JP2006133167A - Method for evaluating heat resistance of rubber composition and method for producing heat resisting rubber composition - Google Patents

Method for evaluating heat resistance of rubber composition and method for producing heat resisting rubber composition Download PDF

Info

Publication number
JP2006133167A
JP2006133167A JP2004325020A JP2004325020A JP2006133167A JP 2006133167 A JP2006133167 A JP 2006133167A JP 2004325020 A JP2004325020 A JP 2004325020A JP 2004325020 A JP2004325020 A JP 2004325020A JP 2006133167 A JP2006133167 A JP 2006133167A
Authority
JP
Japan
Prior art keywords
rubber
sulfur
amount
rubber composition
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004325020A
Other languages
Japanese (ja)
Inventor
Makio Mori
麻樹夫 森
Omimasa Kitamura
臣将 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2004325020A priority Critical patent/JP2006133167A/en
Publication of JP2006133167A publication Critical patent/JP2006133167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating heat resistance of a rubber composition after vulcanization. <P>SOLUTION: The heat resistance evaluation method for rubber composition comprises, chemically analyzing and determining, in a vulcanized rubber obtained by sulfur-vulcanizing a rubber composition mainly composed of a diene-based rubber, the amount of sulfur which binds to rubber molecules present in the vulcanized rubber by combustion/infrared detection method, determining a value Gg representing the amount of sulfur cross-linkage bound between two rubber molecules from a modulus (Gf) at 100% elongation in tensile test of the vulcanized rubber, mixing amounts of carbon black and/or silica in the rubber composition (volume fraction ψ) and DBP absorption amounts of the carbon black and/or silica mixed, and predicting thermal deterioration resistance of the vulcanized rubber by the value of Gg/bound sulfur amount. A heat resisting rubber composition is produced by selecting rubber components, compositions of carbon black and/or silica and sulfur, and a vulcanization condition. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ジエン系ゴムを主成分としたゴム成分にカーボンブラック及び/又はシリカ並びに硫黄を配合したゴム組成物の耐熱老化性を評価する方法に関し、またそのような評価方法を用いて耐熱性ゴム組成物、特に空気入りラジアルタイヤの長寿命化を図るのに好適なトレッド用ゴム組成物を製造する方法に関する。   The present invention relates to a method for evaluating the heat aging resistance of a rubber composition in which carbon black and / or silica and sulfur are blended with a rubber component mainly composed of a diene rubber, and the heat resistance using such an evaluation method. The present invention relates to a method for producing a rubber composition for a tread that is suitable for extending the life of a rubber composition, particularly a pneumatic radial tire.

従来、タイヤトレッド用ゴム組成物などのゴム組成物を硫黄加硫する場合には先ず任意の加硫温度におけるゴム組成物の加硫速度をレオメーターによって測定して加硫時間を決定するのが一般的であった。そして、加硫されたベルトコートゴムの熱劣化の特性は、加硫ゴムをオーブンに入れて加速劣化させてゴム材料の伸びやモジュラスの変化率を求めて推定し、その結果に基いてゴム組成物の加硫条件を求めていた。しかしながら、この方法では実車と異なる熱老化促進条件での熱老化のために、加硫ゴム製品の熱老化特性を正確に把握することができず、しかもゴム製品の生産性を重視した高めの温度条件にてゴム組成物を加硫するのが一般的であり、また、加硫ゴムの熱老化特性が正確に把握されないために加硫ゴム中の内部ゴムに加硫むらが生じるのを防ぐために、実際に必要な加硫時間よりも長い時間加硫するのが一般的であった。しかし、かかる方法で、タイヤなどのゴム製品の製造を行うと、加硫ゴムの熱老化特性が不十分となり、例えばタイヤの寿命が短くなるという問題があった。   Conventionally, when a rubber composition such as a rubber composition for a tire tread is sulfur vulcanized, the vulcanization time is first determined by measuring the vulcanization rate of the rubber composition at an arbitrary vulcanization temperature with a rheometer. It was general. The thermal degradation characteristics of the vulcanized belt coat rubber were estimated by putting the vulcanized rubber in an oven and accelerated aging to determine the elongation of the rubber material and the rate of change in modulus. Based on the results, the rubber composition was estimated. We were seeking vulcanization conditions for the product. However, this method cannot accurately grasp the heat aging characteristics of the vulcanized rubber product due to heat aging under different heat aging promotion conditions from the actual vehicle, and it is also possible to increase the temperature of the rubber product. It is common to vulcanize the rubber composition under the conditions, and in order to prevent uneven vulcanization of the internal rubber in the vulcanized rubber because the heat aging characteristics of the vulcanized rubber are not accurately grasped. In general, the vulcanization time is longer than the actually required vulcanization time. However, when a rubber product such as a tire is manufactured by such a method, there is a problem that the heat aging characteristic of the vulcanized rubber becomes insufficient, for example, the life of the tire is shortened.

上記問題を解決すべく、我々は、天然ゴム配合系のベルトコートゴムにおいて引っ張り試験の100%モジュラス(M100)の値から推定した架橋密度と固体NMR法で定量した硫黄結合量との比率を「硫黄結合が分子間架橋に用いられる効率」とし、この「効率」が加硫ゴムの耐熱劣化性を予測する尺度であることを利用し、高寿命なゴムを与えるための加工条件(加硫温度)を正しく推定する方法を提案した(特許文献1参照)。その後、更にこの技術の応用展開を検討してきたが、固体NMR法はハイビニルBRやSBRなどの硫黄結合量の測定には好適ではなく、この方法をタイヤトレッド部のコンパウンドに応用することには限界点があることに気付いた。   In order to solve the above problem, we have determined the ratio between the crosslinking density estimated from the value of 100% modulus (M100) of the tensile test and the amount of sulfur bond determined by solid state NMR method in the belt coating rubber of the natural rubber compounding system. "Sulfur bonds are used for intermolecular crosslinking", and this "efficiency" is a measure for predicting the heat resistance of vulcanized rubber. ) Has been proposed (see Patent Document 1). Since then, the application development of this technology has been studied. However, the solid-state NMR method is not suitable for measuring the amount of sulfur bonds such as high vinyl BR and SBR, and there is a limit to applying this method to the compound in the tire tread portion. I noticed that there was a point.

特願2003−122065号出願明細書(2003年4月25日出願)Application for Japanese Patent Application No. 2003-122065 (filed on April 25, 2003)

本発明者らは前記課題を解決して、ハイビニルBRやSBRなどの広範囲のゴム組成物に対して加硫後の耐熱性を評価することができる方法を開発することを目的とし、化学分析(アセトン抽出及びそれに続く燃焼・赤外検出法)により結合硫黄量を得、この値を前述の特許文献1のNMR法からの値に代えて使用することにより耐熱老化性の予測が可能であることを見出した。   In order to solve the above problems, the present inventors have developed a method capable of evaluating the heat resistance after vulcanization for a wide range of rubber compositions such as high vinyl BR and SBR, and chemical analysis ( It is possible to predict the heat aging resistance by obtaining the bound sulfur amount by acetone extraction and subsequent combustion / infrared detection method) and using this value instead of the value from the NMR method of Patent Document 1 described above. I found.

従って、本発明はゴム組成物の加硫後の結合硫黄量を化学分析に基づいて測定することによって、ゴム組成物の加硫後の耐熱性を評価する方法及びそれによって耐熱性に優れかつ長寿命化したゴム組成物、例えばタイヤトレッド用として好適なゴム組成物を製造する方法を提供することを目的とする。   Accordingly, the present invention provides a method for evaluating the heat resistance after vulcanization of a rubber composition by measuring the amount of bound sulfur after vulcanization of the rubber composition, and thereby has excellent heat resistance and is long. It is an object of the present invention to provide a method for producing a rubber composition having a long life, for example, a rubber composition suitable for a tire tread.

本発明に従えば、ジエン系ゴムを主成分としたゴム成分100重量部、カーボンブラック及び/又はシリカが合計で5〜120重量部並びに硫黄1〜10重量部を含むゴム組成物を硫黄加硫して得られる加硫ゴムにおいて、加硫ゴム中に存在するゴム分子と結合した硫黄の量(結合硫黄量)を燃焼・赤外検出法にて化学分析して求めると共に、加硫ゴムの引張り試験(JIS K6251に準拠して測定)における100%伸長時のモジュラス(Gf)、ゴム組成物中のカーボンブラック及び/又はシリカの配合量(体積分率φ)並びに配合したカーボンブラック及び/又はシリカのDBP(フタル酸ジブチル)吸油量(JIS K6217−4に準拠して測定)を用いて式(I)及び(II):   According to the present invention, a rubber composition containing 100 parts by weight of a rubber component mainly composed of a diene rubber, 5 to 120 parts by weight of carbon black and / or silica, and 1 to 10 parts by weight of sulfur is sulfur vulcanized. The amount of sulfur bonded to the rubber molecules present in the vulcanized rubber (the amount of bound sulfur) is obtained by chemical analysis by combustion / infrared detection and the vulcanized rubber is pulled. Modulus (Gf) at 100% elongation in the test (measured in accordance with JIS K6251), blending amount of carbon black and / or silica (volume fraction φ) in the rubber composition, and blended carbon black and / or silica DBP (dibutyl phthalate) oil absorption (measured according to JIS K6217-4) of formula (I) and (II):

Figure 2006133167
Figure 2006133167

により2個のゴム分子間に結合した架橋硫黄の量を代表する値Ggを求め、そして、Gg/結合硫黄量の値によって加硫ゴムの耐熱劣化性を予測するゴム組成物の耐熱性評価方法が提供される。 To obtain a value Gg representative of the amount of crosslinked sulfur bonded between two rubber molecules, and to predict the heat deterioration resistance of the vulcanized rubber according to the value of Gg / bonded sulfur amount Is provided.

本発明に従えば、また、前記Gg/結合硫黄量の比が120以上となるように、ゴム成分、カーボンブラック及び/又はシリカ並びに硫黄の組成並びに加硫条件を選定することによって耐熱性ゴム組成物を製造する方法が提供される。   According to the present invention, the heat-resistant rubber composition is selected by selecting a rubber component, carbon black and / or silica, and sulfur composition and vulcanization conditions so that the Gg / bonded sulfur ratio is 120 or more. A method of manufacturing an article is provided.

本発明によれば、加硫ゴム中における硫黄のゴム分子との結合硫黄量を化学分析法(アセトン抽出及びそれに続く燃焼・赤外検出法)との組合せにより求めるので、前記固体NMR法によって求めた値に比較してジエン系ゴムの種類によらず、広く結合硫黄量を求めることができるので、前述の方法に比較して広範囲の加硫ゴムの耐熱性をより正しく評価することができる。   According to the present invention, the amount of sulfur bound to the rubber molecules of sulfur in the vulcanized rubber is determined by a combination with a chemical analysis method (acetone extraction followed by combustion / infrared detection method). Compared with the above-mentioned values, the amount of bound sulfur can be obtained widely regardless of the type of diene rubber, so that the heat resistance of a wide range of vulcanized rubber can be more correctly evaluated than the above-mentioned method.

本発明者らは熱老化に対する耐久性の高い、例えばタイヤトレッド用ゴムの検討を進めていく過程で、ゴム分子間を架橋させるために配合する硫黄がゴム分子間に架橋せずにゴム分子に結合する構造の量が多くなるほど、加硫ゴムの熱老化に対する耐久性が低くなることを見出した。   In the process of studying rubber for tire tread, for example, which has high durability against heat aging, the present inventors do not crosslink between rubber molecules, and sulfur compounded to rubber molecules does not crosslink between rubber molecules. It has been found that the greater the amount of structure bonded, the lower the durability of the vulcanized rubber against thermal aging.

本発明者らはさらに、熱老化に対する耐久性の高い、例えばタイヤトレッド用ゴムの検討を進めていく過程で、ゴム組成物に配合された硫黄が分子間の架橋に使われる効率が加硫時の温度と時間の条件によって決り、熱老化に対する耐久性の高い加硫ゴムを製造するためにはゴム組成物に適した加硫の条件を選ぶ必要があることを見出した。   Further, the present inventors have further studied the efficiency of the sulfur compounded in the rubber composition used for cross-linking between molecules during the process of studying rubber for tire tread having high durability against heat aging. It was found that it was necessary to select vulcanization conditions suitable for the rubber composition in order to produce a vulcanized rubber having high durability against heat aging, depending on the temperature and time conditions.

ゴムを硫黄により加硫(架橋)させることによってゴム分子間に硫黄(S又はSx)が橋かけ状に結合し、加硫ゴムが得られる。しかし、実際には加硫ゴム中には、架橋に寄与しない硫黄が多く存在する。例えば硫黄が一個のゴム分子と結合してブランチ状になったり、同一のゴム分子に結合してループ状になったりしている。これらの結合硫黄はゴム製品が使用状態で熱が加わると、架橋反応が起こり、ゴム製品の硬化が進んで硬くなったり、脆くなったりして製品寿命を低下させる原因となる。   By vulcanizing (crosslinking) the rubber with sulfur, sulfur (S or Sx) is bonded in a crosslinked manner between the rubber molecules to obtain a vulcanized rubber. However, in fact, there are many sulfurs that do not contribute to crosslinking in the vulcanized rubber. For example, sulfur binds to one rubber molecule to form a branch, or binds to the same rubber molecule to form a loop. These bonded sulfurs cause a cross-linking reaction when heat is applied while the rubber product is in use, causing the rubber product to harden and become brittle or brittle, thereby reducing the product life.

本発明者らは硫黄が架橋に使われる効率はゴム組成物の加硫の条件によって大きく作用されることを見出した。しかしながら、加硫ゴムの熱老化に対する耐久性を従来技術によって正確に求めることは困難であり、さらにベルトコート用に作られた全てのゴム配合の熱老化耐久性を同時に満足させる加硫条件は無く、ゴム配合ごとに最適な加硫条件を求める簡単かつ正確な解析手法が望まれた。   The present inventors have found that the efficiency with which sulfur is used for crosslinking is greatly affected by the vulcanization conditions of the rubber composition. However, it is difficult to accurately determine the durability of vulcanized rubber against heat aging by conventional technology, and there is no vulcanization condition that satisfies the heat aging durability of all rubber blends made for belt coats at the same time. Therefore, a simple and accurate analysis method for obtaining optimum vulcanization conditions for each rubber compound was desired.

本発明によれば、加硫ゴムサンプルを、JIS K 6229に基づきアセトン抽出を行った後、JIS Z 2616に基づき抽出残分中の硫黄分の定量分析を行う。定量分析は、赤外線吸収法を用いる。これはサンプル中の硫黄を、試料を酸素気流中で高温に加熱することによって硫黄酸化物で定量する乾式分解法の一種である。具体的には、加硫ゴム中の硫黄を二酸化硫黄として他の成分から分離し、赤外線吸収セルに送り、非分散形赤外線分析機を用いて二酸化硫黄の赤外線吸収量を測定して硫黄量を算出する。この方法は、原則として硫黄含有量0.001%以上のサンプルに適用できる。操作が簡単で、妨害元素の影響が少ない特徴があるが、三酸化硫黄は定量されないので、標準試料による補正が一般には必要とされている。測定機器は、例えば堀場製作所(株)よりEMIA−V シリーズとして市販されており、また同社の例えば特開平11−64319号公報などにも記載されている。   According to the present invention, a vulcanized rubber sample is subjected to acetone extraction based on JIS K 6229 and then subjected to quantitative analysis of sulfur content in the extraction residue based on JIS Z 2616. For the quantitative analysis, an infrared absorption method is used. This is a kind of dry decomposition method in which sulfur in a sample is quantified with sulfur oxide by heating the sample to a high temperature in an oxygen stream. Specifically, sulfur in the vulcanized rubber is separated from other components as sulfur dioxide, sent to an infrared absorption cell, and the amount of sulfur is measured by measuring the infrared absorption amount of sulfur dioxide using a non-dispersive infrared analyzer. calculate. In principle, this method can be applied to samples having a sulfur content of 0.001% or more. Although the operation is simple and the influence of interfering elements is small, sulfur trioxide is not quantified, so correction with a standard sample is generally required. The measuring instrument is commercially available, for example, as EMIA-V series from HORIBA, Ltd., and is also described in, for example, JP-A-11-64319.

本発明によれば添加した硫黄のうち、2個のゴム分子間に橋かけ状態で架橋した硫黄(C−Sx−C)の量と、1個のゴム分子にブランチ状やループ状に結合したのみで架橋に寄与していない硫黄(C−Sx−)の量の合計量が求められる。これを本発明では硫黄結合量という。この硫黄のうち、後者(即ち、2個のゴム分子間に橋かけ状態で結合していない硫黄)は熱が加わると、ゴム分子間の架橋により必要以上に硬化し、熱老化を起こすこととなる。   According to the present invention, among the added sulfur, the amount of sulfur (C-Sx-C) crosslinked in a crosslinked state between two rubber molecules and bonded to one rubber molecule in a branch or loop form Only the total amount of sulfur (C-Sx-) that does not contribute to crosslinking is obtained. This is referred to as a sulfur bond amount in the present invention. Among these sulfurs, the latter (ie, sulfur that is not bonded in a crosslinked state between two rubber molecules) is cured more than necessary due to crosslinking between the rubber molecules, causing heat aging. Become.

一方、加硫ゴムの引張り試験での100%モジュラスに基づくGgの値は、主に架橋密度の値、即ち結合硫黄数のうちのゴム2分子間に架橋した硫黄の量に相関する。参考文献A. Ahagon, Rubber Chem. Technol.,59, 187(1986)   On the other hand, the value of Gg based on the 100% modulus in the tensile test of vulcanized rubber mainly correlates with the value of crosslinking density, that is, the amount of sulfur crosslinked between two rubber molecules in the number of bonded sulfur. References A. Ahagon, Rubber Chem. Technol., 59, 187 (1986)

本発明に従えばゴム組成物の熱老化性(耐熱性)は、ゴム成分としてジエン系ゴムを主成分、例えば全ゴム量の40重量%以上、更に好ましくは60重量%以上含み、そしてゴム分100重量部当り汎用のカーボンブラック及び/又はシリカを好ましくは5〜120重量部、更に好ましくは40〜80重量部、そして硫黄を好ましくは1〜10重量部、更に好ましくは2〜7重量部含むゴム組成物について評価することができる。   According to the present invention, the heat aging property (heat resistance) of the rubber composition includes a diene rubber as a main component, for example, 40% by weight or more, more preferably 60% by weight or more of the total rubber amount, and the rubber component. Preferably 5 to 120 parts by weight, more preferably 40 to 80 parts by weight, and preferably 1 to 10 parts by weight, more preferably 2 to 7 parts by weight of general-purpose carbon black and / or silica per 100 parts by weight. The rubber composition can be evaluated.

耐熱性を評価するゴム組成物のジエン系ゴムの割合が少な過ぎると硫黄加硫が起こりにくいので好ましくない。またカーボンブラック及び/又はシリカの量が多過ぎるとゴムの割合が少なく、ゴムの劣化が見えにくいので好ましくない。一方、硫黄の割合が少な過ぎると実験誤差が大きくなるので好ましくなく、逆に多過ぎると内部ゴムの加硫むらが大きくなるので好ましくない。   If the proportion of the diene rubber in the rubber composition to be evaluated for heat resistance is too small, sulfur vulcanization hardly occurs, which is not preferable. Further, if the amount of carbon black and / or silica is too large, the proportion of rubber is small, and it is not preferable because deterioration of the rubber is hardly visible. On the other hand, if the ratio of sulfur is too small, the experimental error increases, which is not preferable. Conversely, if the ratio is too large, vulcanization unevenness of the internal rubber increases, which is not preferable.

本発明におけるゴム組成物のゴム分としては、ジエン系ゴム、例えば天然ゴム(NR)、ポリイソプレンゴム(IR)、各種ポリブタジエンゴム(BR)、各種スチレンブタジエン共重合体ゴム(SBR)などを主成分、例えばゴム成分全体の量の40重量%以上、好ましくは60重量%以上であり、特にジエン系ゴム中にSBRが40重量%以上、特に60重量%以上含まれているのがTgが上がってウェット摩擦性能が改良されるので好ましい。   The rubber component of the rubber composition in the present invention is mainly a diene rubber such as natural rubber (NR), polyisoprene rubber (IR), various polybutadiene rubbers (BR), various styrene butadiene copolymer rubbers (SBR) and the like. Components, for example, 40% by weight or more, preferably 60% by weight or more of the total amount of rubber components, and particularly when SBR is contained in diene rubbers by 40% by weight or more, particularly 60% by weight or more, the Tg increases. This is preferable because the wet friction performance is improved.

本発明によれば、ゴム組成物の加硫後の耐熱性は、前記式(I)によって得られるGg(架橋硫黄量)/結合硫黄量の比によって得ることができる。このGg/結合硫黄量の比が120以上の場合に優れた耐熱性を示し、140〜170で更に優れた耐熱性を示す。従って、本発明に係る耐熱性ゴム組成物の製造に際しては、構成成分の組成(種類及び量など)並びに加硫条件(温度及び時間など)を通常の実験の繰り返しによって前記Gg/結合硫黄量の比が120以上になるように選定することによって所望の耐熱性ゴム組成物を得ることができる。   According to the present invention, the heat resistance after vulcanization of the rubber composition can be obtained by the ratio of Gg (crosslinked sulfur amount) / bound sulfur amount obtained by the formula (I). Excellent heat resistance is exhibited when the ratio of Gg / bonded sulfur amount is 120 or more, and further excellent heat resistance is exhibited at 140 to 170. Therefore, in the production of the heat resistant rubber composition according to the present invention, the composition (type and amount, etc.) of the constituent components and the vulcanization conditions (temperature, time, etc.) can be set to the Gg / bonded sulfur amount by repeating normal experiments. The desired heat resistant rubber composition can be obtained by selecting the ratio to be 120 or more.

本発明では、化学分析(アセトン抽出及びそれに続く燃焼・赤外検出法)による硫黄結合量測定で炭素が硫黄と結合している総量(結合S)を求める。一方、引張り試験の100%モジュラス(M100)値をグースゴールド式で補正(フィラーの体積効果を排除)することにより、ゴム部分の架橋密度の目安Ggが前記式(I)及び(II)で求められる。Gg/結合硫黄量の値が硫黄結合が分子間架橋に寄与する割合となり、この値が120以上、好ましくは140〜170になるように配合成分の組成や加硫条件を選定することによって、所望の耐熱老化性に優れたゴム組成物を得ることができる。   In the present invention, the total amount of carbon bonded to sulfur (bond S) is determined by measuring the amount of sulfur bonds by chemical analysis (acetone extraction followed by combustion / infrared detection method). On the other hand, by correcting the 100% modulus (M100) value of the tensile test with the goose gold formula (excluding the volume effect of the filler), the standard Gg of the crosslinking density of the rubber part is obtained by the formulas (I) and (II). It is done. The value of Gg / bonded sulfur amount is a ratio at which the sulfur bond contributes to intermolecular crosslinking, and by selecting the composition of the blending components and vulcanization conditions so that this value is 120 or more, preferably 140 to 170, the desired value is obtained. A rubber composition having excellent heat aging resistance can be obtained.

本発明に係るゴム組成物には、前記した必須成分に加えて、クレー、タルクなどのその他の補強剤(フィラー)、加硫又は架橋促進剤、各種オイル、老化防止剤、可塑剤などのタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練、加硫して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。   In addition to the essential components described above, the rubber composition according to the present invention includes other reinforcing agents (fillers) such as clay and talc, vulcanization or crosslinking accelerators, various oils, anti-aging agents, plasticizers, and other tires. Various additives that are generally blended for general rubber can be blended, and these additives are kneaded and vulcanized into a composition by a general method to vulcanize or crosslink. Can be used. The blending amounts of these additives may be conventional conventional blending amounts as long as the object of the present invention is not adversely affected.

以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことはいうまでもない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, it cannot be overemphasized that the scope of the present invention is not limited to these Examples.

実施例1〜6及び比較例1〜6
サンプルの調製
表Iに示す配合において、加硫剤(加硫促進剤と硫黄)を除く成分を250mlのバンバリーミキサーで5分間混練し、165±5℃に達したときに放出してマスターバッチを得た。このマスターバッチに加硫促進剤と硫黄をオープンロールで混練し、ゴム組成物を得た。
Examples 1-6 and Comparative Examples 1-6
Sample preparation In the formulation shown in Table I, ingredients other than the vulcanizing agent (vulcanization accelerator and sulfur) were kneaded for 5 minutes with a 250 ml Banbury mixer, and when 165 ± 5 ° C was reached, the master batch was released. Obtained. A vulcanization accelerator and sulfur were kneaded with this master batch with an open roll to obtain a rubber composition.

次に得られたゴム組成物を15×15×0.2cmの金型中で表Iに示す温度及び加硫時間の条件でプレス加硫して加硫ゴムシートを調製し、以下に示す試験法で加硫ゴムの物性を測定した。結果は表Iに示す。   Next, the obtained rubber composition was press vulcanized in a 15 × 15 × 0.2 cm mold under the conditions of temperature and vulcanization time shown in Table I to prepare a vulcanized rubber sheet. The physical properties of vulcanized rubber were measured by the method. The results are shown in Table I.

100%モジュラス(M100)の測定方法
ゴム組成物サンプルをプレス加硫し、厚さ2mmのシートに成形した。このシートから3号ダンベル状の試験片を打ち抜き、JIS K 6251に準拠して100%モジュラスを測定した。
Method for Measuring 100% Modulus (M100) A rubber composition sample was press vulcanized and formed into a sheet having a thickness of 2 mm. A No. 3 dumbbell-shaped test piece was punched from this sheet, and 100% modulus was measured in accordance with JIS K 6251.

耐熱老化性試験
2mmシートのサンプル加硫ゴムから3号ダンベル状の試験片を打ち抜き、80℃のオーブン中にて96時間放置した後に、JIS K 6251に準拠して引張り試験を行い、100%モジュラス(M100)値において熱老化前の値と比較した時の増加率を耐熱老化性指数とした。この数値が大きいほど耐熱老化性に劣ることを示す。
Heat aging resistance test No. 3 dumbbell-shaped test piece was punched out from a sample vulcanized rubber with a 2mm sheet, left in an oven at 80 ° C for 96 hours, and then subjected to a tensile test according to JIS K 6251 to give 100% modulus. The increase rate when compared with the value before heat aging in the (M100) value was defined as the heat aging resistance index. It shows that it is inferior to heat aging resistance, so that this figure is large.

結合硫黄量測定
JIS K 6229に準拠して加硫ゴムサンプルをアセトン抽出した後のゴム片をHORIBA製炭素・硫黄分析計(EMIA)にて測定し、JIS Z 2616に準拠した燃焼・赤外検出法で検出した二酸化硫黄量から加硫ゴム中に含まれる結合硫黄量を求めた。
Bond sulfur content measurement Rubber pieces after acetone extraction of vulcanized rubber samples according to JIS K 6229 are measured with a HORIBA carbon / sulfur analyzer (EMIA), and combustion / infrared detection according to JIS Z 2616 The amount of bound sulfur contained in the vulcanized rubber was determined from the amount of sulfur dioxide detected by the method.

Figure 2006133167
Figure 2006133167

表I脚注
RSS#3:天然ゴム
Nipol BR1220:日本ゼオン製BR
Nipol 1502:日本ゼオン製乳化重合SBR
Nipol 1712:日本ゼオン製乳化重合SBR(37.5%油展)
NS116:日本ゼオン製溶液重合SBR(高ビニル)
タフデン4350:Akzo製溶液重合SBR(高スチレン・高ビニル、50%油展)
タフデン1524:Akzo製溶液重合SBR(低スチレン・低ビニル、20%油展)
Table I Footnote RSS # 3: Natural rubber Nipol BR1220: BR made by Nippon Zeon
Nipol 1502: emulsion polymerization SBR manufactured by Nippon Zeon
Nipol 1712: Nippon Zeon's emulsion polymerization SBR (37.5% oil exhibition)
NS116: Solution polymerization SBR (high vinyl) manufactured by Nippon Zeon
Toughden 4350: Solution polymerization SBR manufactured by Akzo (high styrene, high vinyl, 50% oil)
Toughden 1524: Akzo solution polymerization SBR (low styrene, low vinyl, 20% oil)

SAF:東海カーボン製カーボンブラックシースト9M(DBP吸油量:113ml/100g)
N234:昭和キャボット製カーボンブラックショウブラック(DBP吸油量:125ml/100g)
HAF:東海カーボン製カーボンブラックシーストKHP(DBP吸油量:102ml/100g)
N339:昭和キャボット製カーボンブラックショウブラック(DBP吸油量:120ml/100g)
FEF:東海カーボン製カーボンブラックシーストF(DBP吸油量:121ml/100g)
シリカ:日本シリカ製ニップシールAQ(DBP吸油量:175ml/100g)
SAF: Tokai Carbon Carbon Black Seast 9M (DBP oil absorption: 113 ml / 100 g)
N234: Showa Cabot carbon black show black (DBP oil absorption: 125 ml / 100 g)
HAF: Carbon black seast KHP made by Tokai Carbon (DBP oil absorption: 102 ml / 100 g)
N339: Showa Cabot carbon black show black (DBP oil absorption: 120 ml / 100 g)
FEF: Tokai Carbon Carbon Black Seast F (DBP oil absorption: 121ml / 100g)
Silica: Nippon Silica nip seal AQ (DBP oil absorption: 175 ml / 100 g)

StA:日本油脂製ビーズステアリン酸
Zno:東邦亜鉛製銀嶺R
6C:FLEXSYS製老化防止剤Santoflex 6PPD
WAX:大内新興化学製サンノック
アロマオイル:ジャパンエナジー製プロセスX−140
Si75:カップリング剤、日本ユニカー製A−1589
StA: Nippon Oil & Fats Beads Stearate Zno: Toho Zinc Ginseng R
6C: Anti-aging agent Santoflex 6PPD made by FLEXSYS
WAX: Sannouchi Aroma Oil from Ouchi Shinsei Chemical: Process X-140 from Japan Energy
Si75: coupling agent, Nippon Unicar A-1589

硫黄:鶴見化学製金華印油入微粉硫黄(油分5%)
促進剤1:FLEXSYS製Santocure CBS
促進剤2:FLEXSYS製加硫促進剤Santocure TBBS
促進剤3:FLEXSYS製加硫促進剤PERKACIT DPG
Sulfur: Fine powdered sulfur with oil from Jinhua seal oil (5% oil content)
Accelerator 1: Santocure CBS made by FLEXSYS
Accelerator 2: Vulcanization accelerator Santocure TBBS made by FLEXSYS
Accelerator 3: Vulcanization accelerator PERKACIT DPG made by FLEXSYS

本発明に従えば、加硫ゴム中の硫黄のゴム分子との結合量を化学分析法によって求めることができるので、広範囲のゴム組成物の加硫後の耐熱性(耐熱老化性)を正しく評価することができるので、例えば空気入りタイヤのトレッド用耐熱性ゴム組成物を製造するのに有用である。   According to the present invention, the amount of sulfur bonded to rubber molecules in the vulcanized rubber can be determined by chemical analysis, so that the heat resistance (heat aging resistance) after vulcanization of a wide range of rubber compositions can be correctly evaluated. For example, it is useful for producing a heat resistant rubber composition for a tread of a pneumatic tire.

Claims (3)

ジエン系ゴムを主成分としたゴム成分100重量部、カーボンブラック及び/又はシリカが合計で5〜120重量部並びに硫黄1〜10重量部を含むゴム組成物を硫黄加硫して得られる加硫ゴムにおいて、加硫ゴム中に存在するゴム分子と結合した硫黄の量(結合硫黄量)を燃焼・赤外検出法にて化学分析して求めると共に、加硫ゴムの引張り試験(JIS K6251に準拠して測定)における100%伸長時のモジュラス(Gf)、ゴム組成物中のカーボンブラック及び/又はシリカの配合量(体積分率φ)並びに配合したカーボンブラック及び/又はシリカのDBP(フタル酸ジブチル)吸油量(JIS K6217−4に準拠して測定)を用いて式(I)及び(II):
Figure 2006133167
により2個のゴム分子間に結合した架橋硫黄の量を代表する値Ggを求め、そして、Gg/結合硫黄量の値によって加硫ゴムの耐熱劣化性を予測するゴム組成物の耐熱性評価方法。
Vulcanization obtained by sulfur vulcanization of a rubber composition containing 100 parts by weight of a rubber component mainly composed of a diene rubber, 5 to 120 parts by weight of carbon black and / or silica, and 1 to 10 parts by weight of sulfur. In rubber, the amount of sulfur bonded to rubber molecules present in the vulcanized rubber (bonded sulfur amount) is obtained by chemical analysis by combustion / infrared detection method and vulcanized rubber tensile test (according to JIS K6251) The modulus (Gf) at 100% elongation, the blending amount of carbon black and / or silica in the rubber composition (volume fraction φ), and the DBP (dibutyl phthalate) of the blended carbon black and / or silica. ) Formula (I) and (II) using the oil absorption (measured according to JIS K6217-4):
Figure 2006133167
To obtain a value Gg representative of the amount of crosslinked sulfur bonded between two rubber molecules, and to predict the heat deterioration resistance of the vulcanized rubber according to the value of Gg / bonded sulfur amount .
スチレン−ブタジエン共重合体ゴム(SBR)がジエン系ゴム100重量部中に40重量部以上含まれる請求項1に記載のゴム組成物の耐熱性評価方法。   The method for evaluating the heat resistance of a rubber composition according to claim 1, wherein 40 parts by weight or more of styrene-butadiene copolymer rubber (SBR) is contained in 100 parts by weight of the diene rubber. 前記請求項1又は2のGg/結合硫黄量の比が120以上となるように、ゴム成分、カーボンブラック及び/又はシリカ並びに硫黄の組成並びに加硫条件を選定することを特徴とする耐熱性ゴム組成物の製造方法。   The heat-resistant rubber, wherein the rubber component, carbon black and / or silica, and the composition of sulfur and vulcanization conditions are selected so that the ratio of Gg / bonded sulfur amount in claim 1 or 2 is 120 or more. A method for producing the composition.
JP2004325020A 2004-11-09 2004-11-09 Method for evaluating heat resistance of rubber composition and method for producing heat resisting rubber composition Pending JP2006133167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325020A JP2006133167A (en) 2004-11-09 2004-11-09 Method for evaluating heat resistance of rubber composition and method for producing heat resisting rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325020A JP2006133167A (en) 2004-11-09 2004-11-09 Method for evaluating heat resistance of rubber composition and method for producing heat resisting rubber composition

Publications (1)

Publication Number Publication Date
JP2006133167A true JP2006133167A (en) 2006-05-25

Family

ID=36726827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325020A Pending JP2006133167A (en) 2004-11-09 2004-11-09 Method for evaluating heat resistance of rubber composition and method for producing heat resisting rubber composition

Country Status (1)

Country Link
JP (1) JP2006133167A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249459A (en) * 2008-04-03 2009-10-29 Yokohama Rubber Co Ltd:The Rubber composition, rubber composition for conveyor belt, and conveyor belt
JP2010059249A (en) * 2008-09-01 2010-03-18 Sumitomo Rubber Ind Ltd Studless tire
CN107490526A (en) * 2017-09-06 2017-12-19 中国工程物理研究院核物理与化学研究所 Macromolecule material aging effect the cannot-harm-detection device and its detection method
CN113916763A (en) * 2021-10-22 2022-01-11 山东大学 Method for predicting wet heat aging life of methyl vinyl silicone rubber
CN113960298A (en) * 2021-10-22 2022-01-21 山东大学 Method for predicting wet and heat aging performance of silicone rubber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249459A (en) * 2008-04-03 2009-10-29 Yokohama Rubber Co Ltd:The Rubber composition, rubber composition for conveyor belt, and conveyor belt
JP2010059249A (en) * 2008-09-01 2010-03-18 Sumitomo Rubber Ind Ltd Studless tire
CN101665062B (en) * 2008-09-01 2013-10-09 住友橡胶工业株式会社 Studless tire
CN107490526A (en) * 2017-09-06 2017-12-19 中国工程物理研究院核物理与化学研究所 Macromolecule material aging effect the cannot-harm-detection device and its detection method
CN113916763A (en) * 2021-10-22 2022-01-11 山东大学 Method for predicting wet heat aging life of methyl vinyl silicone rubber
CN113960298A (en) * 2021-10-22 2022-01-21 山东大学 Method for predicting wet and heat aging performance of silicone rubber

Similar Documents

Publication Publication Date Title
JP4458186B2 (en) Rubber composition
JP5027175B2 (en) Method for measuring reaction amount of silane coupling agent in silica
JP6650476B2 (en) Rubber composition for tire
JP2005213486A (en) Rubber composition for under-tread and pneumatic tire using the same
JP2006337342A (en) Method of measuring reaction amount of silica, and rubber composition with reaction amount defined using the method
JP2006124423A (en) Rubber composition for tire tread and pneumatic tire composed of the same
JP2009046088A (en) Assessment method of grip profile of tire
JP2009084485A (en) Rubber composition for tire tread
JP2006133167A (en) Method for evaluating heat resistance of rubber composition and method for producing heat resisting rubber composition
JP7189759B2 (en) Method for producing rubber composition and method for producing tire
JP2003213045A (en) Rubber composition and tire using the same
JP6540750B2 (en) Rubber composition and tire
JP2005105007A (en) Rubber composition and pneumatic tire
JP2009242577A (en) Diene-based rubber composition
WO2018139165A1 (en) Tire
JP4516409B2 (en) Method for producing rubber composition, and pneumatic tire having the rubber composition and a sidewall comprising the same
JP2009029883A (en) Method for producing unvulcanized rubber composition for tire
JP2004217791A (en) Rubber composition for tire
JP6226550B2 (en) Method for evaluating low fuel consumption of breaker rubber, pneumatic tire, and vulcanized rubber
JP4194825B2 (en) Rubber composition
US7671137B2 (en) Rubber composition for tire
JP5421525B2 (en) Rubber composition for bladder and bladder for tire vulcanization using the same
JP4030332B2 (en) Rubber composition
JP2009242578A (en) Diene-based rubber composition
JPWO2008099763A1 (en) Rubber composition for tire tread