JP2022076408A - Method for measuring elasticity of vulcanized rubber - Google Patents

Method for measuring elasticity of vulcanized rubber Download PDF

Info

Publication number
JP2022076408A
JP2022076408A JP2020186822A JP2020186822A JP2022076408A JP 2022076408 A JP2022076408 A JP 2022076408A JP 2020186822 A JP2020186822 A JP 2020186822A JP 2020186822 A JP2020186822 A JP 2020186822A JP 2022076408 A JP2022076408 A JP 2022076408A
Authority
JP
Japan
Prior art keywords
rubber
vulcanized rubber
elastic modulus
measuring
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020186822A
Other languages
Japanese (ja)
Other versions
JP7464943B2 (en
Inventor
竜也 遠藤
Tatsuya Endo
健 中嶋
Takeshi Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Toyo Tire Corp
Original Assignee
Tokyo Institute of Technology NUC
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Toyo Tire Corp filed Critical Tokyo Institute of Technology NUC
Priority to JP2020186822A priority Critical patent/JP7464943B2/en
Publication of JP2022076408A publication Critical patent/JP2022076408A/en
Application granted granted Critical
Publication of JP7464943B2 publication Critical patent/JP7464943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To provide a method for measuring an elasticity of a vulcanized rubber, which can suppress influence of internal strain to measure an elasticity.SOLUTION: A method for measuring an elasticity of a vulcanized rubber is a method for measuring an elasticity of a vulcanized rubber using an atomic force microscope, the method comprising giving elastic deformation to a vulcanized rubber containing a filler to reduce internal strain in the vulcanized rubber, and measuring an elasticity by force curve measurement with an atomic force microscope using a sample with reduced internal strain.SELECTED DRAWING: Figure 2

Description

本発明は、加硫ゴムの弾性率測定方法に関し、より詳細には原子間力顕微鏡を用いて充填剤を含む加硫ゴムの弾性率を測定する方法に関する。 The present invention relates to a method for measuring the elastic modulus of vulture rubber, and more particularly to a method for measuring the elastic modulus of vulture rubber containing a filler using an atomic force microscope.

加硫ゴムの弾性率をナノレベルで測定、評価する手法が求められている。例えば、非特許文献1には、充填剤としてのカーボンブラックを含むゴム材料について、原子間力顕微鏡(AFM)のフォースカーブ測定により弾性率をナノスケールで観察することが開示されている。 There is a need for a method for measuring and evaluating the elastic modulus of vulcanized rubber at the nano level. For example, Non-Patent Document 1 discloses that the elastic modulus of a rubber material containing carbon black as a filler is observed on a nanoscale by force curve measurement with an atomic force microscope (AFM).

一方、加硫ゴムの反発弾性率を測定するリバウンド試験において、加硫ゴムの試験片に予備打撃を与えて反発高さが安定してから反発弾性率の測定を行うことが知られている(非特許文献2)。 On the other hand, in the rebound test for measuring the rebound resilience of the vulcanized rubber, it is known that the rebound resilience is measured after the repulsive height is stabilized by giving a preliminary impact to the test piece of the vulcanized rubber (). Non-Patent Document 2).

Ken Nakajima他3名, “NANOMECHANICS OF THERUBBER-FILLER INTERACTION”, Rubber Chemistry and Technology Vol.90, No.2, pp.272-284, 2017.Ken Nakajima and 3 others, “NANOMECHANICS OF THERUBBER-FILLER INTERACTION”, Rubber Chemistry and Technology Vol.90, No.2, pp.272-284, 2017. JIS K6255:2013、「加硫ゴム及び熱可塑性ゴム-反発弾性率の求め方」JIS K6255: 2013, "Vulcanized rubber and thermoplastic rubber-How to determine the rebound resilience"

上記非特許文献1によれば、充填剤を含む加硫ゴムについてナノレベルでの弾性率を測定することができる。しかしながら、加硫後のゴムサンプルには内部歪みが存在する。すなわち、充填剤を含む加硫ゴムにおいては、ゴムポリマーが伸長した部分と縮んだ部分があり、加硫に起因する内部での歪みが存在する。この内部歪みの影響で、原子間力顕微鏡による測定において、加硫ゴムの弾性率を正確に測定することができないことがある。 According to the above-mentioned Non-Patent Document 1, the elastic modulus at the nano level can be measured for the vulcanized rubber containing the filler. However, the rubber sample after vulcanization has internal strain. That is, in the vulcanized rubber containing the filler, there are an elongated portion and a contracted portion of the rubber polymer, and there is internal strain due to vulcanization. Due to the influence of this internal strain, it may not be possible to accurately measure the elastic modulus of the vulcanized rubber in the measurement by the atomic force microscope.

本発明の実施形態は、内部歪みの影響を抑えて弾性率を測定することができる、加硫ゴムの弾性率測定方法を提供することを目的とする。 It is an object of the present invention to provide a method for measuring the elastic modulus of vulcanized rubber, which can measure the elastic modulus while suppressing the influence of internal strain.

本発明の実施形態に係る加硫ゴムの弾性率測定方法は、原子間力顕微鏡を用いて加硫ゴムの弾性率を測定する方法であって、充填剤を含む加硫ゴムに弾性変形を与えることで当該加硫ゴム中の内部歪みを低減した試料を得ること、および、得られた試料に対して原子間力顕微鏡のフォースカーブ測定により弾性率を測定すること、を含む。 The method for measuring the elastic modulus of the vulture rubber according to the embodiment of the present invention is a method for measuring the elastic modulus of the vulture rubber using an interatomic force microscope, and gives elastic deformation to the vulture rubber containing a filler. This includes obtaining a sample in which the internal strain in the vulture rubber is reduced, and measuring the elastic modulus of the obtained sample by measuring the force curve of an interatomic force microscope.

本発明の実施形態によれば、原子間力顕微鏡を用いた加硫ゴムの弾性率測定において、内部歪みの影響を抑えて弾性率を測定することができる。 According to the embodiment of the present invention, in the elastic modulus measurement of the vulture rubber using an atomic force microscope, the elastic modulus can be measured while suppressing the influence of internal strain.

実施例1~4と比較例1についてのAFMによる弾性率の測定結果を示すグラフA graph showing the measurement results of elastic modulus by AFM for Examples 1 to 4 and Comparative Example 1. 実施例5及び比較例2についてのAFMによる弾性率とマクロ弾性率との関係を示すグラフGraph showing the relationship between the elastic modulus by AFM and the macroelastic modulus with respect to Example 5 and Comparative Example 2. 実施例6及び比較例3についてのAFMによる弾性率とマクロ弾性率との関係を示すグラフGraph showing the relationship between the elastic modulus by AFM and the macroelastic modulus with respect to Example 6 and Comparative Example 3.

以下、本発明の実施に関連する事項について詳細に説明する。 Hereinafter, matters related to the practice of the present invention will be described in detail.

実施形態に係る加硫ゴムの弾性率測定方法は、原子間力顕微鏡(AFM)を用いて加硫ゴムの弾性率を測定する方法であり、充填剤を含む加硫ゴムに弾性変形を与えることで当該加硫ゴム中の内部歪みを低減した試料を得る工程(以下、工程1という。)と、得られた試料に対して原子間力顕微鏡のフォースカーブ測定により弾性率を測定する工程(以下、工程2という。)と、を含む。 The method for measuring the elastic modulus of the vulture rubber according to the embodiment is a method of measuring the elastic modulus of the vulture rubber using an interatomic force microscope (AFM), and gives elastic deformation to the vulture rubber containing a filler. A step of obtaining a sample with reduced internal strain in the vulture rubber (hereinafter referred to as step 1) and a step of measuring the elastic modulus of the obtained sample by force curve measurement with an interatomic force microscope (hereinafter referred to as step 1). , Step 2) and.

測定対象としての加硫ゴムは、充填剤を含む。充填剤としては、例えばカーボンブラック及び/又はシリカなどの補強性充填剤が挙げられる。 The vulcanized rubber as a measurement target contains a filler. Examples of the filler include reinforcing fillers such as carbon black and / or silica.

カーボンブラックとしては、特に限定されず、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック等が挙げられる。より詳細には、例えば、SAF級(N100番台)、ISAF級(N200番台)、HAF級(N300番台)、FEF級(N500番台)、GPF級(N600番台)(ともにASTMグレード)などの各種ファーネスブラックを用いてもよい。 The carbon black is not particularly limited, and examples thereof include furnace black, acetylene black, thermal black, and channel black. More specifically, for example, various furnaces such as SAF class (N100 series), ISAF class (N200 series), HAF class (N300 series), FEF class (N500 series), GPF class (N600 series) (both ASTM grade). Black may be used.

シリカとしても、特に限定されず、例えば、湿式沈降法シリカや湿式ゲル法シリカなどの湿式シリカを用いてもよい。 The silica is not particularly limited, and for example, wet silica such as wet precipitation silica or wet gel silica may be used.

加硫ゴムは、ゴムポリマーに充填剤を配合したゴム組成物を加硫してなるものである。 The vulcanized rubber is obtained by vulcanizing a rubber composition in which a filler is mixed with a rubber polymer.

ゴムポリマーとしては、特に限定されず、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X-IIR)、スチレンイソプレンブタジエンゴム(SIBR)などのジエン系ゴムが挙げられ、これらはそれぞれ単独で又は2種類以上ブレンドして用いることができる。 The rubber polymer is not particularly limited, and for example, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), nitrile rubber (NBR), chloroprene rubber (CR), and butyl rubber. Examples thereof include diene rubbers such as (IIR), butyl halide rubber (X-IIR), and styrene-isoprene butadiene rubber (SIBR), which can be used alone or in a blend of two or more.

充填剤の含有量は、特に限定されないが、ゴムポリマー100質量部に対して、40~150質量部であることが好ましく、より好ましくは40~100質量部である。一般に充填剤の含有量が多いほど加硫ゴムの内部歪みは大きくなる。本実施形態の方法は、加硫による内部歪みの大きい加硫ゴムであるほどより効果的であるため、充填剤の含有量が多いほど好ましい。 The content of the filler is not particularly limited, but is preferably 40 to 150 parts by mass, and more preferably 40 to 100 parts by mass with respect to 100 parts by mass of the rubber polymer. Generally, the larger the content of the filler, the larger the internal strain of the vulcanized rubber. The method of the present embodiment is more effective as the vulcanized rubber has a larger internal strain due to vulcanization, and therefore, the larger the content of the filler, the more preferable.

ゴム組成物には、ゴムポリマー及び充填剤の他、通常ゴム工業で使用される各種配合剤を任意成分として配合してもよい。そのような配合剤としては、例えば、加硫剤、加硫促進剤、軟化剤、可塑剤、老化防止剤、酸化亜鉛、ステアリン酸、ワックス、シランカップリング剤などが挙げられる。 In addition to the rubber polymer and filler, various compounding agents usually used in the rubber industry may be added to the rubber composition as optional components. Examples of such compounding agents include vulcanizing agents, vulcanization accelerators, softeners, plasticizers, antioxidants, zinc oxide, stearic acid, waxes, silane coupling agents and the like.

加硫剤としては、例えば硫黄が用いられる。加硫剤の配合量は、特に限定されず、例えば、ゴムポリマー100質量部に対して0.1~10質量部でもよく、0.3~5質量部でもよく、0.5~3質量部でもよい。 As the vulcanizing agent, for example, sulfur is used. The blending amount of the vulcanizing agent is not particularly limited, and may be, for example, 0.1 to 10 parts by mass, 0.3 to 5 parts by mass, or 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber polymer. But it may be.

加硫ゴムは、バンバリーミキサーなどの混合機を用いて各成分を常法に従い混練することによりゴム組成物を作製し、該ゴム組成物を常法に従い加熱して加硫成形することにより得られる。測定対象としての加硫ゴムの形状は、特に限定されず、例えばシート状のものを用いてもよい。 The vulcanized rubber is obtained by kneading each component according to a conventional method using a mixer such as a Banbury mixer to prepare a rubber composition, and heating the rubber composition according to a conventional method for vulcanization molding. .. The shape of the vulcanized rubber as the measurement target is not particularly limited, and for example, a sheet-shaped rubber may be used.

測定対象とする加硫ゴムは、リュプケ式反発弾性率試験における1回目の打撃の反発弾性率に対する4回目の打撃の反発弾性率の比(以下、リバウンド比という。)が1.04以上であることが好ましい。上記のように本実施形態の方法は、内部歪みの大きい加硫ゴムであるほどより効果的である。リュプケ式反発弾性率試験では、加硫ゴムの内部歪みの大きいほど、打撃回数による反発弾性率の変化が大きい。すなわち、1回目の打撃の反発弾性率に対する4回目の打撃の反発弾性率の比(リバウンド比)が1.04以上である加硫ゴムは内部歪みが大きいものであるため、そのような大きなリバウンド比を持つ加硫ゴムであれば、内部歪みを低減して正しい弾性率を測定するという本実施形態の効果を高めることができる。リバウンド比は1.05以上であることがより好ましい。リバウンド比の上限は特に限定されないが、通常は1.30以下である。 The vulcanized rubber to be measured has a ratio of the rebound resilience of the fourth impact to the rebound resilience of the first impact (hereinafter referred to as the rebound ratio) of 1.04 or more in the Rupke type rebound resilience test. Is preferable. As described above, the method of the present embodiment is more effective as the vulcanized rubber has a larger internal strain. In the Rupke-type rebound resilience test, the larger the internal strain of the vulcanized rubber, the greater the change in the repulsive modulus depending on the number of hits. That is, since the vulture rubber in which the ratio (rebound ratio) of the rebound resilience of the fourth striking to the repulsive modulus of the first striking is 1.04 or more has a large internal strain, such a large rebound If the vulture rubber has a ratio, the effect of the present embodiment of reducing the internal strain and measuring the correct elastic modulus can be enhanced. The rebound ratio is more preferably 1.05 or more. The upper limit of the rebound ratio is not particularly limited, but is usually 1.30 or less.

本実施形態では、工程1において、上記加硫ゴムに弾性変形を加える。加硫後のゴムには内部歪みが存在する。かかる加硫ゴムにマクロな弾性変形を加えることにより、内部歪みを低減することができる。そのため、加硫ゴム中の内部歪みを低減した試料を得ることができる。 In the present embodiment, elastic deformation is applied to the vulcanized rubber in step 1. There is internal strain in the vulcanized rubber. Internal strain can be reduced by applying macroscopic elastic deformation to the vulcanized rubber. Therefore, it is possible to obtain a sample in which the internal strain in the vulcanized rubber is reduced.

弾性変形としては、例えば伸長、圧縮など、特に限定されないが、好ましくは加硫ゴムに伸長を与えることである。加硫ゴムに伸長を与える際の伸長率は、特に限定されないが、10~150%であることが好ましく、より好ましくは30~100%である。伸長率が10%以上であることにより内部歪みを低減する効果を高めることができる。また150%以下であることにより、伸長による残留歪みの影響を低減することができる。伸長率とは、変形前の試料長さに対する最大変形時の伸びの比率をいう。 The elastic deformation is not particularly limited, for example, elongation, compression, etc., but preferably gives elongation to the vulcanized rubber. The elongation rate when the vulcanized rubber is stretched is not particularly limited, but is preferably 10 to 150%, more preferably 30 to 100%. When the elongation rate is 10% or more, the effect of reducing internal strain can be enhanced. Further, when it is 150% or less, the influence of residual strain due to elongation can be reduced. The elongation rate means the ratio of the elongation at the time of maximum deformation to the sample length before deformation.

加硫ゴムに弾性変形を与える場合、1回のみ与えてもよいが、複数回繰り返して弾性変形を与えてもよい。その場合、弾性変形の繰り返し回数としては特に限定されず、例えば2~10回でもよく、3~5回でもよい。 When the vulcanized rubber is to be elastically deformed, it may be given only once, or may be repeatedly given a plurality of times to be elastically deformed. In that case, the number of times of repeating the elastic deformation is not particularly limited, and may be, for example, 2 to 10 times or 3 to 5 times.

このように加硫ゴムに予備弾性変形を与えて内部歪みを取り除いた後に、工程2において、原子間力顕微鏡のフォースカーブ測定により、試料である加硫ゴムの弾性率を測定する。原子間力顕微鏡による測定に用いる試料は、弾性変形を与えた加硫ゴムをそのまま用いてもよく、弾性変形を与えた加硫ゴムから原子間力顕微鏡による測定が可能なように所定形状にて切り出した加硫ゴムを用いてもよい。 After preliminarily elastically deforming the vulture rubber to remove internal strain in this way, in step 2, the elastic modulus of the vulture rubber as a sample is measured by force curve measurement with an atomic force microscope. As the sample used for the measurement by the interatomic force microscope, the elastically deformed vulcanized rubber may be used as it is, or the vulcanized rubber subjected to the elastic deformation has a predetermined shape so that the measurement by the interatomic force microscope can be performed. The cut out vulcanized rubber may be used.

原子間力顕微鏡(AFM)は、走査型プローブ顕微鏡の1種であり、試料と探針の原子間に働く力を検出する顕微鏡である。探針はカンチレバー(片持ちバネ)の先端に取り付けられており、試料と探針との間の距離を変えながら、カンチレバーに働く力(撓み量)を測定して、両者の関係をプロットした曲線であるフォースカーブを得る。このフォースカーブを解析することにより試料表面の弾性率(硬さ)を求めることができ、ゴム材料の弾性率をナノレベルで測定することができる。このようにフォースカーブ測定により試料表面の弾性率を求めること自体は公知であり、かかる公知の方法を用いて行うことができる。 Atomic force microscope (AFM) is a type of scanning probe microscope that detects the force acting between the atoms of a sample and a probe. The probe is attached to the tip of the cantilever (cantilever spring), and while changing the distance between the sample and the probe, the force acting on the cantilever (deflection amount) is measured and the relationship between the two is plotted. Get a force curve that is. By analyzing this force curve, the elastic modulus (hardness) of the sample surface can be obtained, and the elastic modulus of the rubber material can be measured at the nano level. As described above, it is known to obtain the elastic modulus of the sample surface by force curve measurement, and it can be performed by using such a known method.

フォースカーブから弾性率を算出する方法としては、例えば、JKR(Johnson-Kendall-Roberts)理論によりフォースカーブをフィッティングして弾性率を算出する方法が挙げられる。JKR理論では、カンチレバーにかかる力Fと試料変形量δは、凝着エネルギーをwとして、下記式(1)及び式(2)で表される。

Figure 2022076408000002
As a method of calculating the elastic modulus from the force curve, for example, a method of fitting the force curve and calculating the elastic modulus by the JKR (Johnson-Kendall-Roberts) theory can be mentioned. In the JKR theory, the force F applied to the cantilever and the sample deformation amount δ are expressed by the following equations (1) and (2), where w is the adhesion energy.
Figure 2022076408000002

ここで、aは探針と試料の接触線の半径、Rは探針先端の曲率半径、Kは弾性係数を表す。フォースカーブ測定により得られたF-δ曲線と、式(1)及び(2)を用いたフィッティングにより弾性率を求めることができる。 Here, a is the radius of the contact line between the probe and the sample, R is the radius of curvature of the tip of the probe, and K is the elastic modulus. The elastic modulus can be obtained by fitting the F-δ curve obtained by the force curve measurement and the equations (1) and (2).

一実施形態において、試料表面の所定範囲内でスキャンすることにより、フォースカーブの取得を当該所定範囲内の多数の点で行い、それぞれのフォースカーブから弾性率を求め、その平均値を算出することで、当該試料の弾性率を求めてもよい。 In one embodiment, the force curve is acquired at a large number of points within the predetermined range by scanning within the predetermined range on the sample surface, the elastic modulus is obtained from each force curve, and the average value is calculated. Then, the elastic modulus of the sample may be obtained.

一実施形態において、フォースカーブ測定より得られた押込み深さ、弾性率又は凝着エネルギーから、充填剤であるフィラー成分を特定し、当該フィラー成分を除いた部分をゴム成分として、該ゴム成分における弾性率の平均値を算出することで、試料の弾性率を求めてもよい。フィラー成分を特定する場合、加硫ゴムに配合された充填剤の含有量から当該充填剤の体積分率を算出し、充填剤に相当する押込み深さの小さい部分、弾性率の高い部分又は凝着エネルギーの低い部分を、体積分率に基づいてフィラー成分として特定してもよい。あるいはまた、フィラー成分に相当する押込み深さ、弾性率又は凝着エネルギーのしきい値を予め指定しておき、押込み深さが当該指定値以下、弾性率が当該指定値以上、又は凝着エネルギーが当該指定値以下の部分をフィラー成分として特定してもよい。 In one embodiment, a filler component to be a filler is specified from the indentation depth, elastic modulus or adhesion energy obtained from the force curve measurement, and the portion excluding the filler component is used as a rubber component in the rubber component. The elastic modulus of the sample may be obtained by calculating the average value of the elastic modulus. When specifying the filler component, the volume fraction of the filler is calculated from the content of the filler blended in the vulcanized rubber, and the volume fraction corresponding to the filler is small, the portion having a high elasticity, or the coagulation. The portion having low landing energy may be specified as a filler component based on the volume fraction. Alternatively, the threshold value of the indentation depth, elastic modulus or adhesion energy corresponding to the filler component is specified in advance, and the indentation depth is equal to or less than the specified value, the elastic modulus is equal to or more than the specified value, or the adhesion energy. However, a portion having a specified value or less may be specified as a filler component.

本実施形態によれば、原子間力顕微鏡による測定に先立ち、加硫ゴムに予備弾性変形を加えることにより、加硫ゴムの内部歪みを低減することができるので、原子間力顕微鏡による弾性率の測定精度を高めることができる。そのため、例えばゴム材料の開発において充填剤の種類や配合量の決定に役立てることができる。 According to the present embodiment, the internal strain of the vulture rubber can be reduced by subjecting the vulture rubber to preliminary elastic deformation prior to the measurement by the interatomic force microscope. The measurement accuracy can be improved. Therefore, for example, in the development of rubber materials, it can be useful for determining the type and blending amount of the filler.

以下、本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, examples of the present invention will be shown, but the present invention is not limited to these examples.

[第1実施例]
バンバリーミキサーを使用し、下記表1に示す配合(質量部)に従って、まず、第一混合段階で、ゴムポリマーに対し硫黄及び加硫促進剤を除く配合剤を添加し混練した(排出温度=160℃)。次いで、得られた混練物に、最終混合段階で、硫黄と加硫促進剤を添加し混練した(排出温度=90℃)。これにより未加硫ゴム組成物を調製した。各配合剤の詳細は以下のとおりである。
[First Example]
Using a Banbury mixer, first, in the first mixing step, a compounding agent excluding sulfur and a vulcanization accelerator was added to the rubber polymer and kneaded according to the composition (part by mass) shown in Table 1 below (discharge temperature = 160). ℃). Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product in the final mixing step and kneaded (discharge temperature = 90 ° C.). As a result, an unvulcanized rubber composition was prepared. The details of each combination drug are as follows.

・SBR:スチレンブタジエンゴム、旭化成(株)製「タフデン2000」
・SAF:カーボンブラックSAF、東海カーボン(株)製「シースト9」
・酸化亜鉛:三井金属鉱業(株)製「亜鉛華3号」
・ステアリン酸:花王(株)製「ルナックS-20」
・硫黄:鶴見化学工業(株)製「粉末硫黄」
・加硫促進剤:住友化学(株)製「ソクシノールCZ」
・ SBR: Styrene-butadiene rubber, "Toughden 2000" manufactured by Asahi Kasei Corporation
-SAF: Carbon Black SAF, "Seast 9" manufactured by Tokai Carbon Co., Ltd.
・ Zinc oxide: “Zinc Oxide No. 3” manufactured by Mitsui Mining & Smelting Co., Ltd.
-Stearic acid: "Lunac S-20" manufactured by Kao Corporation
・ Sulfur: "Powdered sulfur" manufactured by Tsurumi Chemical Industry Co., Ltd.
・ Vulcanization accelerator: "Soxinol CZ" manufactured by Sumitomo Chemical Co., Ltd.

得られた未加硫ゴム組成物を160℃で20分間プレス加硫して厚さ1mmの加硫ゴムを作製した。得られた加硫ゴムについて、内部歪みを除去するため、予備伸長変形を与えた。予備伸長変形の付与方法は以下のとおりである。 The obtained unvulcanized rubber composition was press-vulcanized at 160 ° C. for 20 minutes to prepare a vulcanized rubber having a thickness of 1 mm. The obtained vulcanized rubber was subjected to preliminary elongation deformation in order to remove internal strain. The method of imparting the preliminary elongation deformation is as follows.

(株)島津製作所製のオートグラフを用いて実施した。厚さ1mmの加硫ゴムシートを3号ダンベルの形に打ち抜き、500mm/分の速さで伸長率50%(実施例1)、100%(実施例2)、150%(実施例3)、200%(実施例4)の伸びを試料に与えるように引張試験を行い、当該引張試験を4サイクル実施した。伸長率は、ダンベル形試料の標線間距離を試験長さとして、試験前の試験長さに対する伸びの比率である。 This was carried out using an autograph manufactured by Shimadzu Corporation. A 1 mm thick vulcanized rubber sheet was punched into the shape of a No. 3 dumbbell, and the elongation rate was 50% (Example 1), 100% (Example 2), 150% (Example 3) at a speed of 500 mm / min. A tensile test was performed so as to give a sample an elongation of 200% (Example 4), and the tensile test was carried out for 4 cycles. The elongation rate is the ratio of elongation to the test length before the test, with the distance between the marked lines of the dumbbell-shaped sample as the test length.

予備伸長変形を与えた実施例1~4の試料について、標線間部分を用いてAFMによる弾性率の測定を行った。また、比較のために、予備伸長変形を与えてない加硫ゴムシート(伸長率:0%)についても、比較例1として、AFMによる弾性率の測定を行った。AFMによる弾性率の測定方法は以下のとおりである。 The elastic modulus of the samples of Examples 1 to 4 to which the preliminary elongation deformation was given was measured by AFM using the portion between the marked lines. For comparison, the elastic modulus of the vulcanized rubber sheet (elongation rate: 0%) that was not subjected to preliminary elongation deformation was also measured by AFM as Comparative Example 1. The method for measuring the elastic modulus by AFM is as follows.

[AFMによる弾性率測定]
原子間力顕微鏡としてブルカー社製「Dimension Icon」を使用し、カンチレバーとしてオリンパス製「OMCL-AC240TS-R3」(ばね定位数:1.7N/m)を使用した。測定範囲は3μm×3μm四方、測定点数は128点×128点の合計16384点として、各点でフォースカーブを測定した(測定周波数:10Hz)。
[Measurement of elastic modulus by AFM]
A Bruker "Dimension Icon" was used as the atomic force microscope, and an Olympus "OMCL-AC240TS-R3" (spring localization number: 1.7 N / m) was used as the cantilever. The measurement range was 3 μm × 3 μm square, and the number of measurement points was 128 points × 128 points, for a total of 16384 points, and the force curve was measured at each point (measurement frequency: 10 Hz).

フォースカーブにより得られたF-δ曲線をJKR理論によりフィッティングして弾性率を算出した。また、フォースカーブより得られた凝着エネルギーより、凝着エネルギーの低い成分をフィラー成分として、その部分を引いた弾性率の平均値を算出して、AFMによる加硫ゴムの弾性率(AFM弾性率)とした。その際、フィラー成分の特定は、ゴム組成物の配合量から各配合剤の比重を用いて充填剤としてのカーボンブラックの体積分率を求め、該体積分率に基づいて弾性率の高い部分をフィラー成分として特定した。 The F-δ curve obtained by the force curve was fitted by the JKR theory to calculate the elastic modulus. Further, the elastic modulus of the vulcanized rubber by AFM (AFM elasticity) is calculated by calculating the average value of the elastic modulus obtained by subtracting the part from the adhesion energy obtained from the force curve, with the component having the lower adhesion energy as the filler component. Rate). At that time, in order to specify the filler component, the volume fraction of carbon black as a filler is obtained from the blending amount of the rubber composition using the specific gravity of each blending agent, and the portion having a high elastic coefficient is determined based on the volume fraction. Specified as a filler component.

[マクロ弾性率]
上記配合の加硫ゴムシートについてマクロ弾性率を測定した。詳細には、上島製作所製の動的粘弾性装置を用いて、JIS K6394に準拠して動的粘弾性試験を実施した。試験条件は、サンプル形状:2mm×4mm×40mmの短冊状、測定モード:引っ張り、測定温度:25℃、周波数:10Hz、静歪み:1%、動歪み:0.05%とした。試験結果より、貯蔵弾性率を算出し、その値をマクロ弾性率(機械特性)として用いた。
[Macro modulus]
The macroelastic modulus was measured for the vulcanized rubber sheet having the above composition. Specifically, a dynamic viscoelasticity test was carried out in accordance with JIS K6394 using a dynamic viscoelasticity device manufactured by Ueshima Seisakusho. The test conditions were sample shape: 2 mm × 4 mm × 40 mm strip, measurement mode: tensile, measurement temperature: 25 ° C., frequency: 10 Hz, static strain: 1%, dynamic strain: 0.05%. The storage elastic modulus was calculated from the test results, and the value was used as the macroelastic modulus (mechanical characteristic).

Figure 2022076408000003
Figure 2022076408000003

結果は表1及び図1に示すとおりである。加硫ゴムに引張試験による予備伸長変形を与えた実施例1~4では、予備伸長変形を与えていない比較例1に対していずれもAFM弾性率が低く、マクロ弾性率により近い値となっていた。そのため、予備弾性変形により加硫による内部歪みが除去されており、より正確な弾性率を測定できていることがわかる。なお、実施例4では実施例1~3に比べてAMF弾性率が高く、比較例1に近づく傾向が見られた。これは引っ張りによる残留歪みの影響であると思われる。このことから、残留歪みの影響を回避しつつ加硫による内部歪みを除去するためには、伸長率は150%以下であることが好ましい。 The results are shown in Table 1 and FIG. In Examples 1 to 4 in which the vulcanized rubber was subjected to preliminary elongation deformation by a tensile test, the AFM elastic modulus was lower than that of Comparative Example 1 in which the preliminary elongation deformation was not applied, and the values were closer to the macroelastic modulus. rice field. Therefore, it can be seen that the internal strain due to vulcanization is removed by the preliminary elastic deformation, and the elastic modulus can be measured more accurately. In Example 4, the AMF elastic modulus was higher than that in Examples 1 to 3, and a tendency toward that of Comparative Example 1 was observed. This seems to be the effect of residual strain due to pulling. Therefore, in order to remove the internal strain due to vulcanization while avoiding the influence of the residual strain, the elongation rate is preferably 150% or less.

[第2実施例]
下記表2に示す配合(質量部)に従い、第1実施例と同様にして未加硫ゴム組成物を調製した(各配合剤の詳細は第1実施例と同じ)。得られた未加硫ゴム組成物を160℃で20分間プレス加硫して厚さ1mmの加硫ゴムシートを作製した。得られた加硫ゴムシートについて、内部歪みを除去するため、予備伸長変形を与えた。予備伸長変形の付与方法は第1実施例と同様であり、伸長率はすべて50%とした。
[Second Example]
An unvulcanized rubber composition was prepared in the same manner as in the first example according to the formulation (parts by mass) shown in Table 2 below (details of each formulation are the same as in the first embodiment). The obtained unvulcanized rubber composition was press-vulcanized at 160 ° C. for 20 minutes to prepare a vulcanized rubber sheet having a thickness of 1 mm. The obtained vulcanized rubber sheet was subjected to preliminary elongation deformation in order to remove internal strain. The method of imparting the preliminary elongation deformation was the same as that of the first embodiment, and the elongation rates were all set to 50%.

上記の予備伸長変形を与えた試料(予備伸長あり)について、標線間部分を用いてAFMによる弾性率の測定を行った(実施例5)。また、比較のために、予備伸長変形を与えてない加硫ゴムシート(予備伸長なし)についても、AFMによる弾性率の測定を行った(比較例2)。AFMによる弾性率の測定方法は第1実施例と同様である。 The elastic modulus of the sample to which the above-mentioned pre-stretching deformation was given (with pre-stretching) was measured by AFM using the portion between the marked lines (Example 5). For comparison, the elastic modulus of the vulcanized rubber sheet (without pre-stretching) that was not subjected to pre-stretching deformation was also measured by AFM (Comparative Example 2). The method for measuring the elastic modulus by AFM is the same as that in the first embodiment.

また、各配合の加硫ゴムシートについて、マクロ弾性率を測定するとともに、内部歪みの大きさを評価するためにリバウンド比を測定した。マクロ弾性率の測定方法は第1実施例と同様であり、リバウンド比の測定方法は以下のとおりである。 In addition, the macroelastic modulus of each vulcanized rubber sheet was measured, and the rebound ratio was measured in order to evaluate the magnitude of internal strain. The method for measuring the macroelastic modulus is the same as that in the first embodiment, and the method for measuring the rebound ratio is as follows.

[リバウンド比]
リュプケ式反発弾性率試験にて、1回目の打撃の反発弾性率(落下高さに対する反発後の高さの百分率)と、4回目の打撃の反発弾性率を測定し、両者の比(4回目反発弾性率/1回目反発弾性率)であるリバウンド比を算出した。
[Rebound ratio]
In the Rupke-type repulsive modulus test, the repulsive modulus of the first impact (percentage of the height after repulsion to the drop height) and the repulsive modulus of the fourth impact were measured, and the ratio of the two (4th). The rebound ratio, which is the rebound resilience rate / first repulsive elastic modulus), was calculated.

Figure 2022076408000004
Figure 2022076408000004

結果は表2および図2に示すとおりである。AFM測定に先立ち加硫ゴムに予備伸長変形を与えた実施例5では、AFM弾性率とマクロ弾性率がほぼ直線的な比例関係にあった。これに対し、AFM測定に先立ち加硫ゴムに予備伸長変形を与えていない比較例2では、カーボンブラックの配合量が多くなり内部歪み(リバウンド比)が大きくなるほど、AFM弾性率とマクロ弾性率との直線的な比例関係が崩れていた。このことから、予備伸長変形を与えることにより内部歪みが取り除かれて、正確な弾性率をAFMにより測定できることが分かる。また、充填剤の配合量が多いほど、内部歪みを除去することによる効果が大きいことがわかる。 The results are shown in Table 2 and FIG. In Example 5 in which the vulcanized rubber was subjected to preliminary elongation deformation prior to the AFM measurement, the AFM elastic modulus and the macroelastic modulus were in a substantially linear proportional relationship. On the other hand, in Comparative Example 2 in which the vulnerable rubber was not subjected to preliminary elongation deformation prior to the AFM measurement, the AFM elastic modulus and the macroelastic modulus increased as the amount of carbon black compounded and the internal strain (rebound ratio) increased. The linear proportional relationship of was broken. From this, it can be seen that the internal strain is removed by giving the preliminary elongation deformation, and the accurate elastic modulus can be measured by the AFM. Further, it can be seen that the larger the amount of the filler compounded, the greater the effect of removing the internal strain.

[第3実施例]
下記表3に示す配合(質量部)に従い、第2実施例と同様にして未加硫ゴム組成物を調製した。各配合剤の詳細については、HAFはカーボンブラックHAF、N339、東海カーボン(株)製「シーストKH」であり、その他の配合剤は第1実施例と同じである。
[Third Example]
An unvulcanized rubber composition was prepared in the same manner as in the second example according to the formulation (part by mass) shown in Table 3 below. Regarding the details of each compounding agent, HAF is carbon black HAF, N339, “Seast KH” manufactured by Tokai Carbon Co., Ltd., and other compounding agents are the same as those in the first embodiment.

得られた未加硫ゴム組成物を用いて、第2実施例と同様にして、加硫ゴムシートを作製し、内部歪みを除去するために加硫ゴムシートに予備伸長変形(伸長率:50%)を与えた。予備伸長変形を与えた試料(予備伸長あり)について、第2実施例と同様にして、AFMによる弾性率の測定を行い(実施例6)、また、比較のために予備伸長変形を与えてない加硫ゴムシート(予備伸長なし)についても、AFMによる弾性率の測定を行った(比較例3)。さらに、各配合の加硫ゴムシートについて、第2実施例と同様にして、マクロ弾性率およびリバウンド比を測定した。 Using the obtained unvulcanized rubber composition, a vulcanized rubber sheet was produced in the same manner as in the second embodiment, and the vulcanized rubber sheet was subjected to preliminary elongation deformation (elongation rate: 50) in order to remove internal strain. %) Was given. The elastic modulus of the sample to which the pre-stretched deformation was given (with pre-stretched) was measured by AFM in the same manner as in the second example (Example 6), and the pre-stretched deformation was not given for comparison. The elastic modulus of the vulgarized rubber sheet (without preliminary elongation) was also measured by AFM (Comparative Example 3). Further, for the vulcanized rubber sheet of each composition, the macroelastic modulus and the rebound ratio were measured in the same manner as in the second embodiment.

Figure 2022076408000005
Figure 2022076408000005

結果は表3および図3に示すとおりである。カーボンブラックをSAFからより比表面積が小さいHAFに変更しても第2実施例と同様の傾向が見られた。すなわち、AFM測定に先立ち加硫ゴムに予備伸長変形を与えた実施例6では、AFM弾性率とマクロ弾性率がほぼ直線的な比例関係にあった。これに対し、AFM測定に先立ち加硫ゴムに予備伸長変形を与えていない比較例3では、カーボンブラックの配合量が多くなり内部歪み(リバウンド比)が大きくなるほど、AFM弾性率とマクロ弾性率との直線的な比例関係が崩れていた。 The results are shown in Table 3 and FIG. Even if the carbon black was changed from SAF to HAF having a smaller specific surface area, the same tendency as in the second embodiment was observed. That is, in Example 6 in which the vulcanized rubber was subjected to preliminary elongation deformation prior to the AFM measurement, the AFM elastic modulus and the macroelastic modulus were in a substantially linear proportional relationship. On the other hand, in Comparative Example 3 in which the vulnerable rubber was not subjected to preliminary elongation deformation prior to the AFM measurement, the AFM elastic modulus and the macroelastic modulus increased as the amount of carbon black compounded and the internal strain (rebound ratio) increased. The linear proportional relationship of was broken.

Claims (4)

原子間力顕微鏡を用いて加硫ゴムの弾性率を測定する方法において、
充填剤を含む加硫ゴムに弾性変形を与えることで当該加硫ゴム中の内部歪みを低減した試料を得ること、および、得られた試料に対して原子間力顕微鏡のフォースカーブ測定により弾性率を測定すること、を含む、加硫ゴムの弾性率測定方法。
In the method of measuring the elastic modulus of vulcanized rubber using an atomic force microscope,
A sample with reduced internal strain in the vulture rubber is obtained by giving elastic deformation to the vulture rubber containing the filler, and the elastic modulus of the obtained sample is measured by force curve measurement with an interatomic force microscope. A method for measuring the elastic modulus of vulgarized rubber, including measuring.
前記弾性変形が伸長である、請求項1に記載の加硫ゴムの弾性率測定方法。 The method for measuring the elastic modulus of a vulcanized rubber according to claim 1, wherein the elastic deformation is elongation. 前記加硫ゴムに与える伸長の伸長率が10~150%である、請求項2に記載の加硫ゴムの弾性率測定方法。 The method for measuring the elastic modulus of vulcanized rubber according to claim 2, wherein the elongation rate of elongation given to the vulcanized rubber is 10 to 150%. 測定対象とする前記加硫ゴムは、リュプケ式反発弾性率試験における1回目の打撃の反発弾性率に対する4回目の打撃の反発弾性率の比が1.04以上である、請求項1~3のいずれか1項に記載の加硫ゴムの弾性率測定方法。 The vulcanized rubber to be measured has a ratio of the impact modulus of the fourth impact to the impact modulus of the first impact of 1.04 or more in the Rupke-type impact modulus test, according to claims 1 to 3. The method for measuring the elastic modulus of a vulcanized rubber according to any one item.
JP2020186822A 2020-11-09 2020-11-09 Method for measuring elastic modulus of vulcanized rubber Active JP7464943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020186822A JP7464943B2 (en) 2020-11-09 2020-11-09 Method for measuring elastic modulus of vulcanized rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020186822A JP7464943B2 (en) 2020-11-09 2020-11-09 Method for measuring elastic modulus of vulcanized rubber

Publications (2)

Publication Number Publication Date
JP2022076408A true JP2022076408A (en) 2022-05-19
JP7464943B2 JP7464943B2 (en) 2024-04-10

Family

ID=81606787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020186822A Active JP7464943B2 (en) 2020-11-09 2020-11-09 Method for measuring elastic modulus of vulcanized rubber

Country Status (1)

Country Link
JP (1) JP7464943B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888899B2 (en) 2007-02-23 2012-02-29 株式会社東洋精機製作所 Test piece feeder for rebound resilience tester
US9453857B2 (en) 2014-04-23 2016-09-27 Oxford Instruments Asylum Research, Inc AM/FM measurements using multiple frequency of atomic force microscopy
JP6467666B2 (en) 2014-12-01 2019-02-13 日本ゼオン株式会社 Method for obtaining an image showing the phase structure of a rubber composition
JP6852538B2 (en) 2017-04-18 2021-03-31 住友ゴム工業株式会社 Mechanical property measurement method

Also Published As

Publication number Publication date
JP7464943B2 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
Surya et al. The effect of the addition of alkanolamide on properties of carbon black-filled natural rubber (SMR-L) compounds cured using various curing systems
Grellmann et al. Technical material diagnostics-fracture mechanics of filled elastomer blends
JP2005213486A (en) Rubber composition for under-tread and pneumatic tire using the same
Paran et al. An experimental study of the effect of CNTs on the mechanical properties of CNTs/NR/EPDM nanocomposite
JP2005146115A (en) Tire tread rubber composition
JP2009029961A (en) Masterbatch for rubber composition and its manufacturing method
JP2009001758A (en) Method for manufacturing rubber composition for use in tire
US11440349B2 (en) Pneumatic tire and crosslinked rubber composition
JP6401010B2 (en) Fracture strength prediction method and tire rubber composition
US10654316B2 (en) Pneumatic tire and crosslinked rubber composition
US11458767B2 (en) Pneumatic tire and crosslinked rubber composition
JP7464943B2 (en) Method for measuring elastic modulus of vulcanized rubber
JP2017171797A (en) Method for measuring viscosity in vulcanization initiation temperature range of unvulcanized rubber composition containing vulcanizer
JP7357838B2 (en) Evaluation method for reinforcing properties of carbon black
JP2009242577A (en) Diene-based rubber composition
JP6463623B2 (en) Method for predicting fracture strength of material and rubber composition
JP7301691B2 (en) Rubber composition and pneumatic tire
JPWO2003031511A1 (en) Rubber composition
JP5771689B2 (en) Rubber composition and tire using the same
JP7450506B2 (en) Bound rubber analysis method for rubber compositions
JP7357839B2 (en) Method for evaluating reinforcing properties of silica
JP5180996B2 (en) Chloroprene rubber composition
JP7058496B2 (en) Rubber composition
JP2006133167A (en) Method for evaluating heat resistance of rubber composition and method for producing heat resisting rubber composition
JP7415141B2 (en) Rubber composition and method for producing rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230427

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240319

R150 Certificate of patent or registration of utility model

Ref document number: 7464943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150