle size became 135 nm (third-stage crushing), and SiO 2 was used. A highly deformed silica-based gel fine particle dispersion (3) having a concentration of 3.0% by mass was obtained.

<異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の調製>
得られた高異形シリカ系ゲル微粒子分散液(3)にイオン交換水を添加してSiO2濃度2.76質量%の溶液2716gを得た。次に、4.8質量%の水酸化ナトリウム水溶液とイオン交換水を加え、pHが10.7でSiO2濃度2.5質量%の溶液に調整した。ついで98℃に昇温して30分間98℃に保持した。次に温度を98℃に保持したまま4.6質量%の酸性珪酸液5573.1gを20時間かけて添加し、更に温度を98℃に保持したまま1時間攪拌を継続した。
この調合液を室温まで冷却後に、限外濾過膜(旭化成社製SIP-1013)でSiO2濃度12質量%まで濃縮した。更にロータリーエバポレーターで30質量%まで濃縮し、異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を含むシリカ系粒子分散液(1)を得た。得られたシリカ系粒子群の重量平均粒子径は111nmであった。
<Preparation of silica-based particle group consisting of irregularly shaped silica-based particles and non-modified silica-based particles>
Ion-exchanged water was added to the obtained highly deformed silica-based gel fine particle dispersion (3) to obtain 2716 g of a solution having a SiO 2 concentration of 2.76% by mass. Next, a 4.8% by mass sodium hydroxide aqueous solution and ion-exchanged water were added to prepare a solution having a pH of 10.7 and a SiO 2 concentration of 2.5% by mass. Then, the temperature was raised to 98 ° C. and kept at 98 ° C. for 30 minutes. Next, 5573.1 g of an acidic silicic acid solution of 4.6% by mass was added over 20 hours while maintaining the temperature at 98 ° C., and stirring was continued for 1 hour while further maintaining the temperature at 98 ° C.
After cooling this preparation to room temperature, it was concentrated to a SiO 2 concentration of 12% by mass with an ultrafiltration membrane (SIP-1013 manufactured by Asahi Kasei Corporation). Further, the mixture was concentrated to 30% by mass with a rotary evaporator to obtain a silica-based particle dispersion liquid (1) containing a silica-based particle group composed of deformed silica-based particles and non-atypical silica-based particles. The weight average particle diameter of the obtained silica-based particle group was 111 nm.

[実施例1]
研磨用砥粒分散液の調製
上記のようにして得たシリカ系粒子分散液(1)(SiO2濃度:30質量%)150gに、ポリアクリル酸ナトリウム塩(DS1)0.45g(シリカ100質量部に対し、ポリアクリル酸ナトリウム塩1質量部相当)を添加し、室温にて60分間攪拌することによって研磨用砥粒分散液A1を調製した。
[Example 1]
Preparation of abrasive grain dispersion for polishing
To 150 g of the silica-based particle dispersion (1) (SiO 2 concentration: 30% by mass) obtained as described above, 0.45 g of sodium polyacrylate (DS1) (sodium polyacrylate with respect to 100 parts by mass of silica). (Equivalent to 1 part by mass of salt) was added, and the mixture was stirred at room temperature for 60 minutes to prepare an abrasive grain dispersion liquid A1 for polishing.

[比較例1]
研磨用砥粒分散液の調製
上記のようにして得たシリカ系粒子分散液(1)(SiO2濃度:30質量%)150gを、研磨用砥粒分散液B1とした。
[Comparative Example 1]
Preparation of abrasive grain dispersion for polishing
150 g of the silica-based particle dispersion liquid (1) (SiO 2 concentration: 30% by mass) obtained as described above was used as a polishing abrasive grain dispersion liquid B1.

[比較例2]
研磨用砥粒分散液の調製
上記のようにして得たシリカ系粒子分散液(1)(SiO2濃度:30質量%)150gに、ポリアクリル酸ナトリウム塩(DS2)0.45g(シリカ100質量部に対し、ポリアクリル酸ナトリウム塩1質量部相当)を添加し、室温にて60分間攪拌することによって研磨用砥粒分散液B2を調製した。
[Comparative Example 2]
Preparation of abrasive grain dispersion for polishing
To 150 g of the silica-based particle dispersion (1) (SiO 2 concentration: 30% by mass) obtained as described above, 0.45 g of sodium polyacrylate (DS2) (sodium polyacrylate with respect to 100 parts by mass of silica). (Equivalent to 1 part by mass of salt) was added, and the mixture was stirred at room temperature for 60 minutes to prepare an abrasive grain dispersion liquid B2 for polishing.

[実施例2]
研磨用砥粒分散液の調製
上記のようにして得たシリカ系粒子分散液(1)(SiO2濃度:30質量%)150gに、ポリアクリル酸アンモニウム塩(DS3)0.45g(シリカ100質量部に対し、ポリアクリル酸アンモニウム塩1質量部相当)を添加し、室温にて60分間攪拌することによって研磨用砥粒分散液A2を調製した。
[Example 2]
Preparation of abrasive grain dispersion for polishing
To 150 g of the silica-based particle dispersion (1) (SiO 2 concentration: 30% by mass) obtained as described above, 0.45 g of an ammonium polyacrylic acid salt (DS3) (ammonium polyacrylic acid with respect to 100 parts by mass of silica). (Equivalent to 1 part by mass of salt) was added, and the mixture was stirred at room temperature for 60 minutes to prepare an abrasive grain dispersion liquid A2 for polishing.

[比較例3]
研磨用砥粒分散液の調製
上記のようにして得たシリカ系粒子分散液(1)(SiO2濃度:30質量%)150gに、ポリアクリル酸ナトリウム塩(DS4)0.45g(シリカ100質量部に対し、ポリアクリル酸ナトリウム塩1質量部相当)を添加し、室温にて60分間攪拌することによって研磨用砥粒分散液B3を調製した。
[Comparative Example 3]
Preparation of Abrasive Grain Dispersion Liquid for Polishing To 150 g of the silica-based particle dispersion liquid (1) (SiO 2 concentration: 30% by mass) obtained as described above, 0.45 g of sodium polyacrylate (DS4) (100% by mass of silica). (Equivalent to 1 part by mass of sodium polyacrylate) was added to the portion, and the mixture was stirred at room temperature for 60 minutes to prepare an abrasive grain dispersion liquid B3 for polishing.

上記実施例および比較例について、前述した各測定および算出データを第3表にまとめた。なお、第3表には、各実施例および各比較例における研磨用砥粒分散液について粘度測定、泡立ちの有無の観察結果についても示した。ここで粘度はB型粘度計を用いて測定した。第3表中では「スラリー状態/粘度」、「スラリー状態(泡立ちの有無)」と表した。 Table 3 summarizes the above-mentioned measurement and calculation data for the above-mentioned Examples and Comparative Examples. Table 3 also shows the viscosity measurement of the abrasive grain dispersion for polishing in each Example and each Comparative Example, and the observation results of the presence or absence of foaming. Here, the viscosity was measured using a B-type viscometer. In Table 3, "slurry state / viscosity" and "slurry state (presence or absence of foaming)" are expressed.

所定の製造方法により得られた実施例の研磨用砥粒分散液は、研磨材として好適な粒子径、粒子径分布および異形度を有し、また、これらシリカ系粒子群を含むシリカ系粒子分散液は、研磨用砥粒分散液として使用した際に実用可能な研磨速度が得られ、同時に実用可能な面精度を達成することができる。また、この研磨用砥粒分散液は砥粒の沈降性の抑制、沈降した砥粒の再分散性の向上あるいは砥粒等の残留の抑制に優れるものである。 The abrasive grain dispersion liquid for polishing of the examples obtained by a predetermined production method has a particle size, a particle size distribution and a degree of irregularity suitable as an abrasive, and is a silica-based particle dispersion containing these silica-based particle groups. When the liquid is used as an abrasive grain dispersion liquid for polishing, a practical polishing speed can be obtained, and at the same time, a practical surface accuracy can be achieved. Further, this abrasive grain dispersion liquid for polishing is excellent in suppressing the sedimentation property of the abrasive grains, improving the redispersibility of the settled abrasive grains, or suppressing the residue of the abrasive grains and the like.

Figure 2022079977000001
Figure 2022079977000001

Figure 2022079977000002
Figure 2022079977000002

Figure 2022079977000003
Figure 2022079977000003

本発明のシリカ系粒子群は、好適な粒子径、粒子径分布、異形度および粒子強度を有しているため、これを含むシリカ系粒子分散液は、例えば、NiPメッキされた被研磨基板やシリカ系基板などの表面研磨に好ましく用いることができる。 Since the silica-based particle group of the present invention has suitable particle size, particle size distribution, degree of deformation, and particle strength, the silica-based particle dispersion liquid containing the silica-based particle group may be, for example, a NiP-plated substrate to be polished. It can be preferably used for surface polishing of silica-based substrates and the like.

Claims (8)

異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を含むシリカ系粒子分散液に、ポリカルボン酸塩からなる分散剤が分散してなり、下記[1]~[5]を満たす研磨用砥粒分散液。
[1]前記シリカ系粒子群の重量平均粒子径(D1)が50~600nmであり、比表面積換算平均粒子径(D2)が15~300nmであること。
[2]前記シリカ系粒子群の重量平均粒子径(D1)と比表面積換算粒子径(D2)との比で表される異形度D(D=D1/D2)が1.1~10の範囲にあること。
[3]前記シリカ系粒子群の体積基準粒子径分布を波形分離すると、分離ピークが3つ以上検出される多峰分布となること。
[4]前記ポリカルボン酸塩は、重量平均分子量が20,000~400,000の範囲にあり、カルボニル炭素に直接結合する炭素原子の個数をm、カルボニル炭素に直接結合しない炭素原子の個数をnとしたとき、m/(m+n)×100の値が40~50%の範囲にあること。
[5]前記シリカ系粒子群と、前記ポリカルボン酸塩の質量比が100:0.1~100:10の範囲にあること。
A dispersant made of a polycarboxylate is dispersed in a silica-based particle dispersion liquid containing a silica-based particle group consisting of atypical silica-based particles and a non-atypical silica-based particle, and polishing that satisfies the following [1] to [5]. Abrasive particle dispersion liquid.
[1] The weight average particle diameter (D 1 ) of the silica-based particle group is 50 to 600 nm, and the specific surface area-equivalent average particle diameter (D 2 ) is 15 to 300 nm.
[2] The degree of deformation D (D = D 1 / D 2 ) represented by the ratio of the weight average particle diameter (D 1 ) of the silica-based particle group to the specific surface area equivalent particle diameter (D 2 ) is 1.1. Must be in the range of ~ 10.
[3] When the volume-based particle size distribution of the silica-based particle group is waveform-separated, a multi-peak distribution in which three or more separation peaks are detected is obtained.
[4] The polycarboxylate has a weight average molecular weight in the range of 20,000 to 400,000, and has m the number of carbon atoms directly bonded to carbonyl carbon and the number of carbon atoms not directly bonded to carbonyl carbon. When n, the value of m / (m + n) × 100 is in the range of 40 to 50%.
[5] The mass ratio of the silica-based particle group to the polycarboxylate is in the range of 100: 0.1 to 100:10.
前記分散剤がポリアクリル酸塩からなることを特徴とする、請求項1に記載の研磨用砥粒分散液。 The abrasive grain dispersion liquid for polishing according to claim 1, wherein the dispersant is made of polyacrylic acid salt. 前記シリカ系粒子群の体積基準粒子径分布における歪度が-20~20の範囲にあることを特徴とする、請求項1または2に記載の研磨用砥粒分散液。 The abrasive grain dispersion for polishing according to claim 1 or 2, wherein the skewness in the volume-based particle size distribution of the silica-based particle group is in the range of −20 to 20. 前記シリカ系粒子群の体積基準粒子径分布を波形分離した結果得られた分離ピークのうち、最大粒子成分の体積割合が75%以下であることを特徴とする、請求項1~3のいずれかに記載の研磨用砥粒分散液。 Any of claims 1 to 3, wherein the volume ratio of the maximum particle component is 75% or less among the separation peaks obtained as a result of waveform-separating the volume-based particle size distribution of the silica-based particle group. The abrasive grain dispersion for polishing according to the above. 前記シリカ系粒子群のSEM画像解析により得られる個数基準粒子径分布において、小粒子側成分のアスペクト比が1.05~5.0の範囲にあることを特徴とする、請求項1~4のいずれかに記載の研磨用砥粒分散液。 The aspect ratio of the small particle side component is in the range of 1.05 to 5.0 in the number-based particle size distribution obtained by the SEM image analysis of the silica-based particle group, according to claims 1 to 4. Abrasive particle dispersion for polishing according to any one. 前記シリカ系粒子群の体積基準粒子径分布の粒子径の変動係数が30%以上であることを特徴とする、請求項1~5の何れかに記載の研磨用砥粒分散液。 The abrasive grain dispersion for polishing according to any one of claims 1 to 5, wherein the coefficient of variation of the particle size of the volume-based particle size distribution of the silica-based particle group is 30% or more. 前記シリカ系粒子群における、画像解析法による平均面積(S1)に対する画像解析法による平均外周長と等価な円の面積(S2)の比であらわされる平滑度S(S=S2/S1)が1.1~5.0の範囲にあることを特徴とする、請求項1~6のいずれかに記載の研磨用砥粒分散液。 Smoothness S (S = S 2 / S) expressed by the ratio of the area of a circle (S 2 ) equivalent to the average outer peripheral length by the image analysis method to the average area (S 1 ) by the image analysis method in the silica-based particle group. The abrasive grain dispersion for polishing according to any one of claims 1 to 6, wherein 1 ) is in the range of 1.1 to 5.0. 前記シリカ系粒子群の体積基準粒子径分布において、全体積(Q1)に対する0.7μm以上の粒子の体積(Q2)の割合Q(Q=Q2/Q1)が5.0%以下であることを特徴とする、請求項1~7のいずれかに記載の研磨用砥粒分散液。 In the volume-based particle size distribution of the silica-based particle group, the ratio Q (Q = Q 2 / Q 1 ) of the volume (Q 2 ) of particles of 0.7 μm or more to the total volume (Q 1 ) is 5.0% or less. The abrasive grain dispersion for polishing according to any one of claims 1 to 7, wherein the abrasive grain dispersion liquid is characterized by the above.
JP2020190889A 2020-11-17 2020-11-17 Abrasive grain dispersion liquid Pending JP2022079977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020190889A JP2022079977A (en) 2020-11-17 2020-11-17 Abrasive grain dispersion liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020190889A JP2022079977A (en) 2020-11-17 2020-11-17 Abrasive grain dispersion liquid

Publications (1)

Publication Number Publication Date
JP2022079977A true JP2022079977A (en) 2022-05-27

Family

ID=81731586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020190889A Pending JP2022079977A (en) 2020-11-17 2020-11-17 Abrasive grain dispersion liquid

Country Status (1)

Country Link
JP (1) JP2022079977A (en)

Similar Documents

Publication Publication Date Title
JP7313373B2 (en) Silica-based particle dispersion and method for producing the same
US10844259B2 (en) Silica-based composite fine particle dispersion and method for manufacturing same
WO2018088088A1 (en) Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion
JP2021059490A (en) Silica-based particle dispersion and method for producing the same
JP2008273780A (en) Modified silica-based sol and method for preparing the same
JP5615529B2 (en) Inorganic oxide fine particle dispersion, polishing particle dispersion, and polishing composition
JP2019081672A (en) Ceria-based composite fine particle dispersion, production method thereof, and abrasive grain dispersion for polishing including the ceria-based composite fine dispersion
JP2021116225A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
WO2021153502A1 (en) Silica particles, silica sol, polishing composition, polishing method, method for manufacturing semiconductor wafer, and method for manufacturing semiconductor device
US20210380844A1 (en) Silica particle and production method therefor, silica sol, polishing composition, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
EP3632848A1 (en) Ceria-based composite fine particle dispersion, production method therefor, and polishing abrasive grain dispersion including ceria-based composite fine particle dispersion
JP2007061989A (en) Polishing composite-oxide particle and slurry abrasive
JP2022079977A (en) Abrasive grain dispersion liquid
JP7356924B2 (en) Polishing abrasive dispersion liquid
JP7348098B2 (en) Ceria-based composite fine particle dispersion, its manufacturing method, and polishing abrasive grain dispersion containing the ceria-based composite fine particle dispersion
JP7436268B2 (en) Silica-based particle dispersion and its manufacturing method
JP7038031B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
JP2020180012A (en) Silica particle, silica sol, polishing composition, polishing method, method for manufacturing semiconductor wafer and method for manufacturing semiconductor device
JP7117225B2 (en) Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion
EP3929154A1 (en) Silica particles and production method therefor, silica sol, polishing composition, polishing method, semiconductor wafer production method, and semiconductor device production method
JP2020023408A (en) Ceria-based fine particle dispersion, method for producing the same and abrasive particle dispersion for polishing comprising ceria-based fine particle dispersion
JP7100552B2 (en) Abrasive abrasive grain dispersion liquid containing irregularly shaped silica fine particles and its manufacturing method
JP4247955B2 (en) Abrasive composition for hard and brittle materials and polishing method using the same
JP2023139490A (en) Silica-based particle dispersion, polishing slurry for polishing magnetic disk substrate containing the same, composition for polishing magnetic disk substrate containing the same, and method for producing silica-based particle group
JP2020132479A (en) Silica particle, silica sol, polishing composition, polishing method, method of manufacturing semiconductor wafer, and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240515