JP2022074048A - Conductive adhesive, anisotropic conductive film, connection structure, and manufacturing method for connection structure - Google Patents

Conductive adhesive, anisotropic conductive film, connection structure, and manufacturing method for connection structure Download PDF

Info

Publication number
JP2022074048A
JP2022074048A JP2021174092A JP2021174092A JP2022074048A JP 2022074048 A JP2022074048 A JP 2022074048A JP 2021174092 A JP2021174092 A JP 2021174092A JP 2021174092 A JP2021174092 A JP 2021174092A JP 2022074048 A JP2022074048 A JP 2022074048A
Authority
JP
Japan
Prior art keywords
solder particles
mass
solder
conductive film
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021174092A
Other languages
Japanese (ja)
Inventor
博之 熊倉
Hiroyuki Kumakura
大祐 佐藤
Daisuke Sato
充宏 柄木田
Mitsuhiro Karakida
幸一 宮内
Koichi Miyauchi
和久 青木
Kazuhisa Aoki
直樹 林
Naoki Hayashi
秀昭 奥宮
Hideaki Okumiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to KR1020237010845A priority Critical patent/KR20230057466A/en
Priority to PCT/JP2021/039374 priority patent/WO2022092047A1/en
Priority to TW110139912A priority patent/TW202223031A/en
Publication of JP2022074048A publication Critical patent/JP2022074048A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

To provide a conductive adhesive that is able to satisfactory solder wettability and conductivity and to provide an anisotropic conductive film, a connection structure, and a method of manufacturing the connection structure, which can obtain satisfactory solder wettability, conductivity, and insulating property.SOLUTION: An anisotropic conductive film contains a thermosetting binder, solder particles, and a dicarboxylic acid. The solder particles contain 50 to 80 wt.% of Sn and 20 to 50 wt.% of Bi; an amount of blended dicarboxylic acid is 1 to 15 pts.mass per 100 pts.mass of the thermosetting binder; an amount of blended solder particles with respect to an average particle diameter of 40 to 5 μm of the solder particles is 100 to 1200 pts.mass per 100 pts.mass of the thermosetting binder; and a thickness of the anisotropic conductive film is more than 110% to 700% or less of the average particle diameter of the solder particles. As a result, satisfactory solder wettability, conductivity, and insulating property can be obtained.SELECTED DRAWING: Figure 1

Description

本技術は、第1の電子部品と第2の電子部品とを接続させる導電性接着剤、異方性導電フィルム、接続構造体、及び接続構造体の製造方法に関する。 The present art relates to a conductive adhesive for connecting a first electronic component and a second electronic component, an anisotropic conductive film, a connection structure, and a method for manufacturing the connection structure.

近年、携帯電話、PC(Personal Computer)等の情報機器の多機能化または小型軽量化に伴い、基板に実装される電子部品の高密度化が進んでいる。このため、電子部品の電極は狭ピッチ化し、基板の電極と電子部品の電極とを接合するための高密度実装技術の向上が求められている。 In recent years, as information devices such as mobile phones and PCs (Personal Computers) have become more multifunctional or smaller and lighter, the density of electronic components mounted on a substrate has been increasing. Therefore, the electrodes of electronic components are narrowed in pitch, and improvement of high-density mounting technology for joining the electrodes of the substrate and the electrodes of electronic components is required.

電子部品の実装は、例えば、下記の工程(1)~(5)を経て行われる(例えば、特許文献1参照)。
(1)はんだマスクを用いたスクリーン印刷によって基板の電極上にはんだペーストを塗布する工程。
(2)はんだペースト上に電子部品を配置する工程。
(3)電子部品が配置された基板をリフロー炉に通し、基板の電極と電子部品の電極とを間をはんだ付けで電気的に接合する工程。
(4)はんだ付け部分の保護および補強を目的に、基板と電子部品の隙間にアンダーフィルを注入する工程。
(5)アンダーフィル樹脂を硬化する事により、樹脂による封止および接合を行う工程。
The mounting of the electronic component is performed, for example, through the following steps (1) to (5) (see, for example, Patent Document 1).
(1) A process of applying solder paste on the electrodes of a substrate by screen printing using a solder mask.
(2) The process of arranging electronic components on the solder paste.
(3) A process in which a substrate on which electronic components are arranged is passed through a reflow furnace, and the electrodes of the substrate and the electrodes of electronic components are electrically bonded by soldering.
(4) A process of injecting underfill into the gap between the substrate and electronic components for the purpose of protecting and reinforcing the soldered portion.
(5) A step of sealing and joining with a resin by curing the underfill resin.

しかし、このような従来の電子部品の実装方法では、はんだ付け後の工程数が多いという問題がある。 However, such a conventional method for mounting electronic components has a problem that the number of steps after soldering is large.

特許文献2には、はんだによる電気的接合と樹脂による封止および接合を一括で行うことができる電子部品の実装方法として、下記の工程(1)~(3)を有する方法が提案されている。
(1)熱硬化性樹脂、はんだ粉および還元剤を含むはんだ粉含有熱硬化性樹脂層と、熱可塑性樹脂を含む熱可塑性樹脂層とを有する接合用材料層を、基板の電極側の表面に設ける工程。
(2)接合用材料層上に電子部品を配置する工程。
(3)接合用材料層を溶融させる事により、基板の電極と電子部品の電極との間にはんだ粉を集合、融着させてはんだ接合部で電極間を電気的に接合すると同時に、はんだ接合部の周囲に流れた熱硬化性樹脂および熱可塑性樹脂を含むハイブリッド樹脂を硬化させて樹脂接合部による封止および接合を行う工程。
Patent Document 2 proposes a method having the following steps (1) to (3) as a method for mounting an electronic component capable of performing electrical bonding with solder, sealing with resin, and bonding at once. ..
(1) A bonding material layer having a thermosetting resin layer containing a solder powder containing a thermosetting resin, solder powder and a reducing agent and a thermoplastic resin layer containing a thermoplastic resin is placed on the surface of the substrate on the electrode side. The process of setting.
(2) A process of arranging electronic components on the bonding material layer.
(3) By melting the bonding material layer, solder powder is collected and fused between the electrodes of the substrate and the electrodes of the electronic components, and the electrodes are electrically bonded at the solder bonding portion, and at the same time, solder bonding is performed. A step of curing a hybrid resin containing a thermosetting resin and a thermoplastic resin that has flowed around the part, and sealing and joining with the resin joint part.

このような実装方法であれば、BGA(Ball Grid Array)、LGA(Land Grid Array)等の多電極電子部品に適用可能であり、工程の簡略化が可能となる。しかし、特許文献2に記載の実装方法の場合、接合用材料を2層の熱可塑性樹脂層に液状の熱硬化性樹脂をサンドイッチした構造とする必要があるため、接合用材料をフィルム状またはリール状形態にすることが困難であるという問題がある。 Such a mounting method can be applied to multi-electrode electronic components such as BGA (Ball Grid Array) and LGA (Land Grid Array), and the process can be simplified. However, in the case of the mounting method described in Patent Document 2, since the bonding material needs to have a structure in which a liquid thermosetting resin is sandwiched between two thermoplastic resin layers, the bonding material is in the form of a film or a reel. There is a problem that it is difficult to form a shape.

特許文献3には、導電部の外表面部分にはんだを有する複数の導電性粒子と、熱硬化性化合物と、酸無水物熱硬化剤と、有機リン化合物を含む導電材料によって、電極上に導電性粒子におけるはんだを効率的に配置することができる実装方法が提案されている。 Patent Document 3 describes conductivity on an electrode by a conductive material containing a plurality of conductive particles having solder on the outer surface portion of the conductive portion, a thermosetting compound, an acid anhydride thermosetting agent, and an organic phosphorus compound. A mounting method that can efficiently arrange the solder in the sex particles has been proposed.

しかし、特許文献3の導電材料は、ペースト状であるため、スクリーン印刷等によって電極上に導電材料を配置する必要があり、塗布量のコントロールや位置精度を高める事が難しく、さらに、電極間にはんだ凝集物が発生し易いためショートを起こしやすく、絶縁性と導電性の両立が困難という問題がある。 However, since the conductive material of Patent Document 3 is in the form of a paste, it is necessary to arrange the conductive material on the electrodes by screen printing or the like, and it is difficult to control the coating amount and improve the position accuracy, and further, it is difficult to improve the position accuracy between the electrodes. Since solder agglomerates are likely to occur, short circuits are likely to occur, and there is a problem that it is difficult to achieve both insulation and conductivity.

特許文献4には、熱可塑性樹脂、固形ラジカル重合性樹脂、及び固形エポキシ樹脂から選ばれる少なくとも1種の固形樹脂と、はんだ粒子と、フラックス化合物とを含有するフィルム状の異方性接合材料を用いて第1の電子部品の電極と第2の電子部品の電極とを無荷重で加熱接合させる実装方法が提案されている。 Patent Document 4 describes a film-like anisotropic bonding material containing at least one solid resin selected from a thermoplastic resin, a solid radical polymerizable resin, and a solid epoxy resin, solder particles, and a flux compound. A mounting method has been proposed in which an electrode of a first electronic component and an electrode of a second electronic component are heat-bonded with no load.

しかし、特許文献4に記載の方法では、電極数の少ないLED(Light Emitting Diode)チップ等には適用可能であるものの、はんだ粒子の電極上への移動がほとんど起こらず、コネクタ部品等の電極数が多い電子部品では安定した接続が困難という問題がある。 However, although the method described in Patent Document 4 can be applied to an LED (Light Emitting Diode) chip or the like having a small number of electrodes, the solder particles hardly move onto the electrodes and the number of electrodes of connector parts or the like is small. There is a problem that stable connection is difficult with many electronic components.

特開2001-239395号公報Japanese Unexamined Patent Publication No. 2001-239395 特開2016-143741号公報Japanese Unexamined Patent Publication No. 2016-143741 国際公開2018/066368号International Publication No. 2018/0663668 特開2020-077870号公報Japanese Unexamined Patent Publication No. 2020-07870

従来のはんだ粒子を含む導電材料では、接続時にはんだ粒子を効率的に電極上へ移動させることが困難であり、接続されるべき上下の電極間にはんだ粒子を配置することが困難である。例えばペースト状の導電材料の場合では、接続時のはんだ粒子の凝集速度が速すぎることが多く、電極上にはんだ粒子の巨大凝集物が発生し、隣接する電極間にブリッジが形成され、隣接する電極間の絶縁性が低下することがあった。また、例えばフィルム状の導電材料の場合では、接続時のはんだ粒子の凝集速度が遅すぎることが多く、電極上にはんだ粒子が配置されず、上下の電極間の導通性が低下することがあった。 With conventional conductive materials containing solder particles, it is difficult to efficiently move the solder particles onto the electrodes at the time of connection, and it is difficult to arrange the solder particles between the upper and lower electrodes to be connected. For example, in the case of a paste-like conductive material, the aggregation rate of solder particles at the time of connection is often too fast, huge aggregates of solder particles are generated on the electrodes, bridges are formed between adjacent electrodes, and they are adjacent to each other. Insulation between electrodes may be reduced. Further, for example, in the case of a film-shaped conductive material, the aggregation speed of the solder particles at the time of connection is often too slow, the solder particles are not arranged on the electrodes, and the conductivity between the upper and lower electrodes may decrease. rice field.

本技術は、このような従来の実情に鑑みて提案されたものであり、良好なはんだ濡れ性、及び導通性を得ることができる導電性接着剤を提供する。また、良好なはんだ濡れ性、導通性、及び絶縁性を得ることができる異方性導電フィルム、接続構造体、及び接続構造体の製造方法を提供する。 This technique has been proposed in view of such conventional circumstances, and provides a conductive adhesive capable of obtaining good solder wettability and conductivity. Further, the present invention provides an anisotropic conductive film, a connection structure, and a method for manufacturing the connection structure, which can obtain good solder wettability, conductivity, and insulation.

本件発明者は、鋭意検討を行った結果、所定成分のはんだ粒子と、ジカルボン酸とを用いることにより、上述の目的を達成できることを見出し、本発明を完成させるに至った。 As a result of diligent studies, the present inventor has found that the above-mentioned object can be achieved by using solder particles having a predetermined component and a dicarboxylic acid, and has completed the present invention.

すなわち、本技術に係る導電性接着剤は、熱硬化性バインダーと、はんだ粒子と、ジカルボン酸とを含有し、前記はんだ粒子が、50~80wt%のSnと、20~50wt%のBiとを含み、前記はんだ粒子の配合量が、前記熱硬化性バインダー100質量部に対して100質量部以上である。 That is, the conductive adhesive according to the present technology contains a thermosetting binder, solder particles, and dicarboxylic acid, and the solder particles contain 50 to 80 wt% Sn and 20 to 50 wt% Bi. Including, the blending amount of the solder particles is 100 parts by mass or more with respect to 100 parts by mass of the thermosetting binder.

また、本技術に係る異方性導電フィルムは、熱硬化性バインダーと、はんだ粒子と、ジカルボン酸とを含有し、前記はんだ粒子が、50~80wt%のSnと、20~50wt%のBiとを含み、前記はんだ粒子の平均粒径40~5μmに対する前記はんだ粒子の配合量が、前記熱硬化性バインダー100質量部に対して100~1200質量部であり、当該異方性導電フィルムの厚みが、前記はんだ粒子の平均粒径の110%超700%以下である。 Further, the anisotropic conductive film according to the present technology contains a thermosetting binder, solder particles, and a dicarboxylic acid, and the solder particles contain 50 to 80 wt% Sn and 20 to 50 wt% Bi. The blending amount of the solder particles with respect to the average particle size of the solder particles of 40 to 5 μm is 100 to 1200 parts by mass with respect to 100 parts by mass of the thermosetting binder, and the thickness of the anisotropic conductive film is , 110% or more and 700% or less of the average particle size of the solder particles.

本技術に係る接続構造体は、第1の電子部品と、第2の電子部品と、前記第1の電子部品の電極と前記第2の電子部品の電極との間に介在し、前記導電性接着剤、又は前記異方性導電フィルムが硬化した硬化膜とを備え、前記第1の電子部品の電極又は前記第2の電子部品の電極面積に対する前記はんだ粒子によるはんだ面積が50%以上である。 The connection structure according to the present technology is interposed between the first electronic component, the second electronic component, the electrode of the first electronic component, and the electrode of the second electronic component, and has the conductivity. It is provided with an adhesive or a cured film obtained by curing the anisotropic conductive film, and the solder area of the solder particles is 50% or more with respect to the electrode area of the first electronic component or the electrode area of the second electronic component. ..

本技術に係る接続構造体の製造方法は、前記導電性接着剤、又は前記異方性導電フィルムを、第1の電子部品の電極と第2の電子部品の電極との間に介在させ、前記第1の電子部品の電極と前記第2の電子部品の電極とをリフロー炉を用いて無荷重で接合させる。 In the method for manufacturing a connection structure according to the present technology, the conductive adhesive or the anisotropic conductive film is interposed between the electrodes of the first electronic component and the electrodes of the second electronic component, and the above is described. The electrodes of the first electronic component and the electrodes of the second electronic component are joined to each other using a reflow furnace with no load.

本技術によれば、所定成分のはんだ粒子と、ジカルボン酸とを含有することにより、良好なはんだ濡れ性、及び導通性を得ることができる。また、良好なはんだ濡れ性、導通性、及び絶縁性を得ることができる。 According to this technique, good solder wettability and conductivity can be obtained by containing solder particles having a predetermined component and a dicarboxylic acid. In addition, good solder wettability, conductivity, and insulation can be obtained.

図1は、本技術を適用させた異方性導電フィルムの一部を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a part of an anisotropic conductive film to which the present technique is applied. 図2は、第1の電子部品の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of the first electronic component. 図3は、第1の電子部品の端子上に、異方性導電フィルムを設けた状態を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a state in which an anisotropic conductive film is provided on the terminals of the first electronic component. 図4は、第1の電子部品の端子列と第2の電子部品の端子列との位置合わせを模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing the alignment of the terminal row of the first electronic component and the terminal row of the second electronic component. 図5は、第1の電子部品に第2の電子部品を載置した状態を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a state in which the second electronic component is placed on the first electronic component. 図6は、第1の電子部品及び第2の電子部品をリフロー炉にて加熱した状態を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a state in which the first electronic component and the second electronic component are heated in a reflow oven. 図7は、リフロー炉処理の温度プロファイルの一例を示すグラフである。FIG. 7 is a graph showing an example of a temperature profile for reflow oven processing. 図8は、実施例2の異方性導電フィルムの溶融粘度の測定結果及びDSCの測定結果を示すグラフである。FIG. 8 is a graph showing the measurement result of the melt viscosity of the anisotropic conductive film of Example 2 and the measurement result of DSC. 図9は、実施例2のリフロー炉処理後のプリント配線板の端子上の顕微鏡写真である。FIG. 9 is a photomicrograph of the terminals of the printed wiring board after the reflow oven treatment of Example 2. 図10は、実施例3のリフロー炉処理後のプリント配線板の端子上の顕微鏡写真である。FIG. 10 is a photomicrograph of the terminals of the printed wiring board after the reflow oven treatment of Example 3. 図11は、比較例1のリフロー炉処理後のプリント配線板の端子上の顕微鏡写真である。FIG. 11 is a photomicrograph of the terminals of the printed wiring board after the reflow oven treatment of Comparative Example 1. 図12は、比較例2のリフロー炉処理後のプリント配線板の端子上の顕微鏡写真である。FIG. 12 is a photomicrograph of the terminals of the printed wiring board after the reflow oven treatment of Comparative Example 2. 図13は、比較例7のリフロー炉処理後のプリント配線板の端子上の顕微鏡写真である。FIG. 13 is a photomicrograph of the terminals of the printed wiring board after the reflow oven treatment of Comparative Example 7.

以下、本技術の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.導電性接着剤、及び異方性導電フィルム
2.接続構造体
3.接続構造体の製造方法
4.実施例
Hereinafter, embodiments of the present technology will be described in detail in the following order with reference to the drawings.
1. 1. Conductive adhesive and anisotropic conductive film 2. Connection structure 3. Manufacturing method of connection structure 4. Example

<1.導電性接着剤、及び異方性導電フィルム>
本技術に係る導電性接着剤は、熱硬化性バインダーと、はんだ粒子と、ジカルボン酸とを含有し、はんだ粒子が、50~80wt%のSnと、20~50wt%のBiとを含む。導電性接着剤は、全方向に導通する等方性を有しても、対向電極間に圧縮された方向に導通する異方性を有してもよい。また、導電性接着剤は、フィルム状、又はペースト状のいずれであってもよい。また、ペーストを接続時にフィルム状にしても、部品を搭載することでフィルムに近い形態としてもよい。ペースト状の場合、基板上に所定量を均一に塗布することができればよく、例えば、ディスペンス、スタンピング、スクリーン印刷等の塗布方法を用いることができ、必要に応じて乾燥させてもよい。フィルム状の場合、フィルム厚により導電性接着剤の量を均一化することができるだけでなく、取り扱い易いので作業効率を高くすることができる。
<1. Conductive adhesives and anisotropic conductive films>
The conductive adhesive according to the present technique contains a thermosetting binder, solder particles, and a dicarboxylic acid, and the solder particles contain 50 to 80 wt% Sn and 20 to 50 wt% Bi. The conductive adhesive may have isotropic properties that conduct in all directions, or may have anisotropy that conducts in the compressed direction between the counter electrodes. Further, the conductive adhesive may be in the form of a film or a paste. Further, the paste may be in the form of a film at the time of connection, or may be in a form similar to a film by mounting a component. In the case of a paste, a predetermined amount may be uniformly applied onto the substrate, and for example, application methods such as dispensing, stamping, and screen printing can be used, and the paste may be dried if necessary. In the case of a film, not only can the amount of the conductive adhesive be made uniform depending on the film thickness, but also the work efficiency can be improved because it is easy to handle.

はんだ粒子の配合量は、熱硬化性バインダー100質量部に対して100質量部以上、より好ましくは150質量部以上、さらに好ましくは175質量部以上である。これにより、良好な導通性を得ることができる。また、導電性接着剤に異方性を付与する場合、はんだ粒子の配合量の上限は、熱硬化性バインダー100質量部に対して好ましくは1200質量部以下、より好ましくは900質量部以下である。はんだ粒子の配合量が多過ぎると、巨大凝集物が発生し易くなり、隣接端子間にショートを引き起こす傾向がある。 The blending amount of the solder particles is 100 parts by mass or more, more preferably 150 parts by mass or more, and further preferably 175 parts by mass or more with respect to 100 parts by mass of the thermosetting binder. Thereby, good continuity can be obtained. When imparting anisotropy to the conductive adhesive, the upper limit of the blending amount of the solder particles is preferably 1200 parts by mass or less, more preferably 900 parts by mass or less with respect to 100 parts by mass of the thermosetting binder. .. If the amount of the solder particles is too large, huge agglomerates are likely to be generated, which tends to cause a short circuit between adjacent terminals.

導電性接着剤の最低溶融粘度は、300Pa・s以下であり、好ましくは1~250Pa・s以下、より好ましくは1~200Pa・s以下、さらに好ましくは1~150Pa・s以下である。最低溶融粘度が高すぎると、リフローにおいて無荷重では樹脂溶融が進行せず、はんだ粒子と端子間の挟持に支障を来す虞がある。また、導電性接着剤の最低溶融粘度到達温度の下限は、好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは140℃以上であり、異方性導電フィルムの最低溶融粘度到達温度の上限は、好ましくは200℃以下、より好ましくは190℃以下、さらに好ましくは180℃以下である。これにより、従来の通常のプロファイル条件のリフロー炉処理により、良好なはんだ接合状態を得ることができる。ここで、導電性接着剤の最低溶融粘度到達温度は、例えば、レオメーターMARS3(HAAKE社製)に8mm径センサーとプレートを装着し、ギャップ0.2mm、昇温速度10℃/min、周波数1Hz、測定温度範囲20~250℃の条件にて溶融粘度を測定し、粘度が最低値(最低溶融粘度)となる温度をいう。 The minimum melt viscosity of the conductive adhesive is 300 Pa · s or less, preferably 1 to 250 Pa · s or less, more preferably 1 to 200 Pa · s or less, and further preferably 1 to 150 Pa · s or less. If the minimum melt viscosity is too high, the resin will not melt under no load in reflow, which may hinder the sandwiching between the solder particles and the terminals. The lower limit of the minimum melt viscosity reaching temperature of the conductive adhesive is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 140 ° C. or higher, and is the minimum melt viscosity reaching temperature of the anisotropic conductive film. The upper limit is preferably 200 ° C. or lower, more preferably 190 ° C. or lower, still more preferably 180 ° C. or lower. As a result, a good solder joint state can be obtained by the conventional reflow oven treatment under normal profile conditions. Here, the temperature at which the minimum melt viscosity of the conductive adhesive is reached is, for example, a leometer MARS3 (manufactured by HAAKE) equipped with an 8 mm diameter sensor and a plate, a gap of 0.2 mm, a temperature rise rate of 10 ° C./min, and a frequency of 1 Hz. , The temperature at which the melt viscosity is measured under the condition of the measurement temperature range of 20 to 250 ° C. and the viscosity becomes the lowest value (minimum melt viscosity).

はんだ粒子の表面には、酸化膜(スズ(Sn)を含んだはんだの場合は通常酸化スズ)が数nmの厚さで存在する。そのため、そのままの状態では、はんだの融点以上に加熱してもはんだ粒子同士を凝集させることはできず、無荷重リフロー処理にて上下電極の導通を得ることはできない。 On the surface of the solder particles, an oxide film (usually tin oxide in the case of solder containing tin (Sn)) is present with a thickness of several nm. Therefore, in the state as it is, the solder particles cannot be aggregated even if the solder is heated to a temperature higher than the melting point of the solder, and the continuity of the upper and lower electrodes cannot be obtained by the no-load reflow process.

はんだ粒子を凝集させるためには、粒子表面の酸化膜を還元し、酸化膜の量を減少させる必要があるが、本件発明者は、50~80wt%のSnと、20~50wt%のBiとを含むはんだ粒子と、下記式(1)で示されるジカルボン酸とを組み合わせることで、無荷重リフロー処理において良好なはんだ凝集を発生できることを見出した。 In order to agglomerate the solder particles, it is necessary to reduce the oxide film on the surface of the particles and reduce the amount of the oxide film. It has been found that good solder agglomeration can be generated in the no-load reflow treatment by combining the solder particles containing the above-mentioned solder particles and the dicarboxylic acid represented by the following formula (1).

Figure 2022074048000002
Figure 2022074048000002

また、カルボン酸(nR-COOH)は、下記式(2)で示される還元反応によって金属酸化物(MO)を減少させることが知られている。 Further, it is known that the carboxylic acid (nR-COOH) reduces the metal oxide (MO) by the reduction reaction represented by the following formula (2).

Figure 2022074048000003
Figure 2022074048000003

還元反応によって表面の酸化膜が減少したはんだ粒子は、マランゴニ効果やバインダーの熱流動によって、はんだ粒子同士の衝突や電極表面の金属へのはんだ粒子の接触によるはんだ凝集が発生することにより、電極間の良好な接続を得ることが可能になる。50~80wt%のSnと、20~50wt%のBiとを含むはんだ粒子は、表面の酸化スズの量が適量であり、表面の酸化スズとカルボン酸とが反応することにより、はんだ粒子が移動する駆動力が得られ易いものと推測される。 The solder particles whose surface oxide film has decreased due to the reduction reaction are between the electrodes due to the collision between the solder particles and the contact of the solder particles with the metal on the electrode surface due to the marangoni effect and the thermal flow of the binder. It is possible to obtain a good connection. The solder particles containing 50 to 80 wt% Sn and 20 to 50 wt% Bi have an appropriate amount of tin oxide on the surface, and the solder particles move due to the reaction between the tin oxide on the surface and the carboxylic acid. It is presumed that the driving force to be obtained is easy to obtain.

図1は、本技術を適用させた異方性導電フィルムの一部を模式的に示す断面図である。図1に示すように、異方性導電フィルム10は、熱硬化性バインダー中にはんだ粒子11が分散されてなる。また、異方性導電フィルム10には、必要に応じて、第1の面に第1のフィルムが貼付され、第2の面に第2のフィルムが貼付されてもよい。 FIG. 1 is a cross-sectional view schematically showing a part of an anisotropic conductive film to which the present technique is applied. As shown in FIG. 1, the anisotropic conductive film 10 is formed by dispersing solder particles 11 in a thermosetting binder. Further, the anisotropic conductive film 10 may have the first film attached to the first surface and the second film attached to the second surface, if necessary.

異方性導電フィルム10の厚みは、はんだ粒子11の平均粒径の110%超700%以下であり、好ましくははんだ粒子11の平均粒径の110%超500%以下、より好ましくははんだ粒子11の平均粒径の110%超400%以下である。また、異方性導電フィルム10の厚みは、はんだ粒子の平均粒径よりも5μm以上大きいことが好ましい。異方性導電フィルム10の厚みが、はんだ粒子11の平均粒径に対して薄すぎるとはんだ粒子の凝集(移動)が起こり難く、厚すぎると半田の絶対量も増えるため隣接端子間のショートを引き起こし易く、また樹脂の排除不足も発生し易い傾向にある。 The thickness of the anisotropic conductive film 10 is more than 110% and 700% or less of the average particle size of the solder particles 11, preferably more than 110% and 500% or less of the average particle size of the solder particles 11, and more preferably the solder particles 11. It is more than 110% and 400% or less of the average particle size of the solder. Further, the thickness of the anisotropic conductive film 10 is preferably 5 μm or more larger than the average particle size of the solder particles. If the thickness of the anisotropic conductive film 10 is too thin with respect to the average particle size of the solder particles 11, aggregation (movement) of the solder particles is unlikely to occur, and if it is too thick, the absolute amount of solder increases, resulting in a short circuit between adjacent terminals. It tends to be caused easily, and insufficient removal of the resin tends to occur.

本明細書において、フィルム厚みは、公知のマイクロメータやデジタルシックネスゲージ(例えば、株式会社ミツトヨ:MDE-25M、最小表示量0.0001mm)を用いて測定することができる。フィルム厚みは、例えば10箇所以上を測定し、平均して求めればよい。また、平均粒径は、金属顕微鏡、光学顕微鏡、SEM(Scanning Electron Microscope)等の電子顕微鏡などを用いた観察画像において、N=50以上、好ましくはN=100以上、さらに好ましくはN=200以上で測定した粒子の長軸径の平均値であり、粒子が球形の場合は、粒子の直径の平均値である。また、観察画像を公知の画像解析ソフト(「WinROOF」:三谷商事(株)、「A像くん(登録商標)」:旭化成エンジニアリング株式会社など)を用いて計測された測定値、画像型粒度分布測定装置(例として、FPIA-3000(マルバーン社))を用いて測定した測定値(N=1000以上)であってもよい。観察画像や画像型粒度分布測定装置から求めた平均粒径は、粒子の最大長の平均値とすることができる。なお、異方性接合材料を作製する際には、簡易的にレーザー回折・散乱法によって求めた粒度分布における頻度の累積が50%になる粒径(D50)、算術平均径(体積基準であることが好ましい)などのメーカー値を用いることができる。 In the present specification, the film thickness can be measured using a known micrometer or a digital thickness gauge (for example, Mitutoyo Co., Ltd .: MDE-25M, minimum display amount 0.0001 mm). The film thickness may be obtained by measuring, for example, 10 or more points and averaging them. Further, the average particle size is N = 50 or more, preferably N = 100 or more, more preferably N = 200 or more in an observation image using an electron microscope such as a metallurgical microscope, an optical microscope, or an SEM (Scanning Electron Microscope). It is the average value of the major axis diameters of the particles measured in 1. When the particles are spherical, it is the average value of the diameters of the particles. In addition, the measured values and image-type grain size distribution of the observed images measured using known image analysis software (“WinROOF”: Mitani Shoji Co., Ltd., “A Image-kun (registered trademark)”: Asahi Kasei Engineering Co., Ltd., etc.) It may be a measured value (N = 1000 or more) measured using a measuring device (for example, FPIA-3000 (Malburn)). The average particle size obtained from the observation image or the image-type particle size distribution measuring device can be the average value of the maximum lengths of the particles. When producing an anisotropic bonded material, the particle size (D50) and the arithmetic mean diameter (volume standard) at which the cumulative frequency in the particle size distribution simply obtained by the laser diffraction / scattering method is 50%. It is preferable) and other manufacturer values can be used.

前述の導電性接着剤と同様、異方性導電フィルムの最低溶融粘度は、300Pa・s以下であり、好ましくは1~250Pa・s以下、より好ましくは1~200Pa・s以下、さらに好ましくは1~150Pa・s以下である。最低溶融粘度が高すぎると、リフローにおいて無荷重では樹脂溶融が進行せず、はんだ粒子と端子間の挟持に支障を来す虞がある。また、異方性導電フィルムの最低溶融粘度到達温度の下限は、好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは140℃以上であり、異方性導電フィルムの最低溶融粘度到達温度の上限は、好ましくは200℃以下、より好ましくは190℃以下、さらに好ましくは180℃以下である。これにより、従来の通常のプロファイル条件のリフロー炉処理により、良好なはんだ接合状態を得ることができる。ここで、異方性導電フィルムの最低溶融粘度到達温度は、例えば、レオメーターMARS3(HAAKE社製)に8mm径センサーとプレートを装着し、ギャップ0.2mm、昇温速度10℃/min、周波数1Hz、測定温度範囲20~250℃の条件にて溶融粘度を測定し、粘度が最低値(最低溶融粘度)となる温度をいう。 Similar to the above-mentioned conductive adhesive, the minimum melt viscosity of the anisotropic conductive film is 300 Pa · s or less, preferably 1 to 250 Pa · s or less, more preferably 1 to 200 Pa · s or less, still more preferably 1. It is ~ 150 Pa · s or less. If the minimum melt viscosity is too high, the resin will not melt under no load in reflow, which may hinder the sandwiching between the solder particles and the terminals. The lower limit of the temperature at which the minimum melt viscosity of the anisotropic conductive film is reached is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 140 ° C. or higher, and the minimum melt viscosity reached temperature of the anisotropic conductive film. The upper limit of the temperature is preferably 200 ° C. or lower, more preferably 190 ° C. or lower, still more preferably 180 ° C. or lower. As a result, a good solder joint state can be obtained by the conventional reflow oven treatment under normal profile conditions. Here, the temperature at which the minimum melt viscosity of the anisotropic conductive film is reached is, for example, a leometer MARS3 (manufactured by HAAKE) equipped with an 8 mm diameter sensor and a plate, a gap of 0.2 mm, a temperature rise rate of 10 ° C./min, and a frequency. The melt viscosity is measured under the conditions of 1 Hz and the measurement temperature range of 20 to 250 ° C., and the temperature at which the viscosity becomes the lowest value (minimum melt viscosity).

また、はんだ粒子のDSC(示差走査熱量計)で測定した吸熱ピークの温度において、異方性導電フィルムの溶融粘度が300Pa・s以下であることが好ましい。これにより、はんだ粒子同士の衝突や電極表面の金属へのはんだ粒子の接触によるはんだ凝集が発生し易くなり、良好なはんだ接合状態を得ることができる。 Further, it is preferable that the melt viscosity of the anisotropic conductive film is 300 Pa · s or less at the temperature of the endothermic peak measured by DSC (differential scanning calorimetry) of the solder particles. As a result, solder agglomeration is likely to occur due to collision between the solder particles or contact of the solder particles with the metal on the electrode surface, and a good solder bonding state can be obtained.

[熱硬化性バインダー]
熱硬化型バインダーとしては、絶縁性を示すものであれば特に限定されるものではなく、例えば、エポキシ化合物と熱アニオン重合開始剤とを含む熱アニオン重合型樹脂組成物、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合型樹脂組成物、(メタ)アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合型樹脂組成物などが挙げられる。なお、(メタ)アクリレート化合物とは、アクリルモノマー(オリゴマー)、及びメタクリルモノマー(オリゴマー)のいずれも含む意味である。
[Thermosetting binder]
The thermosetting binder is not particularly limited as long as it exhibits insulating properties. For example, a thermal anion polymerization type resin composition containing an epoxy compound and a thermal anion polymerization initiator, an epoxy compound and a thermal cationic polymerization Examples thereof include a thermal cationic polymerization type resin composition containing an initiator, a thermal radical polymerization type resin composition containing a (meth) acrylate compound and a thermal radical polymerization initiator, and the like. The (meth) acrylate compound means to include both an acrylic monomer (oligomer) and a methacrylic monomer (oligomer).

以下では、具体例として、膜形成樹脂と、固形エポキシ樹脂と、液状エポキシ樹脂と、エポキシ樹脂硬化剤とを含有する熱アニオン重合型樹脂組成物を例に挙げて説明する。 Hereinafter, as a specific example, a thermal anionic polymerization type resin composition containing a film-forming resin, a solid epoxy resin, a liquid epoxy resin, and an epoxy resin curing agent will be described as an example.

膜形成樹脂としては、例えば平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ブチラール樹脂等の種々の樹脂が挙げられ、これらは単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂を用いることが好ましい。膜形成樹脂の配合量は、膜形成樹脂、固形エポキシ樹脂、液状エポキシ樹脂、及びエポキシ樹脂硬化剤の合計100質量部に対し、好ましくは20~50質量部、より好ましくは25~45質量部以下、さらに好ましくは30~40質量部である。 The film-forming resin corresponds to, for example, a high molecular weight resin having an average molecular weight of 10,000 or more, and is preferably having an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formability. Examples of the film-forming resin include various resins such as phenoxy resin, polyester resin, polyurethane resin, polyester urethane resin, acrylic resin, polyimide resin and butyral resin, which may be used alone or in combination of two or more. May be used. Among these, it is preferable to use a phenoxy resin from the viewpoint of film formation state, connection reliability and the like. The blending amount of the film-forming resin is preferably 20 to 50 parts by mass, more preferably 25 to 45 parts by mass or less, based on 100 parts by mass of the total of the film-forming resin, the solid epoxy resin, the liquid epoxy resin, and the epoxy resin curing agent. , More preferably 30 to 40 parts by mass.

固形エポキシ樹脂は、常温で固形であり、分子内に1つ以上のエポキシ基を有するエポキシ樹脂であれば、特に限定されるものではなく、例えば、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂等であってもよい。これらの中でも、低溶融粘度である結晶性のビスフェノールA型エポキシ樹脂を用いることが好ましい。市場で入手可能な結晶性のビスフェノールA型エポキシ樹脂の具体例としては、ガードナー・ホルト法の粘度が40~55Pである三菱ケミカル(株)の商品名「YL6810」(結晶性BPA型エポキシ樹脂)等を挙げることができる。固形エポキシ樹脂の配合量は、膜形成樹脂、固形エポキシ樹脂、液状エポキシ樹脂、及びエポキシ樹脂硬化剤の合計100質量部に対し、好ましくは30~60質量部、より好ましくは35~55質量部以下、さらに好ましくは40~50質量部である。なお、常温とは、JIS Z 8703で規定する20℃±15℃(5℃~35℃)の範囲である。 The solid epoxy resin is not particularly limited as long as it is an epoxy resin that is solid at room temperature and has one or more epoxy groups in the molecule, and is, for example, a bisphenol A type epoxy resin, a biphenyl type epoxy resin, or the like. There may be. Among these, it is preferable to use a crystalline bisphenol A type epoxy resin having a low melt viscosity. As a specific example of the crystalline bisphenol A type epoxy resin available on the market, the trade name "YL6810" (crystalline BPA type epoxy resin) of Mitsubishi Chemical Co., Ltd., which has a viscosity of 40 to 55P by the Gardner-Holt method. And so on. The blending amount of the solid epoxy resin is preferably 30 to 60 parts by mass, more preferably 35 to 55 parts by mass or less, based on 100 parts by mass of the total of the film-forming resin, the solid epoxy resin, the liquid epoxy resin, and the epoxy resin curing agent. , More preferably 40 to 50 parts by mass. The normal temperature is in the range of 20 ° C. ± 15 ° C. (5 ° C. to 35 ° C.) defined by JIS Z 8703.

液状エポキシ樹脂は、常温で液状であれば、特に限定されるものではなく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等であってもよく、ウレタン変性のエポキシ樹脂であっても構わない。これらの中でも、高純度水添エポキシ樹脂を用いることが好ましい。市場で入手可能な高純度水添エポキシ樹脂の具体例としては、三菱ケミカル(株)の商品名「YX8000」(水添BPA型エポキシ樹脂)等を挙げることができる。液状エポキシ樹脂の配合量は、膜形成樹脂、固形エポキシ樹脂、液状エポキシ樹脂、及びエポキシ樹脂硬化剤の合計100質量部に対し、好ましくは1~25質量部、より好ましくは1~20質量部以下、さらに好ましくは5~15質量部である。 The liquid epoxy resin is not particularly limited as long as it is liquid at room temperature, and may be, for example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, or a urethane-modified epoxy resin. not. Among these, it is preferable to use a high-purity hydrogenated epoxy resin. Specific examples of the high-purity hydrogenated epoxy resin available on the market include the trade name "YX8000" (hydrogenated BPA type epoxy resin) of Mitsubishi Chemical Corporation. The blending amount of the liquid epoxy resin is preferably 1 to 25 parts by mass, more preferably 1 to 20 parts by mass or less, based on 100 parts by mass of the total of the film-forming resin, the solid epoxy resin, the liquid epoxy resin, and the epoxy resin curing agent. , More preferably 5 to 15 parts by mass.

エポキシ樹脂硬化剤は、熱で硬化が開始する熱硬化剤であれば、特に限定されるものではなく、例えば、イミダゾール、ジシアンジアミド、イソフタル酸ジヒドラジド等のアニオン系硬化剤が挙げられる。また、エポキシ樹脂硬化剤は、マイクロカプセル化されていてもよい。エポキシ樹脂硬化剤の配合量は、膜形成樹脂、固形エポキシ樹脂、液状エポキシ樹脂、及びエポキシ樹脂硬化剤の合計100質量部に対し、好ましくは1~25質量部、より好ましくは1~20質量部以下、さらに好ましくは5~15質量部である。 The epoxy resin curing agent is not particularly limited as long as it is a thermosetting agent that starts curing by heat, and examples thereof include anionic curing agents such as imidazole, dicyandiamide, and isophthalic acid dihydrazide. Further, the epoxy resin curing agent may be microencapsulated. The blending amount of the epoxy resin curing agent is preferably 1 to 25 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the total of the film-forming resin, the solid epoxy resin, the liquid epoxy resin, and the epoxy resin curing agent. Hereinafter, it is more preferably 5 to 15 parts by mass.

なお、熱硬化性バインダーに配合する他の添加物として、必要に応じて、シランカップリング剤、アクリルゴム、各種アクリルモノマー等の希釈用モノマー、充填剤、軟化剤、着色剤、難燃化剤、チキソトロピック剤等を配合してもよい。
[はんだ粒子]
As other additives to be added to the thermosetting binder, if necessary, a silane coupling agent, acrylic rubber, a diluting monomer such as various acrylic monomers, a filler, a softener, a colorant, and a flame retardant agent. , Tixotropic agents and the like may be blended.
[Solder particles]

はんだ粒子は、50~80wt%のSnと、20~50wt%のBiとを含み、より好ましくは45~75wt%のSnと、25~55wt%のBiとを含む。これにより、従来の通常のプロファイル条件のリフロー炉処理により、良好なはんだ接合状態を得ることができる。また、はんだ粒子は、例えばはんだ強度向上の観点から、1Wt%以下のCu、Agなどの他の金属を含んでいてもよい。 The solder particles contain 50-80 wt% Sn and 20-50 wt% Bi, more preferably 45-75 wt% Sn and 25-55 wt% Bi. As a result, a good solder joint state can be obtained by the conventional reflow oven treatment under normal profile conditions. Further, the solder particles may contain other metals such as Cu and Ag of 1 Wt% or less from the viewpoint of improving the solder strength, for example.

はんだ粒子の具体例としては、Sn-50Bi、Sn-40Bi-0.1Cu、Sn-30Bi-0.5Cu、Sn-20Biなどが挙げられる。これらの中でも、はんだ濡れ性が特に優れる59.9Sn-40Bi-0.1Cu、又は69.5Sn-30Bi-0.5Cuを用いることが好ましい。 Specific examples of the solder particles include Sn-50Bi, Sn-40Bi-0.1Cu, Sn-30Bi-0.5Cu, Sn-20Bi and the like. Among these, it is preferable to use 59.9Sn-40Bi-0.1Cu or 69.5Sn-30Bi-0.5Cu, which are particularly excellent in solder wettability.

はんだ粒子の配合量の下限は、好ましくは熱硬化性バインダー100質量部に対して100質量部以上、より好ましくは150質量部以上、さらに好ましくは175質量部以上であり、はんだ粒子の配合量の上限は、熱硬化性バインダー100質量部に対して1200質量部以下、より好ましくは900質量部以下であり、300質量部以下が好ましい場合がある。はんだ粒子の配合量が多過ぎると、巨大凝集物が発生し易くなり、隣接端子間にショートを引き起こす傾向があり、はんだ粒子の配合量が少な過ぎると、良好なはんだ粒子の凝集が発生しない傾向がある。
The lower limit of the blending amount of the solder particles is preferably 100 parts by mass or more, more preferably 150 parts by mass or more, still more preferably 175 parts by mass or more with respect to 100 parts by mass of the thermosetting binder, and the blending amount of the solder particles. The upper limit is 1200 parts by mass or less, more preferably 900 parts by mass or less, and 300 parts by mass or less may be preferable with respect to 100 parts by mass of the thermosetting binder. If the amount of solder particles is too large, huge agglomerates are likely to occur, which tends to cause a short circuit between adjacent terminals. If the amount of solder particles is too small, good agglomeration of solder particles tends not to occur. There is.

はんだ粒子の平均粒径の下限は、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは15μm以上であり、はんだ粒子の平均粒径の上限は、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは35μm以下であり、好ましい範囲は、10~40μmである。はんだ粒子の平均粒径が小さ過ぎると、無荷重リフロー処理時にはんだ粒子同士が結合していない状態のはんだ粒子の凝集が過度に起こることで、隣接端子間のショートを引き起こし易い傾向があり、はんだ粒子の平均粒径が大き過ぎると、はんだ粒子の動きが悪くなり、良好なはんだ粒子の凝集を発生させることが困難となる。 The lower limit of the average particle size of the solder particles is preferably 5 μm or more, more preferably 10 μm or more, still more preferably 15 μm or more, and the upper limit of the average particle size of the solder particles is preferably 50 μm or less, more preferably 40 μm or less. More preferably, it is 35 μm or less, and a preferable range is 10 to 40 μm. If the average particle size of the solder particles is too small, excessive aggregation of the solder particles in a state where the solder particles are not bonded to each other during the no-load reflow process tends to occur, which tends to cause a short circuit between adjacent terminals. If the average particle size of the particles is too large, the movement of the solder particles becomes poor, and it becomes difficult to generate good aggregation of the solder particles.

はんだ粒子の平均粒径30~10μmに対するはんだ粒子の配合量は、熱硬化性バインダー100質量部に対して100~1200質量部であることが好ましい。また、はんだ粒子の平均粒径30~20μmに対するはんだ粒子の配合量は、熱硬化性バインダー100質量部に対して100~900質量部であることが好ましい。また、はんだ粒子の平均粒径20~10μmに対するはんだ粒子の配合量は、熱硬化性バインダー100質量部に対して100~1200質量部であることが好ましい。はんだ粒子の平均粒径に応じてはんだ粒子を配合することにより、熱良好なはんだ濡れ性、導通性、及び絶縁性を得ることができる。
[ジカルボン酸]
The blending amount of the solder particles with respect to the average particle size of the solder particles of 30 to 10 μm is preferably 100 to 1200 parts by mass with respect to 100 parts by mass of the thermosetting binder. Further, the blending amount of the solder particles with respect to the average particle size of the solder particles of 30 to 20 μm is preferably 100 to 900 parts by mass with respect to 100 parts by mass of the thermosetting binder. The blending amount of the solder particles with respect to the average particle size of the solder particles of 20 to 10 μm is preferably 100 to 1200 parts by mass with respect to 100 parts by mass of the thermosetting binder. By blending the solder particles according to the average particle size of the solder particles, good solder wettability, conductivity, and insulation can be obtained.
[Dicarboxylic acid]

ジカルボン酸としては、はんだ粒子表面の酸化膜を還元反応によって減少させることができれば、特に限定されるものではないが、下記式(1)で示される化合物(n=1~8)であることが好ましい。 The dicarboxylic acid is not particularly limited as long as the oxide film on the surface of the solder particles can be reduced by a reduction reaction, but the dicarboxylic acid may be a compound (n = 1 to 8) represented by the following formula (1). preferable.

Figure 2022074048000004
Figure 2022074048000004

すなわち、ジカルボン酸として、マロン酸(n=1、炭素数3)、コハク酸(n=2、炭素数4)、グルタル酸(n=3、炭素数5)、アジピン酸(n=4、炭素数6)、ピメリン酸(n=5、炭素数7)、スベリン酸(n=6、炭素数8)、アゼライン酸(n=7、炭素数9)、セバシン酸(n=8、炭素数10)を用いることが好ましい。これらの中でも、はんだ濡れ性が特に優れるマロン酸、コハク酸、又はグルタル酸を用いることが好ましい。また、ジカルボン酸は直鎖だけではなく分岐、飽和、不飽和構造も使用することが出来る。また、ジカルボン酸以外に、ロジン系のカルボン酸も使用することができ、ジカルボン酸とロジン系カルボン酸を組み合わせて使用しても良い。すなわち、ジカルボン酸の代わりにロジン系のカルボン酸を含有する、又は、ロジン系カルボン酸をさらに含有してもよい。 That is, as the dicarboxylic acid, malonic acid (n = 1, carbon number 3), succinic acid (n = 2, carbon number 4), glutaric acid (n = 3, carbon number 5), adipic acid (n = 4, carbon number 4). Number 6), pimelic acid (n = 5, carbon number 7), suberic acid (n = 6, carbon number 8), azelaic acid (n = 7, carbon number 9), sebacic acid (n = 8, carbon number 10) ) Is preferably used. Among these, it is preferable to use malonic acid, succinic acid, or glutaric acid, which have particularly excellent solder wettability. Further, the dicarboxylic acid can use not only a straight chain but also a branched, saturated or unsaturated structure. In addition to the dicarboxylic acid, a rosin-based carboxylic acid can also be used, and the dicarboxylic acid and the rosin-based carboxylic acid may be used in combination. That is, a rosin-based carboxylic acid may be contained instead of the dicarboxylic acid, or a rosin-based carboxylic acid may be further contained.

ジカルボン酸の配合量は、熱硬化性バインダー100質量部に対し、好ましくは1~15質量部、より好ましくは2~12質量部、さらに好ましくは4~10質量部、よりさらに好ましくは6~10質量部である。ジカルボン酸の配合量が少な過ぎると、はんだ粒子表面の酸化膜の還元が十分に行えず、はんだ凝集を発生させることが困難となり、ジカルボン酸の配合量が多過ぎると、絶縁性が劣化し、ショートを引き起こし易い。 The amount of the dicarboxylic acid to be blended is preferably 1 to 15 parts by mass, more preferably 2 to 12 parts by mass, still more preferably 4 to 10 parts by mass, still more preferably 6 to 10 parts by mass with respect to 100 parts by mass of the thermosetting binder. It is a mass part. If the amount of the dicarboxylic acid is too small, the oxide film on the surface of the solder particles cannot be sufficiently reduced and it becomes difficult to generate solder aggregation. If the amount of the dicarboxylic acid is too large, the insulating property deteriorates. It is easy to cause a short circuit.

前述の異方性導電フィルムは、例えば、熱硬化性バインダー、はんだ粒子、及びジカルボン酸を溶剤中で混合し、この混合物を、バーコーターにより、剥離処理フィルム上に所定厚みとなるように塗布した後、乾燥させて溶媒を揮発させることにより得ることができる。また、混合物をバーコーターにより剥離処理フィルム上に塗布した後、加圧により所定厚みとしてもよい。また、はんだ粒子の分散性を高くするために、溶媒を含んだ状態で高シェアをかけることが好ましい。例えば、公知のバッチ式遊星攪拌装置を用いることができる。真空環境下で行えるものであってもよい。 In the above-mentioned anisotropic conductive film, for example, a thermosetting binder, solder particles, and a dicarboxylic acid are mixed in a solvent, and this mixture is applied to a release-treated film by a bar coater so as to have a predetermined thickness. It can then be obtained by drying and volatilizing the solvent. Further, the mixture may be applied onto the peeling film by a bar coater and then pressed to a predetermined thickness. Further, in order to increase the dispersibility of the solder particles, it is preferable to apply a high share in a state containing a solvent. For example, a known batch type planetary agitator can be used. It may be something that can be done in a vacuum environment.

<2.接続構造体>
本技術に係る接続構造体は、第1の電子部品と、第2の電子部品と、第1の電子部品の電極と第2の電子部品の電極との間に介在し、前述の異方性導電フィルムが硬化した硬化膜とを備え、第1の電子部品の電極又は第2の電子部品の電極面積に対するはんだ粒子によるはんだ面積が50%以上であるものである。これにより、優れた導通性、及び絶縁性を得ることができる。
<2. Connection structure>
The connection structure according to the present technology is interposed between the first electronic component, the second electronic component, the electrode of the first electronic component, and the electrode of the second electronic component, and has the above-mentioned anisotropy. A cured film obtained by curing the conductive film is provided, and the solder area of the solder particles is 50% or more with respect to the electrode area of the first electronic component or the electrode area of the second electronic component. Thereby, excellent conductivity and insulation can be obtained.

また、第1の電子部品の電極又は第2の電子部品の電極面積に対するはんだ粒子によるはんだ面積は、70%以上であることが好ましい。これにより、電極にはんだが十分に濡れ広がり、さらに優れた導通性、及び絶縁性を得ることができる。なお、電極上のはんだ面積は、リフロー処理後の電子部品の電極上のはんだ溶融状態を金属顕微鏡にて観察し、電極面積に対するはんだ面積を測定することにより、算出することができる。 Further, the solder area of the solder particles with respect to the electrode area of the first electronic component or the electrode area of the second electronic component is preferably 70% or more. As a result, the solder is sufficiently wetted and spread on the electrodes, and further excellent conductivity and insulating properties can be obtained. The solder area on the electrode can be calculated by observing the molten state of the solder on the electrode of the electronic component after the reflow treatment with a metal microscope and measuring the solder area with respect to the electrode area.

第1の電子部品及び第2の電子部品は、特に制限はなく、目的に応じて適宜選択することができる。例えば、プリント配線板(PWB)、プラスチック基板、LCD(Liquid Crystal Display)パネル用途、有機ELディスプレイ(OLED)パネル用途、プラズマディスプレイパネル(PDP)用途などのガラス基板、結晶シリコン系太陽電池(単結晶シリコン、多結晶シリコン、多接合太陽電池、ヘテロ接合太陽電池、HIT太陽電池、ペロブスカイトタンデム太陽電池)、薄膜太陽電池(アモルファスシリコン系、微結晶シリコン系、CIGS系、III-V族多接合系、GaAs系、CdTe、ペロブスカイト系、有機薄膜系、色素増感系)、量子ドット太陽電池などが挙げられる。また、第2の電子部品としては、例えば、汎用コネクタ、IC(Integrated Circuit)、フレキシブルプリント基板(FPC:Flexible Printed Circuits)、テープキャリアパッケージ(TCP)基板、太陽電池の集電用のタブ線などを挙げることができる。なお、本技術は、例えば、半導体装置(ドライバICの他、光学素子や熱電変換素子、光電変換素子など半導体を利用したものは全て含む)、表示装置(モニター、テレビ、ヘッドマウントディスプレイなど)、携帯機器(タブレット端末、スマートフォン、ウェアラブル端末など)、ゲーム機、オーディオ機器、撮像装置(カメラモジュールなどのイメージセンサを用いるもの)、車両(移動装置)用電装実装、医療機器、センサーデバイス(タッチセンサー、指紋認証、虹彩認証など)、屋内外の太陽電池などの電気的接続を用いるあらゆる電子機器に適用することができる。 The first electronic component and the second electronic component are not particularly limited and may be appropriately selected depending on the intended purpose. For example, glass substrates such as printed wiring boards (PWB), plastic substrates, LCD (Liquid Crystal Display) panel applications, organic EL display (OLED) panel applications, plasma display panel (PDP) applications, crystalline silicon solar cells (single crystals). Silicon, polycrystal silicon, multi-junction solar cell, hetero-junction solar cell, HIT solar cell, perovskite tandem solar cell), thin-film solar cell (amorphous silicon system, microcrystalline silicon system, CIGS system, III-V group multi-junction system, GaAs-based, CdTe, perovskite-based, organic thin-film-based, dye-sensitized), quantum dot solar cells and the like can be mentioned. The second electronic component includes, for example, a general-purpose connector, an IC (Integrated Circuit), a flexible printed circuit board (FPC), a tape carrier package (TCP) board, a tab wire for collecting solar cells, and the like. Can be mentioned. In addition, this technology includes, for example, semiconductor devices (including all devices that use semiconductors such as optical elements, thermoelectric conversion elements, and photoelectric conversion elements in addition to driver ICs), display devices (monitors, televisions, head mount displays, etc.), Portable devices (tablet terminals, smartphones, wearable terminals, etc.), game machines, audio devices, image pickup devices (those that use image sensors such as camera modules), electrical equipment mounting for vehicles (mobile devices), medical devices, sensor devices (touch sensors) , Fingerprint authentication, iris authentication, etc.), and can be applied to all electronic devices that use electrical connections such as indoor and outdoor solar cells.

<3.接続構造体の製造方法>
本技術に係る接続構造体の製造方法は、前述の異方性導電フィルムを、第1の電子部品の電極と第2の電子部品の電極との間に介在させ、第1の電子部品の電極と第2の電子部品の電極とをリフロー炉を用いて無荷重で接合させる。これにより、良好なはんだ濡れ性、導通性、及び絶縁性を得ることができる。
<3. Manufacturing method of connection structure>
In the method for manufacturing a connection structure according to the present technology, the above-mentioned anisotropic conductive film is interposed between the electrodes of the first electronic component and the electrodes of the second electronic component, and the electrodes of the first electronic component are interposed. And the electrode of the second electronic component are joined with no load using a reflow furnace. Thereby, good solder wettability, conductivity, and insulation can be obtained.

以下、図2~図6を参照して、第1の電子部品の第1の端子列上に、異方性導電フィルムを設ける工程(A)、異方性導電フィルム上に第2の電子部品を載置する工程(B)、及び、リフロー炉を用いて、第1の電子部品の第1の端子列と第2の電子部品の第2の端子列とを接合させる工程(C)について説明する。 Hereinafter, with reference to FIGS. 2 to 6, the step (A) of providing the anisotropic conductive film on the first terminal row of the first electronic component, the second electronic component on the anisotropic conductive film. (B) and a step (C) of joining the first terminal row of the first electronic component and the second terminal row of the second electronic component using a reflow furnace will be described. do.

[工程(A)]
図2は、第1の電子部品の一例を模式的に示す断面図であり、図3は、第1の電子部品の端子上に、異方性導電フィルムを設けた状態を模式的に示す断面図である。図2及び図3に示すように、工程(A)では、第1の電子部品20の第1の端子列21上に、半田粒子31を含有する異方性導電フィルム30を設ける。
[Step (A)]
FIG. 2 is a cross-sectional view schematically showing an example of the first electronic component, and FIG. 3 is a cross-sectional view schematically showing a state in which an anisotropic conductive film is provided on the terminals of the first electronic component. It is a figure. As shown in FIGS. 2 and 3, in the step (A), the anisotropic conductive film 30 containing the solder particles 31 is provided on the first terminal row 21 of the first electronic component 20.

工程(A)は、異方性導電フィルム30を基板上に、低温で貼着する仮貼り工程であってもよく、異方性導電フィルム30を基板上にラミネートするラミネート工程であってもよい。 The step (A) may be a temporary sticking step of sticking the anisotropic conductive film 30 on the substrate at a low temperature, or may be a laminating step of laminating the anisotropic conductive film 30 on the substrate. ..

工程(A)が仮貼り工程の場合、公知の使用条件で基板上に異方性導電フィルム30を設けることができる。この場合、従前の装置からツールの設置や変更といった最低限の変更だけですむため、経済的なメリットが得られる。 When the step (A) is a temporary pasting step, the anisotropic conductive film 30 can be provided on the substrate under known usage conditions. In this case, only the minimum changes such as the installation and change of tools from the conventional device are required, which is economically advantageous.

工程(A)がラミネート工程の場合、例えば、加圧式ラミネータを用いて異方性導電フィルム30を第1の電子部品20の第1の端子列21上にラミネートする。ラミネート工程は、真空加圧式であってもよい。仮貼りである場合、フィルムの幅がツール幅の制約を受けるが、ラミネート工程の場合、加熱加圧ツールを用いないため、比較的広い幅を一括で搭載できるようになることが期待できる。 When the step (A) is a laminating step, for example, the anisotropic conductive film 30 is laminated on the first terminal row 21 of the first electronic component 20 by using a pressure type laminator. The laminating step may be a vacuum pressurization type. In the case of temporary pasting, the width of the film is restricted by the tool width, but in the case of the laminating process, since the heating and pressurizing tool is not used, it can be expected that a relatively wide width can be mounted all at once.

[工程(B)]
図4は、第1の電子部品の端子列と第2の電子部品の端子列との位置合わせを模式的に示す断面図である。図4に示すように、工程(B)では、例えば、ツール50を用いて、第1の電子部品20の第1の端子列21と第2の電子部品40の端子列41とを位置合わせし、異方性導電フィルム30上に第2の電子部品40を載置する。ツール50は、第2の電子部品40を吸着する吸着機構を備えることが好ましい。
[Step (B)]
FIG. 4 is a cross-sectional view schematically showing the alignment of the terminal row of the first electronic component and the terminal row of the second electronic component. As shown in FIG. 4, in the step (B), for example, the tool 50 is used to align the first terminal row 21 of the first electronic component 20 and the terminal row 41 of the second electronic component 40. , The second electronic component 40 is placed on the anisotropic conductive film 30. The tool 50 preferably includes a suction mechanism for sucking the second electronic component 40.

[工程(C)]
図5は、第1の電子部品に第2の電子部品を載置した状態を模式的に示す断面図であり、図6は、第1の電子部品及び第2の電子部品をリフロー炉にて加熱した状態を模式的に示す断面図である。図5及び図6に示すように、工程(C)では、所定のプロファイルに設定されたリフロー炉を用いて、第1の電子部品20の第1の端子列21と第2の電子部品40の第2の端子列41とを接合させる。
[Step (C)]
FIG. 5 is a cross-sectional view schematically showing a state in which the second electronic component is placed on the first electronic component, and FIG. 6 shows the first electronic component and the second electronic component in a reflow furnace. It is sectional drawing which shows the heated state schematically. As shown in FIGS. 5 and 6, in step (C), the first terminal row 21 of the first electronic component 20 and the second electronic component 40 are used in a reflow furnace set to a predetermined profile. It is joined to the second terminal row 41.

リフロー炉は、機械的な加圧をせずに無荷重で加熱接合させることができるため、第1の電子部品20及び第2の電子部品40のダメージを抑制することができる。リフロー炉としては、簡便さの点から大気圧リフローが好ましいが、大気圧リフロー、真空リフロー、大気圧オーブン、オートクレーブ(加圧オーブン)などを用いても良い。 Since the reflow furnace can be heat-bonded without a load without mechanical pressurization, damage to the first electronic component 20 and the second electronic component 40 can be suppressed. As the reflow furnace, atmospheric pressure reflow is preferable from the viewpoint of simplicity, but atmospheric pressure reflow, vacuum reflow, atmospheric pressure oven, autoclave (pressurized oven) and the like may be used.

リフロー炉では、加熱により熱硬化バインダーが溶融し、第1の電子部品40の自重によりはんだ粒子31が電極間に挟持され、はんだ融点以上である本加熱によりはんだ粒子31が溶融し、はんだが電極に濡れ広がり、冷却により第1の電子部品20の第1の端子列21と第2の電子部品40の第2の端子例41とがはんだ32により接合される。 In the reflow furnace, the heat-curing binder is melted by heating, the solder particles 31 are sandwiched between the electrodes by the weight of the first electronic component 40, the solder particles 31 are melted by the main heating which is equal to or higher than the solder melting point, and the solder is the electrode. By cooling, the first terminal row 21 of the first electronic component 20 and the second terminal example 41 of the second electronic component 40 are joined by the solder 32.

図7は、リフロー炉処理の温度プロファイルの一例を示すグラフである。リフロー処理は、昇温工程と、一定温度に維持するキープ工程と、降温工程とを含んでいてもよい。また、最も高温となるピーク工程を含んでいてもよい。昇温工程は、熱硬化性バインダーを溶融させ、はんだ粒子を端子間に挟持させる工程(例えば0~170℃)と、熱硬化性バインダーを硬化させる工程(例えば170~250℃)の2段階となっていてもよい。昇温速度は例えば10~120℃/minでもよく、20~100℃/minでもよい。 FIG. 7 is a graph showing an example of a temperature profile for reflow oven processing. The reflow process may include a temperature raising step, a keeping step of maintaining a constant temperature, and a temperature lowering step. It may also include a peak step at the highest temperature. The temperature raising step consists of two steps: a step of melting the thermosetting binder and sandwiching the solder particles between the terminals (for example, 0 to 170 ° C.) and a step of curing the thermosetting binder (for example, 170 to 250 ° C.). It may be. The heating rate may be, for example, 10 to 120 ° C./min or 20 to 100 ° C./min.

キープ工程は、はんだを濡れ広がせる工程(例えば170℃)と、熱硬化性バインダーを硬化させる工程(例えば250℃)を含んでいてもよい。はんだを濡れ広がせる工程のキープ温度は例えば150~200℃であり、熱硬化性バインダーを硬化させる工程のキープ温度は例えば200~250℃である。キープ工程の維持時間の下限は、10sec以上、好ましくは30sec以上であり、キープ工程の維持時間の上限は、200sec以下、好ましくは150sec以下である。降温工程は、はんだ粒子の融点以下の温度に冷却することで、はんだ粒子を固相にし、電極間で接合させる。降温速度は、生産性を上げるためには高い方がよく、急冷が望ましくない場合には低い方がよい。 The keeping step may include a step of wetting and spreading the solder (for example, 170 ° C.) and a step of curing the thermosetting binder (for example, 250 ° C.). The keep temperature of the step of wetting and spreading the solder is, for example, 150 to 200 ° C., and the keep temperature of the step of curing the thermosetting binder is, for example, 200 to 250 ° C. The lower limit of the maintenance time of the keep step is 10 sec or more, preferably 30 sec or more, and the upper limit of the maintenance time of the keep step is 200 sec or less, preferably 150 sec or less. In the temperature lowering step, the solder particles are made into a solid phase by cooling to a temperature equal to or lower than the melting point of the solder particles, and the solder particles are bonded between the electrodes. The rate of temperature decrease should be high in order to increase productivity, and low when quenching is not desirable.

<4.実施例>
本実施例では、種々の組成のはんだ粒子を準備し、異方性導電フィルムを作製した。そして、異方性導電フィルムを用いて接続構造体を作製し、はんだ接合状態、導通抵抗値、及び絶縁抵抗値について評価した。なお、本実施例は、これらに限定されるものではない。
<4. Example>
In this example, solder particles having various compositions were prepared to prepare an anisotropic conductive film. Then, a connection structure was produced using an anisotropic conductive film, and the solder joint state, conduction resistance value, and insulation resistance value were evaluated. The present embodiment is not limited to these.

[はんだ粒子の作製]
金属材料を所定の配合比で加熱中の容器に入れて溶融後に冷却し、はんだ合金を得た。そのはんだ合金から、アトマイズ法にて粉末を作製し、所定の粒子径の範囲となるように分級して、はんだ粒子を得た。
[Preparation of solder particles]
The metal material was placed in a container being heated at a predetermined compounding ratio, melted and then cooled to obtain a solder alloy. A powder was prepared from the solder alloy by an atomizing method and classified so as to have a predetermined particle size range to obtain solder particles.

表1に、実施例及び比較例で使用するはんだ粒子の溶融特性を示す。 Table 1 shows the melting characteristics of the solder particles used in Examples and Comparative Examples.

Figure 2022074048000005
Figure 2022074048000005

[異方性導電フィルムの作製]
下記材料を準備した。
YP-50(日鉄ケミカル&マテリアル社製、フェノキシ樹脂) →固形分/MEK=40/60にて溶液化
YL6810(三菱ケミカル社製、結晶性BPA型エポキシ)
YX8000(三菱ケミカル社製、水添BPA型エポキシ)
2P4MHZ‐PW(四国化成工業社製、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール)
Dicy7(三菱ケミカル社製、ジシアンジアミド)
IDH-S(大塚化学社製、イソフタル酸ジヒドラジド)
[Manufacturing anisotropic conductive film]
The following materials were prepared.
YP-50 (Nittetsu Chemical & Materials Co., Ltd., phenoxy resin) → Solution with solid content / MEK = 40/60 YL6810 (Mitsubishi Chemical Corporation, crystalline BPA type epoxy)
YX8000 (Made by Mitsubishi Chemical Corporation, hydrogenated BPA type epoxy)
2P4MHZ-PW (manufactured by Shikoku Chemicals Corporation, 2-phenyl-4-methyl-5-hydroxymethylimidazole)
Dicy7 (manufactured by Mitsubishi Chemical Corporation, dicyandiamide)
IDH-S (Otsuka Chemical Co., Ltd., isophthalic acid dihydrazide)

表2~表4に示すように、これらの材料を所定の配合にて混合及び撹拌し、混合ワニスを得た。続いて、得られた混合ワニスに、はんだ粒子を混合ワニスの固形分に対して所定量となる様に加えて、異方性導電組成物を得た。得られた異方性導電組成物を、50μm厚みのPETフィルム上に、乾燥後に所定の厚みとなる様に塗布し、80℃にて5分間乾燥させ、異方性導電フィルムを作製した。 As shown in Tables 2 to 4, these materials were mixed and stirred in a predetermined formulation to obtain a mixed varnish. Subsequently, solder particles were added to the obtained mixed varnish in a predetermined amount with respect to the solid content of the mixed varnish to obtain an anisotropic conductive composition. The obtained anisotropic conductive composition was applied onto a PET film having a thickness of 50 μm to a predetermined thickness after drying, and dried at 80 ° C. for 5 minutes to prepare an anisotropic conductive film.

[最低溶融粘度及び最低溶融粘度到達温度の測定]
レオメーターMARS3(HAAKE社製)に8mm径センサーとプレートを装着し、異方性導電フィルムをセットした。そして、ギャップ0.2mm、昇温速度10℃/min、周波数1Hz、測定温度範囲20~250℃の条件にて溶融粘度を測定し、最低溶融粘度及び最低溶融粘度到達温度を読み取った。
[Measurement of minimum melt viscosity and minimum melt viscosity reached temperature]
An 8 mm diameter sensor and a plate were attached to a leometer MARS3 (manufactured by HAAKE), and an anisotropic conductive film was set. Then, the melt viscosity was measured under the conditions of a gap of 0.2 mm, a temperature rise rate of 10 ° C./min, a frequency of 1 Hz, and a measurement temperature range of 20 to 250 ° C., and the minimum melt viscosity and the minimum melt viscosity reached temperature were read.

[接続構造体の作製]
第1の電子部品として、プリント配線板〔0.35mmピッチ(ライン/スペース=0.18/0.17mm)、ガラスエポキシ基材厚み1.5mm、銅パターン厚み18μm、表面OSP処理〕を準備した。
[Creation of connection structure]
As the first electronic component, a printed wiring board [0.35 mm pitch (line / space = 0.18 / 0.17 mm), glass epoxy base material thickness 1.5 mm, copper pattern thickness 18 μm, surface OSP treatment] was prepared. ..

第2の電子部品として、市販のコネクタ部品(ヒロセ製 BM23FR0.6-20DP、0.35mmP、ライン/スペース=0.12/0.23mm、端子表面Auメッキ、端子面積/34800μm2、20ピン)を準備した。 As a second electronic component, a commercially available connector component (BM23FR 0.6-20DP, 0.35 mmP, line / space = 0.12 / 0.23 mm, terminal surface Au plating, terminal area / 34800 μm 2 , 20 pins manufactured by Hirose) Prepared.

第1の電子部品の端子上に、異方性導電フィルムを所定の大きさにカットして、45℃、1MPa、1秒間の条件で仮圧着を行った。続いて、異方性導電フィルム上に、第2の電子部品を配置した。この構造体を図7に示す温度プロファイル条件にてリフロー炉処理を行い、接続構造体を作製した。 An anisotropic conductive film was cut into a predetermined size on the terminals of the first electronic component, and temporarily pressure-bonded under the conditions of 45 ° C., 1 MPa, and 1 second. Subsequently, a second electronic component was placed on the anisotropic conductive film. This structure was subjected to a reflow oven treatment under the temperature profile conditions shown in FIG. 7 to prepare a connected structure.

[はんだ接合状態の評価]
リフロー処理後のプリント配線板の端子上のはんだ溶融状態を金属顕微鏡にて観察し、配線面積に対するはんだ面積を測定し、下記評価基準で評価した。
AA:はんだ粒子が配線上で十分に濡れ広がっているもの(はんだ面積が70%以上)
A:はんだ粒子が配線上で濡れ広がっているもの(はんだ面積が50~70%)
B:はんだ粒子が配線上で部分的に濡れ広がっているもの(はんだ面積が30~50%)
C:配線上のはんだ粒子の濡れ広がりがほとんど認められないもの(はんだ面積が30%未満)
[Evaluation of solder joint condition]
The molten state of the solder on the terminals of the printed wiring board after the reflow treatment was observed with a metal microscope, the solder area with respect to the wiring area was measured, and the evaluation was made according to the following evaluation criteria.
AA: Solder particles are sufficiently wet and spread on the wiring (solder area is 70% or more)
A: Solder particles are wet and spread on the wiring (solder area is 50 to 70%)
B: Solder particles are partially wet and spread on the wiring (solder area is 30 to 50%).
C: Solder particles on the wiring are hardly wet and spread (solder area is less than 30%)

[導通抵抗値の評価]
デジタルマルチメーターを用いて、4端子法にてDC10mAを流した時の接続構造体の導通抵抗値を測定した。20ピンについて接続構造体の導通抵抗値を測定し、以下の評価基準で評価した。
AA:抵抗値が0.1Ω未満
A:抵抗値が0.1Ω以上、0.2Ω未満
B:抵抗値が0.2Ω以上、0.5Ω未満
C:抵抗値が0.5Ω以上
[Evaluation of conduction resistance value]
Using a digital multimeter, the conduction resistance value of the connection structure when DC10 mA was passed by the 4-terminal method was measured. The conduction resistance value of the connection structure was measured for pin 20 and evaluated according to the following evaluation criteria.
AA: Resistance value is less than 0.1Ω A: Resistance value is 0.1Ω or more and less than 0.2Ω B: Resistance value is 0.2Ω or more and less than 0.5Ω C: Resistance value is 0.5Ω or more

[絶縁抵抗値の評価]
デジタルマルチメーターを用いて、隣接端子間に電圧20Vを印加した時の接続構造体の絶縁抵抗値を測定した。10ピンについて接続構造体の絶縁抵抗値を測定し、以下の評価基準で評価した。
A:抵抗値が10Ω以上
B:抵抗値が10Ω以上、10Ω未満
C:抵抗値が10Ω未満
[Evaluation of insulation resistance value]
Using a digital multimeter, the insulation resistance value of the connection structure when a voltage of 20 V was applied between the adjacent terminals was measured. The insulation resistance value of the connection structure was measured for pin 10 and evaluated according to the following evaluation criteria.
A: Resistance value is 109 Ω or more B: Resistance value is 108 Ω or more and less than 10 9 Ω C: Resistance value is less than 108 Ω

<実施例1~4及び比較例1、2>
表2に、はんだ粒子のSn量に対するはんだ濡れの評価、導通試験の評価及び絶縁試験の評価の結果を示す。また、図8は、実施例2の異方性導電フィルムの溶融粘度の測定結果及びDSCの測定結果を示すグラフである。また、図9~12は、それぞれ実施例2、3、及び比較例1、2のリフロー炉処理後のプリント配線板の端子上の顕微鏡写真である。
<Examples 1 to 4 and Comparative Examples 1 and 2>
Table 2 shows the results of the evaluation of solder wetting, the evaluation of the continuity test, and the evaluation of the insulation test with respect to the Sn amount of the solder particles. Further, FIG. 8 is a graph showing the measurement result of the melt viscosity of the anisotropic conductive film of Example 2 and the measurement result of DSC. Further, FIGS. 9 to 12 are micrographs on the terminals of the printed wiring board after the reflow oven treatment of Examples 2 and 3 and Comparative Examples 1 and 2, respectively.

Figure 2022074048000006
Figure 2022074048000006

比較例1は、はんだ粒子のSn量が多く、使用するはんだ粒子の融点が高すぎるため、図11に示すように良好なはんだ濡れの評価が得られず、導通試験の評価及び絶縁試験の評価がCであった。比較例2は、はんだ粒子のSn量が少なく、凝集によるはんだ粒子の配線上への移動が少ないため、図12に示すように良好なはんだ濡れの評価が得られず、導通試験の評価がCであった。 In Comparative Example 1, since the amount of Sn of the solder particles is large and the melting point of the solder particles used is too high, good evaluation of solder wetting cannot be obtained as shown in FIG. 11, and evaluation of the continuity test and evaluation of the insulation test cannot be obtained. Was C. In Comparative Example 2, since the Sn amount of the solder particles is small and the movement of the solder particles on the wiring due to aggregation is small, a good evaluation of solder wetting cannot be obtained as shown in FIG. 12, and the evaluation of the continuity test is C. Met.

一方、実施例1~4は、はんだ粒子が、50~80wt%のSnと、20~50wt%のBiとを含むため、図7に示す温度プロファイル条件のリフロー炉処理において、良好なはんだ濡れの評価、導通試験の評価及び絶縁試験の評価を得ることができた。特に、実施例2、3は、図9、10に示すように、はんだ粒子の配線上への移動が良好であることが分かった。 On the other hand, in Examples 1 to 4, since the solder particles contain 50 to 80 wt% Sn and 20 to 50 wt% Bi, good solder wetting is achieved in the reflow oven treatment under the temperature profile condition shown in FIG. The evaluation, the evaluation of the continuity test, and the evaluation of the insulation test could be obtained. In particular, in Examples 2 and 3, as shown in FIGS. 9 and 10, it was found that the movement of the solder particles on the wiring was good.

<実施例5~9及び比較例3~6>
表3に、はんだ粒子の配合量及びはんだ粒子の平均粒径に対するはんだ濡れの評価、導通試験の評価及び絶縁試験の評価の結果を示す。
<Examples 5 to 9 and Comparative Examples 3 to 6>
Table 3 shows the results of the evaluation of solder wetting, the evaluation of the continuity test, and the evaluation of the insulation test with respect to the blending amount of the solder particles and the average particle size of the solder particles.

Figure 2022074048000007
Figure 2022074048000007

比較例3は、はんだ粒子の配合量が少なすぎるため、はんだ濡れの評価がBであり、導通試験の評価がCであった。比較例4は、平均粒径30μmのはんだ粒子の配合量が多すぎるため、隣接端子間にショートが発生し、絶縁試験の評価がCであったが、後述するように、粒子径を小さくすることで、更にはんだ粒子を更に高充填させることが可能である。これは、小さい粒子径となることで、バインダー中でのはんだ粒子自体の移動性が上がり、凝集できるはんだ粒子量が増え、配線間に残るはんだ粒子量が減ったためと考える。 In Comparative Example 3, since the blending amount of the solder particles was too small, the evaluation of the solder wetting was B, and the evaluation of the continuity test was C. In Comparative Example 4, since the amount of solder particles having an average particle size of 30 μm was too large, a short circuit occurred between adjacent terminals, and the insulation test was evaluated as C. However, as will be described later, the particle size is reduced. This makes it possible to further fill the solder particles. It is considered that this is because the small particle diameter increases the mobility of the solder particles themselves in the binder, increases the amount of solder particles that can aggregate, and reduces the amount of solder particles remaining between the wirings.

比較例5は、はんだ粒子の平均粒径が5μmであるため、相対的な表面酸化膜が多く、半田粒子同士が結合していない状態のはんだ粒子の凝集が過度に起こり、隣接端子間に未結合の巨大凝集物が発生したため、絶縁試験の評価がCであったが、後述するように、ジカルボン酸の量を増加させることで、絶縁試験の評価を良好にすることが可能である。比較例6は、はんだ粒子の平均粒径が50μmと大きすぎたため、隣接端子間にショートが発生し、絶縁試験の評価がCとなった。 In Comparative Example 5, since the average particle size of the solder particles is 5 μm, there are many relative surface oxide films, excessive aggregation of the solder particles in a state where the solder particles are not bonded to each other occurs excessively, and the solder particles are not between adjacent terminals. The evaluation of the insulation test was C because of the generation of huge aggregates of bonds, but as will be described later, it is possible to improve the evaluation of the insulation test by increasing the amount of dicarboxylic acid. In Comparative Example 6, since the average particle size of the solder particles was too large, 50 μm, a short circuit occurred between the adjacent terminals, and the evaluation of the insulation test was C.

一方、実施例2、5、6は、平均粒径30μmのはんだ粒子の配合量が、熱硬化性バインダー100質量部に対して100~300質量部であるため、凝集によるはんだ粒子の配線上への移動が適度に起こり、良好なはんだ濡れの評価、導通試験の評価及び絶縁試験の評価を得ることができた。特に、実施例2、5は、はんだ粒子の配線上への移動が良好であることが分かった。また、実施例7~9は、はんだ粒子の平均粒径が10~40μmであるため、凝集によるはんだ粒子の配線上への移動が適度に起こり、良好なはんだ濡れの評価、導通試験の評価及び絶縁試験の評価を得ることができた。 On the other hand, in Examples 2, 5 and 6, since the blending amount of the solder particles having an average particle size of 30 μm is 100 to 300 parts by mass with respect to 100 parts by mass of the thermosetting binder, the solder particles are placed on the wiring due to aggregation. The movement of the particles occurred moderately, and good evaluation of solder wetting, evaluation of continuity test, and evaluation of insulation test could be obtained. In particular, in Examples 2 and 5, it was found that the movement of the solder particles onto the wiring was good. Further, in Examples 7 to 9, since the average particle size of the solder particles is 10 to 40 μm, the solder particles are appropriately moved onto the wiring due to aggregation, and good evaluation of solder wetting, evaluation of continuity test, and evaluation of continuity test are performed. We were able to obtain an evaluation of the insulation test.

<実施例10~16及び比較例7、8>
表4に、平均粒径20μm、10μmのはんだ粒子を配合した場合のはんだ濡れの評価、導通試験の評価及び絶縁試験の評価の結果を示す。
<Examples 10 to 16 and Comparative Examples 7 and 8>
Table 4 shows the results of evaluation of solder wetting, evaluation of continuity test, and evaluation of insulation test when solder particles having an average particle size of 20 μm and 10 μm are blended.

Figure 2022074048000008
Figure 2022074048000008

比較例7は、平均粒径20μmのはんだ粒子の配合量が多すぎるため、隣接端子間にショートが発生し、絶縁試験の評価がCであり、比較例8も、平均粒径10μmのはんだ粒子の配合量が多すぎるため、隣接端子間にショートが発生し、絶縁試験の評価がCであった。 In Comparative Example 7, since the amount of the solder particles having an average particle size of 20 μm was too large, a short circuit occurred between the adjacent terminals, and the insulation test was evaluated as C. In Comparative Example 8, the solder particles having an average particle size of 10 μm were also evaluated. Since the amount of the soldering was too large, a short circuit occurred between the adjacent terminals, and the evaluation of the insulation test was C.

一方、実施例10~13は、平均粒径20μmのはんだ粒子の配合量が、熱硬化性バインダー100質量部に対して400~900質量部であるため、凝集によるはんだ粒子の配線上への移動が適度に起こり、良好なはんだ濡れの評価、導通試験の評価及び絶縁試験の評価を得ることができた。また、実施例14~16は、平均粒径10μmのはんだ粒子の配合量が、熱硬化性バインダー100質量部に対して1000~1200質量部であるため、凝集によるはんだ粒子の配線上への移動が適度に起こり、良好なはんだ濡れの評価、導通試験の評価及び絶縁試験の評価を得ることができた。 On the other hand, in Examples 10 to 13, since the blending amount of the solder particles having an average particle size of 20 μm is 400 to 900 parts by mass with respect to 100 parts by mass of the thermosetting binder, the solder particles move onto the wiring due to aggregation. Appropriately occurred, and good evaluation of solder wetting, evaluation of continuity test, and evaluation of insulation test could be obtained. Further, in Examples 14 to 16, since the blending amount of the solder particles having an average particle size of 10 μm is 1000 to 1200 parts by mass with respect to 100 parts by mass of the thermosetting binder, the solder particles move onto the wiring due to aggregation. Appropriately occurred, and good evaluation of solder wetting, evaluation of continuity test, and evaluation of insulation test could be obtained.

<実施例17~22>
表5に、ジカルボン酸の配合量を変化させた場合のはんだ濡れの評価、導通試験の評価及び絶縁試験の評価の結果を示す。
<Examples 17 to 22>
Table 5 shows the results of the evaluation of solder wetting, the evaluation of the continuity test, and the evaluation of the insulation test when the blending amount of the dicarboxylic acid was changed.

Figure 2022074048000009
Figure 2022074048000009

実施例17~19は、比較例5に対し、ジカルボン酸を熱硬化性バインダー100質量部に対して6~10質量部に増やすことで、半田粒子同士が結合していない状態のはんだ粒子の凝集が軽減し、良好な接続を得ることができた。また、実施例20~22は、それぞれはんだ粒子の平均粒径を10、20、30μmとし、ジカルボン酸を熱硬化性バインダー100質量部に対して10質量部配合した場合でも、良好なはんだ濡れの評価、導通試験の評価及び絶縁試験の評価を得ることができた。
In Examples 17 to 19, the amount of dicarboxylic acid was increased to 6 to 10 parts by mass with respect to 100 parts by mass of the thermosetting binder as compared with Comparative Example 5, so that the solder particles were aggregated in a state where the solder particles were not bonded to each other. Was reduced, and a good connection could be obtained. Further, in Examples 20 to 22, the average particle size of the solder particles was 10, 20, and 30 μm, respectively, and even when 10 parts by mass of the dicarboxylic acid was blended with 100 parts by mass of the thermosetting binder, good solder wetting was achieved. The evaluation, the evaluation of the continuity test, and the evaluation of the insulation test could be obtained.

また、実施例17~19(平均粒径5μm、フィルム厚み35μm)、実施例9(平均粒径40μm、フィルム厚み45μm)から、異方性導電フィルムの厚みが、はんだ粒子の平均粒径の110%超700%以下の範囲であれば、凝集によるはんだ粒子の配線上への移動が適度に起こり、良好なはんだ濡れの評価、導通試験の評価及び絶縁試験の評価を得ることができることが分かった。 Further, from Examples 17 to 19 (average particle size 5 μm, film thickness 35 μm) and Example 9 (average particle size 40 μm, film thickness 45 μm), the thickness of the anisotropic conductive film is 110, which is the average particle size of the solder particles. It was found that if the range is more than% and 700% or less, the solder particles move to the wiring due to aggregation moderately, and good evaluation of solder wetting, evaluation of continuity test, and evaluation of insulation test can be obtained. ..

<実施例23~28及び比較例9>
表6に、ジカルボン酸の炭素数に対するはんだ濡れの評価、導通試験の評価及び絶縁試験の評価の結果を示す。また、図13は、比較例9のリフロー炉処理後のプリント配線板の端子上の顕微鏡写真である。
<Examples 23 to 28 and Comparative Example 9>
Table 6 shows the results of the evaluation of solder wetting with respect to the carbon number of the dicarboxylic acid, the evaluation of the continuity test, and the evaluation of the insulation test. Further, FIG. 13 is a photomicrograph of the terminals of the printed wiring board after the reflow oven treatment of Comparative Example 9.

Figure 2022074048000010
Figure 2022074048000010

比較例9は、ジカルボン酸を含有していないため、はんだ粒子の表面酸膜を除去できず、図13に示すようにはんだ溶融が見られず、はんだ濡れの評価及び導通試験の評価がCであった。 In Comparative Example 9, since the dicarboxylic acid was not contained, the surface acid film of the solder particles could not be removed, solder melting was not observed as shown in FIG. 13, and the evaluation of solder wetting and the evaluation of the continuity test were C. there were.

一方、実施例2、23~26は、それぞれジカルボン酸として、グルタル酸、マロン酸、アジピン酸、スベリン酸、セバシン酸を含有しているため、良好なはんだ濡れの評価、導通試験の評価及び絶縁試験の評価を得ることができた。特に、実施例2、23は、はんだ粒子の配線上への移動が良好であることが分かった。また、実施例27、28に示すように、それぞれ硬化剤として、ジシアンジアミド、イソフタル酸ジヒドラジドを用いた場合でも、良好なはんだ濡れの評価、導通試験の評価及び絶縁試験の評価を得ることができた。 On the other hand, since Examples 2 and 23 to 26 contain glutaric acid, malonic acid, adipic acid, suberic acid, and sebacic acid as dicarboxylic acids, respectively, good evaluation of solder wetting, evaluation of continuity test, and insulation are performed. I was able to get an evaluation of the test. In particular, in Examples 2 and 23, it was found that the movement of the solder particles on the wiring was good. Further, as shown in Examples 27 and 28, even when dicyandiamide and isophthalic acid dihydrazide were used as the curing agents, good evaluation of solder wetting, evaluation of continuity test, and evaluation of insulation test could be obtained. ..

10 異方性導電フィルム、11 はんだ粒子、20 第1の電子部品、21 第1の端子列、30 異方性導電フィルム、31 はんだ粒子、32 はんだ、40 第2の電子部品、41 第2の端子列、50 ツール
10 anisotropic conductive film, 11 solder particles, 20 first electronic component, 21 first terminal row, 30 anisotropic conductive film, 31 solder particles, 32 solder, 40 second electronic component, 41 second Terminal row, 50 tools

Claims (20)

熱硬化性バインダーと、はんだ粒子と、ジカルボン酸とを含有し、
前記はんだ粒子が、50~80wt%のSnと、20~50wt%のBiとを含み、
前記はんだ粒子の配合量が、前記熱硬化性バインダー100質量部に対して100質量部以上である導電性接着剤。
Contains a thermosetting binder, solder particles, and a dicarboxylic acid,
The solder particles contain 50-80 wt% Sn and 20-50 wt% Bi.
A conductive adhesive having a blending amount of the solder particles of 100 parts by mass or more with respect to 100 parts by mass of the thermosetting binder.
前記ジカルボン酸が、下記式(1)で示される化合物(n=1~8)である請求項1記載の導電性接着剤。
Figure 2022074048000011
The conductive adhesive according to claim 1, wherein the dicarboxylic acid is a compound (n = 1 to 8) represented by the following formula (1).
Figure 2022074048000011
前記ジカルボン酸が、下記式(1)で示される化合物(n=1~3)である請求項1記載の導電性接着剤。
Figure 2022074048000012
The conductive adhesive according to claim 1, wherein the dicarboxylic acid is a compound (n = 1 to 3) represented by the following formula (1).
Figure 2022074048000012
当該導電性接着剤の最低溶融粘度が、300Pa・s以下である請求項1乃至3のいずれか1項に記載の導電性接着剤。 The conductive adhesive according to any one of claims 1 to 3, wherein the minimum melt viscosity of the conductive adhesive is 300 Pa · s or less. 前記はんだ粒子が、59.9Sn-40Bi-0.1Cu、又は69.5Sn-30Bi-0.5Cuである請求項1乃至4のいずれか1項に記載の導電性接着剤。 The conductive adhesive according to any one of claims 1 to 4, wherein the solder particles are 59.9Sn-40Bi-0.1Cu or 69.5Sn-30Bi-0.5Cu. 熱硬化性バインダーと、はんだ粒子と、ジカルボン酸とを含有し、
前記はんだ粒子が、50~80wt%のSnと、20~50wt%のBiとを含み、
前記はんだ粒子の平均粒径40~5μmに対する前記はんだ粒子の配合量が、前記熱硬化性バインダー100質量部に対して100~1200質量部であり、
当該異方性導電フィルムの厚みが、前記はんだ粒子の平均粒径の110%超700%以下である異方性導電フィルム。
Contains a thermosetting binder, solder particles, and a dicarboxylic acid,
The solder particles contain 50-80 wt% Sn and 20-50 wt% Bi.
The blending amount of the solder particles with respect to the average particle size of the solder particles of 40 to 5 μm is 100 to 1200 parts by mass with respect to 100 parts by mass of the thermosetting binder.
An anisotropic conductive film having a thickness of more than 110% and 700% or less of the average particle size of the solder particles.
前記ジカルボン酸が、下記式(1)で示される化合物(n=1~8)である請求項6記載の異方性導電フィルム。
Figure 2022074048000013
The anisotropic conductive film according to claim 6, wherein the dicarboxylic acid is a compound (n = 1 to 8) represented by the following formula (1).
Figure 2022074048000013
前記ジカルボン酸が、下記式(1)で示される化合物(n=1~3)である請求項6記載の異方性導電フィルム。
Figure 2022074048000014
The anisotropic conductive film according to claim 6, wherein the dicarboxylic acid is a compound (n = 1 to 3) represented by the following formula (1).
Figure 2022074048000014
当該異方性導電フィルムの最低溶融粘度が、300Pa・s以下である請求項6乃至8のいずれか1項に記載の異方性導電フィルム。 The anisotropic conductive film according to any one of claims 6 to 8, wherein the minimum melt viscosity of the anisotropic conductive film is 300 Pa · s or less. 前記はんだ粒子が、59.9Sn-40Bi-0.1Cu、又は69.5Sn-30Bi-0.5Cuである請求項6乃至9のいずれか1項に記載の異方性導電フィルム。 The anisotropic conductive film according to any one of claims 6 to 9, wherein the solder particles are 59.9Sn-40Bi-0.1Cu or 69.5Sn-30Bi-0.5Cu. 前記はんだ粒子の平均粒径30~10μmに対する前記はんだ粒子の配合量が、前記熱硬化性バインダー100質量部に対して100~1200質量部である請求項6乃至10のいずれか1項に記載の異方性導電フィルム。 The item according to any one of claims 6 to 10, wherein the blending amount of the solder particles with respect to the average particle size of the solder particles of 30 to 10 μm is 100 to 1200 parts by mass with respect to 100 parts by mass of the thermosetting binder. Anisotropic conductive film. 前記はんだ粒子の平均粒径30~20μmに対する前記はんだ粒子の配合量が、前記熱硬化性バインダー100質量部に対して100~900質量部である請求項6乃至10のいずれか1項に記載の異方性導電フィルム。 The item according to any one of claims 6 to 10, wherein the blending amount of the solder particles with respect to the average particle size of the solder particles of 30 to 20 μm is 100 to 900 parts by mass with respect to 100 parts by mass of the thermosetting binder. Anisotropic conductive film. 前記はんだ粒子の平均粒径20~10μmに対する前記はんだ粒子の配合量が、前記熱硬化性バインダー100質量部に対して100~1200質量部である請求項6乃至10のいずれか1項に記載の異方性導電フィルム。 The item according to any one of claims 6 to 10, wherein the blending amount of the solder particles with respect to the average particle size of the solder particles of 20 to 10 μm is 100 to 1200 parts by mass with respect to 100 parts by mass of the thermosetting binder. Anisotropic conductive film. 前記ジカルボン酸の配合量が、前記熱硬化性バインダー100質量部に対して1~15質量部である請求項6乃至13のいずれか1項に記載の異方性導電フィルム。 The anisotropic conductive film according to any one of claims 6 to 13, wherein the amount of the dicarboxylic acid blended is 1 to 15 parts by mass with respect to 100 parts by mass of the thermosetting binder. 前記ジカルボン酸の配合量が、前記熱硬化性バインダー100質量部に対して6~10質量部である請求項6乃至13のいずれか1項に記載の異方性導電フィルム。 The anisotropic conductive film according to any one of claims 6 to 13, wherein the amount of the dicarboxylic acid blended is 6 to 10 parts by mass with respect to 100 parts by mass of the thermosetting binder. 前記ジカルボン酸の代わりにロジン系のカルボン酸を含有する、又は、ロジン系カルボン酸をさらに含有する請求項6乃至15のいずれか1項に記載の異方性導電フィルム。 The anisotropic conductive film according to any one of claims 6 to 15, which contains a rosin-based carboxylic acid instead of the dicarboxylic acid, or further contains a rosin-based carboxylic acid. 当該異方性導電フィルムの厚みが、前記はんだ粒子の平均粒径よりも5μm以上大きい請求項6乃至16のいずれか1項に記載の異方性導電フィルム。 The anisotropic conductive film according to any one of claims 6 to 16, wherein the thickness of the anisotropic conductive film is 5 μm or more larger than the average particle size of the solder particles. 第1の電子部品と、第2の電子部品と、前記第1の電子部品の電極と前記第2の電子部品の電極との間に介在し、前記請求項1乃至5のいずれか1項に記載の導電性接着剤、又は前記請求項6乃至17のいずれか1項に記載の異方性導電フィルムが硬化した硬化膜とを備え、
前記第1の電子部品の電極又は前記第2の電子部品の電極面積に対する前記はんだ粒子によるはんだ面積が50%以上である接続構造体。
It is interposed between the first electronic component, the second electronic component, the electrode of the first electronic component, and the electrode of the second electronic component, and according to any one of claims 1 to 5. The conductive adhesive according to the above, or a cured film obtained by curing the anisotropic conductive film according to any one of claims 6 to 17 is provided.
A connection structure in which the solder area of the solder particles is 50% or more of the electrode area of the first electronic component or the electrode area of the second electronic component.
前記請求項1乃至5のいずれか1項に記載の導電性接着剤、又は前記請求項6乃至17のいずれか1項に記載の異方性導電フィルムを、第1の電子部品の電極と第2の電子部品の電極との間に介在させ、
前記第1の電子部品の電極と前記第2の電子部品の電極とをリフロー炉を用いて無荷重で接合させる接続構造体の製造方法。
The conductive adhesive according to any one of claims 1 to 5 or the anisotropic conductive film according to any one of claims 6 to 17 is used as an electrode of a first electronic component. Intervene between the electrodes of the electronic component 2
A method for manufacturing a connection structure in which an electrode of the first electronic component and an electrode of the second electronic component are joined without a load by using a reflow furnace.
熱硬化性バインダーと、はんだ粒子と、ジカルボン酸とを含有し、
前記はんだ粒子が、50~80wt%のSnと、20~50wt%のBiとを含み、
前記はんだ粒子の配合量が、前記熱硬化性バインダー100質量部に対して100~300質量部であり、
当該異方性導電フィルムの厚みが、前記はんだ粒子の平均粒径の110%超500%以下である異方性導電フィルム。
Contains a thermosetting binder, solder particles, and a dicarboxylic acid,
The solder particles contain 50-80 wt% Sn and 20-50 wt% Bi.
The blending amount of the solder particles is 100 to 300 parts by mass with respect to 100 parts by mass of the thermosetting binder.
An anisotropic conductive film having a thickness of more than 110% and 500% or less of the average particle size of the solder particles.
JP2021174092A 2020-10-29 2021-10-25 Conductive adhesive, anisotropic conductive film, connection structure, and manufacturing method for connection structure Pending JP2022074048A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237010845A KR20230057466A (en) 2020-10-29 2021-10-25 Conductive adhesive, anisotropic conductive film, connected structure, and manufacturing method of connected structure
PCT/JP2021/039374 WO2022092047A1 (en) 2020-10-29 2021-10-25 Electrically conductive adhesive, anisotropic electrically conductive film, connection structure, and method for producing connection structure
TW110139912A TW202223031A (en) 2020-10-29 2021-10-27 Conductive adhesive, anisotropic conductive film, connection structure body and method for manufacturing connection structure body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020181589 2020-10-29
JP2020181589 2020-10-29
JP2020200282 2020-12-02
JP2020200282 2020-12-02

Publications (1)

Publication Number Publication Date
JP2022074048A true JP2022074048A (en) 2022-05-17

Family

ID=81604237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021174092A Pending JP2022074048A (en) 2020-10-29 2021-10-25 Conductive adhesive, anisotropic conductive film, connection structure, and manufacturing method for connection structure

Country Status (2)

Country Link
JP (1) JP2022074048A (en)
CN (1) CN116438269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234158A1 (en) * 2022-05-31 2023-12-07 本州化学工業株式会社 Crystal of 4,4'-bis(1,1-bis(4-hydroxy-3-methylphenyl)ethyl)biphenyl and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234158A1 (en) * 2022-05-31 2023-12-07 本州化学工業株式会社 Crystal of 4,4'-bis(1,1-bis(4-hydroxy-3-methylphenyl)ethyl)biphenyl and method for producing same

Also Published As

Publication number Publication date
CN116438269A (en) 2023-07-14

Similar Documents

Publication Publication Date Title
US7776438B2 (en) Adhesive film for circuit connection, and circuit connection structure
JP2011192651A (en) Anisotropic conductive film, connection method, and connection structure
JP6898413B2 (en) Manufacturing method of connecting body, anisotropic bonded film, connecting body
TWI826476B (en) Anisotropic conductive film, method for manufacturing same, and method for manufacturing connected structure
WO2013021895A1 (en) Conductive material and connection structure
WO2013125685A1 (en) Semiconductor device and production method therefor
JP7226498B2 (en) Semiconductor film adhesive, semiconductor device manufacturing method, and semiconductor device
TWI809022B (en) Solder particle, conductive material, storage method of solder particle, storage method of conductive material, production method of conductive material, connection structure and production method of connection structure
JP2022074048A (en) Conductive adhesive, anisotropic conductive film, connection structure, and manufacturing method for connection structure
TWI798321B (en) Solder particle, conductive material, storage method of solder particle, storage method of conductive material, production method of conductive material, connection structure and production method of connection structure
WO2022092047A1 (en) Electrically conductive adhesive, anisotropic electrically conductive film, connection structure, and method for producing connection structure
JP6949258B2 (en) Manufacturing method of connecting body and connecting body
JP5850621B2 (en) Anisotropic conductive paste, connection structure, and manufacturing method of connection structure
WO2021131620A1 (en) Connection structure and manufucturing method therefor
WO2021079812A1 (en) Method for producing connected structure, anisotropic electroconductive bonding material, and connected structure
George et al. A Review on Electrically Conductive Adhesives in Electronic Packaging
WO2021157490A1 (en) Method for producing connected body, and connected body
JP2020072149A (en) Film glue for semiconductor, manufacturing method of semiconductor device and semiconductor device
WO2023162666A1 (en) Connection structure manufacturing method, film structure, and film structure manufacturing method
WO2021200553A1 (en) Semiconductor adhesive, and semiconductor device and method for manufacturing same
JP7384171B2 (en) Film adhesive for semiconductors, semiconductor devices and manufacturing methods thereof
WO2020090684A1 (en) Method for manufacturing connected body, anisotropic bonding film, and connected body
JP6533427B2 (en) Conductive material and connection structure
KR20220135894A (en) Self-assembly anisotropic conductive adhesive and component mounting method using the same
JP2023092710A (en) Connected structure and connected structure manufacturing method