JP2022079154A - ウェーハの加工方法 - Google Patents

ウェーハの加工方法 Download PDF

Info

Publication number
JP2022079154A
JP2022079154A JP2020190158A JP2020190158A JP2022079154A JP 2022079154 A JP2022079154 A JP 2022079154A JP 2020190158 A JP2020190158 A JP 2020190158A JP 2020190158 A JP2020190158 A JP 2020190158A JP 2022079154 A JP2022079154 A JP 2022079154A
Authority
JP
Japan
Prior art keywords
wafer
protective tape
modified layer
grinding
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020190158A
Other languages
English (en)
Inventor
俊一郎 廣沢
Shunichiro Hirozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2020190158A priority Critical patent/JP2022079154A/ja
Publication of JP2022079154A publication Critical patent/JP2022079154A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)

Abstract

【課題】改質層を破断起点としてウェーハを分割する際に、発生する亀裂をウェーハの厚さ方向に沿って伸展させることができるウェーハの加工方法を提供すること。【解決手段】ウェーハの加工方法は、ウェーハの該デバイスが形成された表面側に保護テープを貼着する保護テープ貼着ステップ1と、保護テープの露出した面の分割予定ラインに対応した領域に溝を形成する溝形成ステップ2と、ウェーハの裏面側からウェーハに対して透過性を有する波長のレーザー光線を分割予定ラインに沿って照射し、ウェーハの内部に改質層を形成する改質層形成ステップ3と、ウェーハの保護テープ側をチャックテーブルで保持し、ウェーハの裏面を研削砥石で研削し仕上げ厚さに薄化するとともに、ウェーハを該分割予定ラインに沿って分割する研削ステップ4と、を備え、研削ステップ4で改質層から伸びる亀裂の方向が、保護テープの溝によってウェーハの厚さ方向に案内される。【選択図】図1

Description

本発明は、ウェーハの加工方法に関する。
従来では、メモリーやLSI(Large Scale Integration)等の半導体デバイスチップを製造する方法として、半導体ウェーハの表面にデバイスを形成し、研削して仕上げ厚さまで薄化した後、ストリート(分割予定ライン)に沿って切削ブレードでダイシングする方法が一般的であった。
これに対し、レーザー光線でウェーハの内部に改質層を形成した後、裏面から研削しつつチップに分割する所謂SDBG(Stealth Dicing Before Grinding)加工が考案された(例えば、特許文献1)。SDBG加工によって、ストリートを従来のものより狭小化することでウェーハ1枚当たりのチップ取れ量を多くし、さらに、ダイシングによる欠けで低下するチップの抗折強度の強化が実現された。
特開2004-349623号公報
ところで、SDBG加工において、改質層を起点として伸展する亀裂が蛇行してしまうと、抗折強度が低下したり、チップ形状が変化したりするため、ある程度のパワーのレーザー光線で所定以上の厚さの改質層を形成する必要がある。しかしながら、レーザー光線のパワーの上昇に伴い、特に改質層をチップ側面に残す加工方法の場合、チップの抗折強度が低下する可能性がある。
本発明は、かかる問題点に鑑みてなされたものであり、その目的は、改質層を破断起点としてウェーハを分割する際に、発生する亀裂をウェーハの厚さ方向に沿って伸展させることができるウェーハの加工方法を提供することである。
上述した課題を解決し、目的を達成するために、本発明のウェーハの加工方法は、分割予定ラインに区画された領域にデバイスが形成された表面を備えるウェーハの加工方法であって、ウェーハの該デバイスが形成された表面側に保護テープを貼着する保護テープ貼着ステップと、該保護テープ貼着ステップ実施後、該保護テープの露出した面の該分割予定ラインに対応した領域に溝を形成する溝形成ステップと、該溝形成ステップ実施後、ウェーハの裏面側からウェーハに対して透過性を有する波長のレーザー光線を該分割予定ラインに沿って照射し、ウェーハの内部に改質層を形成する改質層形成ステップと、該改質層形成ステップ実施後、ウェーハの該保護テープ側をチャックテーブルで保持し、ウェーハの裏面を研削砥石で研削し仕上げ厚さに薄化するとともに、ウェーハを該分割予定ラインに沿って分割する研削ステップと、を備え、該研削ステップで該改質層から伸びる亀裂の方向が、該保護テープの該溝によってウェーハの厚さ方向に案内されることを特徴とする。
また、本発明のウェーハの加工方法において、該研削ステップでは、ウェーハの裏面からウェーハの厚さ方向に研削送りされる該研削砥石が該改質層に至る前に研削を終了してもよい。
また、本発明のウェーハの加工方法において、該溝は、切削ブレードまたはレーザー加工で形成されてもよい。
本願発明は、改質層を破断起点としてウェーハを分割する際に、発生する亀裂をウェーハの厚さ方向に沿って伸展させることができる。
図1は、実施形態に係るウェーハの加工方法の流れを示すフローチャートである。 図2は、図1に示す保護テープ貼着ステップの一例を示す斜視図である。 図3は、保護テープ貼着ステップの後のウェーハを示す斜視図である。 図4は、図1に示す溝形成ステップの一例を示す斜視図である。 図5は、溝形成ステップの一状態を一部断面で示す側面図である。 図6は、図1に示す溝形成ステップの別の一例を一部断面で示す側面図である。 図7は、図1に示す改質層形成ステップの一状態を一部断面で示す側面図である。 図8は、改質層形成ステップの後のウェーハの要部を示す断面図である。 図9は、図2に示す研削ステップの一例を一部断面で示す側面図である。 図10は、研削ステップの後のウェーハの要部を示す断面図である。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換または変更を行うことができる。
〔実施形態〕
本発明の実施形態に係るウェーハ10の加工方法を図面に基づいて説明する。図1は、実施形態に係るウェーハ10の加工方法の流れを示すフローチャートである。ウェーハ10の加工方法は、保護テープ貼着ステップ1と、溝形成ステップ2と、改質層形成ステップ3と、研削ステップ4と、を有する。
(保護テープ貼着ステップ1)
図2は、図1に示す保護テープ貼着ステップ1の一例を示す斜視図である。図3は、保護テープ貼着ステップ1の後のウェーハ10を示す斜視図である。保護テープ貼着ステップ1は、ウェーハ10のデバイス14が形成された表面12側に保護テープ20を貼着するステップである。
図2に示すように、ウェーハ10は、シリコン(Si)、サファイア(Al)、ガリウムヒ素(GaAs)または炭化ケイ素(SiC)等を基板11とする円板状の半導体ウェーハ、光デバイスウェーハ等のウェーハである。ウェーハ10は、基板11の表面12に形成される複数の分割予定ライン13と、格子状に交差する複数の分割予定ライン13によって区画された各領域に形成されるデバイス14とを有する。デバイス14が形成された表面12と反対側に位置するウェーハ10の面を裏面15とする。
デバイス14は、例えば、IC(Integrated Circuit)、あるいやLSI等の集積回路、メモリー、CCD(Charge Coupled Device)、あるいはCMOS(Complementary Metal Oxide Semiconductor)等のイメージセンサ、またはMEMS(Micro Electro Mechanical Systems)等である。ウェーハ10は、分割予定ライン13に沿って分割されることによって、個々のチップに個片化される。
実施形態の保護テープ貼着ステップ1では、ウェーハ10と同径の円板形状のテープである保護テープ20を、ウェーハ10のデバイス14が形成された表面12側に貼着する。保護テープ20は、後述の切削装置30(図4および図5参照)、レーザー加工装置40(図6または図7参照)または研削装置50(図9参照)のチャックテーブル31、41、51に保持されるウェーハ10の表面12側のデバイス14を異物の付着や接触による損傷から保護するものである。保護テープ20は、合成樹脂により構成された基材層21と、基材層21の表面および裏面の少なくともいずれかに積層された粘着性を有する糊層22とを含む(図8および図10参照)。保護テープ20は、糊層22側の面を貼着面として、ウェーハ10の表面12に貼着される。
(溝形成ステップ2)
図4は、図1に示す溝形成ステップ2の一例を示す斜視図である。図5は、溝形成ステップ2の一状態を一部断面で示す側面図である。溝形成ステップ2は、保護テープ貼着ステップ1実施後に実施される。溝形成ステップ2は、保護テープ20の露出した面の分割予定ライン13に対応した領域に溝23を形成するステップである。
図4および図5に示す溝形成ステップ2では、切削装置30による切削加工よって、保護テープ20に溝23を形成する。切削装置30は、保持面32を有するチャックテーブル31と、切削ユニット33と、チャックテーブル31と切削ユニット33とを相対的に移動させる不図示の移動ユニットと、不図示の撮像ユニットと、を備える。
切削ユニット33は、円板形状の切削ブレード34と、切削ブレード34の回転軸となるスピンドル35と、スピンドル35に装着され切削ブレード34が固定されるマウントフランジ36と、を備える。切削ブレード34およびスピンドル35は、切削対象のウェーハ10を保持するチャックテーブル31の保持面32に対して平行な回転軸を備える。切削ブレード34は、スピンドル35の先端に装着される。
図4および図5に示すに示す溝形成ステップ2では、まず、チャックテーブル31の保持面32にウェーハ10の裏面15側を吸引保持する。次に、切削ユニット33とウェーハ10との位置合わせを行う。具体的には、不図示の移動ユニットが、チャックテーブル31を切削ユニット33の下方の加工領域まで移動させ、不図示の撮像ユニットでウェーハ10を撮影しアライメントすることで、切削ブレード34の加工点を、ウェーハ10の分割予定ライン13に位置合わせする。
図4および図5に示す溝形成ステップ2では、次に、ウェーハ10の表面12側に向けて切削水の供給を開始させる。次に、不図示の移動ユニットによって、チャックテーブル31と切削ユニット33の切削ブレード34とを分割予定ライン13に沿って相対的に移動させながら、保護テープ20に所定切込み量の溝23を形成するまで切り込ませて、保護テープ20に溝23を形成する。
溝形成ステップ2では、レーザー光線45によって保護テープ20に溝23を形成してもよい。図6は、図1に示す溝形成ステップ2の別の一例を一部断面で示す側面図である。
図6に示す溝形成ステップ2では、レーザー加工装置40によるアブレーション加工によって、保護テープ20に溝23を形成する。レーザー加工装置40は、保持面42を有するチャックテーブル41と、レーザー光線照射ユニット43と、チャックテーブル41とレーザー光線照射ユニット43とを相対的に移動させる不図示の移動ユニットと、不図示の撮像ユニットと、を備える。
図6に示す溝形成ステップ2では、まず、チャックテーブル41の保持面42にウェーハ10の裏面15側を吸引保持する。次に、レーザー光線照射ユニット43とウェーハ10との位置合わせを行う。具体的には、不図示の移動ユニットがチャックテーブル41を加工位置まで移動させ、不図示の撮像ユニットでウェーハ10を撮像しアライメントすることで、レーザー光線照射ユニット43の照射部44を、ウェーハ10の分割予定ライン13に位置合わせする。
図6に示す溝形成ステップ2では、レーザー光線照射ユニット43に対してチャックテーブル41を相対的に移動させながら、ウェーハ10の表面12側からレーザー光線45を、ウェーハ10に貼着された保護テープ20に集光点46を位置付けて照射する。レーザー光線45は、保護テープ20に対して吸収性を有する波長のレーザービームである。溝形成ステップ2では、保護テープ20の表面または表面近傍に集光点46を位置付けたレーザー光線45を、分割予定ライン13に沿って照射することによって、分割予定ライン13に沿って保護テープ20に溝23を形成する。
溝形成ステップ2において、溝23は、保護テープ20の基材層21にのみ形成し、糊層22には到達しないように形成される(図8および図10参照)。また、溝23は、溝幅が50μm以上、好ましくは100μm以上に形成される。また、溝23は、溝幅が分割予定ライン13の幅以下であるのが望ましい。
(改質層形成ステップ3)
図7は、図1に示す改質層形成ステップ3の一状態を一部断面で示す側面図である。図8は、改質層形成ステップ3の後のウェーハ10の要部を示す断面図である。改質層形成ステップ3は、溝形成ステップ2実施後に実施される。改質層形成ステップ3は、ウェーハ10の裏面15側からウェーハ10に対して透過性を有する波長のレーザー光線45を分割予定ライン13に沿って照射し、ウェーハ10の内部に改質層16を形成するステップである。
改質層16とは、密度、屈折率、機械的強度またはその他の物理的特性が周囲のそれとは異なる状態になった領域のことを意味する。改質層16は、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域、およびこれらの領域が混在した領域等である。改質層16は、ウェーハ10の他の部分よりも機械的な強度等が低い。
改質層形成ステップ3では、レーザー加工装置40によるステルスダイシングによって、ウェーハ10の基板11の内部に改質層16を形成する。レーザー加工装置40は、図6に示す溝形成ステップ2で使用した装置と同一の装置でもよい。
改質層形成ステップ3では、まず、チャックテーブル41の保持面42に保護テープ20を介してウェーハ10の表面12側を吸引保持する。次に、不図示の移動ユニットによってチャックテーブル41を加工位置まで移動させ、不図示の撮像ユニットでウェーハ10を撮像しアライメントすることによってレーザー光線照射ユニット43の照射部44を、ウェーハ10の分割予定ライン13に位置合わせする。
改質層形成ステップ3では、次に、レーザー光線照射ユニット43に対してチャックテーブル41を相対的に移動させながら、ウェーハ10の裏面15側からパルス状のレーザー光線45を、基板11の内部に集光点46を位置付けて照射する。基板11の内部に集光点46を位置付けたレーザー光線45を、分割予定ライン13に沿って照射することによって、分割予定ライン13に沿って基板11の内部に改質層16が形成される。すなわち、図8に示すように、溝形成ステップ2において形成した保護テープ20の溝23に沿った改質層16が形成される。
(研削ステップ4)
図9は、図2に示す研削ステップ4の一例を一部断面で示す側面図である。図10は、研削ステップ4の後のウェーハ10の要部を示す断面図である。研削ステップ4は、改質層形成ステップ3実施後に実施される。研削ステップ4は、ウェーハ10の裏面15を研削し仕上げ厚さ17に薄化するとともに、ウェーハ10を分割予定ライン13に沿って分割するステップである。
研削ステップ4では、研削装置50による研削加工よって、ウェーハ10を裏面15側から研削して仕上げ厚さ17に薄化する。研削装置50は、保持面52を有するチャックテーブル51と、研削ユニット53と、を備える。研削ユニット53は、回転軸部材であるスピンドル54と、スピンドル54の下端に取り付けられたホイール基台55と、ホイール基台55の下面に装着される研削砥石56と、研削水供給ノズル57と、を備える。ホイール基台55は、チャックテーブル51の軸心と平行な回転軸で回転する。
研削ステップ4では、まず、チャックテーブル51の保持面52に保護テープ20を介してウェーハ10の表面12側を吸引保持する。次に、チャックテーブル51を軸心回りに回転させた状態で、ホイール基台55を軸心回りに回転させる。研削水供給ノズル57から研削水58を供給するとともに、ホイール基台55の下面に装着された研削砥石56をチャックテーブル51に所定の送り速度で近付けることによって、研削砥石56でウェーハ10を裏面15側から研削する。
研削ステップ4では、ウェーハ10が仕上げ厚さ17になるまでウェーハ10を裏面15側から研削する。ウェーハ10は、研削ユニット53のホイール基台55から研削応力が作用する。この研削応力とは、チャックテーブル51に向けて押し付けられる方向等の応力を示す。保護テープ20の溝23は、分割予定ライン13と厚み方向に重なる位置に形成されているので、上記の研削応力によって溝23の底がチャックテーブル51に近付く方向に押圧され、ウェーハ10の内部において、研削応力が改質層16に集中する。このため、ウェーハ10は、研削応力によって、図10に示すように、改質層16を破断起点とする亀裂18が伸展する。この際、改質層16から伸びる亀裂18の方向は、保護テープ20の溝23によってウェーハ10の厚さ方向に案内される。このようにして、ウェーハ10が分割予定ライン13に沿って個々のチップに分割される。
以上説明したように、実施形態に係るウェーハ10の加工方法では、ウェーハ10の分割予定ライン13に対応した領域の保護テープ20に溝23を形成することによって、改質層16を破断起点として発生する亀裂18が、ウェーハ10の厚さ方向に沿って伸展させる。特に、改質層16よりも被研削面(裏面15)側に伸展する亀裂18に対して伸展方向を案内する効果が高く、分割後のチップの側面に改質層16を残す加工条件の場合であっても、抗折強度の低下を抑制する効果を奏する。
また、実施形態に係るウェーハ10の加工方法において、溝23は、溝幅が50μm以上、好ましくは100μm以上でかつ分割予定ライン13の幅以下である。溝幅が100μm未満である場合、研削応力を改質層16に集中させることが困難な個所が生じる可能性があり、溝幅が50μm未満である場合、研削応力を改質層16に集中させることが困難である可能性がある。また、溝23の溝幅が分割予定ライン13の幅を超える場合、研削応力がウェーハ10の内部で分散して、改質層16に集中しない可能性がある。したがって、溝23を、溝幅が50μm以上、好ましくは100μm以上でかつ分割予定ライン13の幅以下にすることによって、確実に研削応力を改質層16に集中させることができ、確実にウェーハ10をチップに分割することができる。
なお、本発明は、上記実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。例えば、溝形成ステップ2において切削加工で保護テープ20に溝23を形成する場合、実施形態の円板形状の切削ブレード34に限定されず、カッター刃形状のブレードでもよい。この場合、バリの発生が抑制されるという効果を奏する。また、保護テープ20は、基材層21のみで糊層22を有しない熱可塑性樹脂から形成され、ウェーハ10に熱圧着して固定されるタイプを用いてもよい。
10 ウェーハ
11 基板
12 表面
13 分割予定ライン
14 デバイス
15 裏面
16 改質層
17 仕上げ厚さ
18 亀裂
20 保護テープ
23 溝
30 切削装置
40 レーザー加工装置
45 レーザー光線
50 研削装置
51 チャックテーブル
56 研削砥石

Claims (3)

  1. 分割予定ラインに区画された領域にデバイスが形成された表面を備えるウェーハの加工方法であって、
    ウェーハの該デバイスが形成された表面側に保護テープを貼着する保護テープ貼着ステップと、
    該保護テープ貼着ステップ実施後、該保護テープの露出した面の該分割予定ラインに対応した領域に溝を形成する溝形成ステップと、
    該溝形成ステップ実施後、ウェーハの裏面側からウェーハに対して透過性を有する波長のレーザー光線を該分割予定ラインに沿って照射し、ウェーハの内部に改質層を形成する改質層形成ステップと、
    該改質層形成ステップ実施後、ウェーハの該保護テープ側をチャックテーブルで保持し、ウェーハの裏面を研削砥石で研削し仕上げ厚さに薄化するとともに、ウェーハを該分割予定ラインに沿って分割する研削ステップと、
    を備え、
    該研削ステップで該改質層から伸びる亀裂の方向が、該保護テープの該溝によってウェーハの厚さ方向に案内されることを特徴とする、ウェーハの加工方法。
  2. 該研削ステップでは、ウェーハの裏面からウェーハの厚さ方向に研削送りされる該研削砥石が該改質層に至る前に研削を終了する、
    請求項1に記載のウェーハの加工方法。
  3. 該溝は、切削ブレードまたはレーザー加工で形成される、
    請求項1または2に記載のウェーハの加工方法。
JP2020190158A 2020-11-16 2020-11-16 ウェーハの加工方法 Pending JP2022079154A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020190158A JP2022079154A (ja) 2020-11-16 2020-11-16 ウェーハの加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020190158A JP2022079154A (ja) 2020-11-16 2020-11-16 ウェーハの加工方法

Publications (1)

Publication Number Publication Date
JP2022079154A true JP2022079154A (ja) 2022-05-26

Family

ID=81707494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020190158A Pending JP2022079154A (ja) 2020-11-16 2020-11-16 ウェーハの加工方法

Country Status (1)

Country Link
JP (1) JP2022079154A (ja)

Similar Documents

Publication Publication Date Title
JP4471632B2 (ja) ウエーハの加工方法
JP4422463B2 (ja) 半導体ウエーハの分割方法
US10825678B2 (en) Wafer processing method
JP2008283025A (ja) ウエーハの分割方法
JP2006108532A (ja) ウエーハの研削方法
JP2005209719A (ja) 半導体ウエーハの加工方法
US11094523B2 (en) Processing method for wafer
KR102367001B1 (ko) 웨이퍼의 가공 방법
JP2010103245A (ja) 積層デバイスの製造方法
KR20130111994A (ko) 접착 필름을 갖는 칩의 형성 방법
KR20200125432A (ko) 디바이스 칩의 제조 방법
JP2005116739A (ja) 半導体チップの製造方法
CN110571131B (zh) 倒角加工方法
JP2022079154A (ja) ウェーハの加工方法
JP6270520B2 (ja) ウェーハの加工方法
JP2011171382A (ja) 分割方法
JP6980444B2 (ja) 積層型素子の製造方法
JP2022076711A (ja) ウェーハの加工方法
JP2019150925A (ja) 被加工物の研削方法
US20240079243A1 (en) Processing method of wafer
US20220238377A1 (en) Chip manufacturing method
JP2022086416A (ja) ウェーハの加工方法
JP2021158164A (ja) デバイスチップの製造方法
KR20190143393A (ko) 피가공물의 가공 방법
JP2024034584A (ja) 積層ウェーハの分割方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230925