JP6852538B2 - Mechanical property measurement method - Google Patents

Mechanical property measurement method Download PDF

Info

Publication number
JP6852538B2
JP6852538B2 JP2017082036A JP2017082036A JP6852538B2 JP 6852538 B2 JP6852538 B2 JP 6852538B2 JP 2017082036 A JP2017082036 A JP 2017082036A JP 2017082036 A JP2017082036 A JP 2017082036A JP 6852538 B2 JP6852538 B2 JP 6852538B2
Authority
JP
Japan
Prior art keywords
sample
size
polymer composite
composite material
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017082036A
Other languages
Japanese (ja)
Other versions
JP2018178016A (en
Inventor
房恵 金子
房恵 金子
剛志 古川
剛志 古川
岸本 浩通
浩通 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017082036A priority Critical patent/JP6852538B2/en
Publication of JP2018178016A publication Critical patent/JP2018178016A/en
Application granted granted Critical
Publication of JP6852538B2 publication Critical patent/JP6852538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、充填剤、架橋材料等の構造体を含む高分子複合材料の力学物性測定方法に関する。 The present invention relates to a method for measuring mechanical characteristics of a polymer composite material including a structure such as a filler and a cross-linking material.

近年の高分子複合材料に対する市場要求や安全性等を満たすためには、高度に力学物性を制御する必要がある。そのためには、特にナノ〜ミクロスケールにおける力学物性を測定することが非常に重要である。 In order to meet the market demands and safety of polymer composite materials in recent years, it is necessary to highly control the mechanical properties. For that purpose, it is very important to measure the mechanical properties, especially on the nano to micro scale.

ナノ〜ミクロスケールにおける力学物性の評価手法として原子間力顕微鏡等が提案されている。しかしながら、高分子複合材料中に存在するシリカ、カーボンブラック等のフィラー、硫黄、加硫促進剤、酸化亜鉛等の架橋材料(架橋剤)等の構造体の硬さ等、各種力学物性を精度よく測定することは困難なのが実情である。 Atomic force microscopy and the like have been proposed as a method for evaluating mechanical properties on a nano to micro scale. However, various mechanical properties such as fillers such as silica and carbon black present in the polymer composite material, hardness of structures such as sulfur, vulcanization accelerator, and cross-linking material (cross-linking agent) such as zinc oxide can be accurately obtained. The reality is that it is difficult to measure.

本発明は、前記課題を解決し、充填剤、架橋材料等の構造体を含む高分子複合材料に関し、該構造体の硬さ等の力学物性を精度良く測定できる力学物性測定方法を提供することを目的とする。 The present invention solves the above problems and provides a method for measuring mechanical characteristics of a polymer composite material including a structure such as a filler and a cross-linking material, which can accurately measure the mechanical properties such as the hardness of the structure. With the goal.

本発明は、構造体を含む高分子複合材料の力学物性測定方法であって、高分子複合材料中の構造体のサイズを基に決定した厚みを持つ試料を用いて測定することを特徴とする力学物性測定方法に関する。 The present invention is a method for measuring mechanical characteristics of a polymer composite material including a structure, and is characterized in that measurement is performed using a sample having a thickness determined based on the size of the structure in the polymer composite material. Regarding the method for measuring mechanical properties.

構造体は、充填剤及び架橋材料の少なくとも1種以上であることが好ましい。
構造体のサイズは、透過型電子顕微鏡、走査型電子顕微鏡又は走査型透過X線顕微鏡を用いて測定されたものであることが好ましい。
The structure is preferably at least one of a filler and a cross-linking material.
The size of the structure is preferably measured using a transmission electron microscope, a scanning electron microscope, or a scanning transmission X-ray microscope.

試料は、高分子複合材料中の構造体の大きさと同程度の厚みに調整したものであることが好ましい。
試料表面と接触させてナノ〜ミクロスケールの高分子複合材料の力学物性を測定することが好ましい。
The sample is preferably adjusted to have a thickness comparable to the size of the structure in the polymer composite material.
It is preferable to measure the mechanical properties of the nano- to micro-scale polymer composite material in contact with the sample surface.

本発明によれば、構造体を含む高分子複合材料の力学物性測定方法であって、高分子複合材料中の構造体のサイズを基に決定した厚みを持つ試料を用いて測定することを特徴とする力学物性測定方法であるので、充填剤、架橋材料等の構造体を含む高分子複合材料において、該構造体の硬さ等の力学物性を精度良く測定することが可能となる。 According to the present invention, it is a method for measuring mechanical physical characteristics of a polymer composite material including a structure, and the measurement is performed using a sample having a thickness determined based on the size of the structure in the polymer composite material. Therefore, it is possible to accurately measure the mechanical physical characteristics such as the hardness of the structure in the polymer composite material including the structure such as the filler and the cross-linking material.

従来及び本発明における測定試料の模式図の一例。An example of a schematic diagram of a measurement sample in the prior art and in the present invention. 実施例の試料で得られた窒素K殼吸収端のマッピング画像の一例。An example of a mapping image of the nitrogen K shell absorption edge obtained in the sample of the example. 実施例、比較例1〜2で得られたAFM像の一例。An example of the AFM image obtained in Examples 1 and 2.

本発明は、構造体を含む高分子複合材料の力学物性測定方法であって、高分子複合材料中の構造体のサイズを基に決定した厚みを持つ試料を用いて測定することを特徴とする力学物性測定方法である。 The present invention is a method for measuring mechanical characteristics of a polymer composite material including a structure, and is characterized in that measurement is performed using a sample having a thickness determined based on the size of the structure in the polymer composite material. This is a method for measuring mechanical properties.

例えば、原子間力顕微鏡を用いて、フィラー、架橋材料等の構造体を含む高分子複合材料を測定する際、ミクロトーム等で切削した平滑面を観察するが、測定時にカンチレバーで高分子複合材料(試料)を押し込むことになる。そのため、図1(a)に示されているように、高分子複合材料中の構造体が試料厚みより小さい場合、変形しない構造体を押し込んでも、その奥側に存在する構造体よりも柔らかい高分子材料が変形するために、構造体の硬さなどの力学物性を正確に測定できない。 For example, when measuring a polymer composite material containing a structure such as a filler or a crosslinked material using an atomic force microscope, a smooth surface cut by a microtome or the like is observed. The sample) will be pushed in. Therefore, as shown in FIG. 1A, when the structure in the polymer composite material is smaller than the sample thickness, even if the non-deformable structure is pushed in, the height is softer than the structure existing on the back side thereof. Since the molecular material is deformed, it is not possible to accurately measure mechanical properties such as the hardness of the structure.

一方、本発明では、例えば、構造体のサイズと同程度の試料厚みにする方法等、高分子複合材料中の構造体のサイズを基に決定した厚みを持つ試料を力学物性の測定に供することで、図1(b)に示されているように、カンチレバーで押し込んだ構造体の奥側に構造体よりも柔らかい高分子材料が無いような状態で測定することが可能になる。よって、高分子複合材料中に存在する構造体について、硬さ等の各種力学物性を精度良く、正確に測定できる。 On the other hand, in the present invention, for example, a sample having a thickness determined based on the size of the structure in the polymer composite material, such as a method of making the sample thickness comparable to the size of the structure, is used for measuring the mechanical characteristics. Then, as shown in FIG. 1 (b), it is possible to measure in a state where there is no polymer material softer than the structure on the inner side of the structure pushed by the cantilever. Therefore, it is possible to accurately and accurately measure various mechanical properties such as hardness of the structure existing in the polymer composite material.

本発明の方法に供される高分子複合材料は、構造体を含む複合材料である。
構造体とは、高分子複合材料中に含まれる充填剤、加硫材料等が凝集して形成された1nm〜100μm程度のクラスターである。構造体は、透過電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)、走査型透過X線顕微鏡(STXM)の各種手法でサイズを決定できるものであれば問題なく、フィラー等の高分子中で溶けない材料だけでなく、酸化亜鉛、加硫促進剤、硫黄等の高分子中に溶ける材料でもよい。
The polymer composite material used in the method of the present invention is a composite material containing a structure.
The structure is a cluster of about 1 nm to 100 μm formed by aggregating the filler, vulcanized material, etc. contained in the polymer composite material. There is no problem if the size of the structure can be determined by various methods such as a transmission electron microscope (TEM), a scanning electron microscope (SEM), and a scanning transmission X-ray microscope (STXM). Not only a material that does not dissolve, but also a material that dissolves in a polymer such as zinc oxide, a sulfide accelerator, and sulfur may be used.

構造体として、具体的には、充填剤、架橋材料等を挙げられる。
充填剤としては、カーボンブラック、シリカ;mM・xSiO・zHO(式中、Mはアルミニウム、カルシウム、マグネシウム、チタン及びジルコニウムよりなる群より選択された少なくとも1種の金属、又は該金属の酸化物、水酸化物、水和物若しくは炭酸塩を示し、mは1〜5、xは0〜10、yは2〜5、zは0〜10の範囲の数値を示す。)、などが挙げられる。
Specific examples of the structure include a filler and a cross-linking material.
As the filler, carbon black, silica; mM 2 · xSiO y · zH 2 O (in the formula, M 2 is at least one metal selected from the group consisting of aluminum, calcium, magnesium, titanium and zirconium, or the same. Indicates a metal oxide, hydroxide, hydrate or carbonate, where m is 1 to 5, x is 0 to 10, y is 2 to 5, and z is a value in the range of 0 to 10.), And so on.

上記mM・xSiO・zHOで表される充填剤の具体例としては、水酸化アルミニウム(Al(OH))、アルミナ(Al、Al・3HO(水和物))、クレー(Al・2SiO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al・4SiO・HO)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO、Al(SiO・5HOなど)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO)、水酸化カルシウム(Ca(OH))、酸化カルシウム(CaO)、ケイ酸カルシウム(CaSiO)、ケイ酸マグネシウムカルシウム(CaMgSiO)、水酸化マグネシウム(Mg(OH))、酸化マグネシウム(MgO)、タルク(MgO・4SiO・HO)、アタパルジャイト(5MgO・8SiO・9HO)、酸化アルミニウムマグネシウム(MgO・Al)、チタン白(TiO)、チタン黒(Ti2n−1)などが挙げられる。このような充填剤を含む高分子材料では、充填剤が凝集したクラスターが形成される。なお、上記充填剤の配合量は、高分子材料中のポリマー成分100質量部に対して、10〜200質量部が好ましい。 Specific examples of fillers represented by mM 2 · xSiO y · zH 2 O is aluminum hydroxide (Al (OH) 3), alumina (Al 2 O 3, Al 2 O 3 · 3H 2 O ( water hydrate)), clay (Al 2 O 3 · 2SiO 2 ), kaolin (Al 2 O 3 · 2SiO 2 · 2H 2 O), pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O), bentonite ( Al 2 O 3 · 4SiO 2 · 2H 2 O), aluminum silicate (Al 2 SiO 5, Al 4 (SiO 2) 3 · 5H 2 O , etc.), aluminum silicate calcium (Al 2 O 3 · CaO · 2SiO 2 ), Calcium hydroxide (Ca (OH) 2 ), Calcium oxide (CaO), Calcium silicate (Ca 2 SiO 4 ), Calcium silicate (CaMgSiO 4 ), Magnesium oxide (Mg (OH) 2 ), Oxidation magnesium (MgO), talc (MgO · 4SiO 2 · H 2 O), attapulgite (5MgO · 8SiO 2 · 9H 2 O), magnesium aluminum oxide (MgO · Al 2 O 3) , titanium white (TiO 2), titanium black (Ti n O 2n-1 ) and the like. In the polymer material containing such a filler, clusters in which the filler is aggregated are formed. The blending amount of the filler is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the polymer component in the polymer material.

架橋材料は、ゴム組成物の架橋に関与する材料であり、各種加硫剤(架橋剤)、加硫促進剤、酸化亜鉛、等が挙げられる。 The cross-linking material is a material involved in cross-linking of the rubber composition, and examples thereof include various vulcanizing agents (cross-linking agents), vulcanization accelerators, zinc oxide, and the like.

加硫剤としては、タイヤ工業で一般的なものを使用でき、硫黄加硫剤(粉末硫黄等の硫黄からなる加硫剤);1,6−ヘキサメチレン−ジチオ硫酸ナトリウム・二水和物、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘキサンなどの硫黄を含む加硫剤:等が挙げられる。 As the vulcanizing agent, those commonly used in the tire industry can be used. Sulfur vulcanizing agent (vulcanizing agent consisting of sulfur such as powdered sulfur); 1,6-hexamethylene-sodium dithiosulfate / dihydrate, Sulfur-containing vulcanizing agents such as 1,6-bis (N, N'-dibenzylthiocarbamoyldithio) hexane: and the like.

加硫促進剤としては、グアニジン類、スルフェンアミド類、チアゾール類、チウラム類、ジチオカルバミン酸塩類、チオウレア類、キサントゲン酸塩類等、タイヤ工業で公知の各種加硫促進剤が挙げられる。なお、それぞれの架橋材料の配合量は、高分子材料中のポリマー成分100質量部に対して、0.1〜15質量部が好ましい。 Examples of the vulcanization accelerator include various vulcanization accelerators known in the tire industry, such as guanidines, sulfenamides, thiazoles, thiurams, dithiocarbamates, thioureas, and xanthogenates. The blending amount of each crosslinked material is preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the polymer component in the polymer material.

高分子複合材料を構成する高分子材料としては特に限定されず、従来公知のものが挙げられる。例えば、1種類以上の共役ジエン系化合物を用いて得られるゴム材料、該ゴム材料と1種類以上の樹脂とが複合された複合材料を適用できる。共役ジエン系化合物としては特に限定されず、イソプレン、ブタジエンなどの公知の化合物が挙げられる。 The polymer material constituting the polymer composite material is not particularly limited, and conventionally known ones can be mentioned. For example, a rubber material obtained by using one or more kinds of conjugated diene compounds, and a composite material in which the rubber material and one or more kinds of resins are composited can be applied. The conjugated diene compound is not particularly limited, and examples thereof include known compounds such as isoprene and butadiene.

ゴム材料としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR)、スチレンイソプレンブタジエンゴム(SIBR)などの二重結合を有するポリマーが挙げられる。また、前記ゴム材料、複合材料などの高分子材料は、水酸基、アミノ基などの変性基を1つ以上含むものでもよい。 As rubber materials, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), halogenated Examples thereof include polymers having a double bond such as butyl rubber (X-IIR) and styrene isoprene butadiene rubber (SIBR). Further, the polymer material such as the rubber material and the composite material may contain one or more modifying groups such as a hydroxyl group and an amino group.

上記樹脂としては特に限定されず、例えば、ゴム工業分野で汎用されているものが挙げられ、例えば、C5系脂肪族石油樹脂、シクロペンタジエン系石油樹脂などの石油樹脂が挙げられる。 The resin is not particularly limited, and examples thereof include those widely used in the rubber industry, and examples thereof include petroleum resins such as C5-based aliphatic petroleum resins and cyclopentadiene-based petroleum resins.

上記高分子複合材料は、タイヤ用材料等、ゴム工業分野で汎用されている他の配合剤(シランカップリング剤、ステアリン酸、各種老化防止剤、オイル、ワックスなど)を含むものでもよい。高分子複合材料は、公知の混練方法などを用いて製造できる。 The polymer composite material may contain other compounding agents (silane coupling agents, stearic acid, various antiaging agents, oils, waxes, etc.) widely used in the rubber industry, such as tire materials. The polymer composite material can be produced by using a known kneading method or the like.

以下、本発明の力学物性測定方法の一例を具体的に説明する。
例えば、先ず、X線吸収量の測定により、高分子複合材料中の構造体のサイズを測定し、次いで、得られたサイズに基いて試料の厚みを決定し、作製した試料(高分子複合材料)について各種装置を用いて、各種力学物性を測定する方法、等が挙げられる。
Hereinafter, an example of the method for measuring mechanical physical characteristics of the present invention will be specifically described.
For example, first, the size of the structure in the polymer composite material is measured by measuring the amount of X-ray absorption, and then the thickness of the sample is determined based on the obtained size, and the prepared sample (polymer composite material). ), Such as a method of measuring various mechanical properties using various devices.

X線吸収量を測定する方法としては、高輝度X線を用いて試料の微小領域におけるX線吸収スペクトルを測定する手法であるマイクロXAFS(X−ray Absorption Fine Structure)等が挙げられる。通常のXAFSは、空間分解能を有しないため、試料全体の吸収量を検出するのに対し、マイクロXAFSは、試料の微小領域におけるX線吸収スペクトルを測定する測定方法であり、通常、100nm以下程度の空間分解能を有している。そのため、マイクロXAFSを採用することにより、試料中に含まれているそれぞれの架橋材料、充填剤等の吸収を検知し、硫黄加硫剤、加硫促進剤、充填剤等、各材料の吸収量の違いを検出できる。 Examples of the method for measuring the amount of X-ray absorption include micro XAFS (X-ray Absorption Fine Structure), which is a method for measuring the X-ray absorption spectrum in a minute region of a sample using high-intensity X-rays. Since ordinary XAFS does not have spatial resolution, it detects the absorption amount of the entire sample, whereas micro XAFS is a measurement method for measuring the X-ray absorption spectrum in a minute region of a sample, and is usually about 100 nm or less. Has a spatial resolution of. Therefore, by adopting Micro XAFS, the absorption of each cross-linking material, filler, etc. contained in the sample is detected, and the absorption amount of each material such as sulfur vulcanizer, vulcanization accelerator, filler, etc. The difference can be detected.

空間分解能に優れるという点から、マイクロXAFSは軟X線領域で測定する方法(マイクロNEXAFS)が好ましく、走査型透過X線顕微鏡(STXM:Scanning Transmission X−ray Microscopy)法やX線光電子顕微鏡(XPEEM:X−ray Photo emission electron microscopy)法、等が挙げられる。 From the viewpoint of excellent spatial resolution, the method of measuring in the soft X-ray region (micro NEXAFS) is preferable for the micro XAFS, and the scanning transmission X-ray microscope (STXM) method or the X-ray photoemission electron microscope (XPEEM) is preferable. : X-ray Photoemission electron microscope) method, and the like can be mentioned.

ポリマー中の硫黄加硫剤、加硫促進剤がX線損傷しやすいため、X線損傷が起きにくい方法での測定が望ましく、この点から、X線損傷が生じにくいSTXM法の方が好適である。また、測定の際、試料を冷却することでX線損傷を防ぐことが更に好ましい。 Since the sulfur vulcanizer and vulcanization accelerator in the polymer are easily damaged by X-rays, it is desirable to measure by a method that does not easily cause X-ray damage. From this point, the STXM method, which is less likely to cause X-ray damage, is preferable. is there. Further, it is more preferable to prevent X-ray damage by cooling the sample at the time of measurement.

STXM法は、フレネルゾーンプレートで集光した高輝度X線を試料の微小領域に照射し、試料を抜けた光(透過光)と入射光を測定することで微小領域のX線吸収量を測定できる。なお、フレネルゾーンプレートの代わりに、X線反射ミラーを用いたKirkpatrick−Baez(K−B)集光系で高輝度X線を集光してもよい。 The STXM method measures the amount of X-ray absorption in a minute region by irradiating a minute region of the sample with high-intensity X-rays focused by a Fresnel zone plate and measuring the light that has passed through the sample (transmitted light) and the incident light. it can. Instead of the Fresnel zone plate, a Kirkpatrick-Baez (KB) condensing system using an X-ray reflecting mirror may be used to condense high-intensity X-rays.

X線エネルギーで走査するため光源には連続X線発生装置が必要であり、詳細な化学状態を解析するには高いS/N比及びS/B比のX線吸収スペクトルを測定する必要がある。そのため、シンクロトロンから放射されるX線は、少なくとも1010(photons/s/mrad/mm/0.1%bw)以上の輝度を有し、且つ連続X線源であるため、測定には最適である。尚、bwはシンクロトロンから放射されるX線のband widthを示す。 A continuous X-ray generator is required for the light source to scan with X-ray energy, and it is necessary to measure X-ray absorption spectra with high S / N ratio and S / B ratio in order to analyze detailed chemical states. .. Therefore, X-rays emitted from the synchrotron, since at least 10 10 (photons / s / mrad 2 / mm 2 /0.1%bw) has more brightness, a and continuous X-ray source, the measurement Is optimal. Note that bw indicates the band width of X-rays emitted from the synchrotron.

高輝度X線の輝度(photons/s/mrad/mm/0.1%bw)は、好ましくは1010以上、より好ましくは1011以上、更に好ましくは1012以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 High-intensity X-ray intensity (photons / s / mrad 2 / mm 2 /0.1%bw) is preferably 10 10 or more, more preferably 10 11 or more, more preferably 10 12 or more. The upper limit is not particularly limited, but it is preferable to use an X-ray intensity of a degree or less that does not cause radiation damage.

また、高輝度X線の光子数(photons/s)は、好ましくは10以上、より好ましくは10以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 Further, the photon number of the high intensity X-ray (photons / s) is preferably 10 7 or more, more preferably 10 9 or more. The upper limit is not particularly limited, but it is preferable to use an X-ray intensity of not more than a degree that does not cause radiation damage.

高輝度X線を用いて走査するエネルギー範囲は、好ましくは4000eV以下、より好ましくは1500eV以下、更に好ましくは1000eV以下である。4000eVを超えると、目的とする高分子複合材料を分析できないおそれがある。下限は特に限定されない。 The energy range scanned using high-intensity X-rays is preferably 4000 eV or less, more preferably 1500 eV or less, and even more preferably 1000 eV or less. If it exceeds 4000 eV, the target polymer composite material may not be analyzed. The lower limit is not particularly limited.

上記のマイクロXAFS法を用いて、充填剤、架橋材料等の構造体を含む高分子複合材料のX線吸収スペクトル測定を行い、次いでマッピング画像(得られたX線吸収スペクトルの2次元マッピングによる画像)、各材料の標準スペクトル、等を解析することで、試料中に含まれる各構造体の化学状態の特定及びそのサイズ、分散状態を観察できる。 Using the above micro XAFS method, the X-ray absorption spectrum of the polymer composite material including the structure such as filler and cross-linking material is measured, and then the mapping image (image by two-dimensional mapping of the obtained X-ray absorption spectrum). ), The standard spectrum of each material, etc., it is possible to identify the chemical state of each structure contained in the sample and observe its size and dispersion state.

なお、本発明における構造体のサイズは、STXM等で観察した構造体のサイズの平均値である。つまり、STXM等に供した試料(高分子複合材料)中に存在する各構造体のサイズの平均値である。構造体の形状が球形の場合には球の直径をその構造体のサイズとし、針状又は棒状の場合には短径をその構造体のサイズとし、不定型の場合には中心部からの平均粒径を構造体のサイズとする。 The size of the structure in the present invention is an average value of the sizes of the structures observed by STXM or the like. That is, it is an average value of the sizes of each structure existing in the sample (polymer composite material) used for STXM or the like. If the shape of the structure is spherical, the diameter of the sphere is the size of the structure, if it is needle-shaped or rod-shaped, the minor diameter is the size of the structure, and if it is indefinite, the average from the center. The particle size is the size of the structure.

次いで、測定された試料中の構造体(充填剤、架橋材料等)のサイズに基いて、図1(b)に示されているような構造体のサイズと同程度の試料厚みにする方法、等により、構造体のサイズを基に試料の厚みを決定する。 Then, based on the measured size of the structure (filler, cross-linking material, etc.) in the sample, a method of making the sample thickness comparable to the size of the structure as shown in FIG. 1 (b). The thickness of the sample is determined based on the size of the structure.

試料の厚みは、構造体の力学物性を精度良く測定できる範囲で適宜設定すればよいが、(構造体のサイズ)×0.5≦試料の厚み≦(構造体のサイズ)×2.0の範囲に調整することが好ましく、(構造体のサイズ)×0.7≦試料の厚み≦(構造体のサイズ)×1.7の範囲に調整することがより好ましい。 The thickness of the sample may be appropriately set within a range in which the mechanical properties of the structure can be measured with high accuracy, but (structure size) × 0.5 ≦ sample thickness ≦ (structure size) × 2.0. It is preferable to adjust to a range, and it is more preferable to adjust to a range of (structure size) × 0.7 ≦ sample thickness ≦ (structure size) × 1.7.

試料の作製は、上記サイズの試料の作製が可能な方法を適宜選択すればよい。例えば、ナイフ、はさみ、カミソリ等で小片を切り出し、切り出した小片をクライオミクロトーム等を用いて切削して平滑面を形成することで作製できる。 For the preparation of the sample, a method capable of preparing a sample of the above size may be appropriately selected. For example, it can be produced by cutting out small pieces with a knife, scissors, a razor or the like, and cutting the cut out small pieces with a cryomicrotome or the like to form a smooth surface.

続いて、所定厚みに調整し、かつ平滑面が形成された試料について、力学物性を測定する。力学物性を測定する方法は特に限定されないが、試料表面と接触することで力学物性を測定する方法が望ましく、例えば、原子間力顕微鏡だけでなく、走査型フォース顕微鏡、ナノインデンター等も挙げられる。このように試料表面を接触させて測定することで、ナノ〜ミクロスケールで測定が可能となる。 Subsequently, the mechanical characteristics of the sample adjusted to a predetermined thickness and having a smooth surface formed are measured. The method for measuring the mechanical characteristics is not particularly limited, but a method for measuring the mechanical characteristics by contacting with the sample surface is desirable, and examples thereof include not only an atomic force microscope but also a scanning force microscope and a nanoindenter. .. By making the sample surfaces in contact with each other in this way, measurement can be performed on a nano to micro scale.

原子間力顕微鏡(AFM)は、先端に探針が装着されたカンチレバーを備えたもので、試料がAFMによって観察される場合、探針が試料の表面を走査する。探針は、試料の表面に沿って動く。探針の動きは、カンチレバーにより検出される。カンチレバーによって検出された探針の動きが画像化されることにより、AFM像が得られる。AFMでは、試料の表面の立体的な形状が検出される。AFMでは、更に試料の表面の硬さ、摩擦力等の力学的特性が測定できる。 Atomic force microscope (AFM) is equipped with a cantilever with a probe attached to the tip, and when the sample is observed by AFM, the probe scans the surface of the sample. The probe moves along the surface of the sample. The movement of the probe is detected by the cantilever. An AFM image is obtained by imaging the movement of the probe detected by the cantilever. The AFM detects the three-dimensional shape of the surface of the sample. With AFM, mechanical properties such as hardness and frictional force on the surface of the sample can be further measured.

使用可能なAFMとして、Bruker AXS社製MultiMode8、日立ハイテクサイエンス社製E−sweep等が例示されるが、これらの機種に限定されるものではない。AFMの測定条件は、試料の種類や表面状態に応じて適宜選択される。例えば、タングステン、イリジウム、窒化珪素等を材質とする探針が使用できる。図3(a)、(b)。(c)は、AFM像の一例である(後述の実施例、比較例1〜2)。 Examples of AFMs that can be used include Bruker AXS MultiMode 8 and Hitachi High-Tech Science E-sweep, but the AFM is not limited to these models. The AFM measurement conditions are appropriately selected according to the type and surface condition of the sample. For example, a probe made of tungsten, iridium, silicon nitride or the like can be used. 3 (a) and 3 (b). (C) is an example of an AFM image (Examples described later, Comparative Examples 1 and 2).

本発明では、AFMの任意のモードで力学物性を測定でき、適切な測定モードを適宜選択し、観察すればよい。適切な測定モードは、ポリマーの種類や、AFM観察に供される試料の表面状態に応じて選択される。例えば、試料の表面の(微少領域)の硬さが測定されるフォースモジュレーションモード、試料の表面における弾性率やヤング率の分布が測定可能なフォースボリュームモード、更にはフォースカーブ測定が挙げられる。また、コンタクトモード、タッピングモード、ノンコンタクトモードも挙げられる。 In the present invention, the mechanical properties can be measured in any mode of AFM, and an appropriate measurement mode may be appropriately selected and observed. The appropriate measurement mode is selected depending on the type of polymer and the surface condition of the sample to be subjected to AFM observation. For example, a force modulation mode in which the hardness of the surface (microregion) of the sample is measured, a force volume mode in which the distribution of elastic modulus and Young's modulus on the surface of the sample can be measured, and a force curve measurement can be mentioned. In addition, a contact mode, a tapping mode, and a non-contact mode can also be mentioned.

本発明の方法において、例えば、高分子複合材料中の構造体の硬さ等は、AFMで測定可能な力学的特性である。フォーボリューム測定で得られるフォースカーブを、HertzやDMT、JKRなどの力学モデルでフィッティングすることで、ヤング率を算出できる。 In the method of the present invention, for example, the hardness of the structure in the polymer composite material is a mechanical property that can be measured by AFM. Young's modulus can be calculated by fitting the force curve obtained by the force volume measurement with a mechanical model such as Hertz, DMT, or JKR.

以上のとおり、本発明の方法によれば、高分子複合材料(試料)中に含まれるフィラー、架橋材料等の構造体について、硬さ等の力学物性を測定することが可能となる。 As described above, according to the method of the present invention, it is possible to measure mechanical properties such as hardness of a structure such as a filler and a crosslinked material contained in a polymer composite material (sample).

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.

(試料作成方法)
以下の配合内容に従い、硫黄及び加硫促進剤以外の材料を充填率が58%になるように(株)神戸製鋼所製の1.7Lバンバリーミキサーに充填し、80rpmで140℃に到達するまで混練した(工程1)。工程1で得られた混練物に、硫黄及び加硫促進剤を以下の配合にて添加し、160℃で20分間加硫することでゴム試料を得た(工程2)。
(Sample preparation method)
According to the following formulation, fill the 1.7L Banbury mixer manufactured by Kobe Steel, Ltd. with materials other than sulfur and vulcanization accelerator so that the filling rate is 58%, and reach 140 ° C at 80 rpm. Kneaded (step 1). A rubber sample was obtained by adding sulfur and a vulcanization accelerator to the kneaded product obtained in step 1 with the following composition and vulcanizing at 160 ° C. for 20 minutes (step 2).

(配合)
天然ゴム50質量部、ブタジエンゴム50質量部、酸化亜鉛3質量部、ステアリン酸2質量部、粉末硫黄1.2質量部、加硫促進剤CZ1質量部、加硫促進剤DPG0.5質量部。
(Mixing)
50 parts by mass of natural rubber, 50 parts by mass of butadiene rubber, 3 parts by mass of zinc oxide, 2 parts by mass of stearic acid, 1.2 parts by mass of powdered sulfur, 1 part by mass of vulcanization accelerator CZ, 0.5 parts by mass of vulcanization accelerator DPG.

なお、使用材料は、以下のとおりである。
天然ゴム:TSR20
ブタジエンゴム:宇部興産(株)製BR150B
酸化亜鉛:東邦亜鉛(株)製の銀嶺R
ステアリン酸:日油(株)製の椿
粉末硫黄(5%オイル含有):鶴見化学工業(株)製の5%オイル処理粉末硫黄(オイル分5質量%含む可溶性硫黄)
加硫促進剤CZ:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド)
加硫促進剤DPG:大内新興化学工業(株)製のノクセラーD(1,3−ジフェニルグアニジン)
The materials used are as follows.
Natural rubber: TSR20
Butadiene rubber: BR150B manufactured by Ube Industries, Ltd.
Zinc oxide: Ginmine R manufactured by Toho Zinc Co., Ltd.
Stearic acid: Tsubaki powdered sulfur manufactured by NOF Corporation (containing 5% oil): 5% oil-treated powdered sulfur manufactured by Tsurumi Chemical Industry Co., Ltd. (soluble sulfur containing 5% by mass of oil)
Vulcanization accelerator CZ: Noxeller CZ (N-cyclohexyl-2-benzothiazil sulfenamide) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
Vulcanization accelerator DPG: Noxeller D (1,3-diphenylguanidine) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.

〔比較例1〜2〕
加硫ゴムシートからカミソリなどを用いて小片を切り出した。切り出した小片を更にクライオミクロトームを用いて切削して平滑面を作製し、マイカ板にマウントした。
(比較例1)試料厚み:2mm
(比較例2)試料厚み:500nm
[Comparative Examples 1 and 2]
Small pieces were cut out from the vulcanized rubber sheet using a razor or the like. The cut small pieces were further cut using a cryomicrotome to prepare a smooth surface, which was mounted on a mica plate.
(Comparative Example 1) Sample thickness: 2 mm
(Comparative Example 2) Sample thickness: 500 nm

〔実施例〕
比較例と同様に、加硫ゴムシートから切り出した小片を更にクライオミクロトームを用いて切削して平滑面を作製し、マイカ板にマウントした。
試料厚み:STXM法を用いて測定した加硫促進剤のサイズから1μmとした(図2:NEXAFSの2次元マッピングを行って得られた窒素K殼吸収端のマッピング画像の一例)。
〔Example〕
Similar to the comparative example, a small piece cut out from the vulcanized rubber sheet was further cut using a cryomicrotome to prepare a smooth surface, and mounted on a mica plate.
Sample thickness: 1 μm from the size of the vulcanization accelerator measured using the STXM method (Fig. 2: An example of a mapping image of the nitrogen K shell absorption edge obtained by performing two-dimensional mapping of NEXAFS).

<AFM測定>
実施例・比較例で作製した試料の平滑面をフォースボリュームモード測定し、弾性率の分布像(弾性率像)を得た(図3(a):実施例、図3(b):比較例1、図3(c):比較例2)。
装置:Bruker AXS社製 MultiMode8
測定範囲:10μm×10μm
カンチレバー:0.5N/m
周波数:5Hz
<AFM measurement>
The smooth surface of the sample prepared in Examples and Comparative Examples was measured in force volume mode to obtain a distribution image (elastic modulus image) of elastic modulus (FIG. 3 (a): Example, FIG. 3 (b): Comparative Example. 1. FIG. 3 (c): Comparative example 2).
Equipment: Bruker AXS MultiMode8
Measurement range: 10 μm x 10 μm
Cantilever: 0.5N / m
Frequency: 5Hz

図3の実施例、比較例1、2の弾性率像では、いずれも海島構造が観察されているが、島の数がかなり異なることがわかる。図3(a)の実施例の弾性率像は、島の部分は1〜2μmサイズで、分散状態がSTXM法で観察された加硫促進剤の分散状態と近い。また、島部分は20MPa以上と硬く、海部分は2〜3MPaと柔らかい。このことから島部分は加硫促進剤、海部分は主に高分子だと考えられる。以上の結果から、正確に弾性率マッピング測定が実施されたと考えられる。 In the elastic modulus images of Examples 1 and 2 of FIG. 3, the sea-island structure is observed, but it can be seen that the number of islands is considerably different. In the elastic modulus image of the example of FIG. 3A, the island portion has a size of 1 to 2 μm, and the dispersed state is close to the dispersed state of the vulcanization accelerator observed by the STXM method. The island part is as hard as 20 MPa or more, and the sea part is as soft as 2 to 3 MPa. From this, it is considered that the island part is mainly a vulcanization accelerator and the sea part is mainly a polymer. From the above results, it is considered that the elastic modulus mapping measurement was performed accurately.

一方、比較例1は、島部分の数が少ないことがわかる。これは、試料厚みが構造体サイズよりかなり大きいため、構造体が高分子に押し込まれ、硬さが正確に測定できていないと考えられる。また、比較例2も島の数が少ない。これは、試料厚みを薄くしたため、構造体も薄くなり、弾性率が正しく測定できない、又はミクロトームでカットした際、構造体が抜け落ちてしまったためであると考えられる。 On the other hand, in Comparative Example 1, it can be seen that the number of islands is small. This is because the sample thickness is considerably larger than the structure size, so it is considered that the structure is pushed into the polymer and the hardness cannot be measured accurately. In addition, Comparative Example 2 also has a small number of islands. It is considered that this is because the thickness of the sample was reduced, so that the structure was also thinned, and the elastic modulus could not be measured correctly, or the structure fell off when cut with a microtome.

更に、加硫促進剤に代えて、硫黄、酸化亜鉛のサイズに合わせて実施した場合や、シリカ、カーボンブラックを添加した試料のフィラーのサイズに合わせて実施した場合についても、実施例と同様、正確に弾性率マッピング測定が実施できた。 Further, in the case of carrying out according to the size of sulfur and zinc oxide instead of the vulcanization accelerator, and the case of carrying out according to the size of the filler of the sample to which silica and carbon black are added, the same as in the examples. The elastic modulus mapping measurement could be performed accurately.

Claims (5)

構造体を含む高分子複合材料の力学物性測定方法であって、
高分子複合材料中の構造体のサイズを基に決定した厚みを持つ試料を用いて測定し、
試料は、高分子複合材料中の構造体の大きさと同程度の厚みに調整したもので、かつ充填剤及び架橋材料からなる群より選択される少なくとも1種を含むものであることを特徴とする力学物性測定方法。
A method for measuring mechanical properties of polymer composite materials including structures.
Measured using a sample with a thickness determined based on the size of the structure in the polymer composite .
The sample is adjusted to have a thickness similar to the size of the structure in the polymer composite material, and is characterized by containing at least one selected from the group consisting of a filler and a cross-linking material. Measuring method.
構造体は、充填剤及び架橋材料の少なくとも1種以上である請求項1記載の力学物性測定方法。 The method for measuring mechanical characteristics according to claim 1, wherein the structure is at least one of a filler and a cross-linking material. 構造体のサイズは、透過型電子顕微鏡、走査型電子顕微鏡又は走査型透過X線顕微鏡を用いて測定されたものである請求項1又は2記載の力学物性測定方法。 The method for measuring mechanical characteristics according to claim 1 or 2, wherein the size of the structure is measured using a transmission electron microscope, a scanning electron microscope, or a scanning transmission X-ray microscope. 試料の厚みを下記式の範囲に調整する請求項1〜3のいずれかに記載の力学物性測定方法。The method for measuring mechanical characteristics according to any one of claims 1 to 3, wherein the thickness of the sample is adjusted within the range of the following formula.
(構造体のサイズ)×0.5≦試料の厚み≦(構造体のサイズ)×2.0(Structure size) x 0.5 ≤ Sample thickness ≤ (Structure size) x 2.0
試料表面と接触させてナノ〜ミクロスケールの高分子複合材料の力学物性を測定する請求項1〜4のいずれかに記載の力学物性測定方法。 The method for measuring mechanical characteristics according to any one of claims 1 to 4, wherein the mechanical properties of the nano- to micro-scale polymer composite material are measured by contacting with the sample surface.
JP2017082036A 2017-04-18 2017-04-18 Mechanical property measurement method Active JP6852538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017082036A JP6852538B2 (en) 2017-04-18 2017-04-18 Mechanical property measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017082036A JP6852538B2 (en) 2017-04-18 2017-04-18 Mechanical property measurement method

Publications (2)

Publication Number Publication Date
JP2018178016A JP2018178016A (en) 2018-11-15
JP6852538B2 true JP6852538B2 (en) 2021-03-31

Family

ID=64281099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017082036A Active JP6852538B2 (en) 2017-04-18 2017-04-18 Mechanical property measurement method

Country Status (1)

Country Link
JP (1) JP6852538B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7258292B2 (en) * 2019-05-16 2023-04-17 国立大学法人東北大学 Analysis method for polymer composites
JP7070809B2 (en) * 2019-12-12 2022-05-18 昭和電工マテリアルズ株式会社 Surface analysis methods, surface analysis systems, and surface analysis programs
JP7464943B2 (en) 2020-11-09 2024-04-10 Toyo Tire株式会社 Method for measuring elastic modulus of vulcanized rubber
JP2023141840A (en) 2022-03-24 2023-10-05 住友ゴム工業株式会社 Method for predicting wear resistance performance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040129063A1 (en) * 2003-01-03 2004-07-08 Mehdi Balooch Method for performing nanoscale dynamics imaging by atomic force microscopy
JP4213577B2 (en) * 2003-12-05 2009-01-21 独立行政法人科学技術振興機構 Graft-polymerized chain-fixed substrate, method for producing graft-polymerized chain-fixed substrate and measuring method
JP2008231233A (en) * 2007-03-20 2008-10-02 Kyoto Univ Thin polymer film, patterned substrate, patterned medium for magnetic recording and their manufacturing methods
JP2008256422A (en) * 2007-04-03 2008-10-23 Hitachi High-Technologies Corp Device and method for evaluating thin film
WO2013065809A1 (en) * 2011-11-04 2013-05-10 住友ゴム工業株式会社 Deterioration analyzing method
JP2014190883A (en) * 2013-03-28 2014-10-06 Sumitomo Rubber Ind Ltd Phase structure observation method
JP2015132518A (en) * 2014-01-10 2015-07-23 住友ゴム工業株式会社 Method for investigating chemical state of sulfur

Also Published As

Publication number Publication date
JP2018178016A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP6852538B2 (en) Mechanical property measurement method
JP5825797B2 (en) Evaluation method for polymer materials
JP5594556B2 (en) Method for producing masterbatch and rubber composition
JP5969494B2 (en) Method for evaluating rebound resilience, hardness and energy loss of polymer materials
Kohjiya et al. Three-dimensional nano-structure of in situ silica in natural rubber as revealed by 3D-TEM/electron tomography
JP5658219B2 (en) Method for evaluating energy loss, chipping resistance and wear resistance of polymer materials
JP6408906B2 (en) Method for evaluating energy loss and anti-wear performance of polymeric materials
JP2017218536A (en) Rubber composition and production method of the same, and method for evaluating wear resistance of rubber composition
JP6613637B2 (en) Method for evaluating response characteristics of internal structure of polymer materials
JP2014190883A (en) Phase structure observation method
JP2017116330A (en) Analysis method of filler structure in polymeric material
JPWO2020121788A1 (en) Rubber composition, rubber composition for tread, and pneumatic tires
US11458767B2 (en) Pneumatic tire and crosslinked rubber composition
US10654316B2 (en) Pneumatic tire and crosslinked rubber composition
JP2018096905A (en) Abrasion proof performance prediction method
JP7037935B2 (en) Reinforcing agent for polymer materials Hierarchical structure evaluation method
JP2013056984A (en) Rubber composition and pneumatic tire using the same
JP6285743B2 (en) How to observe rubber materials
JP2020027084A (en) Crosslinked structure visualization method
JP6822160B2 (en) Evaluation method for sheet scraping of polymer composite materials
JP2007314629A (en) Rubber composition for tire inner liner
JP6473031B2 (en) Evaluation method of silica
JP7357839B2 (en) Method for evaluating reinforcing properties of silica
US20180297404A1 (en) Pneumatic tire and crosslinked rubber composition
JP7101589B2 (en) Bound rubber measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6852538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250