JP2022078944A - 液晶表示装置およびその制御方法 - Google Patents

液晶表示装置およびその制御方法 Download PDF

Info

Publication number
JP2022078944A
JP2022078944A JP2021140204A JP2021140204A JP2022078944A JP 2022078944 A JP2022078944 A JP 2022078944A JP 2021140204 A JP2021140204 A JP 2021140204A JP 2021140204 A JP2021140204 A JP 2021140204A JP 2022078944 A JP2022078944 A JP 2022078944A
Authority
JP
Japan
Prior art keywords
luminance
value
image
liquid crystal
brightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021140204A
Other languages
English (en)
Inventor
浩司 水戸
Koji Mito
康夫 鈴木
Yasuo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US17/511,797 priority Critical patent/US11842702B2/en
Publication of JP2022078944A publication Critical patent/JP2022078944A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

【課題】特定の輝度誤差を抑制した表示を行うことのできる技術を提供する。【解決手段】本発明の液晶表示装置は、液晶パネルと、第1画像のデータを入力する入力手段と、前記液晶パネルに光を照射する、発光輝度を変更可能なバックライトモジュールと、前記バックライトモジュールから前記液晶パネルに照射される光の輝度を推測する推測手段と、前記第1画像を目標コントラストで表示した場合の表示輝度に対する輝度誤差が抑制されるように、前記推測手段により推測された輝度、前記液晶パネルのコントラスト、及び、前記目標コントラストに基づいて前記第1画像を第2画像に補正する補正手段と、前記第2画像のデータに基づいて前記液晶パネルの透過率を制御する制御手段とを備える。【選択図】図1

Description

本発明は、バックライトモジュールの発光輝度を変更可能な液晶表示装置、及び、その制御方法に関する。
HDR(High Dynamic Range)画像などと呼ばれる、比較的広いダイナミックレンジを有する画像を表示する表示装置の高コントラスト化が求められている。代表的な表示装置としては、OLED(Organic Light Emitting Diode)表示装置や液晶表示装置(LCD(Liquid Crystal Display)装置)などがある。OLED表示装置では画素毎に有機EL(Electro Luminescence)素子が発光するのに対し、LCD装置ではバックライトモジュールから照射された光の透過量を液晶パネルが画素毎に調整する。LCD装置では、バックライトモジュールから照射される光を完全に遮断できないため、光漏れによる黒浮きが発生する。そのため、LCD装置では、自発光表示装置であるOLED表示装置に比べ、表示のコントラストが低くなる。
LCD装置で黒浮きを低減し、コントラストを向上させる場合には、一般的に、ローカルディミングと呼ばれる技術が用いられる。ローカルディミングは、バックライトモジュールの発光輝度を分割領域毎に制御することにより、黒浮きを低減する技術である。しかし、バックライトモジュールの発光輝度を低減することで、暗部以外の表示輝度も同時に低下する。この場合には、LCD装置に表示する画像を補正することで、表示輝度を補償することができる。ローカルディミングで低下した表示輝度を画像補正により補償する技術として、特許文献1では、バックライトモジュールから液晶パネルに照射される光の輝度(バックライト輝度;強度)の逆数を画像の階調値に乗算する技術が開示されている。
特許第5456050号公報
しかしながら、バックライト輝度の逆数を画像の階調値に乗算する従来技術では、特定の輝度誤差(表示輝度の誤差)が発生してしまう。
そこで本発明は、特定の輝度誤差を抑制した表示を行うことのできる技術を提供することを目的とする。
本発明の第1の態様は、
液晶パネルと、
第1画像のデータを入力する入力手段と、
前記液晶パネルに光を照射する、発光輝度を変更可能なバックライトモジュールと、
前記バックライトモジュールから前記液晶パネルに照射される光の輝度を推測する推測手段と、
前記第1画像を目標コントラストで表示した場合の表示輝度に対する輝度誤差が抑制されるように、前記推測手段により推測された輝度、前記液晶パネルのコントラスト、及び、前記目標コントラストに基づいて前記第1画像を第2画像に補正する補正手段と、
前記第2画像のデータに基づいて前記液晶パネルの透過率を制御する制御手段と
を備えることを特徴とする液晶表示装置である。
本発明の第2の態様は、
液晶パネルと、
第1画像のデータを入力する入力手段と、
前記液晶パネルに光を照射する、発光輝度を変更可能なバックライトモジュールと
を有する液晶表示装置の制御方法であって、
前記バックライトモジュールから前記液晶パネルに照射される光の輝度を推測する推測ステップと、
前記第1画像を目標コントラストで表示した場合の表示輝度に対する輝度誤差が抑制されるように、前記推測ステップにおいて推測された輝度、前記液晶パネルのコントラスト、及び、前記目標コントラストに基づいて前記第1画像を第2画像に補正する補正ステップと、
前記第2画像のデータに基づいて前記液晶パネルの透過率を制御する制御ステップと
を有することを特徴とする制御方法である。
本発明の第3の態様は、コンピュータを、上述した液晶表示装置の各手段として機能させるためのプログラムである。
本発明によれば、特定の輝度誤差を抑制した表示を行うことができる。
実施例1に係る液晶表示装置の機能ブロックを示すブロック図である。 実施例1に係る補正係数生成部の機能ブロックを示すブロック図である。 実施例1に係る補正係数の算出の具体例を説明するためのグラフである。 実施例1に係る補正係数の算出の具体例を説明するためのグラフである。 実施例1に係る補正係数の算出の具体例を説明するためのグラフである。 実施例1に係る入力画像の一例を示す図である。 実施例1に係るバックライト輝度の一例を示す図である。 従来の表示輝度の一例を示す図である。 実施例1に係る表示輝度の一例を示す図である。 実施例1に係る入力画像の一例を示す図である。 実施例1に係るバックライト輝度の一例を示す図である。 従来の表示輝度の一例を示す図である。 実施例1に係る表示輝度の一例を示す図である。 実施例2に係る液晶表示装置の機能ブロックを示すブロック図である。 実施例2に係る補正係数生成部の機能ブロックを示すブロック図である。 実施例3に係る液晶表示装置の機能ブロックを示すブロック図である。 実施例3に係る補正係数調整処理の具体例を説明するための図である。 実施例4で抑制される黒潰れを説明するための図である。 実施例4に係る補正係数生成部の機能ブロックを示すブロック図である。 実施例4に係る目標コントラスト変更の一例を示す図である。 実施例5に係る補正係数生成部の機能ブロックを示すブロック図である。 実施例5に係るゲイン値の決定方法の一例を示す図である。 実施例5に係る目標コントラスト変更の一例を示す図である。 実施例6に係る液晶表示装置の機能ブロックを示すブロック図である。 実施例6に係る表示輝度の一例を示す図である。 実施例6に係る表示輝度の一例を示す図である。 実施例7に係る液晶表示装置の機能ブロックを示すブロック図である。 実施例7に係るOSDメニューの一例を示す図である。 実施例7に係るBL制御値の一例を示す図である。 実施例7に係るパラメータ生成処理の一例を示すフローチャートである。 実施例7に係る表示輝度の一例を示す図である。 実施例7に係る画像補正の第1の具体例を示す図である。 実施例7に係る画像補正の第2の具体例を示す図である。 実施例7に係る画像補正の第3の具体例を示す図である。
以下、図面を用いて本発明の実施の形態について説明する。なお、本発明の技術的範囲は、特許請求の範囲によって確定され、以下に例示する実施形態によって限定されるものではない。また、実施形態の中で説明されている特徴の組み合わせすべてが本発明に必須とは限らない。本明細書および図面に記載の内容は例示であって、本発明を制限するものと見なすべきではない。本発明の趣旨に基づき種々の変形が可能であり、それらを本発明の範囲から除外するものではない。即ち、各実施形態及びその変形例を組み合わせた構成も全て本発明に含まれるものである。
本発明の発明者らは、以下で述べるように、バックライトモジュールから液晶パネルに照射される光の輝度(バックライト輝度;強度)の逆数を画像の階調値に乗算する従来技術において、特定の輝度誤差が発生することを見出した。ここで、特定の輝度誤差は、画像を目標コントラストで表示した場合の表示輝度に対する誤差であり、且つ、バックライト輝度とパネルコントラスト(液晶パネルのコントラスト)とに関連した誤差である。表示輝度は、画像が表示される表示面上の輝度である。表示のコントラストは、表示輝度の上限と下限の比である。液晶パネルのコントラストは、バックライト輝度を表示面内で一様とした場合の、液晶パネルでの表示のコントラストである。液晶パネルのコントラストは、液晶パネルの透過率の上限と下限の比とも言える。
100万対1のコントラストでの表示が行われる場合に、白輝度が1000nitであれば、黒輝度は0.001nitとなり、輝度ダイナミックレンジ(輝度のダイナミックレンジ)は0.001~1000nitとなる。そして、画像の階調値が0.0025である場合には、下記の計算式のように、輝度ダイナミックレンジ0.001~1000nitへの正規化によって、階調値0.0025に対応する表示輝度は2.5009975nitとなる。ここでは、100万対1のコントラストを目標コントラスト(理想的なコントラスト)とし、その表示輝度(2.5009975nit)を目標表示輝度とする。
Figure 2022078944000002
液晶表示装置(LCD(Liquid Crystal Display)装置)において、液晶パネルのコントラスト(パネルコントラスト)は、1000対1程度であることが多い。パネルコントラストが1000対1である場合に、白輝度が1000nitであれば、黒輝度は1nitとなり、輝度ダイナミックレンジは1~1000nitとなる。そして、画像を補正しない場合には、下記の計算式のように、輝度ダイナミックレンジ0.001~1000nitへの正規化によって、階調値0.0025に対応する表示輝度は3.4975nitとなる。
Figure 2022078944000003
ここで、0~1(0%~100%)に正規化されたバックライト輝度が1(100%)であるとする。上述した従来技術で画像を補正する場合には、下記の計算式のように、階調値0.0025にバックライト輝度の逆数(1/1=1倍)が乗算され、階調値0.0025に対応する表示輝度は3.4975nitのままとなる。
Figure 2022078944000004
バックライト輝度を0.5(50%)に低下させた場合には、白輝度と黒輝度がそれぞれ50%下がり、輝度ダイナミックレンジは0.5~500nitとなる。そして、画像を補正しない場合には、下記の計算式のように、輝度ダイナミックレンジ0.5~500nitへの正規化によって、階調値0.0025に対応する表示輝度は1.74875nitとなる。
Figure 2022078944000005
上述した従来技術で画像を補正する場合には、下記の計算式のように、階調値0.0025にバックライト輝度の逆数(1/0.5=2倍)が乗算され、階調値0.0025に対応する表示輝度は2.9975nitとなる。
Figure 2022078944000006
パネルコントラストを2000対1にした場合には、白輝度の1/2000の輝度が黒輝度となる。バックライト輝度が0.5(50%)である場合には、白輝度は500nitであるため、黒輝度は0.25nitとなり、輝度ダイナミックレンジは0.25~500nitとなる。そして、画像を補正しない場合には、下記の計算式のように、輝度ダイナミックレンジ0.25~500nitへの正規化によって、階調値0.0025に対応する表示輝度は1.499375nitとなる。
Figure 2022078944000007
上述した従来技術で画像を補正する場合には、下記の計算式のように、階調値0.0025にバックライト輝度の逆数(1/0.5=2倍)が乗算され、階調値0.0025に対応する表示輝度は2.74875nitとなる。
Figure 2022078944000008
このように、バックライト輝度の逆数で画像を補正する従来技術では、バックライト輝度の上昇とパネルコントラストの低下とに連動して黒浮きが大きくなることにより、目標表示輝度に対する輝度誤差が拡大する。黒浮きによる輝度誤差は、明部では相対的に小さくなるが、暗部では相対的に大きくなる。このため、上記従来技術では、特に暗部領域において、バックライト輝度とパネルコントラストとに関連した輝度誤差が大きくなり、黒浮きが視認されやすくなる。
<実施例1>
以下、本発明の実施例1について説明する。図1は、実施例1に係る液晶表示装置10
0の機能ブロックを示すブロック図である。液晶表示装置100は、画像入力・変換部101、バックライト制御値生成部102、バックライト輝度推測部103、補正係数生成部104、画像補正部105、液晶パネル制御部106、液晶パネル107、バックライト制御部108、及び、バックライトモジュール109を備える。
画像入力・変換部101は、外部から画像データ(画像のデータ)を取得する。具体的には、画像入力・変換部101は、SDI(Serial Digital Interface)などの入力インタフェースを有し、外部から入力インタフェースを介して液晶表示装置100内に画像データを入力する。そして、画像入力・変換部101は、取得(入力)した画像データに、階調変換や信号フォーマット変換などの変換処理を施し、変換処理後の画像データを出力する。
階調変換は、例えば、1次元ルックアップテーブル(1D-LUT)を用いた階調変換であり、液晶パネル107のガンマ値(パネルガンマ)に応じた階調変換である。ここで、外部から取得された画像データのガンマ特性(階調値と輝度の対応関係;階調特性)が、階調値の増加に対して輝度が線形に増加する線形特性であり、パネルガンマが2.0である場合を考える。この場合には、パネルガンマの逆ガンマ(即ち1/2.0)を用いた階調変換が行われる。これにより、取得された画像データ(線形特性を有する画像データ)が、輝度が階調値の1/2.0乗に比例するガンマ特性を有する画像データに変換する。なお、画像入力・変換部101における変換処理は、1D-LUTを用いた階調変換に限定されず、3次元ルックアップテーブル(3D-LUT)を用いた変換処理、ゲイン調整、オフセット調整、マトリクス変換などを含んでもよい。
信号フォーマット変換は、例えば、画像データの信号フォーマットをYCbCrやXYZなどからRGBに変換する処理である。なお、変換前後の信号フォーマットは、YCbCr、XYZ、及び、RGBに限定されない。
バックライト制御値生成部102は、画像入力・変換部101から出力された画像データ(入力画像データ;入力画像のデータ)に基づいて、バックライトモジュール109を制御するためのバックライト制御値を生成する。そして、バックライト制御値生成部102は、生成したバックライト制御値を出力する。バックライトモジュール109の発光輝度(発光強度)は変更可能である。具体的には、バックライトモジュール109は、バックライト制御値に応じた発光輝度で発光する。実施例1では、表示面を構成する複数の分割領域が予め設定されており、バックライトモジュール109は、複数の分割領域にそれぞれ対応する複数の光源を有し、分割領域毎に発光輝度を変更可能である。バックライトモジュールの109の光源は特に限定されないが、例えばLED(Light Emitting Diode)である。そして、バックライト制御値生成部102は、分割領域毎にバックライト制御値を生成する。バックライト制御値は、例えば、当該バックライト制御値に対応する領域(実施例1では、バックライト制御値に対応する分割領域)の画像データの最大階調値や平均階調値などの特徴量(統計量)に応じて決定される。なお、バックライトモジュール109の発光輝度が表示面全体で一律の輝度になるように、バックライトモジュール109の発光輝度が制御されてもよい。その場合には、例えば、バックライト制御値生成部102は、表示面全体で一律のバックライト制御値を生成する。また、画像データの特徴量を取得する領域は、バックライト制御値に対応する領域より狭くても広くてもよい。
バックライト輝度推測部103は、バックライト制御値生成部102から出力されたバックライト制御値に基づいて、バックライトモジュール109から液晶パネル107に照射される光の輝度(バックライト輝度;強度)の推測計算を行う。そして、バックライト輝度推測部103は、推測したバックライト輝度を出力する。バックライト輝度の推測計
算には、提案されている種々の方法を利用できる。例えば、各光源(各分割領域)のバックライト制御値と、光源(バックライトモジュール109のうち、分割領域に対応する部分)から発せられる光の輝度分布モデルとに基づいて、表示面の位置毎(領域毎)にバックライト輝度を推測(算出)できる。輝度センサなどを用いてバックライト輝度が推測(検出)されてもよい。
補正係数生成部104は、バックライト輝度推測部103から出力されたバックライト輝度に基づいて、画像入力・変換部101から出力された入力画像データに適用する補正係数を生成する。そして、補正係数生成部104は、生成した補正係数を出力する。
画像補正部105は、補正係数生成部104から出力された補正係数Gtを、画像入力・変換部101から出力された入力画像データの画素値に乗算することで、補正画像データ(補正画像のデータ)の画素値を生成(算出)する。実施例1では、以下の式(1)に従って、入力画像データの画素値であるRGB値(R値,G値,B値)=(Vr,Vg,Vb)に補正係数Gtを乗算することで、補正画像データの画素値であるRGB値(Vrc,Vgc,Vbc)が生成される。そして、画像補正部105は、生成した補正画像データを出力する。
Figure 2022078944000009
液晶パネル制御部106は、画像補正部105から出力された補正画像データに基づく画像が液晶パネル107に表示されるように、補正画像データに基づいて(応じて)液晶パネル107の透過率(表示面内での透過率分布)を制御する。
液晶パネル107は、液晶パネル制御部106によって制御され、表示面に画像を表示する。
バックライト制御部108は、バックライト制御値生成部102から出力されたバックライト制御値に応じて、バックライトモジュール109(バックライトモジュール109の光源)の発光輝度を制御する。バックライト制御部108は、例えば、PWM(Pulse Width Modulation)制御のデューティ比をバックライト制御値に応じて決定し、決定したデューティ比でのPWM制御により、バックライトモジュール109の発光輝度を制御する。実施例1では、バックライト制御部108は、このような処理(制御)を分割領域毎に行う。
バックライトモジュール109は、液晶パネル107の背面に光を照射する。上述したように、バックライトモジュール109の発光輝度は変更可能である。実施例1では、表示面を構成する複数の分割領域が予め設定されており、バックライトモジュール109は、複数の分割領域にそれぞれ対応する複数の光源を有し、分割領域毎に発光輝度を変更可能である。
図2は、補正係数生成部104の機能ブロックを示すブロック図である。補正係数生成部104は、最大値取得部10401、目標表示輝度算出部10402、黒輝度推測部10403、パネル表示輝度推測部10404、第1減算部10405、第2減算部10406、除算部10407、及び、ガンマ変換部10408を備える。
最大値取得部10401は、画像入力・変換部101から出力された入力画像データの
画素毎に、入力画像データの階調値を入力値Vinとして取得する。そして、最大値取得部10401は、取得した入力値Vinを出力する。実施例1では、最大値取得部10401は、入力画像データの画素値であるRGB値のR値、G値、及び、B値のうちの最大値を、入力値Vinとして取得する。なお、R値、G値、及び、B値の最小値、平均値、中間値などが入力値Vinとして取得されてもよい。YCbCrやXYZなどのY値が入力値Vinとして取得されてもよい。以下では、入力値Vinが0~1に正規化された値であるとする。
目標表示輝度算出部10402は、以下の式(2)に従って、最大値取得部10401から出力された入力値Vinなどから、入力画像を目標コントラストで表示した場合の表示輝度(目標表示輝度)Ltを算出する。そして、目標表示輝度算出部10402は、算出した目標表示輝度Ltを出力する。式(2)において、pgはパネルガンマである。Vinをpg乗することで、入力値Vinを液晶パネル107で表示した場合の表示輝度に対応する出力値が得られる。また、式(2)では、バックライト輝度が100%、目標コントラストがCt対1、最大表示輝度がLmaxとされている。このとき、最小表示輝度はLmax/Ctとなり、輝度ダイナミックレンジはLmax/Ct~Lmaxとなる。このため、式(2)に示すように、入力値Vinをパネルガンマpgで変換した出力値を、輝度ダイナミックレンジLmax/Ct~Lmaxで正規化することによって、目標表示輝度Ltが算出される。ここで、最小表示輝度は、例えば全黒画像の表示を測定して得られる表示輝度であり、最大表示輝度は、例えば全白画像の表示を測定して得られる表示輝度である。
Figure 2022078944000010
黒輝度推測部10403は、以下の式(3)に従って、バックライト輝度推測部103から出力されたバックライト輝度Leなどから、黒輝度Lbk(バックライト輝度Leでの最小表示輝度)を算出する。そして、黒輝度推測部10403は、算出した黒輝度Lbkを出力する。ここで、バックライト輝度Leは、0~1(0%~100%)に正規化されている。バックライト輝度Leでの最大表示輝度はLmax×Leとなる。そして、液晶パネル107のコントラスト(パネルコントラスト)をCp対1とした場合に、最小表示輝度は最大表示輝度の1/Cpとなる。このため、式(3)に示すように、黒輝度Lbk(バックライト輝度Leでの最小表示輝度)は、Lmax×Leの1/Cpとなる。
Figure 2022078944000011
パネル表示輝度推測部10404は、以下の式(4)に従って、最大値取得部10401から出力された入力値Vinや、バックライト輝度推測部103から出力されたバックライト輝度Leなどから、パネル表示輝度Lpを算出する。そして、パネル表示輝度推測部10404は、算出したパネル表示輝度Lpを出力する。パネル表示輝度Lpは、入力画像をパネルコントラストで表示した場合の表示輝度である。上述したように、バックライト輝度Leでの最大表示輝度はLmax×Leとなり、バックライト輝度Leでの最小表示輝度)はLmax×Leの1/Cpとなる。つまり、輝度ダイナミックレンジは(Lmax×Le)/Cp~Lmax×Leとなる。さらに、Vinをpg乗することで、入力値Vinを液晶パネル107で表示した場合の表示輝度に対応する出力値が得られる。このため、式(4)に示すように、入力値Vinをパネルガンマpgで変換した出力値を、輝度ダイナミックレンジ(Lmax×Le)/Cp~Lmax×Leで正規化すること
によって、パネル表示輝度Lpが算出される。
Figure 2022078944000012
第1減算部10405は、以下の式(5)に従って、目標表示輝度Lt(目標表示輝度算出部10402の出力値)から黒輝度Lbk(黒輝度推測部10403の出力値)を減算することで、第1輝度差分Dtを算出する。そして、第1減算部10405は、算出した第1輝度差分Dtを出力する。
Figure 2022078944000013
第2減算部10406は、以下の式(6)に従って、パネル表示輝度Lp(パネル表示輝度推測部10404の出力値)から黒輝度Lbk(黒輝度推測部10403の出力値)を減算することで、第2輝度差分Dpを算出する。そして、第2減算部10406は、算出した第2輝度差分Dpを出力する。
Figure 2022078944000014
除算部10407は、以下の式(7)に従って、第1輝度差分Dt(第1減算部10405の出力値)を第2輝度差分Dp(第2減算部10406の出力値)で除算することで、輝度比率Lratioを算出する。そして、除算部10407は、算出した輝度比率Lratioを出力する。
Figure 2022078944000015
ガンマ変換部10408は、以下の式(8)に従って、除算部10407から出力された輝度比率Lratioにパネルガンマpgの逆ガンマを適用することで、補正係数Gtを算出する。そして、ガンマ変換部10408は、算出した補正係数Gtを出力する。
Figure 2022078944000016
なお、上述した式(2)~(8)を合成すると、以下の式(9)を得ることができる。つまり、補正係数生成部104は式(9)に従って補正係数Gtを算出すると捉えることもできる。なお、式(9)において、入力値Vinが0の場合には、0除算(0での除算)が発生する。そのため、入力値Vinが0の場合には、画像補正が無効になるよう、補正係数Gtは0にする。また、式(9)の被除数が負値になる場合は、被除数を0にリミットする。
Figure 2022078944000017
図3~5を参照して、補正係数生成部104による補正係数Gtの算出の具体例について説明する。
図3は、補正係数生成部104による補正係数Gtの算出の具体例を説明するためのグラフである。図3において、横軸は入力値Vinを示し、縦軸は表示輝度を示す。図3を参照して、目標コントラストが100万対1(Ct=100万)、パネルコントラストが1000対1(Cp=1000)、パネルガンマpgが2.0、バックライト輝度Leが100%、入力値Vinが0.05の場合の例を説明する。ここでは、バックライト輝度Leが100%の場合の最大表示輝度を1000nitとする。そのため、目標コントラストでの表示の輝度ダイナミックレンジは0.001~1000nitとなり、パネルコントラストでの表示の輝度ダイナミックレンジは1~1000nitとなる。
目標表示輝度算出部10402が式(2)に従って算出する目標表示輝度Ltは、下記の計算式のように、2.5009975nit(図3では2.501nitと記載)となる。
Figure 2022078944000018
黒輝度推測部10403が式(3)に従って算出する黒輝度Lbkは、下記の計算式のように、1.0nitとなる。
Figure 2022078944000019
パネル表示輝度推測部10404が式(4)に従って算出するパネル表示輝度Lpは、下記の計算式のように、3.4975nit(図3では3.498nitと記載)となる。
Figure 2022078944000020
第1減算部10405が式(5)に従って算出する第1輝度差分Dtは、下記の計算式のように、1.5009975nit(図3では1.501nitと記載)となる。
Figure 2022078944000021
第2減算部10406が式(6)に従って算出する第2輝度差分Dpは、下記の計算式のように、2.4975nit(図3では2.498nitと記載)となる。
Figure 2022078944000022
除算部10407が式(7)に従って算出する輝度比率Lratioは、下記の計算式のように、0.601となる。
Figure 2022078944000023
ガンマ変換部10408が式(8)に従って算出する補正係数Gtは、下記の計算式のように、0.77524(図3では0.775と記載)となる。
Figure 2022078944000024
入力画像データの階調値が0.05の場合には、画像補正部105が式(1)に従って生成する補正画像データの階調値Vcは、下記の計算式のように、0.038762(図3では0.039と記載)となる。
Figure 2022078944000025
階調値Vcを2.0のパネルガンマで変換し、1~1000nitの輝度ダイナミックレンジで正規化することによって、階調値Vcに対応する表示輝度Lc(パネル表示輝度)が算出される。下記の計算式のように、階調値Vc=0.038762からは、表示輝度Lc=2.50099nitが算出される。このように、実施例1の方法で生成した即ち、目標表示輝度Ltと略同じ表示輝度Lcを得ることができる。
Figure 2022078944000026
図4は、補正係数生成部104による補正係数Gtの算出の具体例を説明するためのグラフである。図4において、横軸は入力値Vinを示し、縦軸は表示輝度を示す。図4を参照して、目標コントラストが100万対1(Ct=100万)、パネルコントラストが1000対1(Cp=1000)、パネルガンマpgが2.0、バックライト輝度Leが50%、入力値Vinが0.05の場合の例を説明する。ここでは、バックライト輝度Leが100%の場合の最大表示輝度を1000nitとする。そのため、目標コントラストでの表示の輝度ダイナミックレンジは0.001~1000nitとなり、パネルコントラストでの表示の輝度ダイナミックレンジは0.5~500nitとなる。
目標表示輝度算出部10402が式(2)に従って算出する目標表示輝度Ltは、下記の計算式のように、2.5009975nit(図4では2.501nitと記載)とな
る。
Figure 2022078944000027
黒輝度推測部10403が式(3)に従って算出する黒輝度Lbkは、下記の計算式のように、0.5nitとなる。
Figure 2022078944000028
パネル表示輝度推測部10404が式(4)に従って算出するパネル表示輝度Lpは、下記の計算式のように、1.74875nit(図4では1.749nitと記載)となる。
Figure 2022078944000029
第1減算部10405が式(5)に従って算出する第1輝度差分Dtは、下記の計算式のように、2.0009975nit(図4では2.001nitと記載)となる。
Figure 2022078944000030
第2減算部10406が式(6)に従って算出する第2輝度差分Dpは、下記の計算式のように、1.24875nit(図4では1.249nitと記載)となる。
Figure 2022078944000031
除算部10407が式(7)に従って算出する輝度比率Lratioは、下記の計算式のように、1.6024(図4では1.602と記載)となる。
Figure 2022078944000032
ガンマ変換部10408が式(8)に従って算出する補正係数Gtは、下記の計算式のように、1.26586(図4では1.266と記載)となる。
Figure 2022078944000033
入力画像データの階調値が0.05の場合には、画像補正部105が式(1)に従って生成する補正画像データの階調値Vcは、下記の計算式のように、0.063293(図4では0.063と記載)となる。
Figure 2022078944000034
階調値Vcを2.0のパネルガンマで変換し、0.5~500nitの輝度ダイナミックレンジで正規化することによって、階調値Vcに対応する表示輝度Lc(パネル表示輝度)が算出される。下記の計算式のように、階調値Vc=0.063293からは、表示輝度Lc=2.50099nitが算出される。即ち、目標表示輝度Ltと略同じ表示輝度Lcを得ることができる。
Figure 2022078944000035
図5は、補正係数生成部104による補正係数Gtの算出の具体例を説明するためのグラフである。図5において、横軸は入力値Vinを示し、縦軸は表示輝度を示す。図5を参照して、目標コントラストが100万対1(Ct=100万)、パネルコントラストが2000対1(Cp=2000)、パネルガンマpgが2.0、バックライト輝度Leが50%、入力値Vinが0.05の場合の例を説明する。ここでは、バックライト輝度Leが100%の場合の最大表示輝度を1000nitとする。そのため、目標コントラストでの表示の輝度ダイナミックレンジは0.001~1000nitとなり、パネルコントラストでの表示の輝度ダイナミックレンジは0.25~500nitとなる。
目標表示輝度算出部10402が式(2)に従って算出する目標表示輝度Ltは、下記の計算式のように、2.5009975nit(図5では2.501nitと記載)となる。
Figure 2022078944000036
黒輝度推測部10403が式(3)に従って算出する黒輝度Lbkは、下記の計算式のように、0.25nitとなる。
Figure 2022078944000037
パネル表示輝度推測部10404が式(4)に従って算出するパネル表示輝度Lpは、下記の計算式のように、1.499375nit(図5では1.499nitと記載)となる。
Figure 2022078944000038
第1減算部10405が式(5)に従って算出する第1輝度差分Dtは、下記の計算式のように、2.2509975nit(図5では2.251nitと記載)となる。
Figure 2022078944000039
第2減算部10406が式(6)に従って算出する第2輝度差分Dpは、下記の計算式のように、1.24875nit(図5では1.249nitと記載)となる。
Figure 2022078944000040
除算部10407が式(7)に従って算出する輝度比率Lratioは、下記の計算式のように、1.8017(図5では1.802と記載)となる。
Figure 2022078944000041
ガンマ変換部10408が式(8)に従って算出する補正係数Gtは、下記の計算式のように、1.34227(図5では1.342と記載)となる。
Figure 2022078944000042
入力画像データの階調値が0.05の場合には、画像補正部105が式(1)に従って生成する補正画像データの階調値Vcは、下記の計算式のように、0.0671135(図5では0.067と記載)となる。
Figure 2022078944000043
階調値Vcを2.0のパネルガンマで変換し、0.25~500nitの輝度ダイナミックレンジで正規化することによって、階調値Vcに対応する表示輝度Lc(パネル表示輝度)が算出される。下記の計算式のように、階調値Vc=0.0671135からは、表示輝度Lc=2.50098nitが算出される。即ち、目標表示輝度Ltと略同じ表示輝度Lcを得ることができる。
Figure 2022078944000044
このように、実施例1の方法で生成した補正係数Gtを用いれば、目標表示輝度Ltと略同じ表示輝度Lcを得ることができ、バックライト輝度とパネルコントラストとに関連した輝度誤差(目標表示輝度に対する誤差)を抑制することができる。例えば、バックライト輝度の上昇とパネルコントラストの低下とに連動して輝度誤差(目標表示輝度に対する誤差)が拡大しないようにできる。
図6~図13(B)を参照して、実施例1の効果の具体例について説明する。
図6は、入力画像の一例を示す。画像A~Dにおいて、測定点Aを含むパッチ領域のRGB値(Vr,Vg,Vb)は(0,0,0)である。測定点Bを含む背景領域のRGB値は、画像Aで(0,0,0)、画像Bで(2048,2048,2048)、画像Cで(2896,2896,2896)、画像Dで(3547,3547,3547)、画像Eで(4095,4095,4095)である。なお、図6において、R値とG値とB値は、いずれも12ビットの整数であり、パネルガンマpgの逆ガンマが適用されているも
のとする。また、画像A~画像Eの間で、パッチ領域のサイズ、パッチ領域の座標、及び、測定点A,Bの位置は同じである。
図7は、図6の測定点Aおよび測定点Bでのバックライト輝度Leの一例を示す。ここで、バックライトモジュール109が有する複数の光源のうち、測定点Aを含む分割領域の光源は点灯していないとする。但し、測定点Aでのバックライト輝度Leは、測定点Bを含む分割領域の光源からの拡散光の影響により、測定点Bでのバックライト輝度Leの90%になるとする。このため、測定点Bでのバックライト輝度Leが画像Aで0.1%、画像Bで25%、画像Cで50%、画像Dで75%、画像Eで100%である場合には、測定点Aでのバックライト輝度Leは画像Aで0.09%、画像Bで22.5%、画像Cで45%、画像Dで67.5%、画像Eで90%となる。
図8(A)~9(B)は、図6の入力画像を図7に示すバックライト輝度Leで液晶表示装置に表示した場合の、測定点Aおよび測定点Bでの表示輝度Lcの一例を示す。図8(A),8(B)は、バックライト輝度Leの逆数で入力画像を補正する従来技術を用いた場合の例を示し、図9(A),9(B)は、実施例1の方法で入力画像を補正した場合の例を示す。なお、液晶表示装置のパネルコントラストは1000対1(Cp=1000)、バックライト輝度Leが100%の場合の最大表示輝度は1000nitとする。そのため、バックライト輝度Leが100%の場合には、パネルコントラストでの表示の輝度ダイナミックレンジは1~1000nitとなる。また、液晶表示装置のパネルガンマpgは2.0とする。
まず、図8(A),8(B)を参照して、バックライト輝度Leの逆数で入力画像を補正する従来技術を用いた場合の例について説明する。図8(A)は、図6の測定点Aでの表示輝度Lcを示し、図8(B)は、図6の測定点Bでの表示輝度Lcを示す。ここでは、表示輝度にバックライト輝度Leの逆数を乗算する効果が得られるように、入力画像が補正されるとする。つまり、入力画像に適用する補正係数は、以下の式(10)に示すように、1/Leの1/pg乗となる。
Figure 2022078944000045
式(10)で算出される補正係数Giを入力値Vin(12ビットの整数)に乗算して得られる値(補正画像の階調値)を、パネルガンマpgで変換することによって、補正画像の表示輝度Lcに対応する出力値が得られる。また、パネルコントラストでの表示の輝度ダイナミックレンジは(Lmax×Le)/Cp~Lmax×Leとなる。このため、以下の式(11)に示すように、上述した出力値を輝度ダイナミックレンジ(Lmax×Le)/Cp~Lmax×Leに正規化することによって、表示輝度Lcが算出される。
Figure 2022078944000046
但し、入力値Vinが0の場合には、以下の式(12)に示すように、画像補正が無効となり、表示輝度Lcはパネルコントラストとバックライト輝度Leに応じて決まる。
Figure 2022078944000047
図8(B)に示すように、図6の画像Aの測定点Bでは、入力値Vin(R値、G値、及び、B値のうちの最大値)が0であるため、式(12)に従って表示輝度Lcは0.001nitとなる。図6の画像B~画像Eの測定点Bでは入力値Vinが0でないため、式(11)に従って表示輝度Lcは画像Bで250nit、画像Cで500nit、画像Dで750nit、画像Eで1000nitとなる。また、図8(A)に示すように、図6の画像A~画像Eの測定点Aでは入力値Vinが0であるため、式(12)に従って表示輝度Lcは画像Aで0.0009nit、画像Bで0.225nit、画像Cで0.45nit、画像Dで0.675nit、画像Eで0.9nitとなる。
次に、図9(A),9(B)を参照して、実施例1の方法で入力画像を補正した場合の例について説明する。図9(A)は、図6の測定点Aでの表示輝度Lcを示し、図9(B)は、図6の測定点Bでの表示輝度Lcを示す。ここでは、上述した式(9)に従って補正係数Gtが算出される。
式(9)で算出される補正係数Gtを入力値Vin(12ビットの整数)に乗算して得られる値(補正画像の階調値)を、パネルガンマpgで変換することによって、補正画像の表示輝度Lcに対応する出力値が得られる。また、パネルコントラストでの表示の輝度ダイナミックレンジは(Lmax×Le)/Cp~Lmax×Leとなる。このため、以下の式(13)に示すように、上述した出力値を輝度ダイナミックレンジ(Lmax×Le)/Cp~Lmax×Leに正規化することによって、表示輝度Lcが算出される。
Figure 2022078944000048
但し、入力値Vinが0の場合には、以下の式(14)に示すように、画像補正が無効となり、表示輝度Lcはパネルコントラストとバックライト輝度Leに応じて決まる。
Figure 2022078944000049
図9(B)に示すように、図6の画像Aの測定点Bでは、入力値Vinが0であるため、式(14)に従って表示輝度Lcは0.001nitとなる。ここで、目標コントラス
トを100万対1(Ct=100万)とする。図6の画像B~画像Eの測定点Bでは入力値Vinが0でないため、式(13)に従って表示輝度Lcは画像Bで250nit、画像Cで500nit、画像Dで750nit、画像Eで1000nitとなる。また、図9(A)に示すように、図6の画像A~画像Eの測定点Aでは入力値Vinが0であるため、式(14)に従って表示輝度Lcは画像Aで0.0009nit、画像Bで0.225nit、画像Cで0.45nit、画像Dで0.675nit、画像Eで0.9nitとなる。
式(12)または式(14)から分かるように、入力値Vinが0、即ち画素の色が黒である場合には、画像補正の効果は得られない。この場合には、パネルコントラストとバックライト輝度Leに応じた黒輝度Lbkが、表示輝度Lcとなる。即ち、図8(A)~9(B)に示すように、測定点Bでの表示輝度Lcに比例して測定点Aでの表示輝度Lcが高くなる場合には、測定点Aでの表示輝度Lcは、背景領域におけるバックライトモジュール109の光源からの拡散光の影響を受けている。
図10は、入力画像の一例を示す。画像A~Dにおいて、測定点Aを含むパッチ領域のRGB値(Vr,Vg,Vb)は(205,205,205)である。測定点Bを含む背景領域のRGB値、パッチ領域のサイズ、パッチ領域の座標、及び、測定点A,Bの位置は、図6と同じである。
図11は、図10の測定点Aおよび測定点Bでのバックライト輝度Leの一例を示す。ここで、バックライトモジュール109が有する複数の光源のうち、測定点Aを含む分割領域の光源は点灯しており、当該光源からの光の影響により、測定点Aでのバックライト輝度Leは1%の輝度を含むとする。さらに、測定点Aでのバックライト輝度Leは、測定点Bを含む分割領域の光源からの拡散光の影響により、測定点Bでのバックライト輝度Leの90%の輝度を含むとする。つまり、測定点Aでのバックライト輝度Leは、測定点Bでのバックライト輝度Leの90%に1%を加算した値であるとする。このため、測定点Bでのバックライト輝度Leが画像Aで0.1%、画像Bで25%、画像Cで50%、画像Dで75%、画像Eで100%である場合には、測定点Aでのバックライト輝度Leは画像Aで1.09%、画像Bで23.5%、画像Cで46%、画像Dで68.5%、画像Eで91%となる。
図12(A),12(B),13(A),13(B)は、図10の入力画像を図11に示すバックライト輝度Leで液晶表示装置に表示した場合の、測定点Aおよび測定点Bでの表示輝度Lcの一例を示す。図12(A),12(B)は、バックライト輝度Leの逆数で入力画像を補正する従来技術を用いた場合の例を示し、図13(A),13(B)は、実施例1の方法で入力画像を補正した場合の例を示す。なお、図8(A)~9(B)と同様に、液晶表示装置のパネルコントラストは1000対1(Cp=1000)、バックライト輝度Leが100%の場合の最大表示輝度は1000nitとする。そのため、バックライト輝度Leが100%の場合には、パネルコントラストでの表示の輝度ダイナミックレンジは1~1000nitとなる。また、液晶表示装置のパネルガンマpgは2.0とする。
まず、図12(A),12(B)を参照して、バックライト輝度Leの逆数で入力画像を補正する従来技術を用いた場合の例について説明する。図12(A)は、図10の測定点Aでの表示輝度Lcを示し、図12(B)は、図10の測定点Bでの表示輝度Lcを示す。表示輝度Lcは、上述した式(11)および式(12)に従って算出できる。
図12(B)に示すように、図10の画像Aの測定点Bでは、入力値Vinが0であるため、式(12)に従って表示輝度Lcは0.001nitとなる。図10の画像B~画
像Eの測定点Bでは入力値Vinが0でないため、式(11)に従って表示輝度Lcは画像Bで250nit、画像Cで500nit、画像Dで750nit、画像Eで1000nitとなる。また、図12(A)に示すように、図10の画像A~画像Eの測定点Aでは入力値Vinが0でないため、式(11)に従って表示輝度Lcは画像Aで2.51nit、画像Bで2.74nit、画像Cで2.96nit、画像Dで3.19nit、画像Eで3.41nitとなる。
ところで、式(11)は、以下の式(15)のように展開できる。図12(A)の例では、式(15)における入力値Vin、パネルコントラスト(Cp)、及び、バックライト輝度Leが100%である場合の最大表示輝度Lmaxは固定であり、バックライト輝度Leは変動する。このため、図12(A)ではバックライト輝度Leによる輝度誤差が発生していることが分かる。
Figure 2022078944000050
次に、図13(A),13(B)を参照して、実施例1の方法で入力画像を補正した場合の例について説明する。図13(A)は、図10の測定点Aでの表示輝度Lcを示し、図13(B)は、図10の測定点Bでの表示輝度Lcを示す。表示輝度Lcは、上述した式(13)および式(14)に従って算出できる。
図13(B)に示すように、図10の画像Aの測定点Bでは、入力値Vinが0であるため、式(14)に従って表示輝度Lcは0.001nitとなる。図10の画像B~画像Eの測定点Bでは入力値Vinが0でないため、式(13)に従って表示輝度Lcは画像Bで250nit、画像Cで500nit、画像Dで750nit、画像Eで1000nitとなる。また、図13(A)に示すように、図10の画像A~画像Eの測定点Aでは入力値Vinが0でないため、式(13)に従って表示輝度Lcは画像A~画像Eの全てで2.51nitとなる。このため、図13(A)では輝度誤差が抑制されていることがわかる。
以上説明したように、実施例1では、バックライト輝度Leとパネルコントラストとに関連した輝度誤差という新たに見出された輝度誤差が抑制されるように、バックライト輝度とパネルコントラストと目標コントラストに基づいて画像が補正される。その結果、表示輝度の精度が向上し、黒浮きが抑制されるため、従来よりも高いコントラスト感の表示を実現することができる。なお、画像の補正方法は、式(9)に基づく補正係数Gtを用いた方法に限られない。バックライト輝度とパネルコントラストとに関連した輝度誤差を抑制できれば、どのような方法で画像が補正されてもよい。
<実施例2>
以下、本発明の実施例2について説明する。実施例2では、補正係数Gtの算出に使用する目標コントラストに関連したパラメータを外部から入力する例について説明する。図14は、実施例2に係る液晶表示装置100の機能ブロックを示すブロック図である。図14の液晶表示装置100は、図1の液晶表示装置100にパラメータ入力部110を追
加した構成を有する。
パラメータ入力部110は、目標コントラストに関連したパラメータを外部から入力する。例えば、目標コントラストに関連したパラメータは、目標コントラストの最大輝度に対応する値Ctであり、OSD(On Screen Display)メニューに対するユーザ操作に応じて、液晶表示装置100の外部から入力される。パラメータ入力部110は、ユーザ操作に応じて入力したパラメータ(目標コントラスト)を、補正係数生成部104に出力する。なお、目標コントラストに関連したパラメータは、そのパラメータから目標コントラストを把握(決定)できれば、どのようなパラメータであってもよい。例えば、目標コントラストに関連したパラメータは、値Ctでなく、目標コントラストの識別子などの1つ以上の設定値であってもよい。補正係数生成部104は、1つ以上の設定値に基づいて目標コントラストを把握(決定)してもよい。パラメータ入力方法は、OSDメニューを用いた上記方法に限られず、他の入力方法であってもよい。
図15は、実施例2に係る補正係数生成部104の機能ブロックを示すブロック図である。図15の補正係数生成部104では、パラメータ入力部110から出力されたパラメータ(目標コントラスト)が、目標表示輝度算出部10402に入力される。
以上説明したように、実施例2では、補正係数Gtの算出に使用する目標コントラストに関連したパラメータが外部から入力(指定)される。これにより、任意の目標コントラストでの表示輝度に対する輝度誤差(バックライト輝度とパネルコントラストとに関連した輝度誤差)を抑制して、表示輝度の精度を向上することができる。
<実施例3>
以下、本発明の実施例3について説明する。実施例3では、黒潰れが発生しないように入力画像を補正する例について説明する。図16は、実施例3に係る液晶表示装置100の機能ブロックを示すブロック図である。図16の液晶表示装置100は、図1の液晶表示装置100に補正係数調整部111を追加した構成を有する。
補正係数調整部111は、補正係数生成部104で生成された補正係数Gtの適用による黒潰れを抑制するために、補正係数Gtを制限(リミット)する。具体的には、画像入力・変換部101は、入力画像データの画素値であるRGB値のR値、G値、及び、B値のうちの最小値を、補正係数調整部111に出力する。補正係数調整部111は、補正係数Gtの下限値を、画像入力・変換部101から出力された上記最小値の逆数にリミットする。つまり、補正係数調整部111は、補正係数Gtを、画像入力・変換部101から出力された上記最小値以上の値にリミットする。なお、補正係数調整部111の処理(補正係数Gtの調整)は上記処理に限られず、黒潰れが抑制されるよう補正係数Gtを調整する他の処理であってもよい。補正係数Gtをリミットするための上記逆数は、R値、G値、及び、B値の最大値、平均値、中間値などの逆数であってもよいし、YCbCrやXYZなどのY値の逆数であってもよい。
図17(A)~17(C)を参照して、補正係数調整部111における補正係数調整処理の具体例について説明する。なお、画像入力・変換部101および画像補正部105から出力される画像データの階調値は、符号なし12ビット整数値であるとする。
図17(A)は、画像入力・変換部101から出力される入力画像データの画素値であるRGB値(Vr,Vg,Vb)を示し、R値Vrが20、G値Vgが15、B値Vbが5である。
図17(B)は、図17(A)に示すRGB値(Vr,Vg,Vb)を、補正係数Gt
=0.02で補正した場合のRGB値(画像補正部105から出力される補正画像データの画素値であるRGB値(Vrc,Vgc,Vbc))を示す。下記の計算式のように、実施例1で述べた式(1)に従い、R値Vrc=0.4、G値Vgc=0.3、B値Vbc=0.1となる。画像補正部105の出力は符号なし12ビット整数値であるため、R値Vrc=0.4、G値Vgc=0.3、及び、B値Vbc=0.1の全てが0となり、補正画像に黒潰れが発生する。
Figure 2022078944000051
そこで、補正係数調整部111は、補正画像の黒潰れが抑制されるよう、画像入力・変換部101から出力される最小値(R値VrとG値VgとB値Vbのうちの最小値)の逆数を下限値として、補正係数生成部104で生成された補正係数Gtをリミットする。図17(A)から、上記最小値は5であるため、補正係数Gtの下限値は1/5=0.2となる。補正係数生成部104で生成された補正係数Gtは0.02であるため、0.2にリミットされる。
なお、R値VrとG値VgとB値Vbのうちの最小値が0の場合には0除算が発生する。その場合には、0除算が発生しないよう、0を除くR値VrとG値VgとB値Vbのうちの最小値の逆数を、補正係数Gtの下限値とすればよい。例えば、RGB値(Vr,Vg,Vb)=(20,15,0)の場合には、1/15を補正係数Gtとすればよい。
図17(C)は、図17(A)に示すRGB値(Vr,Vg,Vb)を、リミット後の補正係数Gt=0.2で補正した場合のRGB値(Vrc,Vgc,Vbc)を示す。下記の計算式のように、実施例1で述べた式(1)に従い、R値Vrc=4、G値Vgc=3、B値Vbc=1となる。
Figure 2022078944000052
以上説明したように、実施例3では、黒潰れが発生しないように入力画像が補正されるため、黒潰れが抑制された画像を表示できる。
<実施例4>
以下、本発明の実施例4について説明する。実施例1では、補正画像のうち、入力画像の低階調部(暗部)に対応する部分に黒潰れが発生することがある。このような黒潰れについて、図18を用いて、具体的に説明する。図18は、図3と同様のグラフである。図18には、実施例1の表示輝度Lc(パネル表示輝度)が太線で示されている。ここでは、目標コントラストでの表示の輝度ダイナミックレンジが0.001~1000nitであり、パネルコントラストでの表示の輝度ダイナミックレンジが1~1000nitであるとする。この場合に、補正画像のうち、入力画像の画素値が1.0nit以下の輝度レンジに対応する部分で黒潰れが発生する。具体的には、図18の黒潰れ階調範囲のように、0.001~1.0nitの輝度レンジに対応する部分が、1.0nitで表示される。実施例4では、このような黒潰れを抑制する例を説明する。
図19は、実施例4に係る補正係数生成部104の機能ブロックを示すブロック図であ
る。図19の補正係数生成部104は、図2の補正係数生成部104にオフセットゲイン演算部10410を追加した構成を有する。
オフセットゲイン演算部10410は、目標表示輝度算出部10402で算出された目標表示輝度Ltに対してオフセット値の加算とゲイン値の乗算とを行い、演算結果を第1減算部10405に出力する。
オフセットゲイン演算部10410の演算方法を具体的に説明する。
まず、オフセットゲイン演算部10410は、基準輝度Ktを決定する。例えば、オフセットゲイン演算部10410は、分割領域毎に、その分割領域における入力画像の平均階調値(平均画素値)に基づいて、当該分割領域の基準輝度Ktを決定する。図20の例では、平均階調値0.05に応じて、基準輝度Kt=2.0nitが決定されている。なお、基準輝度Ktの決定方法は特に限定されない。例えば、オフセットゲイン演算部10410は、分割領域毎に、その分割領域における入力画像の階調値のヒストグラムに基づいて、当該分割領域の基準輝度Ktを決定してもよい。基準輝度Ktは、図19のパラメータ入力部110から入力(設定)されてもよい。
次に、オフセットゲイン演算部10410は、オフセット値OFTを決定する。例えば、オフセット値OFTは黒輝度Lbkであり、図20の例では1.0nitである。
次に、オフセットゲイン演算部10410は、ゲイン値GAINを決定する。例えば、ゲイン値GAINは、黒輝度Lbkを基準輝度Ktで除算することにより算出される。図20の例では、ゲイン値GAINは0.5となる。
最後に、オフセットゲイン演算部10410は、目標表示輝度Ltに対してオフセット値OFTの加算とゲイン値GAINの乗算とを行うことで、目標コントラストを変更する。例えば、0.001~2.0nitの輝度レンジが1.0~2.0nitの輝度レンジに変換され、図20の実線で示す目標コントラストが、図20の太線で示す目標コントラストに変更される。以後、変更後の目標コントラストの輝度(目標表示輝度)をLtHと記載する。図20に示すように、基準輝度Kt以上の目標表示輝度LtHとしては、目標表示輝度算出部10402で算出された目標表示輝度Ltが採用される。そして、基準輝度Ktよりも低い目標表示輝度LtHは、「(Lt×GAIN)+OFT」により算出される。
以上説明したように、実施例4では、図20に示すように目標コントラストを変更することで、補正画像の黒潰れ(入力画像の低階調部(暗部)に対応する部分の黒潰れ)を抑制することができる。
<実施例5>
以下、本発明の実施例5について説明する。実施例5では、実施例4とは異なる方法で、補正画像の黒潰れ(入力画像の低階調部(暗部)に対応する部分の黒潰れ)を抑制する例を説明する。
図21は、実施例5に係る補正係数生成部104の機能ブロックを示すブロック図である。図21の補正係数生成部104は、図2の補正係数生成部104にゲイン演算部10411を追加した構成を有する。
ゲイン演算部10411は、パネル表示輝度推測部10404で算出されたパネル表示輝度Lpに対してゲイン値を乗算し、演算結果(乗算輝度)を第2減算部10406に出
力する。
ゲイン演算部10411の演算方法を具体的に説明する。
まず、ゲイン演算部10411は、ゲイン値GAINを決定する。例えば、図22に示すように第2輝度差分Dpに応じて、ゲイン値GAINが決定される。ここで図22のゲイン最大値は、図21のパラメータ入力部110により設定される。なお、図22では第2輝度差分Dpの増加に対してゲイン値GAINが線形に低下するが、第2輝度差分Dpの増加に対してゲイン値GAINが非線形に低下してもよい。第2輝度差分Dpは入力画像の階調値が大きいほど大きくなるため、ゲイン値GAINとして、入力画像の階調値が大きいほど小さい値が使用される。
次に、ゲイン演算部10411は、パネル表示輝度Lpにゲイン値GAINを乗算することで、乗算輝度LpG(=Lp×GAIN)を得る。
最後に、ゲイン演算部10411は、目標表示輝度Ltを変更して、目標コントラストを変更する。例えば、図23の実線で示す目標コントラストが、図23の太線で示す目標コントラストに変更される。以後、変更後の目標コントラストの輝度(目標表示輝度)をLtHと記載する。図23に示すように、目標表示輝度Ltが乗算輝度LpG以上である場合には、目標表示輝度LtHとして目標表示輝度Ltが採用される。そして、目標表示輝度Ltが乗算輝度LpGよりも低い場合には、目標表示輝度LtHとして乗算輝度LpGが採用される。つまり、乗算輝度LpGよりも低い目標表示輝度Ltが乗算輝度LpGに変更される。
以上説明したように、実施例5では、図23に示すように目標コントラストを変更することで、補正画像の黒潰れ(入力画像の低階調部(暗部)に対応する部分の黒潰れ)を抑制することができる。実施例5では、実施例4と比較して、目標表示輝度Ltを採用する輝度レンジとそうでない輝度レンジとの間で階調特性(階調値と輝度の対応関係)が滑らかに変化する。そのため、入力画像がグラデーションを含む場合などにおいて、階調段差の発生を抑制して、階調変化が滑らかな画質の良い画像を表示することができる。
<実施例6>
以下、本発明の実施例6について説明する。実施例6では、画像信号処理による輝度低下をバックライト輝度で補償した場合に、黒浮きを画像補正により抑制する例について説明する。図24は、実施例6に係る液晶表示装置100の機能ブロックを示すブロック図である。図24の液晶表示装置100は、図1の液晶表示装置100に輝度調整係数算出部112を追加した構成を有する。なお、輝度調整係数算出部112は、図14または図16の液晶表示装置100に追加することも可能である。
輝度調整係数算出部112は、画像入力・変換部101における画像信号処理に起因する輝度低下率に基づき輝度調整係数Ladjを算出し、バックライト制御値生成部102および補正係数生成部104に出力する。バックライト制御値生成部102では、輝度調整係数算出部112によって算出された輝度調整係数Ladjに基づき、バックライト制御値を調整する。また、補正係数生成部104では、輝度調整係数算出部112によって算出された輝度調整係数Ladjに基づき、補正係数を調整する。輝度低下を発生させる画像信号処理とは、例えば、リミテッドレンジ信号のオーバーホワイトを表示する処理や、色温度調整等により色バランスを変更する処理等であるが、これらに限定せず、画像信号処理に起因するものを全て含むものとする。以下、図25(A),25(B)および図26を参照して、リミテッドレンジ信号のオーバーホワイトを表示する例について説明する。
図25(A)は、Hybrid Log-Gamma(以下、HLG)の入力画像の階調値(以下、HLG信号)と表示輝度の関係を表したグラフである。図25(A)において、HLG信号は10ビットのリミテッドレンジ信号である。10ビットのリミテッドレンジ信号では、階調値64が0%(黒)、階調値940が100%(白)、階調値941~1023が100%以上(オーバーホワイト)を示す。なお、図25(A)の例では、実施例1の方法で、目標コントラストを20万:1としてローカルディミング制御(バックライト制御)と画像補正が行われるものとする。こうすることで、最大表示輝度が1000nitの場合、0~1023階調は0.005~1000nitで表示される。
図25(A)の実線は、オーバーホワイトを表示しない場合の、HLG信号の表示輝度の例を示している。また、図25(A)の一点鎖線は、オーバーホワイトを表示する場合の、HLG信号の表示輝度の例を示している。オーバーホワイトを表示しない場合とは、オーバーホワイトの領域を階調性を持たせずに表示する場合であり、オーバーホワイトの全ての階調値を同じ表示輝度(最大表示輝度)で表示する場合である。オーバーホワイトを表示する場合とは、オーバーホワイトの領域を階調性を持たせて表示する場合であり、オーバーホワイトの階調値ごとに異なる表示輝度でオーバーホワイトの階調値を表示する場合である。
図25(A)の実線の例では、オーバーホワイトを表示しないため、HLG信号の階調範囲が64~940の階調範囲(リミテッドレンジ)から0~1023の階調範囲(フルレンジ)に拡張される。したがって、目標コントラスト20万対1、最大表示輝度1000nitの場合、図25(A)の実線で示すように、階調値940の表示輝度はおよそ1000nit、階調値64の表示輝度はおよそ0.005nitとなる。
一方、図25(A)の一点鎖線の例では、オーバーホワイトを表示するため、HLG信号の階調範囲が64~1023の階調範囲(リミテッドレンジ+オーバーホワイト)から0~1023の階調範囲(フルレンジ)に拡張される。
ここで、実施例1の方法で、目標コントラストを20万対1、最大表示輝度を1000nitとして、ローカルディミング制御と画像補正が行われる場合を考える。この場合には、HLG信号の64~1023の階調値は、0.005~1000nitの輝度ダイナミックレンジで表示される。したがって、図25(A)の一点鎖線で示すように、階調値1023の表示輝度はおよそ1000nit、階調値64の表示輝度はおよそ0.005nitとなる。また、階調値940の表示輝度は、HLGの逆OETFおよびOOTFにより変換したリニア輝度(階調値の増加に対して線形(リニア)に増加する輝度)を、0.005~1000nitの輝度ダイナミックレンジに正規化した輝度となる。ここで、OETFはOpto-Electrical Transfer Function、OOTFはOpto-Optical Transfer Functionの略称である。HLGの逆OETFおよびOOTFは、式(16)によって概ね表すことができる。
Figure 2022078944000053
式(16)において、γはシステムガンマ、Vextはリミテッドレンジ(64~940)のHLG信号を0.000~1.000に正規化した値、Lは輝度レベル(1.000=1倍)を示す。図25(A)の例において、システムガンマは1.2とする。また、HLG信号が940の場合、下記の計算式から、Vextは1.00となる。
Figure 2022078944000054
さらに、HLG信号(入力画像の階調値)が1023の場合、下記の計算式から、Vextはおよそ1.095となる。
Figure 2022078944000055
式(16)から、HLG信号が940の場合の輝度レベルLは1.000、HLG信号が1023の場合の輝度レベルLはおよそ1.870となる。つまり、HLG信号のオーバーホワイトを表示する場合、輝度レベルLは、およそ0.000~1.870となる。輝度レベルLは、式(17)によって、0.000~1.000に正規化された輝度レベル(以下、正規化輝度レベル)Lnを概ね算出することができる。
Figure 2022078944000056
したがって、入力画像の階調値が940の場合、式(16)および式(17)から、正規化輝度レベルLnはおよそ0.535となる。また、入力画像の階調値が1023の場合、式(16)および式(17)から、正規化輝度レベルLnは1.000となる。
前述の通り、図25(A)の例では、実施例1の方法で、目標コントラストを20万:1としてローカルディミング制御と画像補正が行われる。そのため、最大表示輝度が1000nitの場合、0.005~1000nitの輝度ダイナミックレンジで画像が表示される。HLG信号のオーバーホワイトを表示する場合、式(16)および式(17)によって算出される正規化輝度レベルLnが0.005~1000nitの輝度ダイナミックレンジに割り当てられる。したがって、HLG信号が940の場合の表示輝度は、図25(A)の一点鎖線に示すように、およそ535nitとなる。また、HLG信号が1023の場合の表示輝度は、図25(A)の一点鎖線に示すように、およそ1000nitとなる。
このように、同じ輝度ダイナミックレンジで表示しても、オーバーホワイトを表示する場合(図25(A)の一点鎖線)には、オーバーホワイトを表示しない場合(図25(A)の実線)に比べて白輝度(階調値940の表示輝度)が低下する。そこで、実施例6では、図25(A)の一点鎖線の場合に、バックライトモジュール109の最大輝度を上げることにより、階調値940を1000nit程度で表示する。
図25(A)の破線は、図25(A)の一点鎖線と同様に、オーバーホワイトを表示する場合の、HLG信号と表示輝度の関係を示している。図25(A)の例では、前述の通り、実施例1の方法で、目標コントラストを20万:1としてローカルディミング制御と画像補正が行われる。さらに、図25(A)の破線の例では、図25(A)の一点鎖線の
例に比べて、最大表示輝度が1.87倍、すなわち、1870nitとなるようにバックライト輝度を上昇させる。したがって、図25(A)の破線の輝度ダイナミックレンジは、0.009~1870nitとなる。ここで、1.87倍は、白輝度の低下率(0.535)の逆数(1/0.535≒1.87)である。
HLG信号のオーバーホワイトを表示する場合の階調値940の正規化輝度レベルLnは、前述の通り、およそ0.535である。そのため、輝度ダイナミックレンジ0.009~1870nitでの階調値940の表示輝度は、図25(A)の破線で示すように、およそ1000nitとなる。
同様に、HLG信号のオーバーホワイトを表示する場合、階調値1023の正規化輝度レベルLnは、前述の通り、およそ1.000である。そのため、輝度ダイナミックレンジ0.009~1870nitでの階調値1023の表示輝度は、図25(A)の破線で示すように、およそ1870nitとなる。
このように、バックライト輝度を上昇させることで、オーバーホワイトを表示することによる白輝度の低下を補償することができる。
図25(B)は、図25(A)のうち暗部階調の表示輝度を示したグラフである。前述の通り、オーバーホワイトを表示しない場合(図25(A),25(B)の実線)の輝度ダイナミックレンジはおよそ0.005~1000nitとなる。そして、オーバーホワイトを表示する場合(図25(A),25(B)の破線)の輝度ダイナミックレンジはおよそ0.009~1870nitとなる。このように、オーバーホワイトを表示しない場合に対して、オーバーホワイトを表示する場合は黒浮きが発生するため、図25(B)に示すように、暗部階調に輝度誤差が生じる。
図26は、図25(B)と同様、HLG信号の暗部階調の表示輝度を示したグラフである。図26の実線および破線は、図25(B)の実線および破線と同じ特性を示している。すなわち、図26の実線は、図25(B)の実線と同じく、実施例1のローカルディミング制御および画像補正により、HLG信号の64~940の階調範囲(リミテッドレンジ)を0.005~1000nitの輝度ダイナミックレンジで表示した例である。また、図26の破線は、図25(B)の破線と同じく、実施例1のローカルディミング制御および画像補正により、HLG信号の64~1023の階調範囲(リミテッドレンジ+オーバーホワイト)を0.009~1870nitの輝度ダイナミックレンジで表示した例である。
図26の二点鎖線は、図26の破線の例に対して目標コントラストを拡張した場合の、HLG信号の表示輝度を示した例である。具体的には、図26の二点鎖線の例では、図26の破線の場合に比べて、目標コントラスト(Ct)を1.87倍、すなわち、およそ37万対1に拡張している。ここで1.87倍は、バックライト輝度の上昇率、すなわち、白輝度の低下率の逆数である。目標コントラスト37万対1、最大表示輝度1870nitで、実施例1のローカルディミング制御および画像補正を行った場合、輝度ダイナミックレンジはおよそ0.005~1870nitとなる。
このように、画像信号処理による白輝度の低下を補償するためにバックライト輝度を上昇させた場合、目標コントラストを、バックライト輝度の上昇率に合わせて拡張することで、黒浮きを抑制することができる。
図24の輝度調整係数算出部112では、画像入力・変換部101の画像信号処理に起因する白輝度の低下率を算出し、その逆数を輝度調整係数Ladjとしてさらに算出する
。図25(A),25(B)の一点鎖線の例では、白輝度の低下率は0.535であるため、輝度調整係数Ladjは1/0.535=1.87となる。
輝度調整係数Ladjは、バックライト制御値生成部102、および、補正係数生成部104に出力される。バックライト制御値生成部102では、バックライト制御値に対して輝度調整係数Ladjを乗算した値を、バックライト輝度推測部103、および、バックライト制御部108に出力する。補正係数生成部104では、目標コントラスト(Ct)に対して輝度調整係数Ladjを乗算することにより、拡張された目標コントラストで補正係数を算出する。
以上説明したように、実施例6では、白輝度の低下率に応じてバックライト輝度、および、目標コントラストをそれぞれ調整することで、白輝度を維持しつつ、黒浮きを抑制することができる。なお、実施例6では、オーバーホワイト表示による白輝度低下の例について説明したが、これに限定せず、色バランス調整など、画像信号処理により白輝度が低下する全てのケースに適用されるものとする。
<実施例7>
以下、本発明の実施例7について説明する。実施例7では、所望の表示コントラストで入力画像を表示しつつ、暗部領域の色域を拡大させる例について説明する。図27は、実施例7に係る液晶表示装置100の機能ブロックを示すブロック図である。図27の液晶表示装置100は、図1の液晶表示装置100に設定値入力部113、パラメータ生成部114を追加した構成を有する。なお、設定値入力部113およびパラメータ生成部114は、図16および図24の液晶表示装置100に追加することも可能である。
設定値入力部113は、ローカルディミング制御(画像補正)に関連した設定値を外部から入力する。例えば、ローカルディミング制御に関連した設定値は、表示コントラストや暗部色域拡大の状態を切り換えるものであり、図28(A)に示すようなOSDメニューに対するユーザ操作に応じて、液晶表示装置100の外部から入力される。表示コントラストの設定値では、例えば、図28(B)に示すように高/低を切り換え可能とする。また、暗部色域拡大の設定値では、例えば、図28(C)に示すようにON/OFFを切り換え可能とする。なお、図28(A)~28(C)に示す設定値は、ローカルディミング制御に関連した設定値の一例であり、ローカルディミングの強度など、他の設定値であってもよい。
パラメータ生成部114は、設定値入力部113で入力された設定値に基づき、ローカルディミング制御に関連したパラメータを生成する。ローカルディミング制御に関連したパラメータは、例えば、目標コントラストや、バックライト制御値の最大値/最小値である。パラメータ生成部114で生成された目標コントラストは、補正係数生成部104に出力する。また、パラメータ生成部114で生成されたバックライト制御値の最大値/最小値は、バックライト制御値生成部102に出力する。バックライト制御値生成部102は、最大値/最小値でバックライト制御値をリミットすることにより、図29(A)に示すように、バックライト制御値(BL制御値)のレンジを調整することができる。図29(A)の実線は、暗部色域拡大の設定値が「ON」の場合に対応し、バックライト制御値のレンジ(バックライトモジュール109の発光輝度の輝度レンジ)は10~100である。図29(B)の破線は、暗部色域拡大の設定値が「OFF」の場合に対応し、バックライト制御値のレンジは50~100である。
なお、バックライト制御値生成部102に出力するパラメータは、バックライト制御値の最大値/最小値でなく、入力画像の特徴量をバックライト制御値に変換する変換テーブルなど、他のパラメータであってもよい。変換テーブルは、例えば、図29(B)に示す
ような変換特性を有するものである。入力画像の特徴量は、例えば、バックライトモジュール109の制御単位である分割領域毎に計算された、入力画像の最大値や平均値等である。
図30は、パラメータ生成部114におけるパラメータ生成処理を示すフローチャートである。
S11で、パラメータ生成部114は、設定値入力部113で液晶表示装置100の外部から入力される設定値を取得する。図30のフローチャートにおいて、S11で取得する設定値は、図28(A)~28(C)に示すように、表示コントラストや暗部色域拡大に関連する設定値である。
S12で、パラメータ生成部114は、S11で取得した設定値のうち、表示コントラストの設定値が「高」であるか「低」であるかを判定する。S12で、表示コントラストの設定値が「高」であると判定された場合、S16で、パラメータ生成部114は、パラメータを生成する。S16で生成するパラメータは、バックライト制御値の最大値が100、バックライト制御値の最小値が10、目標コントラストが10000である。
S12で、表示コントラストの設定値が「低」であると判定された場合、S13で、パラメータ生成部114は、暗部色域拡大の設定値が「ON」であるか「OFF」であるかを判定する。S13で、暗部色域拡大の設定値が「ON」であると判定された場合、S14で、パラメータ生成部114は、パラメータを生成する。S14で生成するパラメータは、バックライト制御値の最大値が100、バックライト制御値の最小値が10、目標コントラストが2000である。S13で、暗部色域拡大の設定値が「OFF」であると判定された場合、S15で、パラメータ生成部114は、パラメータを生成する。S15で生成するパラメータは、バックライト制御値の最大値が100、バックライト制御値の最小値が50、目標コントラストが2000である。
S17で、パラメータ生成部114は、S14~S16で生成したパラメータのうち、バックライト制御値の最大値/最小値をバックライト制御値生成部102に出力し、目標コントラストを補正係数生成部104に出力する。
図31は、バックライト制御値と液晶表示装置100の表示輝度の関係を示した模式図である。図31の実線は、バックライト制御値でバックライトモジュール109を発光させた場合の、液晶表示装置100の表示輝度の最大値である。図31の破線は、バックライト制御値でバックライトモジュール109を発光させた場合の、液晶表示装置100の表示輝度の最小値である。ここで、液晶表示装置100のパネルコントラストは、1000対1とする。
図31の例では、バックライト制御値が100の場合、表示輝度の最大値は1000nitとなる。さらに、バックライト制御値が100の場合、表示輝度の最小値は、パネルコントラストが1000対1であることから、図31に示すように1nitとなる。
バックライト制御値が50の場合、表示輝度の最大値は、バックライト制御値が100の場合の1/2となる。したがって、バックライト制御値が50の場合、表示輝度の最大値は、図31に示すように500nitとなる。さらに、バックライト制御値が50の場合、表示輝度の最小値は、パネルコントラストが1000対1であることから、図31に示すように0.5nitとなる。
バックライト制御値が10の場合、表示輝度の最大値は、バックライト制御値が100
の場合の1/10となる。したがって、バックライト制御値が10の場合、表示輝度の最大値は、図31に示すように100nitとなる。さらに、バックライト制御値が10の場合、表示輝度の最小値は、パネルコントラストが1000対1であることから、図31に示すように0.1nitとなる。
上述したように、表示コントラストの設定値が「低」の場合には、目標コントラスト(目標コントラストの比率;Ct)は2000となる。また、暗部色域拡大の設定値が「OFF」の場合には、バックライト制御値のレンジは50~100となる。そして、バックライト制御値が100の場合の表示輝度の最大値は1000nitとなり、バックライト制御値が50の場合の表示輝度の最小値は0.5nitとなる。そのため、表示コントラストの設定値が「低」であり且つ暗部色域拡大の設定値が「OFF」である場合には、表示輝度の最大値と最小値の比率(最大値/最小値)は、目標コントラスト(Ct)と等しい2000となる。
一方、暗部色域拡大の設定値が「ON」である場合には、バックライト制御値のレンジは10~100となる。そして、バックライト制御値が100の場合の表示輝度の最大値は1000nitとなり、バックライト制御値が50の場合の表示輝度の最小値は0.1nitとなる。そのため、表示コントラストの設定値が「低」であり且つ暗部色域拡大の設定値が「ON」である場合には、表示輝度の最大値と最小値の比率(最大値/最小値)は、目標コントラスト(Ct)である2000よりも大きい10000となる。
図32(A)~34(B)は、画像補正後のRGB値を、リニア輝度で表現した模式図である。具体的に、図32(A)~34(B)の例では、式(9)に従い、補正係数生成部104によって算出された補正係数Gtを、画像入力・変換部101が出力する入力画像に適用し、リニア輝度に変換したRGB値を示している。図32(A)~34(B)の例では、パネルコントラストが1000対1(Cp=1000)、パネルガンマが2.0(pg=2.0)、バックライト輝度が100%(Le=1.0)の場合の最大表示輝度を1000nitとする。ここで、バックライト制御値が100の場合のバックライト輝度を100%とする。なお、入力画像のRGB値が0の場合、画像補正が無効になる。そのため、図32(A)~34(B)では、画像入力・変換部101、もしくは、画像補正部105において、画像補正前の入力画像のRGB値の下限値を1(10ビットの整数)にリミットした例について説明する。
図32(A)~33(B)は、入力画像が無彩色の場合の、画像補正後のRGB毎のリニア輝度(輝度値)を示した模式図である。図32(A),32(B)の例では、入力画像のRGB値がR=1、G=1、B=1、図33(A),33(B)の例では、入力画像のRGB値がR=8、G=8、B=8の場合について説明する。
図32(A)は、入力画像のRGB値がR=1、G=1、B=1であり、設定値入力部113で入力された表示コントラストの設定値が「低」、暗部色域拡大の設定値が「OFF」の場合の、RGB毎の輝度値の具体例である。表示コントラストの設定値が「低」、暗部色域拡大の設定値が「OFF」の場合、図30のフローチャートから、バックライト制御値の最小値は50になる。入力画像の最大値とバックライト制御値の関係がリニアな変換特性である場合、図29(A)の破線で示すように、バックライト制御値の下限値は50でリミットされる。入力画像のRGB値の最大値は1であるため、図29(A)の破線の特性から、バックライト制御値は50、すなわち、バックライト輝度は50%(Le=0.5)となる。さらに、表示コントラストの設定値が「低」、暗部色域拡大の設定値が「OFF」の場合、図30のフローチャートから、目標コントラストは2000(Ct=2000)となる。したがって、式(9)に従い、補正係数生成部104によって算出される補正係数Gtは、下記の計算式のように、およそ1.41となる。
Figure 2022078944000057
そして、補正後のRGB値は、下記の計算式のように、R≒1、G≒1、B≒1となる。
Figure 2022078944000058
バックライト制御値が50の場合、液晶表示装置100の表示輝度の輝度ダイナミックレンジは、図31に示すように0.5~500nitとなる。補正後のRGB値は全て同じ値になるため、下記の計算式のように、リニア輝度に変換し、0.5~500に正規化することで、表示輝度と同等の値を得られる。下記の計算式により算出される輝度値Lr,Lg,Lbは、図32(A)に示すように、何れも0.5程度の値になる。すなわち、補正後のRGB値を液晶表示装置100に表示した場合、表示輝度はおよそ0.5nitとなる。なお、図32(A)の斜線部は、黒輝度によるオフセットが0.5であることを示す。
Figure 2022078944000059
図32(B)は、入力画像のRGB値がR=1、G=1、B=1であり、設定値入力部113で入力された表示コントラストの設定値が「低」、暗部色域拡大の設定値が「ON」の場合の、RGB毎の輝度値の具体例である。表示コントラストの設定値が「低」、暗部色域拡大の設定値が「ON」の場合、図30のフローチャートから、バックライト制御値の最小値は10になる。入力画像の最大値とバックライト制御値の関係がリニアな変換特性である場合、図29(A)の実線で示すように、バックライト制御値の下限値は10でリミットされる。入力画像のRGB値の最大値は1であるため、図29(A)の実線の特性から、バックライト制御値は10、すなわち、バックライト輝度は10%(Le=0.1)となる。さらに、表示コントラストの設定値が「低」、暗部色域拡大の設定値が「ON」の場合、図30のフローチャートから、目標コントラストは2000(Ct=2000)となる。したがって、式(9)に従い、補正係数生成部104によって算出される補正係数Gtは、下記の計算式のように、およそ64.81となる。
Figure 2022078944000060
そして、補正後のRGB値は、下記の計算式のように、R≒64、G≒64、B≒64となる。
Figure 2022078944000061
バックライト制御値が10の場合、液晶表示装置100の表示輝度の輝度ダイナミックレンジは、図31に示すように0.1~100nitとなる。補正後のRGB値は全て同じ値になるため、下記の計算式のように、リニア輝度に変換し、0.1~100に正規化することで、表示輝度と同等の値を得られる。下記の計算式により算出される輝度値Lr,Lg,Lbは、図32(B)に示すように、何れも0.5程度の値になる。すなわち、補正後のRGB値を液晶表示装置100に表示した場合、表示輝度はおよそ0.5nitとなる。なお、図32(B)の斜線部は、黒輝度によるオフセットが0.1であることを示す。
Figure 2022078944000062
図33(A)は、入力画像のRGB値がR=8、G=8、B=8であり、設定値入力部113で入力された表示コントラストの設定値が「低」、暗部色域拡大の設定値が「OFF」の場合の、RGB毎の輝度値の具体例である。表示コントラストの設定値が「低」、暗部色域拡大の設定値が「OFF」の場合、図30のフローチャートから、バックライト制御値の最小値は50になる。入力画像の最大値とバックライト制御値の関係がリニアな変換特性である場合、図29(A)の破線で示すように、バックライト制御値の下限値は50でリミットされる。入力画像のRGB値の最大値は8であるため、図29(A)の破線の特性から、バックライト制御値は50、すなわち、バックライト輝度は50%(Le=0.5)となる。さらに、表示コントラストの設定値が「低」、暗部色域拡大の設定値が「OFF」の場合、図30のフローチャートから、目標コントラストは2000(Ct=2000)となる。したがって、式(9)に従い、補正係数生成部104によって算出される補正係数Gtは、下記の計算式のように、およそ1.41となる。
Figure 2022078944000063
そして、補正後のRGB値は、下記の計算式のように、R≒11、G≒11、B≒11となる。
Figure 2022078944000064
バックライト制御値が50の場合、液晶表示装置100の表示輝度の輝度ダイナミックレンジは、図31に示すように0.5~500nitとなる。補正後のRGB値は全て同じ値になるため、下記の計算式のように、リニア輝度に変換し、0.5~500に正規化することで、表示輝度と同等の値を得られる。下記の計算式により算出される輝度値Lr,Lg,Lbは、図33(A)に示すように、何れも0.56程度の値になる。すなわち、補正後のRGB値を液晶表示装置100に表示した場合、表示輝度はおよそ0.56nitとなる。なお、図33(A)の斜線部は、黒輝度によるオフセットが0.5であることを示す。
Figure 2022078944000065
図33(B)は、入力画像のRGB値がR=8、G=8、B=8であり、設定値入力部113で入力された表示コントラストの設定値が「低」、暗部色域拡大の設定値が「ON」の場合の、RGB毎の輝度値の具体例である。表示コントラストの設定値が「低」、暗部色域拡大の設定値が「ON」の場合、図30のフローチャートから、バックライト制御値の最小値は10になる。入力画像の最大値とバックライト制御値の関係がリニアな変換特性である場合、図29(A)の実線で示すように、バックライト制御値の下限値は10でリミットされる。入力画像のRGB値の最大値は8であるため、図29(A)の実線の特性から、バックライト制御値は10、すなわち、バックライト輝度は10%(Le=0.1)となる。さらに、表示コントラストの設定値が「低」、暗部色域拡大の設定値が「ON」の場合、図30のフローチャートから、目標コントラストは2000(Ct=2000)となる。したがって、式(9)に従い、補正係数生成部104によって算出される補正係数Gtは、下記の計算式のように、およそ8.69となる。
Figure 2022078944000066
そして、補正後のRGB値は、下記の計算式のように、R≒69、G≒69、B≒69となる。
Figure 2022078944000067
バックライト制御値が10の場合、液晶表示装置100の表示輝度の輝度ダイナミックレンジは、図31に示すように0.1~100nitとなる。補正後のRGB値は全て同じ値になるため、下記の計算式のように、リニア輝度に変換し、0.1~100に正規化することで、表示輝度と同等の値を得られる。下記の計算式により算出される輝度値Lr,Lg,Lbは、図33(B)に示すように、何れも0.56程度の値になる。すなわち、補正後のRGB値を液晶表示装置100に表示した場合、表示輝度はおよそ0.56nitとなる。なお、図33(B)の斜線部は、黒輝度によるオフセットが0.1であることを示す。
Figure 2022078944000068
図32(A)~33(B)に示すように、入力画像が無彩色の場合、バックライト輝度を低下させても、画像補正によって表示輝度が補償される。すなわち、バックライト輝度によらず、目標コントラストで入力画像を表示することができる。
図34(A),34(B)は、入力画像が有彩色の場合の、画像補正後のRGB毎のリニア輝度(輝度値)を示した模式図である。図34(A),34(B)の例では、入力画像のRGB値がR=8、G=1、B=1の場合について説明する。
図34(A)は、入力画像のRGB値がR=8、G=1、B=1であり、設定値入力部113で入力された表示コントラストの設定値が「低」、暗部色域拡大の設定値が「OFF」の場合の、RGB毎の輝度値の具体例である。表示コントラストの設定値が「低」、暗部色域拡大の設定値が「OFF」の場合、図30のフローチャートから、バックライト制御値の最小値は50になる。入力画像の最大値とバックライト制御値の関係がリニアな変換特性である場合、図29(A)の破線で示すように、バックライト制御値の下限値は50でリミットされる。入力画像のRGB値の最大値は8であるため、図29(A)の破線の特性から、バックライト制御値は50、すなわち、バックライト輝度は50%(Le=0.5)となる。さらに、表示コントラストの設定値が「低」、暗部色域拡大の設定値が「OFF」の場合、図30のフローチャートから、目標コントラストは2000(Ct=2000)となる。したがって、式(9)に従い、補正係数生成部104によって算出される補正係数Gtは、下記の計算式のように、およそ1.41となる。
Figure 2022078944000069
そして、補正後のRGB値は、下記の計算式のように、R≒11、G≒1、B≒1となる。
Figure 2022078944000070
バックライト制御値が50の場合、液晶表示装置100の表示輝度の輝度ダイナミックレンジは、図31に示すように0.5~500nitとなる。図32(A),33(A)の例と同じように、下記の計算式により、補正後のRGB値をリニア輝度に変換し、0.5~500に正規化した場合、図34(A)に示すように、輝度値Lrがおよそ0.56となり、輝度値Lg,Lbがおよそ0.5となる。なお、図34(A)の斜線部は、黒輝度によるオフセットが0.5であることを示す。
Figure 2022078944000071
図34(B)は、入力画像のRGB値がR=8、G=1、B=1であり、設定値入力部113で入力された表示コントラストの設定値が「低」、暗部色域拡大の設定値が「ON」の場合の、RGB毎の輝度値の具体例である。表示コントラストの設定値が「低」、暗部色域拡大の設定値が「OFF」の場合、図30のフローチャートから、バックライト制御値の最小値は10になる。入力画像の最大値とバックライト制御値の関係がリニアな変換特性である場合、図29(A)の実線で示すように、バックライト制御値の下限値は10でリミットされる。入力画像のRGB値の最大値は8であるため、図29(A)の実線の特性から、バックライト制御値は10、すなわち、バックライト輝度は10%(Le=0.1)となる。さらに、表示コントラストの設定値が「低」、暗部色域拡大の設定値が「ON」の場合、図30のフローチャートから、目標コントラストは2000(Ct=2000)となる。したがって、式(9)に従い、補正係数生成部104によって算出される補正係数Gtは、下記の計算式のように、およそ8.69となる。
Figure 2022078944000072
そして、補正後のRGB値は、下記の計算式のように、R≒69、G≒8、B≒8となる。
Figure 2022078944000073
バックライト制御値が10の場合、液晶表示装置100の表示輝度の輝度ダイナミックレンジは、図31に示すように0.1~100nitとなる。図32(B),33(B)
の例と同じように、下記の計算式により、補正後のRGB値をリニア輝度に変換し、0.1~100に正規化した場合、図34(B)に示すように、輝度値Lrがおよそ0.56となり、輝度値Lg,Lbがおよそ0.1となる。なお、図34(B)の斜線部は、黒輝度によるオフセットが0.1であることを示す。図34(A)の例に比べて、図34(B)の例では、黒輝度に対するR成分の強度が相対的に高くなることが分かる。
Figure 2022078944000074
図34(A),34(B)に示すように、暗部色域拡大の設定値を「ON」にした場合、画像補正の目標コントラストを維持したまま、バックライト輝度(黒輝度)を低下させることにより、RGBのうち階調値が大きい色成分が強調される。これにより、暗部領域の色域を拡大させることができる。
以上説明したように、実施例7では、バックライト輝度を調整しても、目標コントラストで入力画像を表示することができる。加えて、目標コントラストおよびバックライト輝度を各々調整することにより、暗部領域の色域を拡大させることができる。実施例7では、目標コントラストを維持したまま、バックライト輝度を低下させることで、暗部の色域を拡大させる例について説明したが、この方法に限定しない。例えば、バックライト輝度を維持したまま、目標コントラストを上昇させることで、暗部の色域を拡大させることも可能である。
<その他の実施例>
本発明は、上述の実施例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
100:液晶表示装置
101:画像入力・変換部 102:バックライト制御値生成部
103:バックライト輝度推測部 104:補正係数生成部 105:画像補正部
106:液晶パネル制御部 107:液晶パネル 108:バックライト制御部
109:バックライトモジュール 110:パラメータ入力部
111:補正係数調整部

Claims (20)

  1. 液晶パネルと、
    第1画像のデータを入力する入力手段と、
    前記液晶パネルに光を照射する、発光輝度を変更可能なバックライトモジュールと、
    前記バックライトモジュールから前記液晶パネルに照射される光の輝度を推測する推測手段と、
    前記第1画像を目標コントラストで表示した場合の表示輝度に対する輝度誤差が抑制されるように、前記推測手段により推測された輝度、前記液晶パネルのコントラスト、及び、前記目標コントラストに基づいて前記第1画像を第2画像に補正する補正手段と、
    前記第2画像のデータに基づいて前記液晶パネルの透過率を制御する制御手段と
    を備えることを特徴とする液晶表示装置。
  2. 前記輝度誤差は、前記バックライトモジュールから前記液晶パネルに照射される光の輝度と前記液晶パネルのコントラストとに関連した輝度誤差である
    ことを特徴とする請求項1に記載の液晶表示装置。
  3. 前記補正手段は、前記バックライトモジュールから前記液晶パネルに照射される光の輝度の上昇に連動して前記輝度誤差が拡大しないように、前記第1画像を補正する
    ことを特徴とする請求項1または2に記載の液晶表示装置。
  4. 前記補正手段は、前記第1画像の階調値を0~1に正規化した値をVin、前記目標コントラストをCt対1、前記液晶パネルのコントラストをCp対1、前記推測手段により推測された輝度を0~1に正規化した値をLe、前記液晶パネルのガンマ値をpgとした場合に
    Figure 2022078944000075

    で算出される補正係数Gtを、前記第1画像の階調値に乗算することによって、前記第2画像の階調値を算出する
    ことを特徴とする請求項1~3のいずれか1項に記載の液晶表示装置。
  5. 前記補正手段は、前記補正係数Gtの下限値を、前記第1画像の階調値の逆数に制限する
    ことを特徴とする請求項4に記載の液晶表示装置。
  6. 前記目標コントラストに関連したパラメータを外部から入力するパラメータ入力手段をさらに備える
    ことを特徴とする請求項1~5のいずれか1項に記載の液晶表示装置。
  7. 前記補正手段は、黒潰れが発生しないように、前記第1画像を補正する
    ことを特徴とする請求項1~6のいずれか1項に記載の液晶表示装置。
  8. 前記第2画像に黒潰れが発生しないように前記目標コントラストを変更する変更手段をさらに備える
    ことを特徴とする請求項1~7のいずれか1項に記載の液晶表示装置。
  9. 前記変更手段は、前記目標コントラストで表示した場合の表示輝度のうち、基準輝度よりも低い表示輝度に対して、ゲイン値の乗算とオフセット値の加算とを行う
    ことを特徴とする請求項8に記載の液晶表示装置。
  10. 前記変更手段は、前記第1画像の平均階調値に基づいて前記基準輝度を決定する
    ことを特徴とする請求項9に記載の液晶表示装置。
  11. 前記変更手段は、前記第1画像の階調値のヒストグラムに基づいて前記基準輝度を決定する
    ことを特徴とする請求項9に記載の液晶表示装置。
  12. 前記変更手段は、前記目標コントラストで表示した場合の表示輝度のうち、前記液晶パネルのコントラストで表示した場合の表示輝度にゲイン値を乗算して得られる乗算輝度よりも低い表示輝度を、前記乗算輝度に変更する
    ことを特徴とする請求項8に記載の液晶表示装置。
  13. 前記変更手段は、前記第1画像の階調値が大きいほど小さいゲイン値を使用する
    ことを特徴とする請求項12に記載の液晶表示装置。
  14. 前記第1画像に対して画像信号処理を行う画像信号処理手段と、
    前記画像信号処理手段の画像信号処理による表示輝度の低下率に基づき輝度調整係数を算出する輝度調整係数算出手段と、
    をさらに備え、
    前記バックライトモジュールは前記輝度調整係数に基づき発光輝度を調整し、
    前記補正手段は前記輝度調整係数に基づき前記目標コントラストを調整する
    ことを特徴とする請求項1~13のいずれか1項に記載の液晶表示装置。
  15. 前記輝度調整係数は、前記表示輝度の低下率の逆数である
    ことを特徴とする請求項14に記載の液晶表示装置。
  16. 前記目標コントラスト、および、前記発光輝度の輝度レンジを調整する調整手段、
    をさらに備え、
    前記調整手段で調整された前記輝度レンジで前記バックライトモジュールを発光させた場合の、表示輝度の最大値と最小値の比率が、前記調整手段で調整された前記目標コントラストの比率よりも大きい、
    ことを特徴とする請求項1~15のいずれか1項に記載の液晶表示装置。
  17. 設定値を外部から入力する設定値入力手段、
    をさらに備え、
    前記調整手段は、前記設定値入力手段で入力された設定値に基づき、前記目標コントラストおよび前記輝度レンジを調整する、
    ことを特徴とする請求項16に記載の液晶表示装置。
  18. 前記補正手段は、前記第1画像の階調値の下限値を0より大きい値にリミットする、
    ことを特徴とする請求項1~17のいずれか1項に記載の液晶表示装置。
  19. 液晶パネルと、
    第1画像のデータを入力する入力手段と、
    前記液晶パネルに光を照射する、発光輝度を変更可能なバックライトモジュールと
    を有する液晶表示装置の制御方法であって、
    前記バックライトモジュールから前記液晶パネルに照射される光の輝度を推測する推測ステップと、
    前記第1画像を目標コントラストで表示した場合の表示輝度に対する輝度誤差が抑制されるように、前記推測ステップにおいて推測された輝度、前記液晶パネルのコントラスト、及び、前記目標コントラストに基づいて前記第1画像を第2画像に補正する補正ステップと、
    前記第2画像のデータに基づいて前記液晶パネルの透過率を制御する制御ステップと
    を有することを特徴とする制御方法。
  20. コンピュータを、請求項1~18のいずれか1項に記載の液晶表示装置の各手段として機能させるためのプログラム。
JP2021140204A 2020-11-13 2021-08-30 液晶表示装置およびその制御方法 Pending JP2022078944A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/511,797 US11842702B2 (en) 2020-11-13 2021-10-27 Liquid crystal display apparatus capable of changing backlight emission brightness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020189430 2020-11-13
JP2020189430 2020-11-13

Publications (1)

Publication Number Publication Date
JP2022078944A true JP2022078944A (ja) 2022-05-25

Family

ID=81707193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021140204A Pending JP2022078944A (ja) 2020-11-13 2021-08-30 液晶表示装置およびその制御方法

Country Status (1)

Country Link
JP (1) JP2022078944A (ja)

Similar Documents

Publication Publication Date Title
JP6797512B2 (ja) 画像表示装置及びその制御方法
JP5611508B2 (ja) 周辺光適応的な色補正装置および方法
JP4818351B2 (ja) 画像処理装置及び画像表示装置
JP4987887B2 (ja) 画像表示装置
US8786585B2 (en) System and method for adjusting display based on detected environment
JP5897159B2 (ja) 表示装置及びその制御方法
US8854295B2 (en) Liquid crystal display for displaying an image using a plurality of light sources
KR20080101679A (ko) 표시 장치, 영상 신호 처리 방법, 및 프로그램
RU2009143527A (ru) Устройство дисплея, способ обработки сигнала изображения и программа
US20060227396A1 (en) Image forming apparatus and image forming method
JP2006284972A (ja) 焼き付き現象補正方法、自発光装置、焼き付き現象補正装置及びプログラム
JP2009205128A (ja) 表示装置
US20130257924A1 (en) Display device and display method
JP5236622B2 (ja) 表示装置
CN109949745B (zh) 显示装置
JP2010271480A (ja) 表示装置
JP2002359755A (ja) 階調補正装置
US11842702B2 (en) Liquid crystal display apparatus capable of changing backlight emission brightness
JP2009163254A (ja) 液晶表示装置
JP2022078944A (ja) 液晶表示装置およびその制御方法
JP6548516B2 (ja) 画像表示装置、画像処理装置、画像表示装置の制御方法、及び、画像処理装置の制御方法
KR20190057807A (ko) 영상 표시 장치의 복수 감마 보정 장치 및 방법
KR20180092330A (ko) 표시 장치 및 이의 구동 방법
JP6968678B2 (ja) 表示装置及びその制御方法、記憶媒体、プログラム
JP2019201271A (ja) 投射型表示装置