JP7436268B2 - Silica-based particle dispersion and its manufacturing method - Google Patents

Silica-based particle dispersion and its manufacturing method Download PDF

Info

Publication number
JP7436268B2
JP7436268B2 JP2020068303A JP2020068303A JP7436268B2 JP 7436268 B2 JP7436268 B2 JP 7436268B2 JP 2020068303 A JP2020068303 A JP 2020068303A JP 2020068303 A JP2020068303 A JP 2020068303A JP 7436268 B2 JP7436268 B2 JP 7436268B2
Authority
JP
Japan
Prior art keywords
silica
particles
irregularly shaped
particle
based particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020068303A
Other languages
Japanese (ja)
Other versions
JP2021165212A (en
Inventor
和洋 中山
達也 向井
真吾 柏田
智顕 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2020068303A priority Critical patent/JP7436268B2/en
Publication of JP2021165212A publication Critical patent/JP2021165212A/en
Application granted granted Critical
Publication of JP7436268B2 publication Critical patent/JP7436268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、シリカ系粒子分散液等に関する。詳細には、研磨材として好ましい粒子径、粒子径分布、異形度等を有するシリカ系粒子群を含み、特に、磁気ディスク製造においてNiPメッキされた被研磨基板およびシリカ系基板を化学機械的研磨(ケミカルメカニカルポリッシング、CMP)により平坦化するための研磨用砥粒分散液として好適なシリカ系粒子分散液等に関する。 The present invention relates to a silica-based particle dispersion and the like. Specifically, it includes silica-based particles having a particle size, particle size distribution, degree of irregularity, etc. that are preferable as an abrasive, and is particularly used for chemical-mechanical polishing of NiP-plated substrates and silica-based substrates in the manufacture of magnetic disks. The present invention relates to a silica-based particle dispersion suitable as a polishing abrasive dispersion for planarization by chemical mechanical polishing (CMP).

磁気ディスクや半導体などの製造プロセスでは、Siウエハ、ガラスHD、アルミHDなどの基板を平坦化させるために、化学機械的研磨(CMP)が適用されている。この化学機械的研磨では、シリカやセリアなどの砥粒を水に分散させ、さらに研磨性能を制御するためにケミカル成分を添加した、いわゆる研磨スラリーが用いられている。特に、砥粒は研磨性能に大きな影響を及ぼすことが知られており、砥粒に求められる性能としては、高い研磨速度を得ることができ且つ研磨面にスクラッチ(線条痕)などのディフェクト(欠陥)が生じない事が挙げられる。 In manufacturing processes for magnetic disks, semiconductors, etc., chemical mechanical polishing (CMP) is applied to flatten substrates such as Si wafers, glass HDs, and aluminum HDs. This chemical-mechanical polishing uses a so-called polishing slurry in which abrasive grains such as silica or ceria are dispersed in water, and chemical components are added to control the polishing performance. In particular, abrasive grains are known to have a large effect on polishing performance, and the performance required of abrasive grains is to be able to obtain a high polishing rate and to avoid defects such as scratches (streaks) on the polished surface. One example is that no defects (defects) occur.

高い研磨速度を得る方法としては、大きな粒子径の砥粒を使用する事が一般的である。しかし、砥粒の粒子径が大きくなり過ぎると、質量当たりの砥粒個数が減少するため逆に研磨速度が低下し、さらにスクラッチも増加する傾向にある。そこで、スクラッチを増加させることなく高い研磨速度を得るために、砥粒を非球形とする、つまり砥粒を異形形状の粒子(異形粒子)とすることが有効である事が知られている。 A common method for obtaining a high polishing rate is to use abrasive grains with large particle diameters. However, if the particle diameter of the abrasive grains becomes too large, the number of abrasive grains per mass decreases, and the polishing rate tends to decrease, and the number of scratches also tends to increase. Therefore, in order to obtain a high polishing rate without increasing scratches, it is known that it is effective to make the abrasive grains non-spherical, that is, to make the abrasive grains irregularly shaped particles (deformed particles).

研磨材に適した粒子径を有する異形シリカ粒子を含むシリカ粒子群を調製する方法としては、水ガラスを原料として核生成時にシリカ粒子を凝集させる方法や、この方法などから調製した異形のシード粒子に珪酸液を添加して粒子径を大きく成長させる方法(特許文献1)が従来から知られている。 Methods for preparing silica particle groups containing irregularly shaped silica particles having a particle size suitable for abrasives include a method in which silica particles are agglomerated during nucleation using water glass as a raw material, and irregularly shaped seed particles prepared by this method. A method (Patent Document 1) in which a silicic acid solution is added to grow the particle size to a large size is conventionally known.

特許第5127452号公報Patent No. 5127452

異形粒子においては、異形度(重量平均粒子径と投影面積相当粒子径との比)も研磨性能に大きく影響を与える。具体的には異形度が大きな粒子は研磨速度が高い傾向にある。一方で、異形度が小さい粒子は、真球状あるいは楕円状に近い粒子であるため、研磨速度が低くなる傾向にある。しかし、異形粒子はその形状が非球形であることから、通常は、球形または略球形の粒子(非異形粒子)と比較するとスクラッチが発生しやすい傾向にあり、特に、異形度が高い場合にその傾向が顕著となる。 Regarding irregularly shaped particles, the degree of irregularity (ratio of weight average particle diameter to projected area equivalent particle diameter) also greatly affects polishing performance. Specifically, particles with a large degree of irregularity tend to have a high polishing rate. On the other hand, particles with a small degree of irregularity are particles that are close to true spheres or ellipses, and therefore the polishing rate tends to be low. However, since irregularly shaped particles are non-spherical in shape, they are usually more prone to scratches than spherical or approximately spherical particles (non- irregularly shaped particles), especially when the degree of irregularity is high. The trend becomes noticeable.

また、一般に、研磨砥粒の粒子径と、粒子径分布が研磨性能に大きく影響することが知られており、粒子径が大きな砥粒は、研磨速度は高いものの、研磨基板の面精度(表面粗さ、うねり、スクラッチ等)は悪化する傾向にある。一方で、粒子径が小さな砥粒は、基板表面は平滑に仕上げることができ、スクラッチも生じ難いが、研磨速度が遅くなる。これは球形粒子に限らず、異形粒子の場合も同様である。
異形粒子といっても、その粒子径分布は多種多様であるが、通常、粒子径が比較的大きな粒子は研磨速度が高いため、高い研磨速度が要求される場合は、できるだけ平均粒子径が大きい異形粒子が用いられる。しかし、平均粒子径が比較的大きな異形粒子の場合、粒子径分布の裾が大粒子径側に大きく広がる傾向にあるので、平均粒子径に比して粗大な粒子を微量ながら含むことが多い。そして、このような粗大な粒子に起因して、研磨基板にスクラッチが生じたり、基板の表面粗さやうねりが悪化したりする傾向にある。そのため、高い研磨速度が要求される研磨に使用する砥粒として、平均粒子径が比較的大きく、且つ粗粒や過剰な大粒子(これらは総称して「粗大粒子」と呼ばれる)が極めて少ない異形粒子が望まれる。
In addition, it is generally known that the particle size and particle size distribution of abrasive grains greatly affect polishing performance, and abrasive grains with large particle diameters have a high polishing speed, but the surface accuracy of the polished substrate (surface roughness, waviness, scratches, etc.) tend to worsen. On the other hand, abrasive grains with a small particle size can finish the substrate surface smoothly and are less likely to cause scratches, but the polishing rate becomes slower. This applies not only to spherical particles but also to irregularly shaped particles.
Although irregularly shaped particles have a wide variety of particle size distributions, particles with relatively large particle sizes usually have a high polishing rate, so if a high polishing rate is required, the average particle size should be as large as possible. Irregularly shaped particles are used. However, in the case of irregularly shaped particles with a relatively large average particle size, the tail of the particle size distribution tends to widen greatly toward the large particle size side, so they often contain a small amount of particles that are coarse compared to the average particle size. Such coarse particles tend to cause scratches on the polished substrate and worsen the surface roughness and waviness of the substrate. Therefore, as abrasive grains used for polishing that requires high polishing speeds, we use irregularly shaped abrasive grains that have a relatively large average particle diameter and very few coarse grains or excessively large grains (these are collectively called "coarse grains"). Particles are desired.

さらに、粒子径が比較的小さい粒子は、球状粒子又は異形粒子を問わず、砥粒1個の研磨量が小さいことから研磨速度が低くなる傾向にある。また、粒子径が比較的小さい粒子は、研磨後に砥粒が基板上に残留し易い(これは「砥粒残り」と呼ばれる)。この砥粒残りは、研磨後の洗浄工程でも除去し難い傾向にある。この傾向は平均粒子径が比較的大きな異形粒子においても同様に見られるものであり、平均粒子径が比較的大きな異形粒子であっても、粒子径分布の裾が小粒子径側に広がったような分布の異形粒子は、砥粒残りが発生し易いといえる。
したがって、高い研磨速度と高い面精度を両立する好適な化学機械的研磨を実現するために、比較的大きな異形粒子を含む砥粒であって、質量当たりの砥粒個数が多く、研磨性能を低下させるような粗大粒子をできるだけ含まず、更に砥粒残りの原因となるような比較的小さい粒子をできるだけ含まない砥粒が望まれる。
Furthermore, particles with relatively small particle diameters, regardless of whether they are spherical particles or irregularly shaped particles, tend to have a low polishing rate because the amount of polishing per abrasive grain is small. Furthermore, if the particle size is relatively small, the abrasive grains tend to remain on the substrate after polishing (this is called "remaining abrasive grains"). This abrasive grain residue tends to be difficult to remove even in a cleaning process after polishing. This tendency is also seen in irregularly shaped particles with a relatively large average particle diameter, and even for irregularly shaped particles with a relatively large average particle diameter, the tail of the particle size distribution seems to have broadened toward the smaller particle diameter side. It can be said that irregularly shaped particles with such a distribution are more likely to leave abrasive grain residue.
Therefore, in order to achieve suitable chemical-mechanical polishing that achieves both high polishing speed and high surface precision, it is necessary to use abrasive grains that contain relatively large irregularly shaped particles, and the number of abrasive grains per mass is large, reducing polishing performance. It is desirable to have abrasive grains that contain as little coarse particles as possible that cause the abrasive particles to deteriorate, and also contain as little as possible relatively small particles that cause abrasive grain residue.

しかしながら、水ガラスを原料として核生成時にシリカ粒子を凝集させる方法では、比表面積換算粒子径が100nm以上の異形シリカ粒子を得ることは困難であった。さらに、この方法では、核生成時のシリカ粒子凝集工程において、一部の核粒子が暴走反応を生じ、粗大な凝集体が生じてしまう可能性があり、この粗大な凝集体がスクラッチの原因となるという問題があった。また、この方法で得られるような比表面積換算粒子径100nm以下の異形シリカ粒子をシード粒子として用い、このシード粒子に珪酸液を添加して粒子径を大きく成長させる方法では、比表面積換算粒子径が100nm以上となるように珪酸液を使用して粒子を成長させると、シード粒子は球状または略球状に成長するため、異形のシード粒子を異形のまま成長させて比較的大きな異形シリカ粒子を得ることは困難であった。 However, with the method of agglomerating silica particles during nucleation using water glass as a raw material, it has been difficult to obtain irregularly shaped silica particles having a specific surface area equivalent particle diameter of 100 nm or more. Furthermore, in this method, during the silica particle aggregation process during nucleation, some of the core particles may cause a runaway reaction, resulting in the formation of coarse aggregates, which may cause scratches. There was a problem. In addition, in the method of using irregularly shaped silica particles with a specific surface area equivalent particle diameter of 100 nm or less as seed particles and growing the particle size by adding a silicic acid solution to the seed particles, the specific surface area equivalent particle diameter When particles are grown using a silicic acid solution so that the particle diameter is 100 nm or more, the seed particles grow into a spherical or approximately spherical shape. Therefore, by growing irregularly shaped seed particles as they are, relatively large irregularly shaped silica particles can be obtained. That was difficult.

さらに、本発明者らは、異形シリカ粒子を含むシリカ粒子群を調製する別の方法として、湿式シリカを粉砕することにより異形シリカ粒子を得る方法を検討したところ、異形シリカ粒子は得られたものの、ゲル構造の湿式シリカは、粉砕あるいは解砕によって粒子径や粒度分布制御を行うにはその粒子強度が弱く、また得られた異形シリカ粒子も同じく粒子強度が弱いため、この異形シリカ粒子を含むシリカ粒子群を砥粒として使用した場合、必要な研磨速度を得ることができなかった。 Furthermore, the present inventors investigated a method of obtaining irregularly shaped silica particles by crushing wet silica as another method for preparing a group of silica particles containing irregularly shaped silica particles, and found that although irregularly shaped silica particles were obtained, , wet silica with a gel structure has a weak particle strength to control the particle size and particle size distribution by crushing or crushing, and the obtained irregularly shaped silica particles also have a weak particle strength. When silica particles were used as abrasive grains, it was not possible to obtain the required polishing rate.

そこで本発明は、研磨用途に適用した場合、例えば、シリカ系基板あるいはNiPメッキされた被研磨基板等に対して、高い研磨速度及び高面精度を達成することが可能なシリカ系粒子群(比較的大きな異形粒子を含む砥粒であって、特定の粒子径分布を示し、必要な粒子強度を有する異形粒子を含むシリカ系粒子群)と、このシリカ系粒子群を含むシリカ系粒子分散液及びこのシリカ系粒子群の製造方法を提供することを目的とする。 Therefore, when the present invention is applied to polishing, for example, a silica-based particle group (compared to a silica-based particle group containing irregularly-shaped particles that exhibit a specific particle size distribution and have necessary particle strength; a silica-based particle dispersion containing this silica-based particle group; It is an object of the present invention to provide a method for manufacturing this silica-based particle group.

本発明者は上記課題を解決するため、シード粒子として、従来の水ガラスから得られた異形シード粒子に代えて、多孔質シリカ系ゲルを特定の条件で解砕し得られた異形多孔質シリカ系ゲルからなる粒子を用い、さらに、珪酸液を加えて該シード粒子を成長させる方法を検討した。この異形多孔質シリカ系ゲルからなる粒子は、柔らかい多孔質シリカ系ゲルをアルカリ性下で湿式解砕して得られたものであり、また、粗大粒子が殆ど無く比較的粒度の揃ったものであり、原料の多孔質シリカ系ゲルが有する内部の細孔構造を概ね保持したものである。 In order to solve the above problems, the present inventors used irregularly shaped porous silica obtained by crushing porous silica gel under specific conditions as seed particles instead of irregularly shaped seed particles obtained from conventional water glass. We investigated a method of growing seed particles by using particles made of gel and adding a silicic acid solution. The particles made of this irregularly shaped porous silica gel are obtained by wet crushing a soft porous silica gel under alkaline conditions, and have a relatively uniform particle size with almost no coarse particles. The internal pore structure of the raw material porous silica gel is generally maintained.

このような異形多孔質シリカ系ゲルからなる粒子をシード粒子として用い、珪酸液の共存下でシード粒子を成長させることにより、珪酸はシード粒子の一次粒子間の細孔(一次粒子間の凹部)かつ表層部から優先的に沈着するため、該シード粒子の内部は多孔質な構造を備え、一方、表面の凸部に対しては、沈着速度は遅いが一定の割合で珪酸が沈着するので、異形を保ちながら成長させることができた。また、シード粒子として粗大粒子の少ない異形多孔質シリカ系ゲルからなる粒子を用いているので、得られた異形シリカ系粒子を含むシリカ系粒子群は、解砕時に粗大粒子が優先的に解砕され粗大粒子を殆ど含まない。このシリカ系粒子群を砥粒として使用することで、研磨速度が比較的高く、且つ研磨面上でのスクラッチの発生を大幅に抑制し、表面粗さやうねりが小さい研磨面が得られることを見出した。そして、このような高い研磨速度を得ることができるこのシリカ系粒子群に含まれる多孔質な構造を備えた異形シリカ系粒子は、緻密な粒子と比べ比較的密度が低くなり、この異形シリカ系粒子を含むシリカ粒子群の粒子個数が増える。一方、その表層部は一次粒子間のネック部が補強されているので、その粒子強度が一定の水準を超えている。つまりその粒子強度が研磨時の圧力に耐えうる程度に高められているといえる。 By using particles made of such irregularly shaped porous silica-based gel as seed particles and growing the seed particles in the coexistence of a silicic acid solution, silicic acid grows in the pores (concavities between the primary particles) between the primary particles of the seed particles. Since it is preferentially deposited from the surface layer, the interior of the seed particle has a porous structure, while silicic acid is deposited at a constant rate, although the deposition rate is slow, on the convex portions of the surface. I was able to grow it while maintaining its strange shape. In addition, since particles made of irregularly shaped porous silica gel with few coarse particles are used as seed particles, the coarse particles are preferentially crushed during crushing of the obtained silica particles containing irregularly shaped silica particles. contains almost no coarse particles. It was discovered that by using this silica-based particle group as an abrasive grain, the polishing speed is relatively high, the occurrence of scratches on the polished surface is significantly suppressed, and a polished surface with small surface roughness and waviness can be obtained. Ta. The irregular shaped silica particles with a porous structure included in this silica particle group that can obtain such a high polishing rate have a relatively low density compared to dense particles. The number of particles in the silica particle group containing particles increases. On the other hand, since the neck portion between the primary particles in the surface layer is reinforced, the particle strength exceeds a certain level. In other words, it can be said that the particle strength is increased to the extent that it can withstand the pressure during polishing.

前記知見に基づき、本発明者は、研磨材として好適な粒子径、粒子径分布、異形度および粒子強度を有する異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群、これを含むシリカ系粒子分散液、およびこのシリカ系粒子群を効率よく製造する方法である本発明を完成させた。
本発明は以下の(1)~(15)である。
Based on the above findings, the present inventor has developed a silica-based particle group consisting of irregularly shaped silica particles and non- irregularly shaped silica particles having a particle size, particle size distribution, degree of irregularity, and particle strength suitable for use as an abrasive, and a silica-based particle group containing the same. The present invention, which is a method for efficiently producing a silica-based particle dispersion and a silica-based particle group, has been completed.
The present invention includes the following (1) to (15).

(1)異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を含むシリカ系粒子分散液であって、
前記異形シリカ系粒子は、内部に細孔を有するコアおよびそれを被覆する被覆シリカ層を有し、
前記シリカ系粒子群は下記[1]~[3]を満たすシリカ系粒子分散液。
[1] 重量平均粒子径(D1)が60~600nmであり、比表面積換算粒子径(D2)が15~300nmであること。
[2] 重量平均粒子径(D1)と投影面積相当粒子径(D3)との比で表される異形度D(D=D1/D3)が1.1~5.0の範囲にあること。
[3] 体積基準粒子径分布を波形分離すると、分離ピークが3つ以上検出される多峰分布となること。
(2)前記コアの内部細孔の平均細孔径が30nm以下であることを特徴とする上記(1)に記載のシリカ系粒子分散液。
(3)前記被覆シリカ層が、平均厚さ1~50nmの範囲で、シリカを主成分とすることを特徴とする上記(1)または(2)に記載のシリカ系粒子分散液。
(4)前記シリカ系粒子群が、その体積基準粒子径分布において、歪度が-20~20の範囲にあることを特徴とする上記(1)~(3)の何れかに記載のシリカ系粒子分散液。
(5)前記シリカ系粒子群の体積基準粒子径分布を波形分離した結果得られた分離ピークのうち、最大粒子成分の体積割合が75%以下であることを特徴とする上記(1)~(4)の何れかに記載のシリカ系粒子分散液。
(6)前記シリカ系粒子群のSEM画像解析により得られる個数基準粒子径分布において、小粒子側成分のアスペクト比が1.05~5.0の範囲にあることを特徴とする上記(1)~(5)の何れかに記載のシリカ系粒子分散液。
(7)前記シリカ系粒子群の体積基準粒子径分布の粒子径の変動係数が30%以上であることを特徴とする上記(1)~(6)の何れかに記載のシリカ系粒子分散液。
(8)前記シリカ系粒子群における、画像解析法による平均面積(S1)に対する画像解析法による平均外周長と等価な円の面積(S2)の比であらわされる平滑度S(S=S2/S1)が1.1~5.0の範囲にあることを特徴とする上記(1)~(7)の何れかに記載のシリカ系粒子分散液。
(9)前記シリカ系粒子群の体積基準粒子径分布において、全体積(Q1)に対する0.7μm以上の粒子の体積(Q2)の割合Q(Q=Q2/Q1)が5.0%以下であることを特徴とする上記(1)~(8)の何れかに記載のシリカ系粒子分散液。
(10)上記(1)~(9)の何れかに記載のシリカ系粒子分散液を含む研磨用砥粒分散液。
(11)異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群であって、
前記異形シリカ系粒子は、内部に細孔を有するコアおよびそれを被覆する被覆シリカ層を有し、下記[1]~[3]を満たすシリカ系粒子群。
[1] 重量平均粒子径(D1)が60~600nmであり、比表面積換算粒子径(D2)が15~300nmであること。
[2] 重量平均粒子径(D1)と投影面積相当粒子径(D3)との比で表される異形度D(D=D1/D3)が1.1~5.0の範囲にあること。
[3] 体積基準粒子径分布を波形分離すると、分離ピークが3つ以上検出される多峰分布となること。
(1) A silica-based particle dispersion containing a silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles,
The irregularly shaped silica particles have a core having pores inside and a covering silica layer covering the core,
The silica-based particle group is a silica-based particle dispersion that satisfies the following [1] to [3].
[1] The weight average particle diameter (D 1 ) is 60 to 600 nm, and the specific surface area equivalent particle diameter (D 2 ) is 15 to 300 nm.
[2] The degree of irregularity D (D=D 1 /D 3 ) expressed as the ratio of the weight average particle diameter (D 1 ) to the projected area equivalent particle diameter (D 3 ) is in the range of 1.1 to 5.0. What's in it.
[3] Waveform separation of the volume-based particle size distribution results in a multimodal distribution in which three or more separated peaks are detected.
(2) The silica-based particle dispersion according to (1) above, wherein the average pore diameter of the internal pores of the core is 30 nm or less.
(3) The silica-based particle dispersion according to (1) or (2) above, wherein the coating silica layer has an average thickness in the range of 1 to 50 nm and contains silica as a main component.
(4) The silica-based particle group according to any one of (1) to (3) above, wherein the silica-based particle group has a skewness in the range of -20 to 20 in its volume-based particle size distribution. Particle dispersion.
(5) The above-mentioned (1) to (1) characterized in that the volume ratio of the largest particle component among the separated peaks obtained as a result of waveform separation of the volume-based particle size distribution of the silica-based particle group is 75% or less. The silica-based particle dispersion liquid according to any one of 4).
(6) The above (1) characterized in that, in the number-based particle size distribution obtained by SEM image analysis of the silica-based particle group, the aspect ratio of the small particle side component is in the range of 1.05 to 5.0. The silica-based particle dispersion according to any one of (5) to (5).
(7) The silica-based particle dispersion according to any one of (1) to (6) above, characterized in that the particle size variation coefficient of the volume-based particle size distribution of the silica-based particle group is 30% or more. .
( 8 ) Smoothness S ( S =S 2 /S 1 ) is in the range of 1.1 to 5.0, the silica-based particle dispersion according to any one of (1) to (7) above.
(9) In the volume-based particle size distribution of the silica-based particles, the ratio Q (Q=Q 2 /Q 1 ) of the volume (Q 2 ) of particles of 0.7 μm or more to the total volume (Q 1 ) is 5. The silica-based particle dispersion according to any one of (1) to (8) above, characterized in that the silica-based particle dispersion is 0% or less.
(10) A polishing abrasive dispersion containing the silica-based particle dispersion according to any one of (1) to (9) above.
(11) A silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles,
The irregularly shaped silica particles have a core having pores inside and a coating silica layer covering the core, and satisfy the following [1] to [3].
[1] The weight average particle diameter (D 1 ) is 60 to 600 nm, and the specific surface area equivalent particle diameter (D 2 ) is 15 to 300 nm.
[2] The degree of irregularity D (D=D 1 /D 3 ) expressed as the ratio of the weight average particle diameter (D 1 ) to the projected area equivalent particle diameter (D 3 ) is in the range of 1.1 to 5.0. What's in it.
[3] Waveform separation of the volume-based particle size distribution results in a multimodal distribution in which three or more separated peaks are detected.

(12)下記工程a~cを含むことを特徴とする異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の製造方法。
(工程a)多孔質シリカ系ゲルをアルカリ性下で湿式解砕して異形多孔質シリカ系ゲルからなる粒子を含む溶液にする工程。
(工程b)前記異形多孔質シリカ系ゲルからなる粒子を含む溶液にアルカリ性下で珪酸液を添加して加温し、前記異形多孔質シリカ系ゲルからなる粒子の一次粒子間の細孔を前記珪酸液に含まれる珪酸との反応によって埋めながら異形のまま粒子を成長させて、前記異形多孔質シリカ系ゲルからなる粒子よりも重量平均粒子径が小さい異形シリカ系粒子にする工程。
(工程c)成長した前記異形シリカ系粒子を含むシリカ系粒子群を濃縮して、回収する工程。
(13)前記工程aにおいて、比表面積50~800m2/gの前記多孔質シリカ系ゲルを重量平均粒子径60~550nmの前記異形多孔質シリカ系ゲルからなる粒子にし、
前記工程bにおいて、前記異形多孔質シリカ系ゲルからなる粒子の一次粒子間の細孔を前記珪酸との反応によって埋めて前記異形多孔質シリカ系ゲルからなる粒子の比表面積を182m2/g以下にすると共に、前記異形シリカ系粒子に成長させることを特徴とする上記(12)に記載の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の製造方法。
(14)前記工程aにおいて、前記多孔質シリカ系ゲルをpH8.0~11.5のアルカリ性下で湿式解砕して、重量平均粒子径が167~200nmまたは208~225nmの前記異形多孔質シリカ系ゲルからなる粒子を含む溶液にし、
前記工程bにおいて、前記異形多孔質シリカ系ゲルからなる粒子を含む溶液のSiO2濃度を1~10質量%にし、60℃~170℃に加温し、pH9~12.5のアルカリ性下で、前記珪酸液を連続的または断続的に添加して、前記異形多孔質シリカ系ゲルからなる粒子の一次粒子間の細孔を珪酸との反応によって埋めて該粒子の比表面積を減少させると共に、粒子を異形のまま成長させ、前記異形多孔質シリカ系ゲルからなる粒子の重量平均粒子径が167~200nmの場合は重量平均粒子径が101~164nmの前記異形シリカ系粒子、前記異形多孔質シリカ系ゲルからなる粒子の重量平均粒子径が208~225nmの場合は重量平均粒子径が128~203nmの前記異形シリカ系粒子にし、
前記工程cにおいて、成長した前記異形シリカ系粒子を含む溶液を濃縮して該異形シリカ系粒子を含むシリカ系粒子群を回収することを特徴とする上記(12)または(13)に記載の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の製造方法。
(15)前記工程bにおいて、前記珪酸液の添加量が、前記異形多孔質シリカ系ゲルからなる粒子を含む溶液のSiO2モル濃度に対して該珪酸液のSiO2モル濃度が0.5~20モル倍になる範囲であることを特徴とする上記(12)~(14)の何れかに記載の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の製造方法。
(12) A method for producing a silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles, which comprises the following steps a to c.
(Step a) A step of wet-pulverizing the porous silica gel under alkaline conditions to obtain a solution containing particles of irregularly shaped porous silica gel.
(Step b) A silicic acid solution is added and heated under alkaline conditions to a solution containing particles made of the irregularly shaped porous silica gel, and the pores between the primary particles of the irregularly shaped porous silica gel are A step of growing particles with irregular shapes while filling them by a reaction with silicic acid contained in a silicic acid solution to produce irregularly shaped silica particles having a smaller weight average particle diameter than the particles made of the irregularly shaped porous silica gel .
(Step c) A step of concentrating and recovering the silica-based particles containing the grown irregularly shaped silica-based particles.
(13) In step a, the porous silica gel with a specific surface area of 50 to 800 m 2 /g is made into particles of the irregularly shaped porous silica gel with a weight average particle diameter of 60 to 550 nm;
In step b, the pores between the primary particles of the particles made of the irregularly shaped porous silica gel are filled by reaction with the silicic acid so that the specific surface area of the particles made of the irregularly shaped porous silica gel is 182 m 2 /g or less. The method for producing a group of silica-based particles comprising irregular-shaped silica-based particles and non-irregular-shaped silica-based particles according to (12) above, which comprises growing the irregular-shaped silica-based particles into irregularly shaped silica-based particles.
(14) In step a, the porous silica gel is wet-pulverized under alkalinity at pH 8.0 to 11.5 , and the irregularly shaped porous silica gel has a weight average particle diameter of 167 to 200 nm or 208 to 225 nm. to a solution containing particles consisting of a system gel,
In step b, the SiO 2 concentration of the solution containing particles made of the irregularly shaped porous silica gel is set to 1 to 10% by mass, heated to 60° C. to 170° C., and under alkaline pH of 9 to 12.5. The silicic acid solution is added continuously or intermittently to fill the pores between the primary particles of the particles made of the irregularly shaped porous silica gel by reaction with the silicic acid, thereby reducing the specific surface area of the particles. If the particles made of the irregularly shaped porous silica gel have a weight average particle diameter of 167 to 200 nm, the irregularly shaped silica particles having a weight average particle diameter of 101 to 164 nm, the irregularly shaped porous silica gel When the weight average particle diameter of the gel particles is 208 to 225 nm, the irregularly shaped silica particles have a weight average particle diameter of 128 to 203 nm,
The irregular shape according to (12) or (13) above, wherein in the step c, a solution containing the grown irregularly shaped silica particles is concentrated to recover a group of silica particles containing the irregularly shaped silica particles. A method for producing a silica-based particle group consisting of silica-based particles and non-irregular silica-based particles.
(15) In step b, the amount of the silicic acid solution added is such that the SiO 2 molar concentration of the silicic acid solution is 0.5 to 0.5 to The method for producing a silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles according to any one of (12) to (14) above, characterized in that the amount is in a range of 20 moles.

本発明の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群は、研磨材として好適な粒子径、粒子径分布、異形度および粒子強度を有しているので、これを含むシリカ系粒子分散液を、例えば研磨用砥粒分散液として使用した場合、あるいはこの研磨用砥粒分散液をそのまま研磨スラリーとして使用した場合、対象がNiPメッキされた被研磨被膜およびシリカ系基板であっても、高速で研磨することができ、砥粒の基材への突き刺さりが無く、同時に高面精度(スクラッチが少ない、被研磨基板の表面粗さ(Ra)やうねり(Wa)が小さいなど)を達成することができる。
また本発明の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群は、その表面が平滑でなく、微小な突起を有しており、多孔質であるため、研磨時に発生する研磨屑やイオン成分、オリゴマー成分、有機物等を吸着するスカベンジャー効果も備えている。そのため、研磨基板へのこれらの成分の再付着を防止でき、残渣の少ない研磨表面を達成することができる。
The silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles of the present invention has a particle size, particle size distribution, degree of irregularity, and particle strength suitable for use as an abrasive. When the particle dispersion is used, for example, as a polishing abrasive dispersion, or when this polishing abrasive dispersion is directly used as a polishing slurry, the target is a NiP-plated coating to be polished and a silica-based substrate. It can also be polished at high speed, without the abrasive grains penetrating the base material, and at the same time, high surface precision (fewer scratches, small surface roughness (Ra) and waviness (Wa) of the substrate to be polished, etc.). can be achieved.
In addition, the silica particles of the present invention, which are made up of irregularly shaped silica particles and non- irregularly shaped silica particles, have a porous surface that is not smooth and has minute protrusions, so polishing debris generated during polishing can be removed. It also has a scavenger effect that adsorbs ionic components, oligomer components, organic substances, etc. Therefore, redeposition of these components to the polished substrate can be prevented, and a polished surface with less residue can be achieved.

さらに、本発明の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の製造方法では、異形多孔質シリカ系ゲルの外形調整を経た粒子をシード粒子として使用することによって、珪酸液を添加する工程においてこのシード粒子を異形のまま大きく成長させることができ、また、粒子の強度も上げることができる。この結果、研磨材として好適な粒子径、粒子径分布、異形度および粒子強度を有する異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を効率的に得ることができる。 Furthermore, in the method for producing a silica particle group consisting of irregularly shaped silica particles and non- irregularly shaped silica particles of the present invention, particles that have undergone external shape adjustment of irregularly shaped porous silica gel are used as seed particles. In the adding step, the seed particles can be grown to a large size while maintaining their irregular shape, and the strength of the particles can also be increased. As a result, it is possible to efficiently obtain a silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles that have a particle size, particle size distribution, degree of irregularity, and particle strength suitable for use as an abrasive.

粒子径分布における尖度の説明図Illustration of kurtosis in particle size distribution 粒子径分布における歪度の説明図Illustration of skewness in particle size distribution 実施例の異形シリカ系粒子の断面TEM写真Cross-sectional TEM photograph of irregularly shaped silica particles of Example 3

本発明の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群、およびこれを含むシリカ系粒子分散液について具体的に説明する。なお、本発明において「粒子群」の文言は、多数の粒子の集合を意味する。 A silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles of the present invention, and a silica-based particle dispersion containing the same will be specifically explained. In addition, in the present invention, the term "particle group" means a collection of a large number of particles.

<重量平均粒子径(D1)>
本発明のシリカ系粒子群の重量平均粒子径(D)は60~600nmであり、70~400nmが好ましく、80~300nmであることが最も好ましい。重量平均粒子径が60~600nmの範囲にあるシリカ系粒子群を砥粒として用いた場合は、高い研磨速度を得ることができ、且つスクラッチが発生しにくい。なお、重量平均粒子径が60nm未満であるシリカ系粒子群を砥粒として用いた場合は、必要な研磨速度が得にくく、さらに小さな粒子が研磨後の基板に残留しやすい傾向にある。また、重量平均粒子径が600nm超であるシリカ系粒子群を砥粒として用いた場合は、スクラッチが発生しやすい傾向にあり、また重量平均粒子径をこれ以上大きくしても質量当たりの砥粒個数が減少するため、研磨速度が向上しない場合がある。
<Weight average particle diameter (D 1 )>
The weight average particle diameter (D 1 ) of the silica-based particles of the present invention is 60 to 600 nm, preferably 70 to 400 nm, and most preferably 80 to 300 nm. When silica-based particles having a weight average particle diameter in the range of 60 to 600 nm are used as abrasive grains, a high polishing rate can be obtained and scratches are less likely to occur. Note that when silica-based particles having a weight average particle diameter of less than 60 nm are used as abrasive grains, it is difficult to obtain the necessary polishing rate, and smaller particles tend to remain on the substrate after polishing. Furthermore, when silica-based particles with a weight average particle diameter of more than 600 nm are used as abrasive grains, scratches tend to occur easily, and even if the weight average particle diameter is increased further, the amount of abrasive particles per mass Because the number decreases, the polishing rate may not improve.

ここで、本発明において重量平均粒子径(D1)とは、測定対象であるシリカ系粒子分散液を0.05質量%ドデシル硫酸ナトリウム水溶液で希釈し、固形分濃度で2質量%としたものを、従来公知のディスク遠心式粒子径分布測定装置(例えば、CPS Instriment社製など)に0.1mlをシリンジで注入して、8%から24%のショ糖の密度勾配溶液中で18000rpmの条件で測定して得た重量基準粒子径分布から求める平均粒子径である。つまり、本発明においては、この重量平均粒子径は「重量換算粒子径分布の平均粒子径」を意味する。 Here, in the present invention, the weight average particle diameter (D 1 ) refers to the silica particle dispersion to be measured, diluted with a 0.05% by mass sodium dodecyl sulfate aqueous solution, and the solid content concentration is 2% by mass. 0.1 ml was injected with a syringe into a conventional disk centrifugal particle size distribution analyzer (for example, manufactured by CPS Instrument), and the mixture was heated at 18,000 rpm in a density gradient solution of 8% to 24% sucrose. This is the average particle diameter determined from the weight-based particle diameter distribution obtained by measurement. That is, in the present invention, this weight average particle diameter means "average particle diameter of weight-equivalent particle diameter distribution."

<比表面積換算粒子径(D2)>
本発明のシリカ系粒子群の比表面積換算粒子径(D2)は15~300nmであり、20~250nmが好ましく、24~200nmであることがより好ましく、26~150nmであることが最も好ましい。比表面積換算粒子径(D2)が15~300nmの範囲にあるシリカ系粒子群を砥粒として用いた場合は、高い研磨速度を得ることができ、且つスクラッチが発生しにくい。なお、比表面積換算粒子径(D2)が15nm未満であるシリカ系粒子群を砥粒として用いた場合は、必要な研磨速度が得にくく、さらに小さな粒子が研磨後の基板に残留しやすい傾向にある。また、比表面積換算粒子径(D2)が300nm超であるシリカ系粒子群を砥粒として用いた場合は、スクラッチが発生したり研磨後の基板の表面粗さが悪化したりする傾向にある。さらに、比表面積換算粒子径をこれ以上大きくしても、質量当たりの砥粒個数が減少するため、逆に研磨速度が低下する傾向にある。
<Specific surface area equivalent particle diameter (D 2 )>
The specific surface area equivalent particle diameter (D 2 ) of the silica-based particles of the present invention is 15 to 300 nm, preferably 20 to 250 nm, more preferably 24 to 200 nm, and most preferably 26 to 150 nm. When silica-based particles having a specific surface area equivalent particle diameter (D 2 ) in the range of 15 to 300 nm are used as abrasive grains, a high polishing rate can be obtained and scratches are less likely to occur. In addition, when using silica-based particles with a specific surface area equivalent particle diameter (D 2 ) of less than 15 nm as abrasive grains, it is difficult to obtain the required polishing rate, and smaller particles tend to remain on the substrate after polishing. It is in. Furthermore, when silica-based particles with a specific surface area equivalent particle diameter (D 2 ) of more than 300 nm are used as abrasive grains, scratches tend to occur and the surface roughness of the substrate after polishing tends to worsen. . Furthermore, even if the particle diameter in terms of specific surface area is increased further, the number of abrasive grains per mass decreases, so the polishing rate tends to decrease.

なお、本発明において比表面積換算粒子径(D2)とは、比表面積換算の平均粒子径を意味し、BET法により測定される比表面積(SA:m2/g)と、粒子の密度(ρ)[シリカの場合ρ=2.2]を用い、D2=6000/(SA×ρ)の式から算出される。
ここでBET法とは、次のような方法である。
初めに、測定対象であるシリカゾル(シリカ系粒子分散液)50mlを硝酸によりpHを3.5に調整し、これに1-プロパノールを40ml加えて110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成して測定用試料とする。そして、公知の比表面積測定装置(例えばユアサアイオニクス製、型番マルチソーブ12など)を使用し、窒素吸着法(BET法)を用いて窒素の吸着量からBET1点法により比表面積を算出する。比表面積測定装置では、焼成後の試料0.5gを測定セルに取り、窒素30vol%/ヘリウム70vol%混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次いで、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により試料中のシリカ微粒子の比表面積(SA)を算出する。
In addition, in the present invention, the specific surface area-converted particle diameter (D 2 ) means the average particle diameter in terms of specific surface area, and the specific surface area (SA: m 2 /g) measured by the BET method and the particle density (D 2 ) ρ) [ρ=2.2 in the case of silica] is used, and is calculated from the formula D 2 =6000/(SA×ρ).
Here, the BET method is the following method.
First, the pH of 50 ml of silica sol (silica-based particle dispersion) to be measured was adjusted to 3.5 with nitric acid, 40 ml of 1-propanol was added to this, and the sample was dried at 110°C for 16 hours, and the sample was ground in a mortar. Thereafter, the sample was fired at 500° C. for 1 hour in a muffle furnace to obtain a measurement sample. Then, using a known specific surface area measuring device (for example, manufactured by Yuasa Ionics, model number Multisorb 12, etc.), the specific surface area is calculated from the amount of nitrogen adsorbed using the BET one-point method using the nitrogen adsorption method (BET method). In the specific surface area measuring device, 0.5 g of the sample after firing is placed in a measurement cell, degassed for 20 minutes at 300°C in a mixed gas flow of 30 vol% nitrogen/70 vol% helium, and then the sample is exposed to the above mixed gas. It is kept at liquid nitrogen temperature in an air flow to allow equilibrium adsorption of nitrogen onto the sample. Next, the sample temperature is gradually raised to room temperature while flowing the above-mentioned mixed gas, and the amount of nitrogen desorbed during this time is detected, and the specific surface area (SA) of the silica fine particles in the sample is calculated using a calibration curve prepared in advance. .

また、シリカ系粒子群の比表面積が高い場合には、BET法における焼成時に焼結が進むため、その比表面積(SA)が100m2/g以上となる場合には、タイトレーション法により比表面積(SA)を求める。
ここでタイトレーション法とは、次のような方法である。
まず初めに、SiO2として1.5gに相当する試料をビーカーに採取してから、恒温反応槽(25℃)に移し、純水を加えて液量を90mlにする(以下の操作は、25℃に保持した恒温反応槽中にて行う)。次に、pH3.6になるように0.1モル/L塩酸水溶液をここに加える。さらに、塩化ナトリウムを30g加え、純水で150mlに希釈し、10分間攪拌する。そして、pH電極をセットし、攪拌しながら0.1モル/L水酸化ナトリウム溶液を滴下してpH4.0に調整する。さらに、pH4.0に調整した試料を0.1モル/L水酸化ナトリウム溶液で滴定し、pH8.7~9.3の範囲での滴定量とpH値を4点以上記録して、0.1モル/L水酸化ナトリウム溶液の滴定量をX、その時のpH値をYとして、検量線を作る。そして、V=(A×f×100×1.5)/(W×C)の式からSiO21.5g当たりのpH4.0~9.0までに要する0.1モル/L水酸化ナトリウム溶液の消費量V(ml)を求め、これを用いて、SA=29.0V-28の式に従って比表面積を求める。
なお、上記式中において、AはSiO21.5g当たりpH4.0~9.0までに要する0.1モル/L水酸化ナトリウム溶液の滴定量(ml)、fは0.1モル/L水酸化ナトリウム溶液の力価、Cは試料のSiO2濃度(%)、Wは試料採取量(g)を意味する。
In addition, if the specific surface area of the silica-based particles is high, sintering will proceed during firing in the BET method, so if the specific surface area (SA) is 100 m 2 /g or more, the specific surface area can be reduced by the titration method. Find (SA).
Here, the titration method is the following method.
First, collect a sample equivalent to 1.5 g of SiO 2 in a beaker, transfer it to a constant temperature reaction tank (25 ° C), and add pure water to make the liquid volume 90 ml (the following operation is carried out at 25 °C). (Carried out in a constant temperature reactor kept at ℃). Next, 0.1 mol/L hydrochloric acid aqueous solution is added thereto to adjust the pH to 3.6. Furthermore, 30 g of sodium chloride is added, diluted to 150 ml with pure water, and stirred for 10 minutes. Then, a pH electrode is set, and while stirring, 0.1 mol/L sodium hydroxide solution is added dropwise to adjust the pH to 4.0. Furthermore, the sample adjusted to pH 4.0 was titrated with 0.1 mol/L sodium hydroxide solution, and the titration amount and pH value in the range of pH 8.7 to 9.3 were recorded at 4 or more points. Create a calibration curve by setting the titration amount of 1 mol/L sodium hydroxide solution as X and the pH value at that time as Y. From the formula V=(A×f×100×1.5)/(W×C), 0.1 mol/L sodium hydroxide is required to reach pH 4.0 to 9.0 per 1.5 g of SiO 2 The consumption volume V (ml) of the solution is determined, and using this, the specific surface area is determined according to the formula SA=29.0V-28.
In the above formula, A is the titration amount (ml) of 0.1 mol/L sodium hydroxide solution required to reach pH 4.0 to 9.0 per 1.5 g of SiO 2 , and f is 0.1 mol/L. The titer of the sodium hydroxide solution, C means the SiO 2 concentration of the sample (%), and W means the amount of sample collected (g).

<異形度>
異形度は、前述の重量平均粒子径(D1)を、投影面積相当粒子径(D3)で割ることによって表わされる。
なお、投影面積相当粒子径(D3)とは、次のような方法により測定、算出されたものである。
まず、走査型電子顕微鏡(SEM)を用いて、シリカ系粒子表面の任意の箇所を、倍率3000倍で1視野当たり1.1×10-3mm2の面積で15視野撮影する。そして、この各視野において撮影された個々の画像に含まれる全てのシリカ微粒子について、画像解析システムを用いた画像解析法によって個々の粒子の投影面積を測定し、この測定された各面積に相当する円形の粒子の粒子径(円の直径)を算出し、これらの個数平均(算術平均径)を投影面積相当粒子径(D3)とする。
本発明のシリカ系粒子群は、異形度D(D=D1/D3)が1.1~5.0の範囲であり、1.1~4.0の範囲が好ましく、1.1~3.5の範囲がより好ましく、1.1~3.3の範囲がより好ましい。異形度が高いシリカ系粒子群とは、すなわち粒子群の平均アスペクト比(「最小内接四角の長径/短径比」の平均値)が高い事を示しており、この平均アスペクト比が高い場合、研磨時にはおもに粒子の長径において基板と接触し、基板との接触面積が高くなり、研磨速度が高くなるため好ましいが、この異形度が5.0超の場合は、これ以上異形度を高めても研磨速度は向上せず、さらにスクラッチやうねりが発生しやすい傾向にある。また、この異形度が1.1未満の場合は、粒子の形状が真球状に近い形状であることを示しており、そのようなシリカ系粒子群を含むシリカ系粒子分散液を用いて研磨を行った場合、研磨速度が低下する傾向にある。
なお、ここでアスペクト比は粒子が内接する長方形(正方形を含む)の中で最も面積が小さいものにおける、長辺と短辺の比(長辺/短辺)を意味する。また、平均アスペクト比は、一定数以上の粒子のアスペクト比の単純平均値を意味する。
<Degree of abnormality>
The degree of irregularity is expressed by dividing the above-mentioned weight average particle diameter (D 1 ) by the projected area equivalent particle diameter (D 3 ).
Incidentally, the projected area equivalent particle diameter (D 3 ) is measured and calculated by the following method.
First, using a scanning electron microscope (SEM), 15 fields of view are photographed at an arbitrary location on the surface of the silica-based particles at a magnification of 3000 times with an area of 1.1×10 -3 mm 2 per field of view. Then, for all the silica particles included in each image taken in each field of view, the projected area of each particle is measured by an image analysis method using an image analysis system, and the area corresponding to each measured area is measured. The particle diameter (diameter of a circle) of the circular particles is calculated, and the number average (arithmetic mean diameter) thereof is defined as the particle diameter equivalent to projected area (D 3 ).
The silica-based particles of the present invention have an irregularity D (D=D 1 /D 3 ) in the range of 1.1 to 5.0, preferably in the range of 1.1 to 4.0, and in the range of 1.1 to 4.0. The range of 3.5 is more preferable, and the range of 1.1 to 3.3 is more preferable. A silica-based particle group with a high degree of irregularity means that the average aspect ratio of the particle group (the average value of the "longest axis / shortest axis ratio of the minimum inscribed square") is high, and if this average aspect ratio is high During polishing, the long axis of the particles mainly contacts the substrate, which increases the contact area with the substrate and increases the polishing rate, which is preferable. However, if the degree of irregularity exceeds 5.0, the degree of irregularity cannot be increased any further. However, the polishing speed does not improve, and scratches and waviness tend to occur more easily. In addition, when this degree of irregularity is less than 1.1, it indicates that the shape of the particles is close to a true sphere, and polishing is performed using a silica-based particle dispersion containing such a group of silica-based particles. If this is done, the polishing rate tends to decrease.
Note that the aspect ratio here means the ratio of the long side to the short side (long side/short side) of the rectangle (including square) in which the particle is inscribed and has the smallest area. Further, the average aspect ratio means a simple average value of aspect ratios of a certain number or more particles.

なお、本発明に係る「異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を含むシリカ系粒子分散液に含まれる、異形シリカ系粒子の割合は、前記[1]、[2]及び[3]の要件を満たす限り、格別に制限されるものではないが、アスペクト比が1.1以上の異形シリカ系粒子の個数が全体(前記シリカ系粒子群)に占める割合として、30%以上が好ましく、更に好ましくは40%以上が推奨される。
なお、アスペクト比が1.1以上である異形シリカ系粒子の個数割合の測定方法は、後述する実施例に示す通りである。
Note that the proportion of irregularly shaped silica particles contained in the silica particle dispersion containing a silica particle group consisting of irregularly shaped silica particles and non- irregularly shaped silica particles according to the present invention is as specified in [1] and [2] above. And as long as the requirements of [3] are met, there is no particular restriction, but the number of irregularly shaped silica particles with an aspect ratio of 1.1 or more accounts for 30% of the total (the silica particle group). It is preferably 40% or more, and more preferably 40% or more.
Note that the method for measuring the number ratio of irregularly shaped silica-based particles having an aspect ratio of 1.1 or more is as shown in Examples described later.

<尖度>
本発明のシリカ系粒子群の体積基準粒子径分布における尖度は-20~20であることが好ましく、-10~10がより好ましく、-5~7が最も好ましい。尖度がこの範囲であるシリカ系粒子群を砥粒として用いた場合は、より高い研磨速度を得ることができ、且つ研磨後においてより平滑な(表面粗さ(Ra)が小さく、基板のうねり(Wa)も小さく、スクラッチが少ない)表面の基板を得ることができる。
<Kurtosis>
The kurtosis in the volume-based particle size distribution of the silica-based particles of the present invention is preferably -20 to 20, more preferably -10 to 10, and most preferably -5 to 7. When silica-based particles with kurtosis within this range are used as abrasive grains, a higher polishing rate can be obtained, and a smoother surface (lower surface roughness (Ra) and less waviness of the substrate) can be obtained after polishing. (Wa) is also small and there are few scratches).

ここで尖度とは、粒子の形状や大きさには関係なく、粒子径分布からのみ算出されるものであり、尖度がゼロ(正規分布)に近い場合は、正規分布に近い粒子径分布であることを示している。また尖度がゼロよりも大きな値を取る粒子径分布は、ピークの中央が正規分布と比較して尖り、分布の裾の左右が広がった分布である事を示し(図1(a))、尖度がゼロよりも小さな値を示す粒子径分布は、ピークが平坦で分布の裾の左右が広がっていない形状である事を示している(図1(b))。 Here, kurtosis is calculated only from the particle size distribution, regardless of the shape or size of the particle, and if the kurtosis is close to zero (normal distribution), the particle size distribution is close to the normal distribution. It shows that. In addition, a particle size distribution with a kurtosis value larger than zero indicates that the center of the peak is sharper than in a normal distribution, and the left and right tails of the distribution are wider (Figure 1 (a)). A particle size distribution with a kurtosis smaller than zero indicates a shape in which the peak is flat and the left and right sides of the distribution tail are not wide (FIG. 1(b)).

本発明においては、シリカ系粒子群の体積基準粒子径分布における尖度は、負の値でも構わない。尖度が負の場合は、ピークが平坦で分布の左右の小粒子および大粒子成分が少なく、ピークが平坦な比較的粒度の揃った粒子径分布であることを示している。このような小粒子成分および大粒子成分が少ないシリカ系粒子群を砥粒として用いた場合、砥粒残りも少なく研磨速度も高いため、好ましい。 In the present invention, the kurtosis in the volume-based particle size distribution of the silica-based particles may be a negative value. When the kurtosis is negative, it indicates that the peak is flat, there are few small particles and large particle components on the left and right sides of the distribution, and the particle size distribution is relatively uniform with a flat peak. When such a silica-based particle group containing few small particle components and large particle components is used as an abrasive grain, it is preferable because there is little abrasive grain residue and the polishing rate is high.

<歪度>
本発明のシリカ系粒子群の体積基準粒子径分布における歪度は-20~20であることが好ましく、-15~15がより好ましく、-10~10が最も好ましい。歪度がこの範囲であるシリカ系粒子群を砥粒として用いた場合は、より高い研磨速度を得ることができ、且つ研磨後においてより平滑な(表面粗さ(Ra)が小さく、基板のうねり(Wa)も小さく、スクラッチが少ない)表面の基板を得ることができる。
<Distortion>
The skewness in the volume-based particle size distribution of the silica-based particles of the present invention is preferably -20 to 20, more preferably -15 to 15, and most preferably -10 to 10. When silica-based particles with a distortion degree in this range are used as abrasive grains, a higher polishing rate can be obtained, and the surface roughness (Ra) is small and the waviness of the substrate is reduced. (Wa) is also small and there are few scratches).

ここで歪度とは、尖度と同様に粒子の形状や大きさには関係なく、粒子径分布からのみ算出されるものであり、歪度がゼロに近い場合は正規分布に近い粒子径分布であることを示している。また歪度がゼロよりも大きな値を取る粒子径分布は、分布の左側(粒子径が小さい側)にピークを有し、右に裾の長い分布である事を示している(図2(a))のに対し、歪度がゼロよりも小さな値を取る粒子径分布は、分布の右側(粒子径が大きい側)にピークを有して、左に裾の長い分布である事を示している(図2(b))。 Here, skewness, like kurtosis, is calculated only from the particle size distribution, regardless of the shape or size of the particles, and if the skewness is close to zero, the particle size distribution is close to a normal distribution. It shows that. In addition, a particle size distribution with a skewness value larger than zero has a peak on the left side of the distribution (the side where the particle size is small) and has a long tail on the right (Figure 2 (a) )) In contrast, a particle size distribution with a skewness value smaller than zero has a peak on the right side of the distribution (the side where the particle size is large) and has a long tail on the left. (Figure 2(b)).

通常、解砕および粉砕法によって得たシリカ系粒子群の体積基準粒子径分布における歪度は正の値を取る事が多く、ビルドアップ法で得た粒子は正規分布となり易いことから歪度はゼロに近い値を取る事が多い。歪度が正の場合の粒子径分布は、粒子径がやや小さめの位置にピークがあり、大粒子径側に裾が広い分布である。このように小粒子径側にピークがある粒子径分布を有するシリカ系粒子群を砥粒として使用すると、粒子径が小さめの成分が多いため、研磨後に平滑な表面が得られやすい傾向にある。一方で歪度が著しく大きなシリカ系粒子群は、大粒子径側に裾が大きく広がった粒子径分布となり、平均粒子径にもよるが、砥粒として使用すると、スクラッチが発生しやすい傾向にある。 Normally, the skewness in the volume-based particle size distribution of silica-based particles obtained by crushing and pulverization methods often takes a positive value, and particles obtained by the build-up method tend to have a normal distribution, so the skewness is It often takes values close to zero. When the skewness is positive, the particle size distribution has a peak at a position where the particle size is slightly smaller and has a wider tail on the larger particle size side. When a silica-based particle group having a particle size distribution with a peak on the small particle size side is used as an abrasive grain, a smooth surface tends to be easily obtained after polishing because there are many components with a small particle size. On the other hand, silica-based particles with extremely high skewness have a particle size distribution that widens toward the large particle size side, and depending on the average particle size, they tend to cause scratches when used as abrasive grains. .

本発明においては、シリカ系粒子群の体積基準粒子径分布における歪度は、負の値であっても構わない。歪度が負の値のシリカ系粒子群は、粒子径が大きめの位置にピークがあり、小粒子側に裾が広がった粒子径分布となるが、粒子径分布の大粒子側のきれが良いため(すなわち著しい大粒子が少ないため)、砥粒として使用してもスクラッチは発生しにくい。しかし歪度が-20よりも小さいシリカ系粒子群は、小粒子側の裾が広くなり過ぎた粒子径分布となり、小粒子成分が増えるため、砥粒として使用すると砥粒残りが発生する傾向にある。 In the present invention, the skewness in the volume-based particle size distribution of the silica-based particles may be a negative value. Silica-based particles with a negative skewness value have a peak at a position where the particle size is large, and the particle size distribution has a wide tail toward the small particles, but the particle size distribution is sharp on the large particle side. (i.e., there are few significantly large particles), scratches are less likely to occur even when used as abrasive grains. However, silica-based particles with a skewness of less than -20 have a particle size distribution with too wide a tail on the small particle side, and the small particle component increases, so when used as abrasive grains, there is a tendency for abrasive grain residue to occur. be.

<体積基準粒子径分布の測定および尖度・歪度の算出方法>
本発明では、シリカ系粒子群の体積基準粒子径分布を遠心沈降法によって測定する。例えば、シリカ系粒子分散液を0.05質量%ドデシル硫酸ナトリウム水溶液で希釈し、固形分濃度で2質量%に調整し、公知のディスク遠心式粒子径分布測定装置(例えば、CPS Instriment社製など)を用いて体積基準粒子径分布を測定することができる。
このようにして得られた体積基準粒子径分布の平均値や標準偏差等から従来公知の式によって尖度および歪度を算出する。例えば、SAS Institute Japan社製JMP Ver.13.2を用いて尖度および歪度を算出できる。なお、体積基準粒子径粒度分布において、まれに所定の粒子径の頻度が負の値を取る事があるが、そのような場合は頻度をゼロとして算出する。
<Measurement of volume-based particle size distribution and calculation method of kurtosis/skewness>
In the present invention, the volume-based particle size distribution of silica-based particles is measured by centrifugal sedimentation. For example, a silica-based particle dispersion liquid is diluted with a 0.05% by mass aqueous sodium dodecyl sulfate solution, the solid content concentration is adjusted to 2% by mass, and the silica-based particle dispersion is diluted with a 0.05% by mass aqueous solution of sodium dodecyl sulfate, and the solid content is adjusted to 2% by mass. ) can be used to measure the volumetric particle size distribution.
Kurtosis and skewness are calculated from the average value, standard deviation, etc. of the volume-based particle size distribution thus obtained using conventionally known formulas. For example, JMP Ver. manufactured by SAS Institute Japan. 13.2 can be used to calculate kurtosis and skewness. In addition, in the volume-based particle size particle size distribution, the frequency of a predetermined particle size may rarely take a negative value, but in such a case, the frequency is calculated as zero.

<多峰分布>
本発明のシリカ系粒子群の体積基準粒子径分布は、下記の方法で波形分離すると、分離ピークが3つ以上検出される多峰分布となる。単峰分布となる粒子群の場合は、粒子径に応じた研磨速度とうねりが発生し、粒子径が大きい場合は研磨速度は高いがうねりが大きくなり、粒子径が小さい場合はうねりは良化するが研磨速度は低くなる。これに対して多峰分布となる粒子群の場合は、それぞれの成分の粒子径に応じた研磨痕を残しながら研磨が進行し、これらの総和がうねりおよび研磨速度となる。従って、大粒子成分と同時に、小粒子成分が十分な研磨速度を示すような分布(小粒子も大粒子も多く含まれているような、例えば台形の分布で、波形分離すると多峰となる分布)であれば、研磨速度とうねりが両立できる。
<Multimodal distribution>
When the volume-based particle size distribution of the silica-based particles of the present invention is waveform-separated by the method described below, it becomes a multimodal distribution in which three or more separated peaks are detected. In the case of particles with a unimodal distribution, the polishing speed and waviness will occur depending on the particle size; if the particle size is large, the polishing speed will be high but the waviness will be large, and if the particle size is small, the waviness will be improved. However, the polishing speed will be lower. On the other hand, in the case of a particle group having a multimodal distribution, polishing proceeds while leaving polishing marks according to the particle diameter of each component, and the sum of these marks becomes the waviness and the polishing rate. Therefore, a distribution in which the small particle component exhibits a sufficient polishing rate at the same time as the large particle component (for example, a trapezoidal distribution that contains many small particles and large particles, and a distribution that becomes multimodal when the waveforms are separated) ), both polishing speed and waviness can be achieved.

波形分離は、前述のディスク遠心式粒子径分布測定装置にて得られた体積基準粒子径分布を、グラフ作成・データ解析ソフト Origin(OriginLab Corporation社製)のピークアナライザを使用して解析することにより行う。まず、基線を0、ピークタイプをGaussianに設定し、粒度分布の極大点をピーク位置として選択して、重み付けなしでピークフィッティングを行い、算出されたピークが以下の条件1および2から逸脱していないことを確認し、逸脱している場合は、下記条件1および2を満たすまでピーク位置を分布範囲内の任意の位置にずらしてピークフィッティングを繰り返す。その後、補正R二乗値が0.99以下である場合は分布範囲内の任意の位置にピークを追加し、補正R二乗値が0.99以上になるまでピークフィッティングを繰り返す。このときの分離されたピークの数をピークの個数とする。
条件1:算出されたそれぞれのピークが元の分布より大きい値を取らないこと。
条件2:算出されたそれぞれのピークが負の値を取らないこと。
このような体積基準粒子径分布が多峰分布となるシリカ系粒子群は、大粒子から小粒子まで分布が幅広く(分布がブロードであり)、より好適な研磨性能を有する。
具体的には、波形分離した最大ピークの体積割合が、全体の体積のうち75%以下である事が望ましい。最大ピークの体積割合が75%以下の場合は、分布がブロードになり、波形分離した場合、分離ピークが3以上の多峰分布となる傾向にあるからである。
この最大ピークの体積割合が75%超の場合は、実質的に単峰分布に近い分布であり、このような体積基準粒子径分布を波形分離しても、分離ピークは3未満となる傾向にある。
Waveform separation was performed by analyzing the volume-based particle size distribution obtained with the aforementioned disk centrifugal particle size distribution measuring device using the peak analyzer of the graph creation and data analysis software Origin (manufactured by OriginLab Corporation). conduct. First, set the baseline to 0 and the peak type to Gaussian, select the maximum point of the particle size distribution as the peak position, perform peak fitting without weighting, and check whether the calculated peak deviates from conditions 1 and 2 below. If there is a deviation, repeat peak fitting by shifting the peak position to an arbitrary position within the distribution range until conditions 1 and 2 below are satisfied. Thereafter, if the corrected R-squared value is 0.99 or less, a peak is added to any position within the distribution range, and peak fitting is repeated until the corrected R-squared value becomes 0.99 or more. The number of separated peaks at this time is defined as the number of peaks.
Condition 1: Each calculated peak does not take a value larger than the original distribution.
Condition 2: Each calculated peak does not take a negative value.
Such a silica-based particle group having a multimodal volume-based particle size distribution has a wide distribution (broad distribution) from large particles to small particles, and has more suitable polishing performance.
Specifically, it is desirable that the volume ratio of the maximum peak after waveform separation is 75% or less of the total volume. This is because if the volume ratio of the maximum peak is 75% or less, the distribution becomes broad, and when waveform separation is performed, there is a tendency for a multimodal distribution with three or more separated peaks.
If the volume ratio of this maximum peak exceeds 75%, the distribution is substantially close to a unimodal distribution, and even if such a volume-based particle size distribution is separated into waveforms, the number of separated peaks tends to be less than 3. be.

さらには、本発明のシリカ系粒子群は、その体積基準粒子径分布を波形分離した際に検出された分離ピークのうち、最大粒子成分の体積割合が75%以下であることが好ましく、73%以下であることがより好ましい。このようなシリカ系粒子群を砥粒として使用すると、大粒子成分が少ないことにより、研磨時において基板の表面粗さやうねりがより良化する。ここで、本発明において「最大粒子成分」とは、シリカ系粒子群の体積基準粒子径分布を波形分離した際に、粒子径が最も大きい粒子側にある分離ピークに含まれる粒子成分を意味する。 Furthermore, in the silica-based particle group of the present invention, it is preferable that the volume ratio of the largest particle component among the separated peaks detected when the volume-based particle size distribution is waveform separated is 75% or less, and 73%. It is more preferable that it is below. When such a silica-based particle group is used as an abrasive grain, the surface roughness and waviness of the substrate are improved during polishing due to the small amount of large particle components. Here, in the present invention, the "largest particle component" means a particle component included in the separation peak on the particle side with the largest particle size when waveform separation is performed on the volume-based particle size distribution of the silica-based particle group. .

<アスペクト比>
本発明のシリカ系粒子群は、SEM画像解析の結果、得られる個数基準粒子径分布において、小粒子側成分のアスペクト比が1.05~5.0の範囲にあることが好ましく、1.05~3.0の範囲にあることがより好ましく、1.05~2.0の範囲にあることがより好ましく、1.05~1.5の範囲にあることが更に好ましい。なお、SEM画像解析により得られる個数基準粒子径分布における小粒子側成分のアスペクト比とは、以下のような方法により測定、算出されたものである。まず、公知の走査型電子顕微鏡(SEM)および公知の画像解析システムを用いて、シリカ系粒子群の総粒子数をカウントする。また、各粒子の面積を算出し、その面積と等しい面積の円の直径を求め、それを粒子径とする。そして、得られた粒子径をサイズ順にならべ、小さい側から数えて粒子個数の1/3までの粒子を小粒子側成分とし、小粒子側成分の粒子の各々についてアスペクト比(最小内接四角の長径/短径比)を求め、それらの単純平均値を「小粒子側成分のアスペクト比」とする。
本発明のシリカ系粒子群の小粒子側成分のアスペクト比は、通常、シリカ系粒子群の平均アスペクト比よりも小さくなる。小粒子側成分のアスペクト比が1.05未満の場合、そのような粒子は実質的に球形粒子と同等であるため研磨速度が低く、シリカ系粒子群の研磨速度も低下する傾向にある。しかし、小粒子側成分のアスペクト比が1.05以上であるシリカ系粒子群を砥粒として使用すると、小粒子側成分も高い研磨速度を示すため、シリカ系粒子群の研磨速度をより高くすることができ、ディフェクト等も生じにくく、高い面精度が得られる傾向にある。また、小粒子側成分のアスペクト比が5.0より大きい場合、シリカ系粒子群全体の平均アスペクト比もさらに高くなるので、研磨速度は高くなるものの、基板にディフェクトが生じやすくなり、更に基板表面の粗さと、基板表面のうねりも悪化する傾向にある。
<Aspect ratio>
In the silica-based particle group of the present invention, the aspect ratio of the small particle side component is preferably in the range of 1.05 to 5.0 in the number-based particle size distribution obtained as a result of SEM image analysis. It is more preferably in the range of ~3.0, more preferably in the range of 1.05 to 2.0, even more preferably in the range of 1.05 to 1.5. Note that the aspect ratio of the small particle side component in the number-based particle size distribution obtained by SEM image analysis is measured and calculated by the following method. First, the total number of particles in the silica-based particle group is counted using a known scanning electron microscope (SEM) and a known image analysis system. Further, the area of each particle is calculated, and the diameter of a circle having an area equal to the calculated area is determined, and this is defined as the particle diameter. Then, arrange the obtained particle diameters in order of size, count up to 1/3 of the particles from the small side as the small particle side component, and for each particle of the small particle side component, the aspect ratio (minimum inscribed square The long axis/breadth axis ratio) is determined, and their simple average value is defined as the "aspect ratio of the small particle side component."
The aspect ratio of the small particle side component of the silica-based particle group of the present invention is usually smaller than the average aspect ratio of the silica-based particle group. When the aspect ratio of the small particle side component is less than 1.05, such particles are substantially equivalent to spherical particles, so the polishing rate is low, and the polishing rate of the silica-based particles also tends to be low. However, when a silica-based particle group whose small particle side component has an aspect ratio of 1.05 or more is used as an abrasive grain, the small particle side component also exhibits a high polishing rate, so the polishing rate of the silica-based particle group is increased. Therefore, defects are less likely to occur, and high surface accuracy tends to be obtained. In addition, if the aspect ratio of the small particle side component is larger than 5.0, the average aspect ratio of the entire silica-based particle group also becomes higher, so although the polishing rate increases, defects are more likely to occur on the substrate, and the substrate surface The roughness of the substrate and the waviness of the substrate surface also tend to worsen.

ここで、単粒子が結合したアスペクト比が高い粒子を作る方法としては、例えば数十nmの粒子をイオン強度調整や高分子などを利用して会合させてアスペクト比を高める方法や、粒子の調合時に核生成と同時にイオン強度等を調整することで粒子を会合させ、更に生成した異形シード粒子を粒子成長させてアスペクト比が高い粒子を得る方法がある。しかし、これらの方法の場合、アスペクト比が高い粒子が生成すると同時に、会合しない粒子も残存し易いため、粒子径の小さな粒子は、球形に近くアスペクト比が小さな粒子となる傾向にあり、球形粒子は研磨速度が低いため、粒子群全体として、研磨速度が低くなる傾向にある。これに対し、本発明の異形シリカ系粒子を含むシリカ系粒子群は、解砕工程の緻密化作用のため、小粒子側成分にも異形粒子を含むことから、高い研磨速度を得ることができる。 Here, methods for producing particles with a high aspect ratio in which single particles are combined include, for example, a method of increasing the aspect ratio by associating particles of several tens of nanometers using ionic strength adjustment or polymers, or a method of increasing the aspect ratio by combining particles of several tens of nm. Sometimes, there is a method of associating particles by adjusting ionic strength, etc. simultaneously with nucleation, and then growing the generated irregularly shaped seed particles to obtain particles with a high aspect ratio. However, in these methods, while particles with a high aspect ratio are generated, unassociated particles also tend to remain, so particles with a small particle size tend to be close to spherical and have a small aspect ratio, and spherical particles Since the polishing rate is low, the polishing rate of the entire particle group tends to be low. On the other hand, the silica-based particle group containing irregularly shaped silica-based particles of the present invention can obtain a high polishing rate because the small particle side component also contains irregularly shaped particles due to the densification effect of the crushing process. .

<変動係数(CV値)>
本発明に係るシリカ系粒子群の体積基準粒子径分布の粒子径の変動係数は、30%以上であることが好ましく、50%以上であることがより好ましい。前記変動係数を所定の範囲とすることで、体積基準粒子径分布がブロードとなり、つまり幅広い粒子径分布を有するシリカ系粒子群となり、より好適な研磨性能を発揮する。なお、本発明において「変動係数(CV値)」とは、その標準偏差を平均値で割った値を百分率で示したものであり、相対的なばらつきを示している。
なお、本発明のCV値は、ディスク遠心式粒子径分布測定装置(CPS Instriment社製)を用いた体積基準粒子径分布から求めたものとする。
<Coefficient of variation (CV value)>
The particle diameter variation coefficient of the volume-based particle diameter distribution of the silica-based particles according to the present invention is preferably 30% or more, more preferably 50% or more. By setting the coefficient of variation within a predetermined range, the volume-based particle size distribution becomes broad, that is, the silica-based particles have a wide particle size distribution, and more suitable polishing performance is exhibited. In the present invention, the "coefficient of variation (CV value)" is a value obtained by dividing the standard deviation by the average value, expressed as a percentage, and indicates relative variation.
Note that the CV value of the present invention is determined from a volume-based particle size distribution using a disk centrifugal particle size distribution measuring device (manufactured by CPS Instrument).

<平滑度S>
本発明のシリカ系粒子群における、画像解析法による平均面積(S1)に対する画像解析法による平均外周長と等価な円の面積(S2)の比であらわされる平滑度S(S=S2/S1)は、1.1~5.0の範囲であることが好ましく、1.2~4.0の範囲であることがより好ましい。S値が1.0よりも高い場合は、シリカ系粒子群に含まれる異形シリカ系粒子の表面が平滑でなく微小な凹凸を有した形状であることを示している。これは異形シード粒子が一次粒子の集合体であり、多孔質であるため、このシード粒子の表面も微小な突起を有しており、このシード粒子を粒子成長させた異形シリカ系粒子は、微小な突起が維持された形状となるからである。さらに異形シリカ系粒子表面に適度な微小突起を有する異形シリカ系粒子を含むシリカ系粒子群を研磨砥粒として用いた場合、突起部に研磨圧力が集中するため、高い研磨速度が得られる。なお、粒子表面の突起が過剰な場合は、研磨後の基板表面の表面粗さやうねりは悪化しないが、砥粒が摩耗し易く、研磨速度が低下する傾向にある。
<Smoothness S>
Smoothness S (S = S 2 /S 1 ) is preferably in the range of 1.1 to 5.0, more preferably in the range of 1.2 to 4.0. When the S value is higher than 1.0, it indicates that the surface of the irregularly shaped silica particles included in the silica particle group is not smooth but has minute irregularities. This irregularly shaped seed particle is an aggregate of primary particles, and since it is porous, the surface of this seed particle also has minute protrusions. This is because the shape of the protrusion is maintained. Furthermore, when a silica-based particle group containing irregular-shaped silica-based particles having appropriate microprotrusions on the surface of the irregular-shaped silica-based particles is used as polishing abrasive grains, polishing pressure is concentrated on the protrusions, so a high polishing rate can be obtained. Note that if there are too many protrusions on the surface of the particles, the surface roughness and waviness of the substrate surface after polishing will not worsen, but the abrasive grains will be easily worn and the polishing rate will tend to decrease.

ここで、シリカ系粒子群における、画像解析法による平均面積(S1)および画像解析法による平均外周長と等価な円の面積(S2)の測定および算出について説明する。
これらは、以下のような方法で測定、算出されたものである。初めに、公知の走査型電子顕微鏡(SEM)を用いて、粒子表面の任意の箇所を、倍率3000倍で1視野当たり1.1×10-3mm2の面積で15視野撮影する。この各視野において撮影された個々の画像に含まれる全てのシリカ微粒子について、公知の画像解析システムを用いて各粒子の面積および外周長を測定し、この測定された各面積および各外周長データから平均面積(S1)(単純平均値)および平均外周長(単純平均値)を算出し、さらにこの平均外周長から、平均外周長と等価な円(平均外周長と同じ円周である円)の面積(S2)を算出する。
Here, the measurement and calculation of the average area (S 1 ) using the image analysis method and the area of a circle equivalent to the average outer circumference length (S 2 ) using the image analysis method in a group of silica-based particles will be described.
These were measured and calculated using the following methods. First, using a known scanning electron microscope (SEM), 15 fields of view are photographed at an arbitrary location on the particle surface at a magnification of 3000 times, each field having an area of 1.1×10 −3 mm 2 . For all the silica fine particles included in each image taken in each field of view, the area and outer circumference of each particle are measured using a known image analysis system, and based on the measured area and outer circumference data, Calculate the average area (S 1 ) (simple average value) and average perimeter length (simple average value), and then from this average perimeter length, calculate a circle equivalent to the average perimeter length (a circle with the same circumference as the average perimeter length) The area (S 2 ) of is calculated.

<Q2/Q1
本発明のシリカ系粒子群は、その体積基準粒子径分布において、全体積(Q1)に対する0.7μm以上の粒子の体積(Q2)の割合Q(Q=Q2/Q1、百分率により表示)が5.0%以下であることが好ましく、4.5%以下であることがより好ましい。このようなシリカ系粒子群は、粗大粒子の割合が少ないことにより、研磨時においてスクラッチなどのディフェクトがより発生しにくく、研磨基板の表面粗さをより小さくすることができる。
<Q 2 /Q 1 >
The silica-based particles of the present invention have a volume-based particle size distribution in which the ratio Q (Q=Q 2 /Q 1 ) of the volume (Q 2 ) of particles of 0.7 μm or more to the total volume (Q 1 ) is expressed as a percentage. (indication) is preferably 5.0% or less, more preferably 4.5% or less. Since such a silica-based particle group has a small proportion of coarse particles, defects such as scratches are less likely to occur during polishing, and the surface roughness of the polished substrate can be further reduced.

なお、本発明のシリカ系粒子群の体積基準粒子径分布における全体積(Q1)、これを波形分離した結果得られた分離ピークの各成分の体積割合、最大粒子成分の体積割合および0.7μm以上の粒子の体積(Q2)についても、前述のディスク遠心式粒子径分布測定装置を用いた方法により測定することができる。 In addition, the total volume (Q 1 ) in the volume-based particle size distribution of the silica-based particles of the present invention, the volume ratio of each component of the separated peak obtained as a result of waveform separation, the volume ratio of the largest particle component, and 0. The volume (Q 2 ) of particles of 7 μm or more can also be measured by the method using the disk centrifugal particle size distribution measuring device described above.

<内部細孔および被覆シリカ層>
本発明のシリカ系粒子群に含まれる異形シリカ系粒子は、異形多孔質シリカ系ゲルからなる粒子をシード粒子として用い、珪酸液を用いてこのシード粒子を成長させることにより得る。この粒子成長の際に、シード粒子中の一次粒子間のネック部が優先的に珪酸によって埋められるが、その一部の細孔は残存する。そのため、本発明の異形シリカ系粒子は、その粒子内部(コア)に微小な内部細孔を有しており、内部が密なシリカ系粒子よりも粒子密度は低いが、その割には強度が高い。この内部細孔の平均細孔径は、30nm以下であることが好ましい。この内部細孔径が大きくなりすぎると、粒子の強度が低下する傾向があるからである。
そして、その粒子表面には、上記した微小な内部細孔を有するコアを被覆する被覆シリカ層を備える。この被覆シリカ層は内部細孔が少なく、また、その平均厚さが1~50nmの範囲でシリカを主成分とすることが好ましい。この平均厚さが1nm未満の場合は粒子の強度が向上しにくく、またこの平均厚さが50nm超では粒子の内部細孔が減少し、さらに異形度も低下して、研磨速度が低くなる。
さらに、被覆シリカ層が無いあるいは、1nmより薄い場合には、強度が弱く研磨時に粒子が崩壊するため、研磨速度は向上しにくく、また繰り返し研磨を行った場合に、研磨速度のばらつきが大きくなる傾向にある。
また、内部に細孔を備える粒子の細孔容積は格別に制限されるものではないが、研磨時に粒子が崩壊する傾向が顕著にならない範囲が望ましい。なお、通常は0.01~1.00ml/gの範囲が望ましい。細孔容積が0.01ml/g未満の場合は、実質的に内部に細孔を持たないため、粒子群の粒子個数増加による研磨速度向上効果は得られにくい。また細孔容積が1.00ml/gを超えると、粒子の強度が不足し、研磨時に粒子が崩壊する場合があり、研磨速度が低下する傾向がある。
ここで、本発明において「主成分」とは、含有率が90質量%以上であることを意味する。すなわち、被覆シリカ層におけるシリカの含有率は90質量%以上であることが好ましい。この含有率は95質量%以上であることがより好ましく、98質量%以上であることがさらに好ましく、99.5質量%以上であることが最も好ましい。
<Internal pores and covering silica layer>
The irregularly shaped silica particles included in the silica particles of the present invention are obtained by using particles made of irregularly shaped porous silica gel as seed particles and growing the seed particles using a silicic acid solution. During this particle growth, the neck portions between the primary particles in the seed particles are preferentially filled with silicic acid, but some pores remain. Therefore, the irregularly shaped silica-based particles of the present invention have minute internal pores inside the particles (core), and have a lower particle density than silica-based particles with a denser interior, but they have less strength. expensive. The average pore diameter of the internal pores is preferably 30 nm or less. This is because if the internal pore diameter becomes too large, the strength of the particles tends to decrease.
The particle surface is provided with a covering silica layer that covers the core having the above-mentioned minute internal pores. This coating silica layer preferably has few internal pores, has an average thickness in the range of 1 to 50 nm, and has silica as its main component. If this average thickness is less than 1 nm, it is difficult to improve the strength of the particles, and if this average thickness exceeds 50 nm, the internal pores of the particles will decrease, and the degree of irregularity will also decrease, resulting in a low polishing rate.
Furthermore, if there is no coating silica layer or if it is thinner than 1 nm, the strength is weak and the particles will disintegrate during polishing, making it difficult to improve the polishing rate and increasing the variation in polishing rate when polishing is repeated. There is a tendency.
Further, the pore volume of the particles having pores inside is not particularly limited, but it is desirable that the pore volume be within a range where the tendency of the particles to collapse during polishing is not noticeable. Note that a range of 0.01 to 1.00 ml/g is usually desirable. When the pore volume is less than 0.01 ml/g, since there are substantially no pores inside, it is difficult to obtain the effect of improving the polishing rate by increasing the number of particles in the particle group. Furthermore, if the pore volume exceeds 1.00 ml/g, the strength of the particles will be insufficient, the particles may collapse during polishing, and the polishing rate will tend to decrease.
Here, in the present invention, the term "main component" means that the content is 90% by mass or more. That is, the content of silica in the coating silica layer is preferably 90% by mass or more. This content is more preferably 95% by mass or more, even more preferably 98% by mass or more, and most preferably 99.5% by mass or more.

なお、本発明のシリカ系粒子群に含まれる異形シリカ系粒子のコア内部細孔の平均細孔径および被覆シリカ層の平均厚さの測定法は以下の通りである。
シリカ系微粒子を樹脂に埋め込み、スライスして得られる断面TEM写真(10万倍(又は20万倍)におけるシリカ系粒子像を観察し、細孔が確認される1つの粒子の最大径を長軸とし、その長軸上において長軸を2等分する点を定め、それに直交する直線がこの粒子の外縁と交わる2点を求め、この2点間を短軸とする。そして、この長軸及び短軸の両側の被覆シリカ層の厚さを求め、これらを単純平均してこの粒子1つの被覆シリカ層の平均厚さとする。同様に任意の20個の粒子について被覆シリカ層の厚みを求め、これらを単純平均したものを異形シリカ系粒子における被覆シリカ層の平均厚さとする。
さらに、長軸および短軸上に存在する細孔径を求め、その平均を粒子1つの平均細孔径とする。同様に細孔が確認される20個の粒子について細孔径を求め、これらを単純平均したものを異形シリカ系粒子における平均細孔径とする。なお、前記断面TEM写真におけるシリカ系粒子像において、周囲より濃度の薄い斑点が内部細孔である。
また、長軸および短軸上に細孔が存在しない場合は、任意の細孔の細孔径を求め、任意の20個の粒子について細孔径を求め、こられを単純平均したものを異形シリカ系粒子における平均細孔径とする。
前記断面TEM写真の測定方法は次のとおりである。
1)シリコンウエハー上に粒子の乾燥粉をのせ、エポキシ樹脂で固める。
2)得られたウエハーをダイヤモンドホイール( South Bay Technology製 型式:SBT650)を用いて、700μmの短冊状にカットする。
3)次に、カットしたウエハーを研磨試料台に乗せて、100μmの厚さにカットする。
(なお、Siウエハは2)または3)工程で外れる。)
4)カットした試料をイオンスライサー(日本電子製 型式:EM-09100IS)で穴をあけ、その穴の周辺の厚み数nm程度の部分を、TEMで観察を行った。
The method for measuring the average pore diameter of the core internal pores and the average thickness of the covering silica layer of the irregularly shaped silica particles included in the silica particles of the present invention is as follows.
A cross-sectional TEM photograph obtained by embedding silica-based fine particles in resin and slicing it (observe the silica-based particle image at 100,000 times (or 200,000 times), and set the maximum diameter of one particle where pores are confirmed as the major axis. Then, determine the point on the long axis that divides the long axis into two equal parts, find the two points where a straight line perpendicular to it intersects the outer edge of this particle, and define the short axis between these two points.Then, this long axis and Determine the thickness of the covering silica layer on both sides of the minor axis, and simply average these to determine the average thickness of the covering silica layer for one particle.Similarly, determine the thickness of the covering silica layer for any 20 particles, The simple average of these values is defined as the average thickness of the coating silica layer in the irregularly shaped silica particles.
Furthermore, the diameters of pores existing on the long axis and the short axis are determined, and the average thereof is taken as the average pore diameter of one particle. Similarly, the pore diameters are determined for 20 particles in which pores are confirmed, and the simple average of these is taken as the average pore diameter of the irregularly shaped silica particles. Note that in the silica-based particle image in the cross-sectional TEM photograph, spots with a lower density than the surroundings are internal pores.
In addition, if there are no pores on the long axis or short axis, find the pore diameter of any pore, find the pore diameter of 20 arbitrary particles, and calculate the simple average of these pore diameters. This is the average pore diameter in the particles.
The method for measuring the cross-sectional TEM photograph is as follows.
1) Place dry powder particles on a silicon wafer and harden with epoxy resin.
2) Cut the obtained wafer into strips of 700 μm using a diamond wheel (model: SBT650, manufactured by South Bay Technology).
3) Next, place the cut wafer on a polishing sample stage and cut it to a thickness of 100 μm.
(Note that the Si wafer is removed in step 2) or 3). )
4) A hole was made in the cut sample using an ion slicer (manufactured by JEOL, model: EM-09100IS), and the area around the hole with a thickness of several nm was observed using a TEM.

本発明の異形シリカ系粒子は、このような内部に微小な細孔を有するコアおよびそれを被覆する被覆シリカ層を備えることによって、水に置換される細孔が減少し、その粒子密度が低くなる。粒子密度が低くなると、質量当たりの粒子個数が増えるため、基板との接触面積が増え、研磨速度が高くなる。また、粒子個数が増えると、粒子1個にかかる荷重が小さくなる。そのため、粒子が基板を浅く研削するため、基板の表面粗さ、うねりが良化する傾向にある。さらに、内部は細孔を有しているが、外層は緻密な被覆シリカ層を備えているため、粒子の強度が高くなり、研磨圧力による粒子破壊を防ぐことができる。そのため研磨速度が高くなる。一方、このような被覆シリカ層を備えていない多孔質シリカ系粒子は、研磨圧力で粒子の破壊が生じるため、研磨速度が著しく低下する。 By providing the irregularly shaped silica particles of the present invention with a core having micropores inside and a covering silica layer covering the core, the number of pores replaced by water is reduced, and the particle density is low. Become. When the particle density decreases, the number of particles per mass increases, so the contact area with the substrate increases and the polishing rate increases. Furthermore, as the number of particles increases, the load applied to each particle becomes smaller. Therefore, since the particles shallowly grind the substrate, the surface roughness and waviness of the substrate tend to improve. Furthermore, although the inside has pores, the outer layer has a dense covering silica layer, which increases the strength of the particles and prevents the particles from breaking due to polishing pressure. Therefore, the polishing rate increases. On the other hand, in the case of porous silica-based particles not provided with such a coating silica layer, the particles are destroyed by the polishing pressure, so that the polishing rate is significantly reduced.

<研磨用砥粒分散液>
本発明のシリカ系粒子群を分散溶媒に分散したシリカ系粒子分散液(本発明のシリカ系粒子群を含むシリカ系粒子分散液)は、研磨用砥粒分散液(以下では「本発明の研磨用砥粒分散液」ともいう)として好ましく用いることができる。特に、磁気ディスクを研磨するために好ましく用いることができる。さらに、SiO2絶縁膜が形成された半導体基板の平坦化用の研磨用砥粒分散液として好適に使用することができる。また、研磨性能を制御するためにケミカル成分を添加し、研磨スラリーとしても好適に用いることができる。
<Abrasive grain dispersion liquid for polishing>
A silica-based particle dispersion in which the silica-based particles of the present invention are dispersed in a dispersion solvent (silica-based particle dispersion containing the silica-based particles of the present invention) is a polishing abrasive dispersion (hereinafter referred to as "abrasive particle dispersion of the present invention"). It can be preferably used as an abrasive grain dispersion (also referred to as "abrasive grain dispersion liquid"). In particular, it can be preferably used for polishing magnetic disks. Furthermore, it can be suitably used as a polishing abrasive dispersion liquid for planarizing a semiconductor substrate on which a SiO 2 insulating film is formed. Further, in order to control the polishing performance, a chemical component can be added and it can be suitably used as a polishing slurry.

そして、本発明の研磨用砥粒分散液は磁気ディスクや半導体基板などを研磨する際の研磨速度が高く、また研磨時に研磨面のスクラッチが少ない、基板への砥粒の残留が少ないなどの効果に優れ、研磨作業の効率を格段に高めることができる。 The polishing abrasive grain dispersion of the present invention has a high polishing speed when polishing magnetic disks, semiconductor substrates, etc., and has effects such as fewer scratches on the polished surface and less residual abrasive grains on the substrate during polishing. It has excellent polishing properties and can greatly improve the efficiency of polishing work.

本発明の研磨用砥粒分散液は、分散溶媒として水および/または有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の研磨用砥粒分散液に、研磨性能を制御するための添加剤として、研磨促進剤、界面活性剤、複素環化合物、pH調整剤、pH緩衝剤および沈降抑制剤からなる群より選ばれる1種以上を添加することで、研磨スラリーとしてより好適に用いられる。 The polishing abrasive dispersion liquid of the present invention contains water and/or an organic solvent as a dispersion solvent. As the dispersion solvent, it is preferable to use water such as pure water, ultrapure water, or ion-exchanged water. Furthermore, a group consisting of a polishing accelerator, a surfactant, a heterocyclic compound, a pH adjuster, a pH buffer, and a sedimentation inhibitor may be added to the polishing abrasive dispersion of the present invention for controlling polishing performance. By adding one or more selected from the above, it can be more suitably used as a polishing slurry.

<研磨促進剤>
本発明の研磨用砥粒分散液に、被研磨材の種類によっても異なるが、必要に応じて従来公知の研磨促進剤を添加することで研磨スラリーとして、使用することができる。この様な例としては、過酸化水素、過酢酸、過酸化尿素など及びこれらの混合物を挙げることができる。このような過酸化水素等の研磨促進剤を含む研磨剤組成物を用いると、被研磨材が金属の場合には効果的に研磨速度を向上させることができる。
<Polishing accelerator>
The abrasive grain dispersion of the present invention can be used as a polishing slurry by adding a conventionally known polishing accelerator as necessary, although this varies depending on the type of material to be polished. Such examples include hydrogen peroxide, peracetic acid, urea peroxide, etc. and mixtures thereof. When a polishing agent composition containing such a polishing accelerator such as hydrogen peroxide is used, the polishing rate can be effectively improved when the material to be polished is metal.

研磨促進剤の別の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸等の無機酸、酢酸等の有機酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩、アミン塩およびこれらの混合物などを挙げることができる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。 Other examples of polishing accelerators include inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, oxalic acid, and hydrofluoric acid; organic acids such as acetic acid; and sodium salts, potassium salts, ammonium salts, and amine salts of these acids. Examples include mixtures of. In the case of polishing compositions containing these polishing accelerators, when polishing a workpiece made of composite components, by accelerating the polishing rate of a specific component of the workpiece, it is possible to achieve flat polishing in the end. You can get a face.

本発明の研磨用砥粒分散液が研磨促進剤を含有する場合、その含有量としては、0.1~10質量%であることが好ましく、0.5~5質量%であることがより好ましい。 When the polishing abrasive dispersion of the present invention contains a polishing accelerator, the content thereof is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass. .

<界面活性剤および/または親水性化合物>
本発明の研磨用砥粒分散液の分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤または親水性化合物を添加することができる。界面活性剤と親水性化合物は、いずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。界面活性剤および/または親水性化合物としては、例えば、以下の群から選ばれるものを使用することができる。
<Surfactant and/or hydrophilic compound>
In order to improve the dispersibility and stability of the polishing abrasive dispersion of the present invention, a cationic, anionic, nonionic, or amphoteric surfactant or a hydrophilic compound can be added. Both the surfactant and the hydrophilic compound have the effect of lowering the contact angle with the surface to be polished, and have the effect of promoting uniform polishing. As the surfactant and/or hydrophilic compound, for example, those selected from the following group can be used.

陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N-アシルアミノ酸塩、ポリオキシエチレンまたはポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼンおよびアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α-オレフィンスルホン酸塩、N-アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレンまたはポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレンまたはポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げることができる。 Examples of anionic surfactants include carboxylates, sulfonates, sulfate ester salts, and phosphate ester salts; examples of carboxylates include soaps, N-acylamino acid salts, polyoxyethylene or polyoxypropylene alkyl ether carbonate; Acid salts, acylated peptides; as sulfonates, alkyl sulfonates, alkylbenzene and alkylnaphthalene sulfonates, naphthalene sulfonates, sulfosuccinates, α-olefin sulfonates, N-acylsulfonates; sulfuric esters As salts, sulfated oils, alkyl sulfates, alkyl ether sulfates, polyoxyethylene or polyoxypropylene alkyl allyl ether sulfates, alkyl amide sulfates; as phosphoric acid ester salts, alkyl phosphates, polyoxyethylene or polyoxyethylene sulfates; Mention may be made of oxypropylene alkyl allyl ether phosphate.

陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。 As cationic surfactants, aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium chloride salts, benzethonium chloride, pyridinium salts, imidazolinium salts; as amphoteric surfactants, carboxybetaine type, sulfobetaine type, Mention may be made of aminocarboxylic acid salts, imidazolinium betaine, lecithin, and alkylamine oxides.

非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキルおよびアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。その他に、フッ素系界面活性剤などが挙げられる。 Examples of nonionic surfactants include ether type, ether ester type, ester type, and nitrogen-containing type. Ether types include polyoxyethylene alkyl and alkylphenyl ether, alkylaryl formaldehyde condensed polyoxyethylene ether, and polyoxyethylene polyester. Examples include oxypropylene block polymer, polyoxyethylene polyoxypropylene alkyl ether, and as ether ester type, polyoxyethylene ether of glycerin ester, polyoxyethylene ether of sorbitan ester, polyoxyethylene ether of sorbitol ester, and as ester type, Examples of the polyethylene glycol fatty acid ester, glycerin ester, polyglycerin ester, sorbitan ester, propylene glycol ester, sucrose ester, and nitrogen-containing type include fatty acid alkanolamide, polyoxyethylene fatty acid amide, and polyoxyethylene alkyl amide. Other examples include fluorine-based surfactants.

界面活性剤としては陰イオン界面活性剤もしくは非イオン系界面活性剤が好ましく、また、塩としては、アンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、特にアンモニウム塩およびカリウム塩が好ましい。 The surfactant is preferably an anionic surfactant or a nonionic surfactant, and the salt includes ammonium salts, potassium salts, sodium salts, etc., with ammonium salts and potassium salts being particularly preferred.

さらに、その他の界面活性剤、親水性化合物等としては、グリセリンエステル、ソルビタンエステルおよびアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードランおよびプルラン等の多糖類;グリシンアンモニウム塩およびグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p-スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩およびポリグリオキシル酸等のポリカルボン酸およびその塩;ポリビニルアルコール、ポリビニルピロリドンおよびポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1-アリルスルホン酸ナトリウム塩、2-アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3-エトキシプロピルスルホン酸ナトリウム塩等のスルホン酸およびその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミドおよびスルファニルアミド等のアミド等を挙げることができる。 Furthermore, other surfactants, hydrophilic compounds, etc. include esters such as glycerin ester, sorbitan ester, and alanine ethyl ester; polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol alkenyl ether, alkyl Polyethylene glycol, alkyl polyethylene glycol alkyl ether, alkyl polyethylene glycol alkenyl ether, alkenyl polyethylene glycol, alkenyl polyethylene glycol alkyl ether, alkenyl polyethylene glycol alkenyl ether, polypropylene glycol alkyl ether, polypropylene glycol alkenyl ether, alkyl polypropylene glycol, alkyl polypropylene glycol alkyl ether , alkyl polypropylene glycol alkenyl ether, alkenyl polypropylene glycol and other ethers; polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, curdlan and pullulan; amino acid salts such as glycine ammonium salt and glycine sodium salt; polyaspartic acid, polyglutamic acid, Polylysine, polymalic acid, polymethacrylic acid, polyammonium methacrylate, polysodium methacrylate, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly(p-styrenecarboxylic acid), polyacrylic acid, polyacrylamide, amino Polycarboxylic acids and their salts such as polyacrylamide, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, polyamic acid, polyamic acid ammonium salt, polyamic acid sodium salt, and polyglyoxylic acid; polyvinyl alcohol, polyvinylpyrrolidone, polyacrolein, etc. Vinyl polymer; ammonium methyl taurate, sodium methyl taurate, sodium methyl sulfate, ethyl ammonium sulfate, butylammonium sulfate, sodium vinyl sulfonate, sodium 1-allylsulfonate, 2-allylsulfonic acid Sulfonic acids and their salts such as sodium salt, methoxymethylsulfonic acid sodium salt, ethoxymethylsulfonic acid ammonium salt, 3-ethoxypropylsulfonic acid sodium salt; propionamide, acrylamide, methylurea, nicotinamide, succiamide and sulfanilamide Amides such as these can be mentioned.

なお、適用する被研磨基材がガラス基板等である場合は、何れの界面活性剤であっても好適に使用できるが、半導体集積回路用シリコン基板などの場合であって、アルカリ金属、アルカリ土類金属またはハロゲン化物等による汚染の影響を嫌う場合にあっては、酸もしくはそのアンモニウム塩系の界面活性剤を使用することが望ましい。 Note that when the substrate to be polished is a glass substrate, etc., any surfactant can be suitably used, but in the case of a silicon substrate for semiconductor integrated circuits, an alkali metal, alkaline earth If the influence of contamination by similar metals or halides is to be avoided, it is desirable to use an acid or ammonium salt-based surfactant.

本発明の研磨用砥粒分散液が界面活性剤および/または親水性化合物を含有する場合、その含有量は、総量として、研磨用砥粒分散液の1L中、0.001~10gとすることが好ましく、0.01~5gとすることがより好ましく0.1~3gとすることが特に好ましい。 When the polishing abrasive dispersion of the present invention contains a surfactant and/or a hydrophilic compound, the total content thereof should be 0.001 to 10 g in 1 L of the polishing abrasive dispersion. The amount is preferably 0.01 to 5 g, more preferably 0.1 to 3 g.

なお、界面活性剤および/または親水性化合物の含有量は、充分な効果を得る上で、研磨用砥粒分散液の1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。 The content of the surfactant and/or hydrophilic compound is preferably 0.001 g or more in 1 L of the polishing abrasive dispersion in order to obtain a sufficient effect, and 10 g or less in order to prevent a decrease in polishing speed. is preferred.

界面活性剤または親水性化合物は1種のみでもよいし、2種以上を使用してもよく、異なる種類のものを併用することもできる。 Only one type of surfactant or hydrophilic compound may be used, two or more types may be used, or different types may be used in combination.

<複素環化合物>
本発明の研磨用砥粒分散液については、被研磨基材に金属が含まれる場合に、金属に不動態層または溶解抑制層を形成させて、被研磨基材の侵食を抑制する目的で、複素環化合物を含有させても構わない。ここで、「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子、または水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、およびホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾールなどを用いることができる。より具体的には、1,2,3,4-テトラゾール、5-アミノ-1,2,3,4-テトラゾール、5-メチル-1,2,3,4-テトラゾール、1,2,3-トリアゾール、4-アミノ-1,2,3-トリアゾール、4,5-ジアミノ-1,2,3-トリアゾール、1,2,4-トリアゾール、3-アミノ1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾールなどを挙げることができるが、これらに限定されるものではない。
<Heterocyclic compound>
Regarding the polishing abrasive dispersion of the present invention, when the base material to be polished contains metal, for the purpose of forming a passive layer or a dissolution suppressing layer on the metal and suppressing erosion of the base material to be polished, A heterocyclic compound may also be included. Here, the "heterocyclic compound" is a compound having a heterocyclic ring containing one or more heteroatoms. Heteroatom means an atom other than a carbon atom or a hydrogen atom. Heterocycle means a cyclic compound having at least one heteroatom. Heteroatom means only those atoms that form a constituent part of a heterocyclic ring system and are located externally to the ring system or are separated from it by at least one non-conjugated bond; is not meant to be such an atom that it is part of a further substituent. Preferred heteroatoms include, but are not limited to, nitrogen atom, sulfur atom, oxygen atom, selenium atom, tellurium atom, phosphorus atom, silicon atom, and boron atom. Examples of heterocyclic compounds that can be used include imidazole, benzotriazole, benzothiazole, and tetrazole. More specifically, 1,2,3,4-tetrazole, 5-amino-1,2,3,4-tetrazole, 5-methyl-1,2,3,4-tetrazole, 1,2,3- Triazole, 4-amino-1,2,3-triazole, 4,5-diamino-1,2,3-triazole, 1,2,4-triazole, 3-amino 1,2,4-triazole, 3,5 Examples include, but are not limited to, -diamino-1,2,4-triazole.

本発明の研磨用砥粒分散液に複素環化合物を配合する場合の含有量については、0.001~1.0質量%であることが好ましく、0.001~0.7質量%であることがより好ましく、0.002~0.4質量%であることがさらに好ましい。 When a heterocyclic compound is blended into the polishing abrasive dispersion of the present invention, the content thereof is preferably 0.001 to 1.0% by mass, and preferably 0.001 to 0.7% by mass. is more preferable, and even more preferably 0.002 to 0.4% by mass.

<pH調整剤>
上記各添加剤の効果を高めるためなどに必要に応じて酸または塩基およびそれらの塩類化合物を添加して研磨用組成物のpHを調節することができる。
<pH adjuster>
In order to enhance the effects of each of the above-mentioned additives, acids or bases and salt compounds thereof can be added as necessary to adjust the pH of the polishing composition.

本発明の研磨用砥粒分散液をpH7以上に調整するときは、pH調整剤として、アルカリ性のものを使用する。望ましくは、水酸化ナトリウム、アンモニア水、炭酸アンモニウム、エチルアミン、メチルアミン、トリエチルアミン、テトラメチルアミンなどのアミンが使用される。 When adjusting the pH of the polishing abrasive dispersion of the present invention to 7 or higher, an alkaline agent is used as the pH adjuster. Preferably, amines such as sodium hydroxide, aqueous ammonia, ammonium carbonate, ethylamine, methylamine, triethylamine, and tetramethylamine are used.

本発明の研磨用砥粒分散液をpH7未満に調整するときは、pH調整剤として、酸性のものが使用される。例えば、酢酸、乳酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸などのヒドロキシ酸類の様な、塩酸、硝酸などの鉱酸が使用される。 When adjusting the pH of the polishing abrasive dispersion of the present invention to less than 7, an acidic pH adjuster is used. For example, mineral acids such as hydrochloric acid, nitric acid, etc. are used, as are hydroxy acids such as acetic acid, lactic acid, citric acid, malic acid, tartaric acid, glyceric acid.

<pH緩衝剤>
本発明の研磨用砥粒分散液のpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和水などのリン酸塩およびホウ酸塩または有機酸塩などを使用することができる。
<pH buffer>
A pH buffer may be used to maintain a constant pH value of the polishing abrasive dispersion of the present invention. As the pH buffering agent, for example, phosphates and borates such as ammonium dihydrogen phosphate, diammonium hydrogen phosphate, ammo tetraborate water, or organic acid salts can be used.

<沈降抑制剤>
本発明の研磨用砥粒分散液は、沈降を抑制し、仮に沈降した場合であって易分散化させる目的で沈降抑制剤を添加しても構わない。沈降抑制剤としては特に制限はないが、ポリカルボン酸系界面活性剤、陰イオン系高分子界面活性剤、カチオン系界面活性剤、ポリアクリル酸ナトリウム、カルボン酸系共重合体ナトリウム塩、カルボン酸系共重合体アンモニウム塩、ポリアクリル酸アンモニウム、ポリアクリル酸、スルホン酸系共重合体ナトリウム塩、脂肪酸塩、α-スルホ脂肪酸エステル塩、アルキルベンゼンスルホン酸塩、アルキル硫酸塩、アルキルエーテル硫酸塩エステル、アルキル硫酸トリエタノールアミン、脂肪酸ジエタノールアミド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウムクロリド、アルキルピリジウムクロリド、アルキルカルボキシベタイン、スチレン・無水マレイン酸共重合体、ナフタレンスルホン酸塩のホルマリン結合物、カルボキシメチルセルロース、オレフィン・無水マレイン酸共重合物、アルギン酸ソーダ、ポリビニルアルコール、ポリアルキレンポリアミン、ポリアクリルアミド、ポリオキシプロピレン・ポリオキシエチレンブロック、ポリマーでんぷん、ポリエチレンイミン、アミノアルキルアクリレート共重合体、ポリビニルイミダソリン、サトキンサンなどが挙げられる。
なお、本発明の研磨用砥粒分散液に沈降抑制剤を配合する場合の含有量については、総量として、研磨用砥粒分散液の1L中、0.001~10gとすることが好ましく、0.01~5gとすることがより好ましく、0.1~3gとすることが特に好ましい。この含有量は、充分な効果を得る上で、研磨用砥粒分散液の1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。
<Sedimentation inhibitor>
A sedimentation inhibitor may be added to the polishing abrasive dispersion of the present invention for the purpose of suppressing sedimentation and, if sedimentation occurs, to facilitate dispersion. There are no particular restrictions on the sedimentation inhibitor, but polycarboxylic acid surfactants, anionic polymer surfactants, cationic surfactants, sodium polyacrylate, carboxylic acid copolymer sodium salts, carboxylic acid copolymers, etc. copolymer ammonium salt, polyammonium acrylate, polyacrylic acid, sulfonic acid copolymer sodium salt, fatty acid salt, α-sulfo fatty acid ester salt, alkylbenzene sulfonate, alkyl sulfate, alkyl ether sulfate ester, Alkyl triethanolamine sulfate, fatty acid diethanolamide, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, alkyl trimethyl ammonium salt, dialkyl dimethyl ammonium chloride, alkyl pyridium chloride, alkyl carboxybetaine, styrene/maleic anhydride copolymer , formalin bond of naphthalene sulfonate, carboxymethyl cellulose, olefin/maleic anhydride copolymer, sodium alginate, polyvinyl alcohol, polyalkylene polyamine, polyacrylamide, polyoxypropylene/polyoxyethylene block, polymer starch, polyethylene imine, Examples include aminoalkyl acrylate copolymer, polyvinylimidasoline, and satokinsan.
Note that when a sedimentation inhibitor is added to the polishing abrasive dispersion of the present invention, the total content is preferably 0.001 to 10 g in 1 L of the polishing abrasive dispersion, and 0. The amount is more preferably 0.01 to 5 g, and particularly preferably 0.1 to 3 g. This content is preferably 0.001 g or more per liter of the polishing abrasive dispersion in order to obtain a sufficient effect, and is preferably 10 g or less in order to prevent a decrease in polishing speed.

また、本発明の研磨用砥粒分散液の分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n-ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2-ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、3,4-ジヒドロ-2H-ピランなどのエーテル類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2-メトキシエチルアセテート、2-エトキシエチルアセテート、2-ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2-ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N-メチル-2-ピロリドン、N-オクチル-2-ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。 In addition, examples of dispersion solvents for the polishing abrasive dispersion of the present invention include alcohols such as methanol, ethanol, isopropanol, n-butanol, and methylisocarbinol; acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, Ketones such as isophorone and cyclohexanone; amides such as N,N-dimethylformamide and N,N-dimethylacetamide; diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, 3,4-dihydro-2H-pyran, etc. ethers; glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, and ethylene glycol dimethyl ether; glycol ether acetates such as 2-methoxyethyl acetate, 2-ethoxyethyl acetate, and 2-butoxyethyl acetate; Esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, and ethylene carbonate; Aromatic hydrocarbons such as benzene, toluene, and xylene; Aliphatic hydrocarbons such as hexane, heptane, isooctane, and cyclohexane halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, and chlorobenzene; sulfoxides such as dimethyl sulfoxide; pyrrolidones such as N-methyl-2-pyrrolidone and N-octyl-2-pyrrolidone Organic solvents such as can be used. These may be used in combination with water.

本発明の研磨用砥粒分散液に含まれる固形分濃度は0.3~50質量%の範囲にあることが好ましい。この固形分濃度が低すぎると研磨速度が低下する可能性がある。逆に固形分濃度が高すぎても研磨速度はそれ以上向上する場合は少ないので、不経済となり得る。 The solid content concentration contained in the polishing abrasive grain dispersion of the present invention is preferably in the range of 0.3 to 50% by mass. If this solid content concentration is too low, the polishing rate may decrease. On the other hand, if the solid content concentration is too high, the polishing rate will rarely be improved any further, which may be uneconomical.

<異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の製造方法>
次に、本発明の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の製造方法を具体的に説明する。
これは、多孔質シリカ系ゲルをアルカリ性下で湿式解砕して異形多孔質シリカ系ゲルからなる粒子を含む溶液にする工程aと、前記異形多孔質シリカ系ゲルからなる粒子を含む溶液にアルカリ性下で珪酸液を添加して加温し、前記異形多孔質シリカ系ゲルからなる粒子の一次粒子間の細孔を前記珪酸液に含まれる珪酸との反応によって埋めながら異形のまま粒子を成長させて、前記異形多孔質シリカ系ゲルからなる粒子よりも重量平均粒子径が小さい異形シリカ系粒子にする工程bと、成長した前記異形シリカ系粒子を含むシリカ系粒子群を濃縮して、回収する工程cとを備える方法である。
<Method for producing a silica particle group consisting of irregularly shaped silica particles and non- irregularly shaped silica particles>
Next, a method for producing a silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles of the present invention will be specifically explained.
This involves wet crushing the porous silica gel under alkalinity to make a solution containing particles made of irregularly shaped porous silica gel, and adding an alkaline solution to the solution containing particles made of irregularly shaped porous silica gel. A silicic acid solution is added below and heated, and the pores between the primary particles of the particles made of the irregularly shaped porous silica gel are filled by a reaction with the silicic acid contained in the silicic acid solution, and the particles grow while keeping the irregular shape. Step (b) of forming irregularly shaped silica particles having a smaller weight average particle diameter than the irregularly shaped porous silica gel particles , and concentrating and recovering the silica particles containing the grown irregularly shaped silica particles. This method includes step c.

[工程a]
この工程は、出発原料として多孔質シリカ系ゲルを用いる。多孔質シリカ系ゲルは、多孔質なシリカ系のゲルであれば、シリカゲルだけでなく、シリカ・アルミナゲル、シリカ・チタニアゲル、シリカ・ジルコニアゲルなどの複合体ゲルであっても構わない。またゲルの状態は、ヒドロゲルであってもキセロゲルであっても、オルガノゲルであっても構わない。そして、このような多孔質なシリカ系ゲルをアルカリ性下で湿式解砕して、異形多孔質シリカ系ゲルからなる粒子を含む溶液にする工程である。多孔質シリカ系ゲルを粉砕してシード粒子として使用することによって、このシード粒子も多孔質となり、また、このシード粒子は真球状のものがほとんど得られず、異形粒子となる。この傾向は、粉砕により粒子径の大きいシード粒子を調製した場合に顕著で、シードサイズが小さくなるように粉砕すると異形度は低くなる傾向にある。そして、後の工程bにおいて、添加する珪酸液が異形多孔質シリカ系ゲルからなる粒子(シード粒子)のシリカ表面および内部数十nm程度に侵入しながら沈積し、溶解度差によって、粒子径に関与しない細孔と珪酸が優先的に反応して該細孔が埋められながら、粒子外表面にシリカが沈着して、粒子の成長を促す(以下の説明において、これをビルドアップという)。このビルドアップによって、粒子外表面の凸部はより外径の増加に寄与し、凹部は外形への寄与が小さいので、成長粒子の強度が高くなると共に粒子の異形が崩れるのが抑制され、粒子径の大きな異形シリカ系粒子を製造することができる。なお、粒子径の大きなシード粒子(例えば粒子径が60nm以上のシード粒子)をビルドアップすると、珪酸液は数nm~数十nm程度しか細孔内に侵入できないため、表面の数十nmを埋めた後は、シリカが粒外表面に沈着するだけになり、内部に細孔が残存することになる。そして、粒子径が大きなシード粒子は、異形度が高く、ビルドアップにより、内部に細孔を有するコアおよびそれを被覆する被覆シリカ層を有した構造の異形シリカ系粒子を形成する。一方、粒子径の小さいシード粒子をビルドアップした場合は、一次粒子間の細孔がほとんどシリカで埋まり、密なシリカ系粒子に近い状態となる傾向が強い。
[Step a]
This process uses porous silica gel as a starting material. The porous silica-based gel is not limited to silica gel, but may be a composite gel such as silica-alumina gel, silica-titania gel, silica-zirconia gel, etc., as long as it is a porous silica-based gel. Further, the gel state may be a hydrogel, a xerogel, or an organogel. Then, such a porous silica-based gel is wet-disintegrated under alkaline conditions to form a solution containing particles of irregularly shaped porous silica-based gel. By pulverizing porous silica-based gel and using it as seed particles, the seed particles also become porous, and the seed particles are rarely truly spherical and are irregularly shaped particles. This tendency is remarkable when seed particles with a large particle size are prepared by pulverization, and when the seed particles are pulverized to a smaller seed size, the degree of irregularity tends to be lowered. In the subsequent step b, the silicic acid solution to be added is deposited while penetrating into the silica surface and several tens of nanometers inside the irregularly shaped porous silica gel particles (seed particles), and the difference in solubility affects the particle size. The silicic acid preferentially reacts with the pores that do not exist, filling the pores, and depositing silica on the outer surface of the particles, promoting particle growth (in the following description, this is referred to as build-up). Due to this build-up, the convex parts on the outer surface of the particle contribute more to the increase in the outer diameter, and the concave parts contribute less to the outer shape, so the strength of the growing particle increases and the irregular shape of the particle is suppressed from collapsing. It is possible to produce irregularly shaped silica particles with large diameters. Note that when building up seed particles with a large particle size (for example, seed particles with a particle size of 60 nm or more), the silicic acid solution can only penetrate into the pores of several nanometers to several tens of nanometers, so it fills the surface several tens of nanometers. After that, silica will only be deposited on the outer surface of the grain, leaving pores inside. Seed particles with a large particle size have a high degree of irregularity, and by buildup, form irregularly shaped silica particles having a structure having a core having pores inside and a covering silica layer covering the core. On the other hand, when seed particles with a small particle size are built up, most of the pores between the primary particles are filled with silica, and there is a strong tendency for the particle to become close to dense silica-based particles.

また、本発明では製造原料として多孔質シリカ系ゲルを用いているが、このシリカ系ゲルは多孔質であるため、その強度は弱い。そのため、重量平均粒子径が数百nmとなるように多孔質シリカ系ゲルを粉砕しても、粉砕時に数十nm程度の微粒も同時に発生する。したがって、多孔質シリカ系ゲルを製造原料として使用した場合、その粉砕によって得られた粒子は小粒子から大粒子まで幅広い。そして前述の通り、粒子径の大きなシード粒子をビルドアップしたものは、内部に細孔を有した構造をとり、一方で、粒子径の小さなシード粒子をビルドアップしたものは、内部の細孔が埋まりやすい傾向にある。そのため、本発明のシリカ系粒子群は、重量平均粒子径が大きく、微粒も同時に備えるため、歪度および尖度が高くなる。 Further, in the present invention, porous silica gel is used as a manufacturing raw material, but since this silica gel is porous, its strength is weak. Therefore, even if porous silica-based gel is crushed so that the weight average particle diameter is several hundred nm, fine particles of about several tens of nanometers are also generated at the time of crushing. Therefore, when porous silica-based gel is used as a manufacturing raw material, the particles obtained by pulverization range from small particles to large particles. As mentioned above, those that have built up seed particles with a large particle size have a structure with internal pores, while those that have built up seed particles that have a small particle size have a structure that has internal pores. It tends to fill up easily. Therefore, the silica-based particles of the present invention have a large weight-average particle diameter and also contain fine particles, resulting in high skewness and kurtosis.

ここで製造原料として使用する多孔質シリカ系ゲルは、解砕され易いゲルが好ましく、例えば、水ガラス法のゲルを洗浄したウエットのヒドロゲルや、キセロゲル、ホワイトカーボン、アルコキシド法によるゲルなどが好ましい。アルコキシド法によるゲルは、脱水縮合する水酸基が少ないためその乾燥パウダーは軟らかく、生産性の良い乾燥パウダーとして用いることができる。多孔質シリカ系ゲルを解砕して得られる異形多孔質シリカ系ゲルからなる粒子の粒度分布は、一定範囲に制御されていることが好ましく、解砕し難い大きなゲルの塊であると、解砕に時間がかかり、粒度分布が広くなる傾向があるので好ましくない。 The porous silica-based gel used as a manufacturing raw material here is preferably a gel that is easily crushed, such as a wet hydrogel obtained by washing a gel by the water glass method, a xerogel, a white carbon, a gel by the alkoxide method, etc. Since the gel produced by the alkoxide method has fewer hydroxyl groups to be dehydrated and condensed, the dry powder thereof is soft and can be used as a dry powder with good productivity. It is preferable that the particle size distribution of the irregularly shaped porous silica gel particles obtained by crushing the porous silica gel is controlled within a certain range. This is not preferable because it takes time to crush and tends to have a wide particle size distribution.

多孔質シリカ系ゲルの多孔性を示すパラメーターとして細孔容積や比表面積が挙げられ、オープンな細孔の場合は、細孔径が同じであれば比表面積と細孔容積は概ね比例関係にある。なお、本発明では多孔質シリカ系ゲルの多孔性を示すパラメーターとして比表面積(SA)を用いた。 Pore volume and specific surface area are listed as parameters indicating the porosity of porous silica-based gels, and in the case of open pores, the specific surface area and pore volume are approximately proportional if the pore diameters are the same. In the present invention, specific surface area (SA) was used as a parameter indicating the porosity of the porous silica gel.

本発明で使用する多孔質シリカ系ゲルは、比表面積が50~800m2/gの範囲が好ましい。比表面積が50m2/gより小さいと、多孔質シリカ系ゲルの一次粒子間の細孔が少ないため、解砕して得た異形多孔質シリカ系ゲルからなる粒子を含む溶液に珪酸液を添加したときに、異形多孔質シリカ系ゲルからなる粒子の一次粒子間の細孔に浸透する珪酸の量が少なく、この細孔が珪酸との反応によって埋められ難くなってしまい、添加した珪酸液は粒子を丸く成長させるように消費され、異形を保ち難くなる傾向がある。また、比表面積が800m2/gより大きいと、粒子強度が弱すぎ、解砕して得た異形多孔質シリカ系ゲルからなる粒子内部を珪酸との反応によってビルドアップして部分的に埋めても十分な強度の異形シリカ系粒子を得ることが難しい傾向がある。
また多孔質シリカ系ゲルのサイズ(粒子径)は、1μm~10mmの範囲が望ましい。
The porous silica gel used in the present invention preferably has a specific surface area in the range of 50 to 800 m 2 /g. When the specific surface area is smaller than 50 m 2 /g, there are few pores between the primary particles of the porous silica gel, so a silicic acid solution is added to the solution containing particles of irregularly shaped porous silica gel obtained by crushing. When this happens, the amount of silicic acid that permeates into the pores between the primary particles of particles made of irregularly shaped porous silica gel is small, and these pores become difficult to fill due to the reaction with silicic acid. It tends to be consumed so that the particles grow round, making it difficult to maintain the irregular shape. In addition, if the specific surface area is larger than 800 m 2 /g, the particle strength is too weak, and the inside of the particle made of the irregularly shaped porous silica gel obtained by crushing is built up by reaction with silicic acid and partially buried. However, it tends to be difficult to obtain irregularly shaped silica particles with sufficient strength.
The size (particle diameter) of the porous silica gel is preferably in the range of 1 μm to 10 mm.

そして、前記多孔質シリカ系ゲルは、アルカリ性下で湿式解砕して異形多孔質シリカ系ゲルからなる粒子にするが、特に比表面積が50~800m2/g程度の比較的柔らかいシリカ系ゲルをビーズミルなどの強いシェアの下で変形と解砕を同時に行うことによって、異形多孔質シリカ系ゲルからなる粒子を好適に調製できる。解砕は、例えば、ガラスメジアを入れたサンドミル粉砕機やビーズミルなどを用いると良い。解砕は複数回行うのが好ましい。 The porous silica gel is wet-pulverized under alkaline conditions to produce particles of irregularly shaped porous silica gel. In particular, relatively soft silica gel with a specific surface area of about 50 to 800 m 2 /g is used. Particles made of irregularly shaped porous silica gel can be suitably prepared by simultaneously performing deformation and crushing under strong shear such as a bead mill. For crushing, it is preferable to use, for example, a sand mill crusher or bead mill containing a glass media. It is preferable to perform crushing multiple times.

通常、ビーズミルなどで粉体を粉砕する場合には、粉砕時間に比例して粉体の粒子径が小さくなるが、シリカ系ゲルのような高表面積で柔らかいものは、粉砕時間に対する粒子径の変化が緩慢であり、重量平均粒子径が60~550nm程度の粒子に解砕され、この異形多孔質シリカ系ゲルからなる粒子は解砕前の比表面積を保ったまま、一次粒子間のネックあるいは細孔をかなり多く含んだ粗な構造を有している。従って、この粒子をそのまま研磨材として用いても、強度不足のため崩れやすく、非常に低い研磨速度しか得られない。そこで、本発明では、後の工程bにおいて、異形多孔質シリカ系ゲルからなる粒子を含む溶液に珪酸液を添加して、異形多孔質シリカ系ゲルからなる粒子内部の一次粒子間の細孔を珪酸液でビルドアップして埋めることによって粒子の強度を高めている。ここで、ビルドアップに使用する珪酸液は、アルコキシド由来であっても、珪酸ナトリウム由来であっても、珪酸アミンであっても構わない。また一次粒子間を埋めることができれば珪酸に限定されず、珪酸のアルカリ塩、アルカリ土類塩などの珪酸塩類であっても構わない。 Normally, when grinding powder with a bead mill, the particle size of the powder decreases in proportion to the grinding time, but for soft materials with a high surface area such as silica gel, the particle size changes with the grinding time. The process is slow, and the weight average particle diameter is crushed into particles with a weight average particle size of about 60 to 550 nm, and the particles made of this irregularly shaped porous silica gel maintain the specific surface area before crushing, and there are no necks or fine particles between the primary particles. It has a rough structure with many pores. Therefore, even if these particles are used as they are as an abrasive, they tend to crumble due to insufficient strength, and only a very low polishing rate can be obtained. Therefore, in the present invention, in the subsequent step b, a silicic acid solution is added to a solution containing particles made of irregularly shaped porous silica gel to close the pores between the primary particles inside the particles made of irregularly shaped porous silica gel. The strength of the particles is increased by building up and filling them with silicic acid solution. Here, the silicic acid solution used for build-up may be derived from alkoxide, sodium silicate, or silicate amine. Furthermore, the material is not limited to silicic acid as long as it can fill the spaces between primary particles, and silicates such as alkali salts of silicic acid and alkaline earth salts may be used.

工程aにおいて、多孔質シリカ系ゲルはアルカリ性下、つまりアルカリ性条件で湿式解砕し、そのアルカリ性はpH8.0~11.5の範囲が好ましい。pHがアルカリ領域より下がるにつれて徐々にマイナスの電位が下がり、中性領域~酸性領域では不安定になるため、解砕により生じた粒子が安定に存在できずに直ぐ凝集してしまう傾向がある。また、pHが11.5超であるとシリカの溶解が促進されるため、やはり凝集する傾向がある。前記湿式解砕時のpHは好適には、8.5~11.0の範囲が推奨される。
なお、ここでpHを調整する方法は特に限定されない。例えば水酸化ナトリウムなどを添加して調整することができる。
In step a, the porous silica gel is wet-disintegrated under alkaline conditions, and the alkalinity is preferably in the range of pH 8.0 to 11.5. As the pH falls below the alkaline range, the negative potential gradually decreases, and the particles become unstable in the neutral to acidic ranges, so particles generated by disintegration cannot exist stably and tend to aggregate immediately. Furthermore, if the pH is over 11.5, the dissolution of silica is promoted, so there is a tendency for silica to aggregate. The pH during the wet crushing is preferably in the range of 8.5 to 11.0.
Note that the method for adjusting the pH here is not particularly limited. For example, it can be adjusted by adding sodium hydroxide or the like.

前記湿式解砕により得られた異形多孔質シリカ系ゲルからなる粒子の重量平均粒子径は、60~550nmの範囲であることが好ましい。異形多孔質シリカ系ゲルからなる粒子の重量平均粒子径が60nmより小さいと、その後珪酸液を添加して粒子を成長させても、研磨材に適する大きさの粒子径にするのが難しい場合がある。また、異形多孔質シリカ系ゲルからなる粒子の重量平均粒子径が550nmより大きいと、研磨材に適する粒子径を超える場合があるのであまり好ましくない。このような研磨材に適する粒子径を超える粗大な粒子は、スクラッチの原因となる可能性がある。解砕によって粗大粒子や大粒子は優先的に解砕される傾向にあるが、異形多孔質シリカ系ゲルに残存した粗大粒子を除去することを目的として、遠心分離を行っても構わない。前記異形多孔質シリカ系ゲルからなる粒子の重量平均粒子径は好ましくは、60~400nmの範囲が推奨される。 The weight average particle diameter of the particles made of irregularly shaped porous silica gel obtained by the wet crushing is preferably in the range of 60 to 550 nm. If the weight average particle diameter of the particles made of irregularly shaped porous silica gel is smaller than 60 nm, it may be difficult to make the particles suitable for use as an abrasive material even if a silicic acid solution is subsequently added to grow the particles. be. Furthermore, if the weight average particle diameter of the particles made of irregularly shaped porous silica gel is larger than 550 nm, the particle diameter may exceed a particle diameter suitable for an abrasive material, which is not very preferable. Coarse particles that exceed the particle size suitable for such an abrasive may cause scratches. Although coarse particles and large particles tend to be preferentially crushed by crushing, centrifugation may be performed for the purpose of removing coarse particles remaining in the irregularly shaped porous silica gel. The weight average particle diameter of the particles made of the irregularly shaped porous silica gel is preferably in the range of 60 to 400 nm.

ここで異形多孔質シリカ系ゲルからなる粒子の重量平均粒子径は、前述のシリカ系粒子群の重量平均粒子径(D1)と同様の方法によって測定して得た値を意味するものとする。 Here, the weight average particle diameter of the particles made of irregularly shaped porous silica gel means the value obtained by measuring by the same method as the weight average particle diameter (D 1 ) of the silica particle group described above. .

なお、この解砕は、材質、大きさの異なるメジアで多段階に行うことができる。例えば、多孔質シリカ系ゲルをサイズの大きなジルコニアメジアで解砕を行うと、強い剪断力により、高速で短時間に1段目解砕を行うことができる。次に1段目よりもサイズの小さなガラスメジアで2段目の解砕を行うと、中程度の剪断力によって解砕が進行し、所望の粒子径に調整することができる。この際、一次粒子間の強度の弱い部分から破壊されるため、微細化と同時に形状の異形化が生じる傾向にある。またアルカリ性条件下での湿式解砕であるため、異形多孔質シリカ系ゲルからなる粒子の一部が溶解し、一次粒子間のネック部を優先的に埋めることができるため、解砕時には過度な微細化は進まない。 Note that this crushing can be performed in multiple stages using media of different materials and sizes. For example, when a porous silica gel is crushed using a large zirconia media, the first stage crushing can be performed at high speed and in a short time due to the strong shearing force. Next, when a second stage of crushing is performed using a glass media smaller in size than the first stage, crushing proceeds with a moderate shearing force, and the desired particle size can be adjusted. At this time, since the primary particles are destroyed starting from the weaker strength portions, they tend to become smaller and irregularly shaped. In addition, since wet crushing is carried out under alkaline conditions, some of the particles made of irregularly shaped porous silica gel dissolve, preferentially filling the necks between primary particles, so there is no excessive Miniaturization is not progressing.

[工程b]
この工程は、異形多孔質シリカ系ゲルからなる粒子を含む溶液にアルカリ性下で珪酸液を添加して加温し、異形多孔質シリカ系ゲルからなる粒子の一次粒子間の細孔を珪酸との反応によって埋めると共に異形のまま粒子を成長させるビルドアップ工程である。前記異形多孔質シリカ系ゲルからなる粒子を含む溶液のSiO2濃度は、1~10質量%の範囲が好ましい。異形多孔質シリカ系ゲルからなる粒子を含む溶液のSiO2濃度が1質量%より少ないと、異形シリカ系粒子を製造する効率が低下する傾向がある。また、SiO2濃度が10質量%より多いと、微小シリカ核が発生し、異形性が保てず、異形シリカ系粒子の粒子成長が不均一になりやすい傾向がある。
なお、この工程bは、異形多孔質シリカ系ゲルからなる粒子を水熱処理しながら珪酸液を添加する方法で行ってもよい。この方法では、添加した珪酸液によって過飽和となり、さらに粒子の一部の溶解も生じながら、シリカが沈着して粒子成長するが、一次粒子間のネック部は溶解よりも沈着速度が早いため、一次粒子間の細孔が優先的に埋まっていく。
[Step b]
In this process, a silicic acid solution is added under alkaline conditions to a solution containing particles made of irregularly shaped porous silica gel, and the silicic acid solution is heated to form pores between the primary particles of the irregularly shaped porous silica gel particles. This is a build-up process in which particles are filled in by reaction and grow while maintaining their irregular shape. The SiO 2 concentration of the solution containing particles made of the irregularly shaped porous silica gel is preferably in the range of 1 to 10% by mass. If the SiO 2 concentration of the solution containing particles made of irregularly shaped porous silica gel is less than 1% by mass, the efficiency of producing irregularly shaped silica particles tends to decrease. Furthermore, if the SiO 2 concentration is more than 10% by mass, minute silica nuclei are generated, the irregular shape cannot be maintained, and the particle growth of irregularly shaped silica particles tends to become non-uniform.
Note that this step b may be carried out by adding a silicic acid solution while hydrothermally treating the particles made of irregularly shaped porous silica gel. In this method, the silica becomes supersaturated with the added silicic acid solution, and some of the particles also dissolve, causing silica to deposit and grow. Pores between particles are filled preferentially.

前記加温温度は60℃~170℃の範囲が好ましい。60℃より低いと異形多孔質シリカ系ゲルからなる粒子の成長が遅い傾向があり、170℃より高いと得られる異形シリカ系粒子が球状になりやすいからである。前記加温温度は、より好適には60℃~100℃の範囲が推奨される。 The heating temperature is preferably in the range of 60°C to 170°C. This is because if the temperature is lower than 60°C, the growth of particles made of irregularly shaped porous silica gel tends to be slow, and if it is higher than 170°C, the obtained irregularly shaped silica particles tend to be spherical. The heating temperature is more preferably in the range of 60°C to 100°C.

さらに、異形多孔質シリカ系ゲルからなる粒子を含む溶液に珪酸液を添加する時のpHは9~12.5の範囲が好ましい。pHが9未満ではシリカの溶解度が低いため、過飽和度が著しく高くなり、添加した珪酸液は粒子成長に消費されずに微粒子として生成し易い。また負の電位も低くなるため、粒子が凝集し易くなる。さらに、水酸基の解離が不十分なので一次粒子との反応性が低下し、ネック部の補強が十分でなくなる。また、pH12.5より高いとシリカの溶解が促進される可能性がある。 Further, the pH when adding the silicic acid solution to the solution containing particles of irregularly shaped porous silica gel is preferably in the range of 9 to 12.5. If the pH is less than 9, the solubility of silica is low, so the degree of supersaturation becomes extremely high, and the added silicic acid solution is not consumed by particle growth and tends to be produced as fine particles. Furthermore, since the negative potential becomes low, particles tend to aggregate. Furthermore, since the hydroxyl groups are insufficiently dissociated, the reactivity with primary particles is reduced, and the neck portion is not sufficiently reinforced. Furthermore, if the pH is higher than 12.5, the dissolution of silica may be promoted.

異形多孔質シリカ系ゲルからなる粒子を含む溶液は、pHを前述の範囲とするために、必要に応じてpHを調整する。調整手段は格別に制限されるものではないが、通常はアルカリ性物質を添加して調整する。この様なアルカリ性物質の例としては、水酸化ナトリウム、水ガラスなどを挙げることができる。異形多孔質シリカ系ゲルからなる粒子を含む溶液に珪酸液を添加する時のpHとして好適には、9.5~12.0の範囲が推奨される。 The pH of the solution containing particles made of irregularly shaped porous silica gel is adjusted as necessary to keep the pH within the above-mentioned range. Although there are no particular restrictions on the adjustment means, the adjustment is usually made by adding an alkaline substance. Examples of such alkaline substances include sodium hydroxide and water glass. A pH range of 9.5 to 12.0 is recommended when the silicic acid solution is added to a solution containing particles of irregularly shaped porous silica gel.

珪酸液の添加量は、前記異形多孔質シリカ系ゲルからなる粒子を含む溶液のSiO2モル濃度に対して該珪酸液のSiO2モル濃度が0.5~20モル倍になる範囲が好ましい。珪酸液の添加量が前記範囲より少ないと、一次粒子間の強度を十分に高めることができず、また被覆シリカ層が十分な厚さにならないため、粒子の強度が低下する傾向にあるからである。また珪酸液などを添加して、粒子成長させると、通常、異形度やアスペクト比が低下するが、珪酸液の添加量が前記範囲よりも多いと、粒子の異形度が著しく低下し、所望の異形度が保てなくなる傾向にあるからである。さらに、粒子成長時には大粒子成分と比較して小粒子成分が優先的に粒子成長するため、珪酸液の添加量が前記範囲よりも多いと、所望のアスペクト比を備える小粒子側成分が得にくくなる傾向にある。
また、珪酸液は連続的または断続的に添加することが望ましい。
The amount of the silicic acid solution added is preferably in a range such that the SiO 2 molar concentration of the silicic acid solution is 0.5 to 20 times the SiO 2 molar concentration of the solution containing particles made of the irregularly shaped porous silica gel. If the amount of silicic acid solution added is less than the above range, the strength between the primary particles cannot be sufficiently increased, and the coating silica layer will not have a sufficient thickness, so the strength of the particles will tend to decrease. be. Furthermore, when particles are grown by adding a silicic acid solution, the degree of irregularity and aspect ratio usually decrease, but if the amount of the silicic acid solution added is larger than the above range, the degree of irregularity of the particles decreases significantly, and the desired degree of irregularity is reduced. This is because there is a tendency that the degree of abnormality cannot be maintained. Furthermore, during particle growth, the small particle component grows preferentially compared to the large particle component, so if the amount of silicic acid solution added is greater than the above range, it is difficult to obtain a small particle component with the desired aspect ratio. There is a tendency to
Further, it is desirable to add the silicic acid solution continuously or intermittently.

珪酸液は、異形多孔質シリカ系ゲルからなる粒子の一次粒子間の細孔を通じて粒子内部に浸透し、該粒子のネック部に沈着し比表面積を小さくすることで、該粒子の強度を高める。この工程bにおいて、異形多孔質シリカ系ゲルからなる粒子の比表面積は、182m2/g以下、より好ましくは比表面積9m2/g~136m2/gの範囲にすることが望ましい。異形多孔質シリカ系ゲルからなる粒子の比表面積が182m2/gより大きいと、得られる異形シリカ系粒子の強度が不足し、砥粒として使用したときに崩れやすく研磨速度が遅くなる傾向がある。
なお、異形多孔質シリカ系ゲルからなる粒子の比表面積は、後記の実施例の「比表面積の測定」に記したとおり、BET法によって測定する。
The silicic acid solution permeates into the inside of the particles made of irregularly shaped porous silica gel through the pores between the primary particles, and is deposited on the neck portions of the particles to reduce the specific surface area, thereby increasing the strength of the particles. In this step b, it is desirable that the specific surface area of the particles made of irregularly shaped porous silica gel is 182 m 2 /g or less, more preferably in the range of 9 m 2 /g to 136 m 2 /g. If the specific surface area of the particles made of irregularly shaped porous silica gel is larger than 182 m 2 /g, the obtained irregularly shaped silica particles will lack strength and tend to crumble when used as abrasive grains, resulting in a slow polishing rate. .
The specific surface area of the particles made of irregularly shaped porous silica gel is measured by the BET method as described in "Measurement of Specific Surface Area" in Examples below.

外部から滴下される珪酸液は、液相から一様に異形多孔質シリカ系ゲルの表面に降り注ぎ、異形多孔質シリカ系ゲルからなる粒子の外表面に結合して粒子の外形を成長させるので、異形を保ったままで粒子径の大きな異形シリカ系粒子を得ることができる
ここで異形シリカ系粒子の重量平均粒子径は、前述のシリカ系粒子群の重量平均粒子径(D1)と同様の方法によって測定して得た値を意味するものとする。
The silicic acid liquid dropped from the outside uniformly falls from the liquid phase onto the surface of the irregularly shaped porous silica gel, binds to the outer surface of the particles made of irregularly shaped porous silica gel, and grows the outer shape of the particle. It is possible to obtain irregularly shaped silica particles with a large particle size while maintaining the irregular shape .
Here, the weight average particle diameter of the irregularly shaped silica particles means a value obtained by measurement using the same method as the weight average particle diameter (D 1 ) of the silica particle group described above.

[工程c]
この工程は、成長した異形シリカ系粒子を含むシリカ系粒子群を濃縮し、回収する工程である。具体的には、例えば、成長した異形シリカ系粒子を含む溶液を室温~40℃程度に冷却し、限外ろ過膜などを用いて濃縮し、エバポレータなどを用いてさらに濃縮して残ったシリカ系粒子群を回収すればよい。さらに粗大な粒子を除去するために、遠心分離をしてもよい。乾燥による粗大な凝集塊が生じ難いという観点から、濃縮は、限外ろ過膜による濃縮が好ましい。
[Step c]
This step is a step of concentrating and recovering the silica particles containing the grown irregularly shaped silica particles. Specifically, for example, a solution containing grown irregularly shaped silica particles is cooled to about room temperature to 40°C, concentrated using an ultrafiltration membrane, etc., and further concentrated using an evaporator etc. to remove the remaining silica particles. All you have to do is collect the particle group. In order to further remove coarse particles, centrifugation may be performed. Concentration is preferably performed using an ultrafiltration membrane from the viewpoint that coarse agglomerates are less likely to occur due to drying.

以下、本発明の実施例を比較例と共に示す。なお、実施例および比較例において、シリカ系粒子群の比表面積の測定、比表面積換算粒子径(D2)の算出、重量平均粒子径(D1)の測定、投影面積相当粒子径(D3)の測定・算出、体積基準粒子径分布における歪度・尖度の算出、体積基準粒子径分布の波形分離、体積基準粒子径分布における体積の測定、小粒子側成分のアスペクト比算出、変動係数の算出、平均面積(S1)・平均外周長と等価な円の面積(S2)の測定・算出、異形シリカ系粒子のコア内部細孔の平均細孔径測定・算出、異形シリカ系粒子の被覆シリカ層の平均厚さ測定・算出および研磨試験は以下のように行った。 Examples of the present invention will be shown below along with comparative examples. In the Examples and Comparative Examples, the specific surface area of the silica particles was measured, the specific surface area equivalent particle diameter (D 2 ) was calculated, the weight average particle diameter (D 1 ) was measured, and the projected area equivalent particle diameter (D 3 ), calculation of skewness and kurtosis in volume-based particle size distribution, waveform separation of volume-based particle size distribution, measurement of volume in volume-based particle size distribution, calculation of aspect ratio of small particle side component, coefficient of variation calculation, measurement and calculation of the average area (S 1 ) and the area of a circle equivalent to the average outer circumference (S 2 ), measurement and calculation of the average pore diameter of the core internal pores of irregularly shaped silica particles, Measurement and calculation of the average thickness of the coated silica layer and polishing test were performed as follows.

[比表面積の測定]
実施例1~、および比較例3~5については、BET法により比表面積を測定、算出した。具体的には、測定対象のシリカゾル50mlを硝酸によりpHを3.5に調整し、これに1-プロパノールを40ml加えて110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成して測定用試料とした。そして、比表面積測定装置(ユアサアイオニクス製、型番マルチソーブ12)を使用し、窒素吸着法(BET法)を用いて窒素の吸着量からBET1点法により比表面積を算出した。
比表面積測定装置では、焼成後の試料0.5gを測定セルに取り、窒素30v%/ヘリウム70v%混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させた。次いで、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により試料中のシリカ微粒子の比表面積を算出した。
なお、多孔質シリカ系ゲルを解砕した(ビルドアップを行っていない)比較例1、2および6については、タイトレーション法により比表面積を測定、算出した。具体的には、SiO2として1.5gに相当する試料をビーカーに採取してから、恒温反応槽(25℃)に移し、純水を加えて液量を90mlにし(以下の操作は、25℃に保持した恒温反応槽中にて行う)、次に、pH3.6になるように0.1モル/L塩酸水溶液を加えた。さらに、塩化ナトリウムを30g加え、純水で150mlに希釈し、10分間攪拌した。そして、pH電極をセットし、攪拌しながら0.1モル/L水酸化ナトリウム溶液を滴下してpH4.0に調整した。さらに、pH4.0に調整した試料を0.1モル/L水酸化ナトリウム溶液で滴定し、pH8.7~9.3の範囲での滴定量とpH値を4点以上記録して、0.1モル/L水酸化ナトリウム溶液の滴定量をX、その時のpH値をYとして、検量線を作製した。そして、所定の式からSiO21.5g当たりのpH4.0~9.0までに要する0.1モル/L水酸化ナトリウム溶液の消費量を求め、これを用いて、所定の式に従って比表面積を求めた。
[Measurement of specific surface area]
For Examples 1 to 4 and Comparative Examples 3 to 5, the specific surface area was measured and calculated by the BET method. Specifically, 50 ml of the silica sol to be measured was adjusted to pH 3.5 with nitric acid, 40 ml of 1-propanol was added thereto, and the sample was dried at 110°C for 16 hours. After pulverizing in a mortar, the sample was ground in a muffle furnace. The sample was baked at 500° C. for 1 hour to prepare a measurement sample. Then, using a specific surface area measuring device (manufactured by Yuasa Ionics, model number Multisorb 12), the specific surface area was calculated from the amount of nitrogen adsorbed using the BET one-point method using the nitrogen adsorption method (BET method).
In the specific surface area measurement device, 0.5 g of the sample after firing is placed in a measurement cell, degassed for 20 minutes at 300°C in a mixed gas flow of 30v% nitrogen/70v% helium, and then the sample is placed in the above mixed gas. The sample was maintained at liquid nitrogen temperature in an air stream to allow equilibrium adsorption of nitrogen onto the sample. Next, the sample temperature was gradually raised to room temperature while flowing the above-mentioned mixed gas, and the amount of nitrogen desorbed during this time was detected, and the specific surface area of the silica fine particles in the sample was calculated using a calibration curve prepared in advance.
In addition, for Comparative Examples 1, 2, and 6 in which porous silica-based gel was crushed (build-up was not performed), the specific surface area was measured and calculated by the titration method. Specifically, a sample equivalent to 1.5 g of SiO 2 was collected in a beaker, then transferred to a constant temperature reaction tank (25°C), and purified water was added to make the liquid volume 90 ml (the following operation was carried out at 25°C). (This was carried out in a constant temperature reaction tank maintained at 0.degree. C.), and then a 0.1 mol/L aqueous hydrochloric acid solution was added to adjust the pH to 3.6. Furthermore, 30 g of sodium chloride was added, diluted to 150 ml with pure water, and stirred for 10 minutes. Then, a pH electrode was set, and while stirring, 0.1 mol/L sodium hydroxide solution was added dropwise to adjust the pH to 4.0. Furthermore, the sample adjusted to pH 4.0 was titrated with 0.1 mol/L sodium hydroxide solution, and the titration amount and pH value in the range of pH 8.7 to 9.3 were recorded at 4 or more points. A calibration curve was prepared by setting the titration amount of 1 mol/L sodium hydroxide solution as X and the pH value at that time as Y. Then, the consumption amount of 0.1 mol/L sodium hydroxide solution required for pH 4.0 to 9.0 per 1.5 g of SiO 2 is determined from the predetermined formula, and using this, the specific surface area is determined according to the predetermined formula. I asked for

[比表面積換算粒子径(D2)の算出]
上記方法によって測定した比表面積(SA)と、粒子の密度(ρ=2.2)を用い、D2=6000/(SA×ρ)の式から、比表面積換算粒子径(D2)を算出した。
[Calculation of specific surface area equivalent particle diameter (D 2 )]
Using the specific surface area (SA) measured by the above method and the particle density (ρ = 2.2), calculate the specific surface area equivalent particle diameter (D 2 ) from the formula D 2 = 6000/(SA x ρ). did.

[重量平均粒子径(D1)の測定]
シリカ系粒子分散液を0.05質量%ドデシル硫酸ナトリウム水溶液で希釈し、固形分濃度で2質量%としたものを、ディスク遠心式粒子径分布測定装置(型番:DC24000UHR、CPS instruments社製)に、0.1mlをシリンジで注入して、8~24質量%のショ糖の密度勾配溶液中で18000rpmの条件で重量平均粒子径(D1)の測定を行った。多孔質シリカ系ゲルの解砕品(異形多孔質シリカ系ゲルからなる粒子)についても、同様の方法で測定を行った。
[Measurement of weight average particle diameter (D 1 )]
The silica-based particle dispersion was diluted with a 0.05% by mass aqueous sodium dodecyl sulfate solution to give a solid content concentration of 2% by mass, and then transferred to a disk centrifugal particle size distribution analyzer (model number: DC24000UHR, manufactured by CPS instruments). , 0.1 ml was injected with a syringe, and the weight average particle diameter (D 1 ) was measured at 18,000 rpm in a density gradient solution of 8 to 24 mass % sucrose. Disintegrated products of porous silica gel (particles made of irregularly shaped porous silica gel) were also measured in the same manner.

[投影面積相当粒子径(D3)の測定・算出]
シリカ系粒子群における投影面積相当粒子径(D3)の測定・算出は、画像解析法により行った。具体的には、まず走査型電子顕微鏡(SEM)を用いて、シリカ系粒子表面の任意の箇所を、倍率3000倍で1視野当たり1.1×10-3mm2の面積で15視野撮影した。そして、この各視野において撮影された個々の画像に含まれる全てのシリカ微粒子について、画像解析システムを用いた画像解析法によって個々の粒子の投影面積を測定し、この測定された各面積に相当する円形の粒子の粒子径(円の直径)を算出し、これらの個数平均を投影面積相当粒子径(D3)とした。
[Measurement and calculation of projected area equivalent particle diameter (D 3 )]
The projected area equivalent particle diameter (D 3 ) of the silica-based particles was measured and calculated by an image analysis method. Specifically, first, using a scanning electron microscope (SEM), arbitrary points on the surface of the silica-based particles were photographed at 3000x magnification, with an area of 1.1 x 10 -3 mm 2 per field, for 15 fields. . Then, for all the silica particles included in each image taken in each field of view, the projected area of each particle is measured by an image analysis method using an image analysis system, and the area corresponding to each measured area is measured. The particle diameter (diameter of a circle) of the circular particles was calculated, and the number average thereof was defined as the projected area equivalent particle diameter (D 3 ).

[体積基準粒子径分布における尖度・歪度の算出]
前述のディスク遠心式粒子径分布測定装置を用いた方法により、体積基準粒子径分布も測定した。そして、得られた体積基準粒子径分布データを使用して、SAS Institute Japan社製JMP Ver.13.2を用いて尖度および歪度を算出した。なお、体積基準粒子径粒度分布において、所定の粒子径の頻度が負の値の場合は、頻度をゼロとして算出した。
[Calculation of kurtosis and skewness in volume-based particle size distribution]
The volume-based particle size distribution was also measured by the method using the disk centrifugal particle size distribution measuring device described above. Then, using the obtained volume-based particle size distribution data, JMP Ver. Kurtosis and skewness were calculated using 13.2. In addition, in the volume-based particle size particle size distribution, when the frequency of a predetermined particle size was a negative value, the frequency was calculated as zero.

[体積基準粒子径分布の波形分離]
前述の体積基準粒子径分布測定データを、グラフ作成・データ解析ソフト Origin(OriginLab Corporation社製)のピークアナライザを使用して解析した。まず、基線を0、ピークタイプをGaussianに設定し、粒度分布の極大点をピーク位置として選択して、重み付けなしでピークフィッティングを行い、算出されたピークが以下の条件1および2から逸脱していないことを確認し、逸脱している場合は、下記条件1および2を満たすまでピーク位置を分布範囲内の任意の位置にずらしてピークフィッティングを繰り返した。その後、補正R二乗値が0.99以下である場合は分布範囲内の任意の位置にピークを追加し、補正R二乗値が0.99以上になるまでピークフィッティングを繰り返した。このときの分離されたピークの数をピークの個数とした。
条件1:算出されたそれぞれのピークが元の分布より大きい値を取らないこと。
条件2:算出されたそれぞれのピークが負の値を取らないこと。
[Waveform separation of volume-based particle size distribution]
The aforementioned volume-based particle size distribution measurement data was analyzed using a peak analyzer of the graph creation/data analysis software Origin (manufactured by OriginLab Corporation). First, set the baseline to 0 and the peak type to Gaussian, select the maximum point of the particle size distribution as the peak position, perform peak fitting without weighting, and check whether the calculated peak deviates from conditions 1 and 2 below. If there was a deviation, the peak position was shifted to an arbitrary position within the distribution range and peak fitting was repeated until Conditions 1 and 2 below were satisfied. Thereafter, if the corrected R-squared value was 0.99 or less, a peak was added at any position within the distribution range, and peak fitting was repeated until the corrected R-squared value became 0.99 or higher. The number of separated peaks at this time was defined as the number of peaks.
Condition 1: Each calculated peak does not take a value larger than the original distribution.
Condition 2: Each calculated peak does not take a negative value.

[体積基準粒子径分布における体積の測定]
シリカ系粒子群の体積基準粒子径分布における全体積(Q1)、これを波形分離した結果得られた分離ピークの各成分の体積割合、最大粒子成分の体積割合および0.7μm以上の粒子の体積(Q2)は、前述のディスク遠心式粒子径分布測定装置を用いて測定した。
[Measurement of volume in volume-based particle size distribution]
The total volume (Q 1 ) in the volume-based particle size distribution of the silica-based particles, the volume ratio of each component of the separated peak obtained as a result of waveform separation, the volume ratio of the largest particle component, and the volume ratio of particles of 0.7 μm or more. The volume (Q 2 ) was measured using the disk centrifugal particle size distribution measuring device described above.

[小粒子側成分のアスペクト比算出]
小粒子側成分のアスペクト比は、走査型電子顕微鏡(SEM)および画像解析システムを用いてシリカ系粒子群の総粒子数をカウントし、また、各粒子の面積を算出し、その面積と等しい面積の円の直径を求め、それを粒子径とする。そして、得られた粒子径をサイズ順にならべ、小さい側から数えて粒子個数の1/3までの粒子を小粒子側成分とし、そのアスペクト比(最小内接四角の長径/短径比)の平均値を「小粒子側成分のアスペクト比」とした。
[Aspect ratio calculation of small particle side component]
The aspect ratio of the small particle side component is determined by counting the total number of particles in the silica particle group using a scanning electron microscope (SEM) and an image analysis system, calculating the area of each particle, and calculating the area equal to that area. Find the diameter of the circle and use it as the particle size. Then, arrange the obtained particle diameters in order of size, count up to 1/3 of the number of particles from the small side as the small particle side component, and average the aspect ratio (length/breadth ratio of the smallest inscribed square). The value was defined as the "aspect ratio of the small particle side component."

[変動係数の算出]
シリカ系粒子群の体積基準粒子径分布を波形分離した結果得られた分離ピークの各成分の体積割合の変動係数、および体積基準粒子径分布の粒子径の変動係数は、前述の体積基準粒子径分布測定データからそれぞれの標準偏差および平均値を算出し、この標準偏差を前記平均値で割り、これを百分率で示すことにより算出した。
[Calculation of coefficient of variation]
The coefficient of variation of the volume ratio of each component of the separation peak obtained as a result of waveform separation of the volume-based particle size distribution of the silica-based particle group, and the coefficient of variation of the particle size of the volume-based particle size distribution are the volume-based particle size described above. The standard deviation and average value were calculated from the distribution measurement data, the standard deviation was divided by the average value, and the result was expressed as a percentage.

[平均面積(S1)・平均外周長と等価な円の面積(S2)の測定・算出]
シリカ系粒子群における平均面積(S1)および平均外周長と等価な円の面積(S2)の測定は、画像解析法により行った。具体的には、まず走査型電子顕微鏡(SEM)を用いて、シリカ系粒子表面の任意の箇所を、倍率3000倍で1視野当たり1.1×10-3mm2の面積で15視野撮影した。そして、この各視野において撮影された個々の画像に含まれる全てのシリカ微粒子について、画像解析システムを用いた画像解析法によってそれぞれ面積および外周長を測定し、この測定された各面積および各外周長データから平均面積(S1)および平均外周長(単純平均値)を算出し、さらにこの平均外周長から、平均外周長と等価な円(平均外周長と同じ円周である円)の面積(S2)を算出した。
[Measurement and calculation of the average area (S 1 ) and the area of a circle equivalent to the average circumference (S 2 )]
The average area (S 1 ) and the area of a circle equivalent to the average outer circumference (S 2 ) of the silica-based particles were measured by an image analysis method. Specifically, first, using a scanning electron microscope (SEM), arbitrary points on the surface of the silica-based particles were photographed at 3000x magnification, with an area of 1.1 x 10 -3 mm 2 per field, for 15 fields. . Then, the area and outer circumference of all the silica particles included in each image taken in each field of view are measured by an image analysis method using an image analysis system, and the area and outer circumference of each measured area and each outer circumference are measured. Calculate the average area (S 1 ) and average perimeter length (simple average value) from the data, and from this average perimeter length, calculate the area ( S 2 ) was calculated.

[異形シリカ系粒子のコア内部細孔の平均細孔径、および被覆シリカ層の平均厚さ測定・算出]
異形シリカ系粒子のコア内部細孔の平均細孔径、および被覆シリカ層の平均厚さ測定・算出は、次のように行った。初めに、透過型電子顕微鏡(TEM)によって異形シリカ系粒子を20万倍で観察し、細孔が確認される1つの粒子の最大径を長軸とし、その長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、この2点間を短軸とした。そして、この長軸及び短軸の両側の被覆シリカ層の厚さを求め、これらを単純平均してこの粒子1つの被覆シリカ層の平均厚みとした。同様に任意の20個の粒子についてシリカ層の厚みを求め、これらを単純平均したものを異形シリカ系粒子における被覆シリカ層の平均厚さとした。
さらに、長軸および短軸上に存在する細孔径を求め、その平均を粒子1つの平均細孔径とした。同様に任意の20個の粒子について細孔径を求め、これらを単純平均したものを異形シリカ系粒子における平均細孔径とした。
また、長軸および短軸上に細孔が存在しない場合は、任意の細孔の細孔径を求め、任意の20個の粒子について細孔径を求め、こられを単純平均したものを異形シリカ系粒子における平均細孔径とする。
[Measurement and calculation of the average pore diameter of the core internal pores of irregularly shaped silica particles and the average thickness of the covering silica layer]
The average pore diameter of the core internal pores of the irregularly shaped silica-based particles and the average thickness of the covering silica layer were measured and calculated as follows. First, the irregularly shaped silica particles were observed using a transmission electron microscope (TEM) at a magnification of 200,000 times. A point for equal division was determined, two points where a straight line perpendicular thereto intersects with the outer edge of the particle were determined, and the short axis was defined between these two points. Then, the thicknesses of the covering silica layers on both sides of the long axis and the short axis were determined, and these were simply averaged to determine the average thickness of the covering silica layer of one particle. Similarly, the thickness of the silica layer was determined for 20 arbitrary particles, and the simple average of these was taken as the average thickness of the covering silica layer in the irregularly shaped silica particles.
Furthermore, the pore diameters existing on the long axis and the short axis were determined, and the average thereof was taken as the average pore diameter of one particle. Similarly, the pore diameters were determined for 20 arbitrary particles, and the simple average of these was determined as the average pore diameter of the irregularly shaped silica particles.
In addition, if there are no pores on the long axis or short axis, find the pore diameter of any pore, find the pore diameter of 20 arbitrary particles, and calculate the simple average of these pore diameters. This is the average pore diameter in the particles.

[多孔質シリカ系ゲルのサイズ測定方法]
多孔質シリカ系ゲルのサイズ測定は、HORIBA社製 LA-950を用いて、以下の測定条件により行った。
LA-950V2のバージョンは7.02、アルゴリズムオプションは標準演算、固体の屈折率1.450、溶媒(純水)の屈折率1.333、反復回数は15回、サンプル投入バスの循環速度は5、撹拌速度は2とし、あらかじめこれらを設定した測定シーケンスを使用して測定を行った。そして、測定サンプルをスポイトを使用して原液のまま装置のサンプル投入口に投入した。ここで、透過率(R)の数値が90%になるように投入した。そして、透過率(R)の数値が安定した後、超音波を5分間照射し粒子径の測定を行った。
[Method for measuring the size of porous silica gel]
The size of the porous silica gel was measured using LA-950 manufactured by HORIBA under the following measurement conditions.
LA-950V2 version is 7.02, algorithm options are standard calculation, solid refractive index 1.450, solvent (pure water) refractive index 1.333, number of repetitions is 15, sample input bath circulation speed is 5. , the stirring speed was set to 2, and measurements were performed using a measurement sequence set in advance. Then, the measurement sample was put into the sample input port of the device as an undiluted solution using a dropper. Here, it was added so that the transmittance (R) value was 90%. After the transmittance (R) value became stable, ultrasonic waves were irradiated for 5 minutes and the particle diameter was measured.

[異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を含むシリカ系粒子分散液に含まれる、異形シリカ系粒子の割合の測定方法]
電子顕微鏡(日立製作所社製、型番「S-5500」)により、シリカ系粒子分散液を倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、任意の100個の粒子について、それぞれのアスペクト比(最小内接四角の長径/短径比)を求めた。ここでアスペクトが1.1以上であった粒子が異形シリカ系粒子である。そして、アスペクト比が1.1以上の粒子の個数と、測定した粒子の個数(100個)から、前記異形シリカ系粒子の割合を求めた。
その結果を表1に示した。
[Method for measuring the proportion of irregularly shaped silica particles contained in a silica particle dispersion containing a silica particle group consisting of irregularly shaped silica particles and non- irregularly shaped silica particles]
In a photographic projection diagram obtained by photographing a silica-based particle dispersion at a magnification of 250,000 times (or 500,000 times) using an electron microscope (manufactured by Hitachi, Ltd., model number "S-5500"), any 100 particles The aspect ratio (length/breadth ratio of the smallest inscribed square) of each particle was determined. Particles having an aspect ratio of 1.1 or more are irregularly shaped silica particles. Then, the proportion of the irregularly shaped silica particles was determined from the number of particles having an aspect ratio of 1.1 or more and the number of measured particles (100).
The results are shown in Table 1.

[研磨試験]
被研磨基板
被研磨基板として、ハードディスク用ニッケルメッキしたアルミ基板(東洋鋼鈑社製ニッケルメッキサブストレート)を使用した。本基板はドーナツ形状の基板である(外径95mmφ、内径25mmφ、厚さ1.27mm)。
研磨試験
9質量%のシリカ系粒子分散液344gを作製し、これに31質量%過酸化水素水を5.65g加えた後に10質量%硝酸にてpHを1.5に調整して研磨スラリーを作製した。
上記被研磨基板を研磨装置(ナノファクター社製:NF300)にセットし、研磨パッド(FILWEL社製「ベラトリックスNO178」)を使用し、基板荷重0.05MPa、定盤回転数50rpm、ヘッド回転数50rpmで、研磨スラリーを40g/分の速度で供給しながら1μm研磨を行った。
研磨速度
研磨前後の研磨基板の重量差と研磨時間より研磨速度を算出した。
研磨速度の安定性
前記の条件で5回研磨を繰り返し行い、研磨速度の変動係数(CV値)を算出した。
基板の平滑性
研磨試験により得られた研磨基板を、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Maicro―Max VMX-3100)を使用し、観察条件はMME-250Wの白色光を10%に調整し、LA-180Meは0%にて観察した。
この観察では、基板表面にスクラッチ等で欠陥が存在すると白色光が乱反射され、欠陥部分が白く観察される。一方、欠陥が無い部分は白色光が正反射され、全面が黒く観察される。このように観察を行い、基板表面に存在するスクラッチ(線状痕)等によって生じる欠陥の面積(基板が白く観察される面積)を次の基準に従って評価した。
欠陥面積 評 価
3%未満 「非常に少ない」
3%以上、20%未満 「少ない」
20%以上、40%未満 「多い」
40%以上 「非常に多い」
うねり
研磨したドーナツ状のアルミ基板の外縁と内縁を2等分する任意の箇所を測定し、その測定箇所と反対側の2等分する箇所を測定し、これらの値の平均値をうねりの測定値とした。測定条件は下記の通りである。
機器:ZygoNewView7200
レンズ:2.5倍
ズーム比:1.0
フィルター:50~500μm
測定エリア:3.75mm×2.81mm
[Polishing test]
Substrate to be polished
A nickel-plated aluminum substrate for hard disks (nickel-plated substrate manufactured by Toyo Kohan Co., Ltd.) was used as the substrate to be polished. This substrate is a donut-shaped substrate (outer diameter 95 mmφ, inner diameter 25 mmφ, thickness 1.27 mm).
Polishing test
344 g of 9% by mass silica-based particle dispersion was prepared, 5.65g of 31% by mass hydrogen peroxide solution was added thereto, and the pH was adjusted to 1.5 with 10% by mass nitric acid to produce a polishing slurry. .
The above-mentioned substrate to be polished was set in a polishing device (NF300 manufactured by NanoFactor), and a polishing pad (Bellatrix NO178 manufactured by FILWEL) was used.The substrate load was 0.05 MPa, the number of rotations of the surface plate was 50 rpm, and the number of head rotations. 1 μm polishing was performed at 50 rpm while supplying the polishing slurry at a rate of 40 g/min.
polishing speed
The polishing rate was calculated from the difference in weight of the polished substrate before and after polishing and the polishing time.
Stability of polishing rate
Polishing was repeated five times under the above conditions, and the coefficient of variation (CV value) of the polishing rate was calculated.
Substrate smoothness
The polished substrate obtained from the polishing test was observed using an ultrafine defect/visualization macro device (manufactured by VISION PSYTEC, product name: Maicro-Max VMX-3100), and the observation conditions were MME-250W white light at 10%. The sample was adjusted and LA-180Me was observed at 0%.
In this observation, if a defect such as a scratch exists on the substrate surface, white light is diffusely reflected, and the defective portion is observed as white. On the other hand, in areas without defects, white light is specularly reflected and the entire area is observed as black. Observations were made in this manner, and the area of defects caused by scratches (linear marks) etc. present on the substrate surface (area where the substrate was observed to be white) was evaluated according to the following criteria.
Defect area evaluation Less than 3% "Very small"
3% or more, less than 20% "Less"
20% or more, less than 40% "Many"
40% or more “Very high”
undulation
Measure an arbitrary point that divides the outer edge and inner edge of the polished donut-shaped aluminum substrate into two halves, measure the two halves on the opposite side of the measured point, and calculate the average value of these values as the measured waviness value. And so. The measurement conditions are as follows.
Equipment: ZygoNewView7200
Lens: 2.5x Zoom ratio: 1.0
Filter: 50-500μm
Measurement area: 3.75mm x 2.81mm

[実施例1]
精製シリカヒドロゲルの調整
珪酸ナトリウム462.5gに純水を加え、SiO2換算で24質量%の珪酸ナトリウム水溶液を調製し、pHが4.5となるように25質量%の硫酸を添加してシリカヒドロゲルを含む溶液を得た。このシリカヒドロゲル溶液を、恒温槽で21℃の温度に維持し、5.75時間静置して熟成を行ったのち、シリカヒドロゲルに含まれるSiO2に対し、硫酸ナトリウムの含有量が0.05質量%となるまで純水で洗浄して精製シリカヒドロゲル(多孔質シリカ系ゲル)を得た。この精製シリカヒドロゲルの濃度は、SiO2濃度が5.0質量%であり、また比表面積は600m2/gで、サイズは84μmであった。
[Example 1]
Preparation of purified silica hydrogel
Pure water was added to 462.5 g of sodium silicate to prepare a 24% by mass sodium silicate aqueous solution in terms of SiO 2 , and 25% by mass of sulfuric acid was added so that the pH was 4.5 to prepare a solution containing silica hydrogel. Obtained. This silica hydrogel solution was maintained at a temperature of 21° C in a constant temperature bath, left to stand for 5.75 hours, and then aged. The purified silica hydrogel (porous silica gel) was obtained by washing with pure water until the mass % was reached. The purified silica hydrogel had a SiO 2 concentration of 5.0% by mass, a specific surface area of 600 m 2 /g, and a size of 84 μm.

異形多孔質シリカ系ゲルの調製
<異形多孔質シリカ系ゲル微粒子分散液(1)>
2Lのガラスビーカーに前記SiO2濃度5.0質量%の精製シリカヒドロゲル500gを加え、4.8質量%水酸化ナトリウム水溶液を添加してpH9.8に調整した。これに1.0mmφのジルコニアメジアを2390g加え、サンドミル粉砕機にかけて、重量平均粒子径が530nmになるまで解砕を行い(1段目粉砕)、SiO2濃度4.0質量%の異形多孔質シリカ系ゲル微粒子分散液(1)を得た。
Preparation of irregularly shaped porous silica gel <Unshaped porous silica gel fine particle dispersion (1)>
500 g of purified silica hydrogel having an SiO 2 concentration of 5.0% by mass was added to a 2L glass beaker, and the pH was adjusted to 9.8 by adding a 4.8% by mass aqueous sodium hydroxide solution. 2,390 g of zirconia media with a diameter of 1.0 mm was added to this, and crushed using a sand mill until the weight average particle diameter became 530 nm ( first stage crushing). A silica gel fine particle dispersion (1) was obtained.

<異形多孔質シリカ系ゲル微粒子分散液(2)>
次に、異形シリカ多孔質シリカ系ゲル微粒子分散液(1)(重量平均粒子径530nm)に4.8質量%水酸化ナトリウム水溶液を加え、pH10.0に調整し、0.25mmφのガラスメジアを加え、重量平均粒子径が225nmになるまで解砕を行い、3.0質量%の異形多孔質シリカ系ゲル微粒子分散液(2)を得た。
<Unshaped porous silica gel particle dispersion (2)>
Next, a 4.8% by mass aqueous sodium hydroxide solution was added to the irregularly shaped silica porous silica-based gel fine particle dispersion (1) (weight average particle diameter 530 nm), the pH was adjusted to 10.0, and a glass media with a diameter of 0.25 mm was added. The dispersion was carried out until the weight average particle diameter became 225 nm to obtain a 3.0% by mass irregularly shaped porous silica gel fine particle dispersion (2).

異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の調製
得られた異形多孔質シリカ系ゲル微粒子分散液(2)にイオン交換水を添加してSiO2濃度2.76質量%の溶液2716gを得た。次に、4.8質量%の水酸化ナトリウム水溶液とイオン交換水を加え、pHが10.7でSiO2濃度2.5質量%の溶液に調整した。ついで98℃に昇温して30分間98℃に保持した。次に温度を98℃に保持したまま4.6質量%の酸性珪酸液5573.1gを20時間かけて添加し、更に温度を98℃に保持したまま1時間攪拌を継続した。
この調合液を室温まで冷却後に、限外濾過膜(旭化成社製SIP-1013)でSiO2濃度12質量%まで濃縮した。更にロータリーエバポレーターで30質量%まで濃縮し、異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を得た。得られたシリカ系粒子群の重量平均粒子径は203nmであった。
Preparation of a silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles Ion-exchanged water was added to the obtained irregularly shaped porous silica-based gel fine particle dispersion (2) to give an SiO 2 concentration of 2.76% by mass. 2716 g of solution was obtained. Next, a 4.8% by mass aqueous sodium hydroxide solution and ion-exchanged water were added to adjust the pH to 10.7 and the SiO 2 concentration to be 2.5% by mass. Then, the temperature was raised to 98°C and held at 98°C for 30 minutes. Next, 5573.1 g of a 4.6% by mass acidic silicic acid solution was added over 20 hours while maintaining the temperature at 98°C, and stirring was continued for 1 hour while maintaining the temperature at 98°C.
After cooling this mixture to room temperature, it was concentrated to an SiO 2 concentration of 12% by mass using an ultrafiltration membrane (SIP-1013 manufactured by Asahi Kasei Corporation). The mixture was further concentrated to 30% by mass using a rotary evaporator to obtain a silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles. The weight average particle diameter of the obtained silica-based particles was 203 nm.

[実施例
異形多孔質シリカ系ゲルの調製
<異形多孔質シリカ系ゲル微粒子分散液()>
実施例1で得られた異形多孔質シリカ系ゲル微粒子分散液(1)(重量平均粒子径530nm)に4.8質量%水酸化ナトリウム水溶液を加え、pH10.0に調整し、0.25mmφのガラスメジアを加え、重量平均粒子径が167nmになるまで解砕を行い、3.0質量%の異形多孔質シリカ系ゲル微粒子分散液()を得た。
[Example 2 ]
Preparation of irregularly shaped porous silica gel
<Irregular porous silica gel particle dispersion ( 3 )>
A 4.8% by mass aqueous sodium hydroxide solution was added to the irregularly shaped porous silica gel fine particle dispersion (1) obtained in Example 1 (weight average particle diameter 530 nm), the pH was adjusted to 10.0, and a 0.25 mmφ Glass media was added and the mixture was crushed until the weight average particle diameter became 167 nm to obtain a 3.0% by mass irregularly shaped porous silica gel fine particle dispersion ( 3 ).

異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の調製
得られた異形多孔質シリカ系ゲル微粒子分散液()について、実施例1と同様の工程により、異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を調製した。得られたシリカ系粒子群の重量平均粒子径は164nmであった。
Preparation of a silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles The obtained irregularly shaped porous silica-based gel fine particle dispersion ( 3 ) was subjected to the same steps as in Example 1 to prepare irregularly shaped silica-based particles and non- irregularly shaped silica-based particles. A silica-based particle group consisting of irregularly shaped silica-based particles was prepared. The weight average particle diameter of the obtained silica-based particles was 164 nm.

[実施例
<異形多孔質シリカ系ゲル微粒子分散液()>
2LのガラスビーカーにSiO2濃度90.5質量%、平均粒子径123μm、比表面積403m2/gのシリカ粉体28gと純水472gを加え、4.8質量%水酸化ナトリウム水溶液を添加してpH10.0に調整した。これに1.0mmφのジルコニアメジアを2390g加え、サンドミル粉砕機にかけて、重量平均粒子径が314nmになるまで解砕を行い(1段目粉砕)、SiO2濃度4.0質量%の異形多孔質シリカ系ゲル微粒子分散液()を得た。
[Example 3 ]
<Irregular porous silica gel particle dispersion ( 4 )>
In a 2 L glass beaker, 28 g of silica powder with a SiO 2 concentration of 90.5% by mass, an average particle diameter of 123 μm, and a specific surface area of 403 m 2 /g and 472 g of pure water were added, and a 4.8% by mass aqueous sodium hydroxide solution was added. The pH was adjusted to 10.0. 2,390 g of zirconia media with a diameter of 1.0 mm was added to this, and crushed in a sand mill until the weight average particle diameter became 314 nm (first stage crushing), resulting in irregularly shaped porous particles with a SiO 2 concentration of 4.0% by mass. A silica gel fine particle dispersion ( 4 ) was obtained.

<異形多孔質シリカ系ゲル微粒子分散液()>
次に、異形多孔質シリカ系ゲル微粒子分散液()に0.25mmφのガラスメジアを1135g加えて、重量平均粒子径が208nmになるまで解砕を行い(2段目粉砕)、SiO2濃度3.5質量%の異形多孔質シリカ系ゲル微粒子分散液()1900gを得た。
<Irregular porous silica gel particle dispersion ( 5 )>
Next, 1135 g of glass media with a diameter of 0.25 mm was added to the irregularly shaped porous silica-based gel fine particle dispersion ( 4 ), and crushed until the weight average particle diameter became 208 nm (second stage crushing), and the SiO 2 concentration was 3. 1900 g of irregularly shaped porous silica-based gel fine particle dispersion ( 5 ) of .5% by mass was obtained.

異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の調製
得られた異形多孔質シリカ系ゲル微粒子分散液()について、実施例1と同様の工程により、異形シリカ系粒子および非異形粒子からなるシリカ系粒子群を調整した。得られたシリカ系粒子群の重量平均径は128nmであった。
Preparation of a silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles The obtained irregularly shaped porous silica-based gel fine particle dispersion ( 5 ) was subjected to the same process as in Example 1 to prepare irregularly shaped silica-based particles and non- irregularly shaped silica-based particles. A silica-based particle group consisting of irregularly shaped particles was prepared. The weight average diameter of the obtained silica-based particles was 128 nm.

[実施例
<異形多孔質シリカ系ゲル微粒子分散液()>
2LのガラスビーカーにSiO2濃度90.7質量%、平均粒子径12μm、比表面積354m2/gのシリカ粉体28gと純水472gを加え、4.8質量%水酸化ナトリウム水溶液を添加してpH10.0に調整した。これに0.25mmφのガラスメジアを1135g加え、サンドミル粉砕機にかけて、重量平均粒子径が200nmになるまで解砕を行い、SiO2濃度4.0質量%の異形多孔質シリカ系ゲル微粒子分散液()を得た。
[Example 4 ]
<Irregular porous silica gel particle dispersion ( 6 )>
In a 2 L glass beaker, 28 g of silica powder with a SiO 2 concentration of 90.7% by mass, an average particle diameter of 12 μm, and a specific surface area of 354 m 2 /g and 472 g of pure water were added, and a 4.8% by mass sodium hydroxide aqueous solution was added. The pH was adjusted to 10.0. To this was added 1135 g of glass media with a diameter of 0.25 mm, and the mixture was crushed in a sand mill until the weight average particle diameter became 200 nm, resulting in a dispersion of irregularly shaped porous silica-based gel fine particles with an SiO 2 concentration of 4.0% by mass ( 6 ) was obtained.

異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の調製
得られた異形多孔質シリカ系ゲル微粒子分散液()について、実施例1と同様の工程により、異形シリカ系粒子および非異形粒子からなるシリカ系粒子群を調整した。得られたシリカ系粒子群の重量平均径は101nmであった。
Preparation of a silica-based particle group consisting of irregular-shaped silica-based particles and non-irregular silica-based particles The obtained irregular-shaped porous silica-based gel fine particle dispersion ( 6 ) was subjected to the same process as in Example 1 to prepare irregularly shaped silica-based particles and non-irregular silica-based particles. A silica-based particle group consisting of irregularly shaped particles was prepared. The weight average diameter of the obtained silica-based particles was 101 nm.

[比較例1]
実施例1で得られた、異形シリカ多孔質シリカ系ゲル微粒子分散液(1)に0.25mmφのガラスメジアを1135g加えて、重量平均粒子径が248nmになるまで解砕を行い(2段目粉砕)、SiO 2 濃度3.5質量%の異形多孔質シリカ系ゲル微粒子分散液を、限外ろ過膜(旭化成社製SIP-1013)にてSiO2濃度9重量%まで濃縮したものを比較例1とした。
[Comparative example 1]
1135 g of glass media with a diameter of 0.25 mm was added to the irregularly shaped silica porous silica gel fine particle dispersion (1) obtained in Example 1, and the mixture was crushed until the weight average particle diameter became 248 nm (second stage crushing). ), Comparative Example 1 was obtained by concentrating a irregularly shaped porous silica gel fine particle dispersion with an SiO 2 concentration of 3.5% by mass to an SiO 2 concentration of 9% by weight using an ultrafiltration membrane (SIP-1013 manufactured by Asahi Kasei Corporation). And so.

[比較例2]
実施例1で得られたSiO2濃度5.0質量%の精製シリカヒドロゲルを100℃の乾燥器で1晩乾燥させた後に、メノウ乳鉢ですり潰し、550℃で2時間焼成して比表面積が200m2/gのシリカ系ゲルを得た。これに純水を添加して9質量%のシリカ系ゲル分散液を得て、これを比較例2とした。
[Comparative example 2]
The purified silica hydrogel obtained in Example 1 with a SiO 2 concentration of 5.0% by mass was dried overnight in a dryer at 100°C, ground in an agate mortar, and baked at 550°C for 2 hours to obtain a specific surface area of 200 m 2 /g of silica gel was obtained. Pure water was added to this to obtain a 9% by mass silica-based gel dispersion, which was designated as Comparative Example 2.

[比較例3]
シリカ微粒子が分散している分散液である「カタロイドSI-80P」(日揮触媒化成社製:シリカ濃度40質量%)を比較例3とした。
[Comparative example 3]
“Cataroid SI-80P” (manufactured by JGC Catalysts & Chemicals Co., Ltd.; silica concentration: 40% by mass), which is a dispersion liquid in which fine silica particles are dispersed, was used as Comparative Example 3.

[比較例4]
シリカ微粒子が分散している分散液である「SS-160」(日揮触媒化成社製:シリカ濃度20質量%)を比較例4とした。
[Comparative example 4]
“SS-160” (manufactured by JGC Catalysts & Chemicals Co., Ltd., silica concentration 20% by mass), which is a dispersion liquid in which fine silica particles are dispersed, was used as Comparative Example 4.

[比較例5]
シリカ微粒子が分散している分散液である「SS-300」(日揮触媒化成社製:シリカ濃度20質量%)を比較例5とした。
[Comparative example 5]
“SS-300” (manufactured by JGC Catalysts & Chemicals Co., Ltd., silica concentration 20% by mass), which is a dispersion liquid in which fine silica particles are dispersed, was used as Comparative Example 5.

[比較例6]
実施例1で得られたSiO2濃度5.0質量%の精製シリカヒドロゲルを2Lのガラスビーカーに加え、4.8質量%水酸化ナトリウム水溶液を添加してpH9.8に調整した。これに1.0mmφのジルコニアメジアを2390g加え、サンドミル粉砕機にかけて、平均粒子径664nmになるまで解砕を行った。得られたシリカヒドロゲル微粒子分散液はSiO2濃度4.0質量%であった。このシリカヒドロゲル微粒子分散液を限外ろ過膜でSiO2濃度9質量%まで濃縮してシリカヒドロゲル微粒子分散液(5)を得た。これを、比較例6とした。
[Comparative example 6]
The purified silica hydrogel with an SiO 2 concentration of 5.0% by mass obtained in Example 1 was added to a 2 L glass beaker, and a 4.8% by mass aqueous sodium hydroxide solution was added to adjust the pH to 9.8. To this was added 2390 g of zirconia media with a diameter of 1.0 mm, and the mixture was crushed using a sand mill until the average particle diameter was 664 nm. The obtained silica hydrogel fine particle dispersion had a SiO 2 concentration of 4.0% by mass. This silica hydrogel fine particle dispersion was concentrated to an SiO 2 concentration of 9% by mass using an ultrafiltration membrane to obtain a silica hydrogel fine particle dispersion (5). This was designated as Comparative Example 6.

上記実施例1~および比較例1~6について、前述した各測定および算出データを下記表1および表2にまとめた。所定の製造方法により得られた実施例1~のシリカ系粒子群は、研磨材として好適な粒子径、粒子径分布および異形度を有し、また、これらシリカ系粒子群を含むシリカ系粒子分散液は、研磨用砥粒分散液として使用した際に高い研磨速度が得られ、同時に同時に高面精度を達成することができる。
The aforementioned measurement and calculation data for Examples 1 to 4 and Comparative Examples 1 to 6 are summarized in Tables 1 and 2 below. The silica-based particle groups of Examples 1 to 4 obtained by a predetermined manufacturing method have a particle size, particle size distribution, and degree of irregularity suitable for use as an abrasive, and silica-based particles containing these silica-based particle groups When the dispersion liquid is used as a polishing abrasive dispersion liquid, a high polishing rate can be obtained, and at the same time, high surface precision can be achieved.

Figure 0007436268000001
Figure 0007436268000001

Figure 0007436268000002
Figure 0007436268000002

本発明のシリカ系粒子群は、好適な粒子径、粒子径分布、異形度および粒子強度を有しているため、これを含むシリカ系粒子分散液は、NiPメッキされた被研磨基板やシリカ系基板などの表面研磨に好ましく用いることができる。 The silica-based particles of the present invention have suitable particle size, particle size distribution, degree of irregularity, and particle strength. It can be preferably used for surface polishing of substrates, etc.

Claims (15)

異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群を含むシリカ系粒子分散液であって、
前記異形シリカ系粒子は、内部に細孔を有するコアおよびそれを被覆する被覆シリカ層を有し、
前記シリカ系粒子群は下記[1]~[3]を満たすシリカ系粒子分散液。
[1] 重量平均粒子径(D1)が60~600nmであり、比表面積換算粒子径(D2)が15~300nmであること。
[2] 重量平均粒子径(D1)と投影面積相当粒子径(D3)との比で表される異形度D(D=D1/D3)が1.1~5.0の範囲にあること。
[3] 体積基準粒子径分布を波形分離すると、分離ピークが3つ以上検出される多峰分布となること。
A silica-based particle dispersion containing a silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles,
The irregularly shaped silica particles have a core having pores inside and a covering silica layer covering the core,
The silica-based particle group is a silica-based particle dispersion that satisfies the following [1] to [3].
[1] The weight average particle diameter (D 1 ) is 60 to 600 nm, and the specific surface area equivalent particle diameter (D 2 ) is 15 to 300 nm.
[2] The degree of irregularity D (D=D 1 /D 3 ) expressed as the ratio of the weight average particle diameter (D 1 ) to the projected area equivalent particle diameter (D 3 ) is in the range of 1.1 to 5.0. What's in it.
[3] Waveform separation of the volume-based particle size distribution results in a multimodal distribution in which three or more separated peaks are detected.
前記コアの内部細孔の平均細孔径が30nm以下であることを特徴とする請求項1に記載のシリカ系粒子分散液。 The silica-based particle dispersion according to claim 1, wherein the average pore diameter of the internal pores of the core is 30 nm or less. 前記被覆シリカ層が、平均厚さ1~50nmの範囲であり、シリカを主成分とすることを特徴とする請求項1または2に記載のシリカ系粒子分散液。 The silica-based particle dispersion according to claim 1 or 2, wherein the coating silica layer has an average thickness in the range of 1 to 50 nm and contains silica as a main component. 前記シリカ系粒子群が、その体積基準粒子径分布において、歪度が-20~20の範囲にあることを特徴とする請求項1~3の何れかに記載のシリカ系粒子分散液。 The silica-based particle dispersion according to any one of claims 1 to 3, wherein the silica-based particle group has a skewness in the range of -20 to 20 in its volume-based particle size distribution. 前記シリカ系粒子群の体積基準粒子径分布を波形分離した結果得られた分離ピークのうち、最大粒子成分の体積割合が75%以下であることを特徴とする請求項1~4の何れかに記載のシリカ系粒子分散液。 According to any one of claims 1 to 4, the volume ratio of the largest particle component among the separated peaks obtained as a result of waveform separation of the volume-based particle size distribution of the silica-based particle group is 75% or less. The silica-based particle dispersion described above. 前記シリカ系粒子群のSEM画像解析により得られる個数基準粒子径分布において、小粒子側成分のアスペクト比が1.05~5.0の範囲にあることを特徴とする請求項1~5の何れかに記載のシリカ系粒子分散液。 Any one of claims 1 to 5, characterized in that, in the number-based particle size distribution obtained by SEM image analysis of the silica-based particle group, the aspect ratio of the small particle side component is in the range of 1.05 to 5.0. A silica-based particle dispersion liquid described in Crab. 前記シリカ系粒子群の体積基準粒子径分布の粒子径の変動係数が30%以上であることを特徴とする請求項1~6の何れかに記載のシリカ系粒子分散液。 The silica-based particle dispersion liquid according to any one of claims 1 to 6, characterized in that the particle size variation coefficient of the volume-based particle size distribution of the silica-based particle group is 30% or more. 前記シリカ系粒子群における、画像解析法による平均面積(S1)に対する画像解析法による平均外周長と等価な円の面積(S2)の比であらわされる平滑度S(S=S2/S1)が1.1~5.0の範囲にあることを特徴とする請求項1~7の何れかに記載のシリカ系粒子分散液。 Smoothness S ( S= S 2 / S The silica-based particle dispersion according to any one of claims 1 to 7, characterized in that 1 ) is in the range of 1.1 to 5.0. 前記シリカ系粒子群の体積基準粒子径分布において、全体積(Q1)に対する0.7μm以上の粒子の体積(Q2)の割合Q(Q=Q2/Q1)が5.0%以下であることを特徴とする請求項1~8の何れかに記載のシリカ系粒子分散液。 In the volume-based particle size distribution of the silica-based particle group, the ratio Q (Q=Q 2 /Q 1 ) of the volume (Q 2 ) of particles of 0.7 μm or more to the total volume (Q 1 ) is 5.0% or less The silica-based particle dispersion according to any one of claims 1 to 8, characterized in that: 請求項1~9の何れかに記載のシリカ系粒子分散液を含む研磨用砥粒分散液。 A polishing abrasive grain dispersion comprising the silica-based particle dispersion according to any one of claims 1 to 9. 異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群であって、
前記異形シリカ系粒子は、内部に細孔を有するコアおよびそれを被覆する被覆シリカ層を有し、下記[1]~[3]を満たすシリカ系粒子群。
[1] 重量平均粒子径(D1)が60~600nmであり、比表面積換算粒子径(D2)が15~300nmであること。
[2] 重量平均粒子径(D1)と投影面積相当粒子径(D3)との比で表される異形度D(D=D1/D3)が1.1~5.0の範囲にあること。
[3] 体積基準粒子径分布を波形分離すると、分離ピークが3つ以上検出される多峰分布となること。
A silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles,
The irregularly shaped silica particles have a core having pores inside and a coating silica layer covering the core, and satisfy the following [1] to [3].
[1] The weight average particle diameter (D 1 ) is 60 to 600 nm, and the specific surface area equivalent particle diameter (D 2 ) is 15 to 300 nm.
[2] The degree of irregularity D (D=D 1 /D 3 ) expressed as the ratio of the weight average particle diameter (D 1 ) to the projected area equivalent particle diameter (D 3 ) is in the range of 1.1 to 5.0. What's in it.
[3] Waveform separation of the volume-based particle size distribution results in a multimodal distribution in which three or more separated peaks are detected.
下記工程a~cを含むことを特徴とする異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の製造方法。
(工程a)多孔質シリカ系ゲルをアルカリ性下で湿式解砕して異形多孔質シリカ系ゲルからなる粒子を含む溶液にする工程。
(工程b)前記異形多孔質シリカ系ゲルからなる粒子を含む溶液にアルカリ性下で珪酸液を添加して加温し、前記異形多孔質シリカ系ゲルからなる粒子の一次粒子間の細孔を前記珪酸液に含まれる珪酸との反応によって埋めながら異形のまま粒子を成長させて、前記異形多孔質シリカ系ゲルからなる粒子よりも重量平均粒子径が小さい異形シリカ系粒子にする工程。
(工程c)成長した前記異形シリカ系粒子を含むシリカ系粒子群を濃縮し、回収する工程。
A method for producing a silica-based particle group consisting of irregularly shaped silica-based particles and non- irregularly shaped silica-based particles, the method comprising the following steps a to c.
(Step a) A step of wet-pulverizing the porous silica gel under alkaline conditions to obtain a solution containing particles of irregularly shaped porous silica gel.
(Step b) A silicic acid solution is added and heated under alkaline conditions to a solution containing particles made of the irregularly shaped porous silica gel, and the pores between the primary particles of the irregularly shaped porous silica gel are A step of growing particles with irregular shapes while filling them by a reaction with silicic acid contained in a silicic acid solution to produce irregularly shaped silica particles having a smaller weight average particle diameter than the particles made of the irregularly shaped porous silica gel .
(Step c) A step of concentrating and collecting the silica-based particles containing the grown irregularly shaped silica-based particles.
前記工程aにおいて、比表面積50~800m2/gの前記多孔質シリカ系ゲルを重量平均粒子径が60~550nmの前記異形多孔質シリカ系ゲルからなる粒子にし、
前記工程bにおいて、前記異形多孔質シリカ系ゲルからなる粒子の一次粒子間の細孔を前記珪酸との反応によって埋めて前記異形多孔質シリカ系ゲルからなる粒子の比表面積を182m2/g以下にすると共に、前記異形シリカ系粒子に成長させることを特徴とする請求項12に記載の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の製造方法。
In step a, the porous silica gel having a specific surface area of 50 to 800 m 2 /g is made into particles of the irregularly shaped porous silica gel having a weight average particle diameter of 60 to 550 nm;
In step b, the pores between the primary particles of the particles made of the irregularly shaped porous silica gel are filled by reaction with the silicic acid so that the specific surface area of the particles made of the irregularly shaped porous silica gel is 182 m 2 /g or less. 13. The method for producing a silica-based particle group comprising irregular-shaped silica-based particles and non-irregular-shaped silica-based particles according to claim 12 , wherein the irregular-shaped silica-based particles are grown.
前記工程aにおいて、前記多孔質シリカ系ゲルをpH8.0~11.5のアルカリ性下で湿式解砕して、重量平均粒子径が167~200nmまたは208~225nmの前記異形多孔質シリカ系ゲルからなる粒子を含む溶液にし、
前記工程bにおいて、前記異形多孔質シリカ系ゲルからなる粒子を含む溶液のSiO2濃度を1~10質量%にし、60℃~170℃に加温し、pH9~12.5のアルカリ性下で、前記珪酸液を連続的または断続的に添加して、前記異形多孔質シリカ系ゲルからなる粒子の一次粒子間の細孔を珪酸との反応によって埋めて該粒子の比表面積を減少させると共に、粒子を異形のまま成長させ、前記異形多孔質シリカ系ゲルからなる粒子の重量平均粒子径が167~200nmの場合は重量平均粒子径が101~164nmの前記異形シリカ系粒子、前記異形多孔質シリカ系ゲルからなる粒子の重量平均粒子径が208~225nmの場合は重量平均粒子径が128~203nmの前記異形シリカ系粒子にし、
前記工程cにおいて、成長した前記異形シリカ系粒子を含む溶液を濃縮して該異形シリカ系粒子を含むシリカ系粒子群を回収することを特徴とする請求項12または13に記載の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の製造方法。
In step a, the porous silica-based gel is wet-disintegrated under alkalinity at pH 8.0 to 11.5 to obtain the irregularly shaped porous silica-based gel having a weight average particle diameter of 167 to 200 nm or 208 to 225 nm. to a solution containing particles of
In step b, the SiO 2 concentration of the solution containing particles made of the irregularly shaped porous silica gel is set to 1 to 10% by mass, heated to 60° C. to 170° C., and under alkaline pH of 9 to 12.5. The silicic acid solution is added continuously or intermittently to fill the pores between the primary particles of the particles made of the irregularly shaped porous silica gel by reaction with the silicic acid, thereby reducing the specific surface area of the particles. If the particles made of the irregularly shaped porous silica gel have a weight average particle diameter of 167 to 200 nm, the irregularly shaped silica particles having a weight average particle diameter of 101 to 164 nm, the irregularly shaped porous silica gel When the weight average particle diameter of the gel particles is 208 to 225 nm, the irregularly shaped silica particles have a weight average particle diameter of 128 to 203 nm,
Irregular-shaped silica-based particles according to claim 12 or 13, characterized in that in the step c, a solution containing the grown irregular-shaped silica-based particles is concentrated to recover a silica-based particle group containing the irregular-shaped silica-based particles. and a method for producing a silica-based particle group consisting of non-irregularly shaped silica-based particles.
前記工程bにおいて、前記珪酸液の添加量が、前記異形多孔質シリカ系ゲルからなる粒子を含む溶液のSiO2モル濃度に対して該珪酸液のSiO2モル濃度が0.5~20モル倍になる範囲であることを特徴とする請求項12~14の何れかに記載の異形シリカ系粒子および非異形シリカ系粒子からなるシリカ系粒子群の製造方法。 In step b, the amount of the silicic acid solution added is such that the SiO 2 molar concentration of the silicic acid solution is 0.5 to 20 times the SiO 2 molar concentration of the solution containing particles made of the irregularly shaped porous silica gel. The method for producing a silica-based particle group comprising irregularly shaped silica-based particles and non- irregularly shaped silica-based particles according to any one of claims 12 to 14, wherein the range is as follows.
JP2020068303A 2020-04-06 2020-04-06 Silica-based particle dispersion and its manufacturing method Active JP7436268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020068303A JP7436268B2 (en) 2020-04-06 2020-04-06 Silica-based particle dispersion and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020068303A JP7436268B2 (en) 2020-04-06 2020-04-06 Silica-based particle dispersion and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021165212A JP2021165212A (en) 2021-10-14
JP7436268B2 true JP7436268B2 (en) 2024-02-21

Family

ID=78021698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020068303A Active JP7436268B2 (en) 2020-04-06 2020-04-06 Silica-based particle dispersion and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7436268B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047180A (en) 2006-10-12 2013-03-07 Jgc Catalysts & Chemicals Ltd Spinous silica-based sol
JP2015086102A (en) 2013-10-30 2015-05-07 日揮触媒化成株式会社 Production method of silica particle, and polishing agent including the silica particle
JP2015125792A (en) 2013-12-27 2015-07-06 花王株式会社 Abrasive liquid composition for magnetic disk substrate
JP2018177576A (en) 2017-04-10 2018-11-15 日揮触媒化成株式会社 Method of manufacturing irregular shape silica particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047180A (en) 2006-10-12 2013-03-07 Jgc Catalysts & Chemicals Ltd Spinous silica-based sol
JP2015086102A (en) 2013-10-30 2015-05-07 日揮触媒化成株式会社 Production method of silica particle, and polishing agent including the silica particle
JP2015125792A (en) 2013-12-27 2015-07-06 花王株式会社 Abrasive liquid composition for magnetic disk substrate
JP2018177576A (en) 2017-04-10 2018-11-15 日揮触媒化成株式会社 Method of manufacturing irregular shape silica particle

Also Published As

Publication number Publication date
JP2021165212A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP7313373B2 (en) Silica-based particle dispersion and method for producing the same
JP5413456B2 (en) Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate
JP2021059490A (en) Silica-based particle dispersion and method for producing the same
JP2019081672A (en) Ceria-based composite fine particle dispersion, production method thereof, and abrasive grain dispersion for polishing including the ceria-based composite fine dispersion
JP2008273780A (en) Modified silica-based sol and method for preparing the same
WO2011158718A1 (en) Polishing liquid for semiconductor substrate and method for producing semiconductor wafer
TWI723085B (en) Polishing liquid composition for magnetic disk substrate
JPWO2018221357A1 (en) Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion
JP6710100B2 (en) Method for producing silica-based composite fine particle dispersion
JP6820723B2 (en) Abrasive liquid composition for magnetic disk substrate
JP2019089670A (en) Ceria-based composite fine particle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite fine particle dispersion
JP2019127405A (en) Ceria-based composite hollow microparticle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite hollow microparticle dispersion
JP7348098B2 (en) Ceria-based composite fine particle dispersion, its manufacturing method, and polishing abrasive grain dispersion containing the ceria-based composite fine particle dispersion
JP7436268B2 (en) Silica-based particle dispersion and its manufacturing method
JP5464834B2 (en) Polishing silica sol, polishing composition, and method for producing polishing silica sol
JP7356924B2 (en) Polishing abrasive dispersion liquid
JP2020023408A (en) Ceria-based fine particle dispersion, method for producing the same and abrasive particle dispersion for polishing comprising ceria-based fine particle dispersion
TWI731113B (en) Manufacturing method of magnetic disk substrate
JP7038031B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
JP6616794B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and abrasive abrasive dispersion containing silica-based composite fine particle dispersion
JP2010024119A (en) Method for producing confetti-like silica sol
JP2023139490A (en) Silica-based particle dispersion, polishing slurry for polishing magnetic disk substrate containing the same, composition for polishing magnetic disk substrate containing the same, and method for producing silica-based particle group
JP2023169503A (en) Silica-based particle dispersion, polishing slurries for polishing magnetic disk substrate, composition for polishing magnetic disk substrates, and method for manufacturing silica-based particle groups
JP2017214271A (en) Silica-based composite fine particle fluid dispersion, production method therefor and abrasive grain fluid dispersion including silica-based composite fine particle fluid dispersion
JP7100552B2 (en) Abrasive abrasive grain dispersion liquid containing irregularly shaped silica fine particles and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240208

R150 Certificate of patent or registration of utility model

Ref document number: 7436268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150