WO2020090684A1 - Method for manufacturing connected body, anisotropic bonding film, and connected body - Google Patents

Method for manufacturing connected body, anisotropic bonding film, and connected body Download PDF

Info

Publication number
WO2020090684A1
WO2020090684A1 PCT/JP2019/042035 JP2019042035W WO2020090684A1 WO 2020090684 A1 WO2020090684 A1 WO 2020090684A1 JP 2019042035 W JP2019042035 W JP 2019042035W WO 2020090684 A1 WO2020090684 A1 WO 2020090684A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic bonding
resin
anisotropic
solder particles
bonding film
Prior art date
Application number
PCT/JP2019/042035
Other languages
French (fr)
Japanese (ja)
Inventor
朋之 石松
智幸 阿部
青木 正治
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201980068452.4A priority Critical patent/CN112823448B/en
Priority to KR1020217007724A priority patent/KR102568476B1/en
Priority claimed from JP2019194479A external-priority patent/JP6898413B2/en
Publication of WO2020090684A1 publication Critical patent/WO2020090684A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Definitions

  • the present invention relates to a method for manufacturing a connection body for mounting a semiconductor chip (element) such as an LED (Light Emitting Diode), an anisotropic bonding film, and a connection body.
  • a semiconductor chip such as an LED (Light Emitting Diode), an anisotropic bonding film, and a connection body.
  • Flip-chip mounting is one of the methods for mounting semiconductor chips (elements) such as LEDs. Flip-chip mounting can reduce the mounting area compared to wire bonding, and can mount a small and thin semiconductor chip.
  • thermocompression bonding for example, when a large number of semiconductor chips are bonded to a large substrate, very high pressure is required or parallelism needs to be adjusted. Sex is difficult.
  • Patent Document 1 describes that a solder paste containing solder particles, a thermosetting resin binder, and a flux component is used, and a plurality of components are collectively mounted on a wiring board or the like by reflow.
  • solder paste of Patent Document 1 contains a large amount of solder particles in order to melt and integrate the solder particles, and it is difficult to join electronic components having fine pitch electrodes.
  • FIG. 8 is a micrograph of an LED mounting body manufactured using a conventional solder paste, in which a solder joint state on the board side after peeling off the LED chip is observed.
  • a solder joint state on the board side after peeling off the LED chip is observed.
  • solder particles in a general solder paste, when self-alignment in which solder particles are melted and integrated occurs, the solder particles agglomerate between adjacent terminals to form a bridge A, which may cause a short circuit. there were.
  • the present technology has been proposed in view of such conventional circumstances, and provides a method for manufacturing a connector, an anisotropic bonding film, and a connector capable of bonding an electronic component including fine-pitch electrodes. To do.
  • the inventors of the present application have used an anisotropic bonding material containing a solid resin that is solid at room temperature and has a predetermined melt flow rate, and solder the thickness of the anisotropic bonding material between electrodes by soldering.
  • the inventors have found that the above-mentioned object can be achieved by setting a predetermined value with respect to the average particle diameter of the particles, and have completed the present invention.
  • the method for producing a connector according to the present invention is a solid resin at room temperature, a thermoplastic resin having a melt flow rate of 10 g / 10 min or more measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg, solid radical polymerization.
  • a thermoplastic resin having a melt flow rate of 10 g / 10 min or more measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg, solid radical polymerization.
  • an anisotropic bonding material containing at least one solid resin selected from a conductive resin and a solid epoxy resin, a solder particle, and a flux compound is used as an electrode of a first electronic component and an electrode of a second electronic component.
  • 50% or more and 300% or less of the average particle diameter of the solder particles, and the electrodes of the first electronic component and the electrodes of the second electronic component are heat-bonded with no load.
  • the anisotropic bonding film according to the present invention is a solid at room temperature, a thermoplastic resin having a melt flow rate of 10 g / 10 min or more measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg, solid radical polymerization. Resin, and at least one solid resin selected from solid epoxy resins, solder particles, and a flux compound, and the thickness is 50% or more and 300% or less of the average particle diameter of the solder particles.
  • connection body according to the present invention is formed by joining the electrodes of the first electronic component and the electrodes of the second electronic component by using the anisotropic bonding film described above.
  • the solid resin is melted by heating and the solder particles are sandwiched between the electrodes and melted, so that an electronic component having fine pitch electrodes can be joined.
  • FIG. 1 is a cross-sectional view schematically showing a part of the joining process.
  • FIG. 2 is a cross-sectional view showing a configuration example of the LED mounting body.
  • FIG. 3 is a cross-sectional view schematically showing a part of the anisotropic bonding film to which the present technology is applied.
  • FIG. 4 is a photomicrograph of the solder bonding state on the substrate side after peeling off the LED chip of Example 1-1.
  • FIG. 5 is a photomicrograph of the solder bonding state on the substrate side after peeling off the LED chip of Comparative Example 1-1.
  • FIG. 6 is a photomicrograph of the solder bonding state on the substrate side after peeling off the LED chip of Comparative Example 1-2.
  • FIG. 7 is a photomicrograph when observing the solder joint state on the substrate side after peeling off the LED chip of Comparative Example 1-3.
  • FIG. 8 is a micrograph of an LED mounting body manufactured using a conventional solder paste, in which a solder joint state on the substrate side after the LED chip is peeled off is observed.
  • the method for producing a connector in the present embodiment is a thermoplastic resin that is solid at room temperature and has a melt flow rate of 10 g / 10 min or more measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg, and a solid radical-polymerizable resin.
  • An anisotropic bonding material containing at least one solid resin selected from a resin and a solid epoxy resin, solder particles, and a flux compound is used for an electrode of a first electronic component and an electrode of a second electronic component.
  • the thickness of the solder particles is 50% or more and 300% or less of the average particle diameter of the solder particles, and the electrodes of the first electronic component and the electrodes of the second electronic component are heat-bonded with no load.
  • the melt flow rate is a value measured under the conditions of 190 ° C. and 2.16 kg load, which is specified in JIS K7210: 1999 for determining the melt flow rate of thermoplastics. Also called mass flow rate (MFR).
  • MFR mass flow rate
  • the room temperature is a range of 20 ° C. ⁇ 15 ° C. (5 ° C. to 35 ° C.) specified by JISZ8703.
  • the connection body is one in which two materials or members are electrically connected.
  • joining means joining two materials or members.
  • no load means a state in which no mechanical pressure is applied.
  • the average particle diameter obtained from an observation image or an image type particle size distribution measuring device can be an average value of the maximum length of particles.
  • the particle diameter (D50) and the arithmetic mean diameter (volume basis) at which the cumulative frequency in the particle size distribution obtained by the laser diffraction / scattering method becomes 50% simply. Manufacturer values such as (preferably)) can be used.
  • a chip such as an LED (Light Emitting Diode) or a driver IC (Integrated Circuit) is suitable, and as the second electronic component, particularly if a wiring is provided,
  • a substrate such as printed wiring board: PWB
  • PWB printed wiring board
  • Electrodes electrode array, electrode group
  • Electrodes provided on each of the first electronic component and the second electronic component are provided so as to face each other and are anisotropically connected, and the plurality of first electronic components are provided.
  • the electrodes may be provided so that the components are mounted on one second electronic component.
  • the first electronic components in addition to LEDs (Light Emitting Diodes), chips such as driver ICs (Integrated Circuits) (for example, semiconductor elements), flexible substrates (FPC: Flexible Printed Circuits, resin molded components, wiring, etc.)
  • the second electronic component is not particularly limited as long as it is provided with terminals that at least partially correspond to the terminals of the first electronic component. It is sufficient if it can be broadly defined as a substrate (so-called printed wiring board: PWB) provided with electrodes on which electronic components can be mounted, and the same components may be laminated and connected.
  • PWB printed wiring board
  • Electrodes provided on the first electronic component and the second electronic component, respectively.
  • the electrode group is provided so as to face and be anisotropically connected, and the electrodes (electrode array, electrode group) are arranged so that the plurality of first electronic components are mounted on one second electronic component. It is desirable that the above electronic component has heat resistance in the reflow process.
  • the anisotropic bonding material is solid at room temperature and has a MFR of 10 g / 10 min or more, a solid resin made of one kind selected from a thermoplastic resin, a solid radically polymerizable resin, and a solid epoxy resin, and solder particles, And a flux compound.
  • the flux compound is preferably a carboxylic acid.
  • the flux compound is preferably a blocked carboxylic acid in which a carboxyl group is blocked with an alkyl vinyl ether. This makes it possible to control the temperature at which the flux effect and the curing agent function are exhibited.
  • the resin flow amount of the anisotropic bonding material may be 1.3 to 2.5, and it may be preferable to set it to less than 1.3. By setting the resin flow amount to these values, it is possible to perform heat bonding without load, as described later.
  • the resin flow amount can be measured according to the measuring method described in JP-A-2016-178225. First, the anisotropic bonding film is cut into a width of 2.0 mm, and the cut anisotropic bonding film is sandwiched by non-alkali glass (thickness 0.7 ⁇ m) and passed through a reflow process. This may be the same as the condition used for connection.
  • the resin flow amount of the anisotropic bonding material is small, the resin melting does not proceed without a load in the reflow process, and there is a possibility that the sandwiching between the solder particles and the electrode may be hindered. Since this technology does not apply a load when heat-curing the binder resin, it has a higher meltability than the binder resin designed on the premise of applying a load (pressing with a tool like general anisotropic connection). It is desirable to do.
  • the anisotropic bonding material may be a film-shaped anisotropic bonding film or a paste-shaped anisotropic bonding paste. Further, the anisotropic bonding paste may be formed into a film at the time of connection, or may have a form close to a film by mounting components.
  • the anisotropic bonding paste it is sufficient that a predetermined amount can be uniformly applied onto the substrate.
  • a coating method such as dispensing, stamping, screen printing or the like can be used, and it may be dried if necessary. ..
  • the anisotropic bonding film is particularly preferable because not only the amount of the anisotropic bonding material can be made uniform by the film thickness but also the substrate can be laminated on the substrate at one time and the tact time can be shortened. Further, since it is easy to handle by forming it in a film shape in advance, it can be expected that the work efficiency is improved.
  • the lower limit of the thickness of the anisotropic bonding material between the electrode of the first electronic component and the electrode of the second electronic component is 50% or more, preferably 80% or more, and more preferably the average particle size of the solder particles. 90% or more. If the thickness of the anisotropic bonding material is too thin, the solder particles can be easily sandwiched between the electrodes, but the difficulty in forming a film may increase.
  • the upper limit of the thickness of the anisotropic bonding material between the electrode of the first electronic component and the electrode of the second electronic component is 300% or less, preferably 200% or less of the average particle diameter of the solder particles. It is preferably 150% or less. If the anisotropic bonding material is too thick, the bonding may be hindered.
  • a method for manufacturing an LED mounting body will be described below as a specific example of a method for manufacturing a connection body.
  • the manufacturing method of an LED mounting body is a step of providing an anisotropic bonding material having a thickness of 50% to 300% of an average particle diameter of solder particles on a substrate, and mounting an LED element on the anisotropic bonding material. There is a mounting process and a bonding process for heating and bonding the electrode of the LED element and the electrode of the substrate with no load.
  • the step of providing the anisotropic bonding material may be a step of forming a film of the anisotropic bonding paste on the substrate before connection, and as in the conventional anisotropic conductive film, it is anisotropic. It may be a temporary attaching step of attaching the sexual bonding film to the substrate at low temperature and low pressure, or a laminating step of laminating the anisotropic bonding film on the substrate.
  • the anisotropic bonding film can be provided on the substrate under known use conditions. In this case, since there is only a minimum change such as a tool change from the conventional device, an economic advantage can be obtained.
  • the anisotropic bonding film is laminated on the substrate using, for example, a pressure laminator.
  • the laminating temperature is preferably 40 ° C or higher and 160 ° C or lower, more preferably 50 ° C or higher and 140 ° C or lower, and further preferably 60 ° C or higher and 120 ° C or lower.
  • the laminating pressure is preferably 0.1 MPa or more and 10 MPa or less, more preferably 0.5 MPa or more and 5 MPa or less, and further preferably 1 MPa or more and 3 MPa or less.
  • the laminating time is preferably 0.1 sec or more and 10 sec or less, preferably 0.5 sec or more and 8 sec or less, and more preferably 1 sec or more and 5 sec or less. Further, it may be a vacuum pressure type laminate. If the conventional anisotropic conductive film is temporarily attached using a heating and pressing tool, the width of the film is restricted by the tool width, but in the laminating process, the heating and pressing tool is not used, so it is relatively wide. It can be expected that the width can be installed at once. Also, one anisotropic bonding film may be laminated on one substrate. Accordingly, since the vertical movement of the thermocompression bonding tool and the conveyance of the anisotropic bonding film are not performed a plurality of times, the time for providing the anisotropic bonding material can be shortened.
  • each LED element has, for example, a first conductivity type electrode and a second conductivity type electrode on one surface, and is arranged on the electrodes of the substrate 30 corresponding to the first conductivity type electrode and the second conductivity type electrode.
  • the thickness of the anisotropic bonding material between the electrode of the LED element and the electrode of the substrate is set to be close to the average particle diameter of the solder particles.
  • the present invention is not limited to this, and the thickness of the anisotropic bonding material may be approximated to the average particle diameter of the solder particles by pressing (for example, temporary compression bonding) in the mounting process.
  • the thickness of the anisotropic bonding material between the electrode of the LED element and the electrode of the substrate is applied by applying pressure from the side of the first electronic component mounted on the second electronic component. Is approximated to the average particle size of the solder particles.
  • the thickness of the anisotropic bonding material is too large, the pressurization may be hindered, so it can be said that it is preferable to set the thickness to the upper limit described above.
  • Approximate to the average particle size means that theoretically the maximum diameter of the solder particles becomes the thickness of the anisotropic connecting material after this pressing step, so the thickness of the anisotropic connecting material is the maximum diameter of the solder particles. It may be considered to be equivalent, and if the thickness variation is taken into consideration, the maximum diameter of the solder particles may be 130% or less, preferably 120% or less.
  • the lower limit of the pressure in the pressurizing step is preferably 0.2 MPa or more, more preferably 0.4 MPa or more, and the upper limit of the pressure in the pressurizing step may be 2.0 MPa or less, preferably 1. It is 0 MPa or less, more preferably 0.8 MPa or less.
  • the upper and lower limits may vary depending on the specifications of the apparatus, and are not limited to the above numerical range as long as the purpose of pushing the resin to the solder particle size can be achieved.
  • This pressurization (temporary compression) step is performed in order to bring the electrodes and the solder particles closer to each other without melting the solder particles.
  • FIG. 1 is a sectional view schematically showing a part of the joining process.
  • the electrodes 11 and 12 of the LED element 10 and the electrodes 21 and 21 of the substrate 20 are heated and joined with no load.
  • Examples of the method of heat-bonding without load without mechanical pressure include atmospheric pressure reflow, vacuum reflow, atmospheric pressure oven, autoclave (pressurizing oven), and the like. It is preferable to use a vacuum reflow, an autoclave, or the like that can eliminate bubbles. Since there is no load, unnecessary resin flow does not occur as compared with anisotropic conductive connection using a general heating / pressurizing tool, and therefore an effect of suppressing entrainment of bubbles can be expected.
  • the solid resin is melted by heating, the solder particles 31 are sandwiched between the electrodes by the self-weight of the LED element 10, the solder particles 31 are melted by the main heating that is the solder melting temperature or higher, the solder wets and spreads on the electrodes, and the LED is cooled by cooling.
  • the electrode of the element 10 and the electrode of the substrate 20 are bonded.
  • the main heating is preferably performed at a temperature of 200 ° C. or higher and 300 ° C. or lower, more preferably 220 ° C. or higher and 290 ° C. or lower, and further preferably 240 ° C. or higher and 280 ° C. or lower.
  • the electrode of the LED element 10 and the electrode of the substrate 20 are bonded to each other, and thus excellent conductivity, heat dissipation and adhesiveness can be obtained. Since no load is applied in the joining step, the amount of movement of the solder particles is reduced, and it is expected that the solder particle capturing efficiency is high. In addition, the content of solder particles is such that self-alignment cannot be expected, and since many solder particles contained in the anisotropic bonding film are not integrated in the bonding process, multiple solder particles can be used in one electrode. There is a joint.
  • the solder joining refers to melting and connecting the respective electrodes of the electronic components facing each other.
  • FIG. 2 is a sectional view showing a configuration example of an LED mounting body.
  • the LED element 10 and the substrate 20 are connected using an anisotropic bonding film in which solder particles 31 are dispersed in a solid resin. That is, the LED mounting body has the LED element 10, the substrate 20, and the solder particles 31, and is anisotropically joined by connecting the electrodes 11 and 12 of the LED element 10 and the electrodes 21 and 22 of the substrate 20.
  • a film 32 is provided, the electrodes 11 and 12 of the LED element 10 and the electrodes 21 and 22 of the substrate 20 are joined by a solder joint 33, and the solid resin is filled between the LED element 10 and the substrate 20. It has been done.
  • the LED element 10 includes a first conductivity type electrode 11 and a second conductivity type electrode 12, and when a voltage is applied between the first conductivity type electrode 11 and the second conductivity type electrode 12, carriers are generated in an active layer in the element. Are concentrated and recombine to generate light.
  • the distance between the spaces between the first conductivity type electrode 11 and the second conductivity type electrode 12 is, for example, 100 ⁇ m or more and 200 ⁇ m or less, 100 ⁇ m or more and 50 ⁇ m or less, or 20 ⁇ m or more and 50 ⁇ m or less depending on the element size. is there.
  • the LED element 10 is not particularly limited, but for example, a blue LED having a peak wavelength of 400 nm to 500 nm can be preferably used.
  • the substrate 20 has a first electrode 21 and a second electrode 22 on the base material at positions corresponding to the first conductivity type electrode 11 and the second conductivity type electrode 12 of the LED element 10, respectively.
  • the substrate 20 include a printed wiring board, a glass substrate, a flexible substrate, a ceramic substrate and a plastic substrate.
  • the electrode height of the printed wiring board is, for example, 10 ⁇ m or more and 40 ⁇ m or less
  • the electrode height of the glass substrate is, for example, 3 ⁇ m or less
  • the electrode height of the flexible substrate is, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the anisotropic bonding film 32 is a film made of an anisotropic bonding material after the bonding process, and the electrodes 11 and 12 of the LED element 10 and the electrodes 21 and 22 of the substrate 20 are bonded at the solder bonding portion 33. Along with metal bonding, an anisotropic bonding material is filled between the LED element 10 and the substrate 20.
  • the terminals (electrodes 11 and 12) of the LED element 10 and the terminals (electrodes 21 and 22) of the substrate 20 are metal-bonded to each other by the solder joint portion 33.
  • a solid resin is filled between 20 and the substrate 30. As a result, it is possible to prevent water and the like from entering between the LED element 10 and the substrate 20.
  • FIG. 3 is a cross-sectional view schematically showing a part of the anisotropic bonding film to which the present technology is applied.
  • the anisotropic bonding film 30 contains a solid resin, solder particles 31, and a flux compound.
  • the first film may be attached to the first surface and the second film may be attached to the second surface, if necessary.
  • the anisotropic bonding film is formed by forming an anisotropic bonding material into a film.
  • the lower limit of the film thickness is 50% or more, preferably 80% or more, more preferably 90% or more of the average particle diameter of the solder particles.
  • the upper limit of the film thickness is 300% or less, preferably 200% or less, more preferably 150% or less of the average particle diameter of the solder particles. If the film is too thick, there is a risk that it will interfere with the joining.
  • the film thickness can be measured using a known micrometer or digital thickness gauge (eg Mitutoyo Corporation: MDE-25M, minimum display amount 0.0001 mm) capable of measuring 1 ⁇ m or less, preferably 0.1 ⁇ m or less. ..
  • the film thickness may be obtained by measuring 10 or more points and averaging them. However, when the film thickness is smaller than the particle size, a contact-type thickness measuring instrument is not suitable, so it is preferable to use a laser displacement meter (eg, Keyence Corporation, spectral interference displacement type SI-T series, etc.). ..
  • the film thickness is the thickness of only the resin layer and does not include the particle diameter.
  • Solid resin The solid resin is solid at room temperature and has an MFR of 10 g / 10 min or more measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg.
  • the upper limit of MFR is preferably 5000 g / 10 min or less, more preferably 4000 g / 10 min or less, still more preferably 3000 g / 10 min or less. If the MFR is too large, it becomes difficult to fill the solid resin between the first electronic component and the second electronic component.
  • the thermoplastic resin is solid at room temperature and is not particularly limited as long as it satisfies the above MFR, and examples thereof include ethylene vinyl acetate copolymer resin, ethylene acrylic acid copolymer resin, polyamide resin, and polyester resin. Good.
  • the solid resin is a thermoplastic resin
  • the electrodes of the first electronic component and the electrodes of the second electronic component are metal-bonded to each other by hot melt, so that sufficient bonding strength can be obtained.
  • the thermoplastic resin does not undergo a reaction, it is not necessary to care about the pot life (the product life is longer than that using a curable resin and a curing agent (reaction initiator)), and handling is easy. become.
  • the thermoplastic resin is a solid at room temperature, the resin does not melt at the time of use, but when it melts, a filler may be added to prevent melting.
  • the solid radical polysynthetic resin is not particularly limited as long as it is a radical polymerizable resin that is solid at room temperature, satisfies the above MFR, and has one or more unsaturated double bonds in the molecule. It may be unsaturated polyester (also called vinyl ester), epoxy-modified or urethane-modified (meth) acrylate. Thereby, the film shape can be maintained.
  • the solid epoxy resin is not particularly limited as long as it is a solid at room temperature, satisfies the above MFR, and has one or more epoxy groups in the molecule, and examples thereof include bisphenol A type epoxy resin and biphenyl. Type epoxy resin or the like may be used. Thereby, the film shape can be maintained.
  • the anisotropic bonding film may further contain a liquid radical polymerizable resin which is liquid at room temperature and a polymerization initiator.
  • the liquid radical polymerizable resin is not particularly limited as long as it is liquid at room temperature, and may be, for example, acrylate, methacrylate, unsaturated polyester, or urethane-modified.
  • the blending amount of the liquid radical-polymerizable resin is preferably 100 parts by mass or less, more preferably 80 parts by mass or less, and further preferably 70 parts by mass or less with respect to 100 parts by mass of the solid resin. If the blending amount of the liquid radically polymerizable resin increases, it becomes difficult to maintain the film shape.
  • the polymerization initiator is preferably an organic peroxide such as diacyl peroxide. Further, the reaction initiation temperature of the polymerization initiator is preferably higher than the melting point of the solder particles. As a result, curing starts after the solid resin flows, so that good solder joint can be obtained.
  • the anisotropic bonding film may further contain a liquid epoxy resin and a curing agent at room temperature.
  • the liquid epoxy resin is not particularly limited as long as it is liquid at room temperature, and may be, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, or urethane modified epoxy resin. Absent.
  • the blending amount of the liquid epoxy resin is preferably 160 parts by mass or less, more preferably 100 parts by mass or less, and further preferably 70 parts by mass or less based on 100 parts by mass of the solid resin. When the blending amount of the liquid epoxy resin is large, it becomes difficult to maintain the film shape.
  • the curing agent is not particularly limited as long as it is a thermal curing agent that starts to cure by heat, and examples thereof include anionic curing agents such as amine and imidazole, and cationic curing agents such as sulfonium salts. Further, the curing agent may be microencapsulated so as to obtain resistance to the solvent used when forming a film.
  • the curing agent may be a carboxylic acid or a blocked carboxylic acid in which a carboxyl group is blocked with an alkyl vinyl ether. That is, the curing agent may be a flux compound.
  • solder particles may be randomly kneaded and dispersed in the anisotropic bonding film, or may be arranged in a plan view.
  • the arrangement of the entire solder particles in a plan view of the anisotropic bonding film may be regular arrangement or random arrangement.
  • the regular arrangement include a lattice arrangement such as a square lattice, a hexagonal lattice, an orthorhombic lattice, and a rectangular lattice, and there is no particular limitation.
  • the solder particles exist without contacting each other in a plan view of the film, and the solder particles also exist in the film thickness direction without overlapping each other.
  • solder particles in the anisotropic bonding film are not in contact with other solder particles and are independent. This can be confirmed by using a known metallographic microscope or optical microscope to arbitrarily extract 5 or more areas of 1 mm 2 or more in a plane view of the film and observe 200 or more, preferably 1000 or more solder particles. You can Further, when the solder particles are arranged in the anisotropic bonding film in a plan view, the solder particles may be aligned at the same position in the film thickness direction.
  • the solder particles may be arranged as an aggregate of a plurality of particles.
  • the arrangement of the agglomerates in a plan view of the anisotropic bonding film may be a regular arrangement or a random arrangement, similar to the arrangement of the solder particles described above.
  • the average particle size of the individual solder particles of the aggregate can be measured in the same manner as the above-mentioned average particle size.
  • the average particle diameter of the solder particles is preferably 1 ⁇ 3 or less of the distance between the spaces of the electrodes of the semiconductor element which is the adherend, more preferably 1 ⁇ 4 or less, and further preferably 1 ⁇ 5 or less. is there.
  • the specific particle diameter of the solder particles is preferably 1 ⁇ m or more and 30 ⁇ m or less. If the average particle diameter is smaller than 1 ⁇ m, a good solder joint state with the electrode cannot be obtained, and reliability tends to deteriorate.
  • the lower limit of the average particle diameter of the solder particles is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more. If the average particle size of the solder particles is 30 ⁇ m or more, fine pitch connection becomes difficult.
  • the upper limit of the average particle diameter of the solder particles is 30 ⁇ m or less, preferably 25 ⁇ m or less, and more preferably 20 ⁇ m or less. Depending on the object to be connected, the upper limit of the average particle diameter of the solder particles is preferably 15 ⁇ m or less.
  • the size of the aggregate may be equal to the average particle diameter of the solder particles described above. In the case of forming an aggregate, the average particle size of the solder particles may be smaller than the above value. The size of each solder particle can be determined by observing with an electron microscope.
  • the solder particles are, for example, Sn-Pb type, Pb-Sn-Sb type, Sn-Sb type, Sn-Pb-Bi type, Bi-Sn type, Sn-Cu type, and Sn-Cu type specified in JIS Z3282-1999. It can be appropriately selected from Sn-Pb-Cu-based, Sn-In-based, Sn-Ag-based, Sn-Pb-Ag-based, Pb-Ag-based, etc. depending on the electrode material, connection conditions and the like.
  • the melting point of the solder particles is preferably 110 ° C. or higher and 180 ° C. or lower, more preferably 120 ° C. or higher and 160 ° C. or lower, and further preferably 130 ° C. or higher and 150 ° C. or lower.
  • a flux compound may be directly bonded to the surface for the purpose of activating the surface. By activating the surface, metal bonding with the electrode part can be promoted.
  • the lower limit of the mass ratio range of the blending amount of the solder particles is preferably 20 wt% or more, more preferably 30 wt% or more, further preferably 40 wt% or more, and the lower limit of the mass ratio range of the blending amount of the solder particles is preferably It is 80 wt% or less, more preferably 70 wt% or less, and further preferably 60 wt% or less.
  • the lower limit of the volume ratio range of the blending amount of the solder particles is preferably 5 vol% or more, more preferably 10 vol% or more, further preferably 15 vol% or more, the upper limit of the volume ratio range of the blending amount of the solder particles, It is preferably 30 vol% or less, more preferably 25 vol% or less, and further preferably 20 vol% or less.
  • the volume ratio may be used, and when manufacturing the anisotropic conductive bonding material (before the solder particles are present in the binder), the mass ratio may be used. ..
  • the mass ratio can be converted into a volume ratio from the specific gravity of the compound or the compounding ratio. If the blending amount of the solder particles is too small, excellent conductivity, heat dissipation and adhesiveness cannot be obtained, and if the blending amount is too large, anisotropy is impaired and excellent conduction reliability cannot be obtained.
  • the flux compound removes foreign matters and oxide film on the electrode surface, prevents oxidation on the electrode surface, and lowers the surface tension of the molten solder.
  • the flux compound for example, carboxylic acids such as levulinic acid, maleic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid and sebacic acid are preferably used. As a result, good solder connection can be obtained, and when an epoxy resin is mixed, it can function as a curing agent for the epoxy resin.
  • a blocked carboxylic acid having a carboxyl group blocked with an alkyl vinyl ether as the flux compound. This makes it possible to control the temperature at which the flux effect and the curing agent function are exhibited. Further, since the solubility in the resin is improved, it is possible to improve the mixing and coating unevenness when forming a film.
  • the dissociation temperature at which the blocking is released is preferably equal to or higher than the melting point of the solder particles. As a result, good solder connection can be obtained, and when the epoxy resin is blended, curing is started after the epoxy resin flows, so that good solder joint can be obtained.
  • the anisotropic bonding film may contain an inorganic filler, an organic filler, a metal filler, a coupling agent, a leveling agent, a stabilizer, a thixotropic agent and the like.
  • the particle size of the inorganic filler, the organic filler, and the metal filler is smaller than the average particle size of the solder particles from the viewpoint of connection stability.
  • a nanofiller of 10-1000 nm, a microfiller of 1-10 ⁇ m, or the like is used. ..
  • examples of the inorganic filler include silica, aluminum oxide, aluminum hydroxide, titanium oxide, aluminum hydroxide, calcium hydroxide, calcium carbonate, talc, zinc oxide, zeolite, etc., and silica is added for the purpose of improving moisture absorption reliability.
  • titanium oxide may be added for the purpose of improving light reflection
  • aluminum hydroxide, calcium hydroxide, or the like may be added for the purpose of preventing corrosion by acid.
  • organic filler acrylic resin, carbon, core shell particles and the like can be mentioned. By adding the organic filler, effects such as blocking prevention and light scattering can be obtained.
  • the metal filler examples include Ni, Cu, Ag and Au, and alloys of these may be used.
  • the Cu filler forms a complex with an acid and therefore can prevent corrosion of the electrodes and the like.
  • the metal filler may or may not contribute to conduction, and the compounding amount of the metal filler, including the solder particles, may be adjusted so as not to cause a short circuit.
  • the above-mentioned anisotropic bonding film is prepared by, for example, mixing solid resin, solder particles, and a flux compound in a solvent, and applying this mixture by a bar coater to a predetermined thickness on a release-treated film. Then, it can be obtained by drying and volatilizing the solvent. Further, in order to enhance the dispersibility of the solder particles, it is preferable to apply a high share in a state of containing a solvent. For example, a known batch type planetary stirring device can be used. It may be one that can be performed in a vacuum environment.
  • the amount of residual solvent in the anisotropic bonding film is preferably 2% or less, more preferably 1% or less.
  • an LED mounting body was produced using an anisotropic bonding film containing a thermoplastic resin, and the forward voltage, die shear strength, and bonding state of the LED mounting body were evaluated.
  • melt flow rate of solid resin According to JIS K7210: 1999 method for determining the melt flow rate of plastic plastics, using a melt flow rate measuring device (product name: Melt Indexer G-02, manufactured by Toyo Seiki Seisaku-sho, Ltd.), temperature 190 ° C., load 2.16 kg The melt flow rate of the thermoplastic resins AE was measured by.
  • the anisotropic bonding film was laminated on the substrate under the condition of 80 ° C.-2 MPa-3 sec, the LED chip was aligned and mounted, and then the LED chip was mounted by reflow (peak temperature 260 ° C.).
  • the die shear strength of the LED chip was measured at a measurement speed of 20 ⁇ m / sec using a bonding tester (product number: PTR-1100, manufactured by Reska Co.).
  • the film thickness was measured at 10 or more points using a digital micrometer, and the average was taken as the film thickness.
  • thermoplastic resin A As shown in Table 1, thermoplastic resin A, flux compound (glutaric acid (1,3-propanedicarboxylic acid), Wako Pure Chemical Industries, Ltd.), solder particles (42Sn-58Bi, Type 6, melting point 139 ° C, average particle) A diameter of 10 ⁇ m, Mitsui Kinzoku Co., Ltd., and titanium oxide (average particle size 0.21 ⁇ m, CR-60, Ishihara Sangyo Co., Ltd.) were mixed in a predetermined mass part to prepare an anisotropic bonding film.
  • PET-02-BU PET-02-BU
  • PET-02-BU PET-02-BU
  • Toluene was dried at 80 ° C. for 10 minutes. The measured film thickness after drying was 20 ⁇ m.
  • Table 1 shows the measurement results of the forward voltage and the die shear strength of the LED mounting body manufactured using the anisotropic bonding film.
  • the forward voltage was 3.1 V and the die shear strength was 40 N / chip.
  • FIG. 4 is a photomicrograph when observing the solder joint state on the substrate side after peeling off the LED chip of Example 1-1. The solder was wet and spread on the LED chip side and the substrate side, and was in a good solder joint state. It was also confirmed that there were a plurality of solder joints in one electrode.
  • Example 1-2 As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the thermoplastic resin B was used instead of the thermoplastic resin A.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V and a die shear strength of 45 N / chip.
  • Example 1-3 As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the thermoplastic resin C was used instead of the thermoplastic resin A.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.0 V and a die shear strength of 43 N / chip.
  • Example 1-4 As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the thermoplastic resin D was used instead of the thermoplastic resin A.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.0 V and a die shear strength of 46 N / chip.
  • Example 1-5 As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the thickness of the anisotropic bonding film was 30 ⁇ m.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.1 V and a die shear strength of 47 N / chip.
  • Example 1-1 As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the thermoplastic resin E was used instead of the thermoplastic resin A.
  • the LED package manufactured using the anisotropic bonding film had an open forward voltage and a die shear strength of 19 N / chip.
  • FIG. 5 is a photomicrograph of the solder bonding state on the substrate side after peeling off the LED chip of Comparative Example 1-1. Since the melt flow rate of the thermoplastic resin E was 1 g / 10 min, the resin hardly flowed and the solder particles did not contact the pad of the LED chip or the pattern of the substrate and were not melted.
  • Example 1-2 As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the flux compound was not added.
  • the LED package manufactured using the anisotropic bonding film had an open forward voltage and a die shear strength of 18 N / chip.
  • FIG. 6 is a photomicrograph when observing the solder joint state on the substrate side after peeling off the LED chip of Comparative Example 1-2. Since no flux compound was added, the solder particles did not melt.
  • Example 1-3 As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the thickness of the anisotropic bonding film was 40 ⁇ m.
  • the LED mounting body produced using the anisotropic bonding film had an open forward voltage and a die shear strength of 25 N / chip.
  • FIG. 7 is a photomicrograph of the solder bonding state on the substrate side after peeling off the LED chip of Comparative Example 1-3. Since the thickness of the anisotropic bonding film is as thick as 40 ⁇ m, the sandwiching of the solder particles between the electrodes is insufficient, the solder bonding becomes insufficient, and the wetting and spreading of the solder particles occurs only on the LED chip side and only on the substrate side. The spot was seen.
  • Comparative Example 1-1 since the thermoplastic resin E having a melt flow rate of 1 g / 10 min was used, the fluidity of the resin was poor, the solder particles did not melt, and the electrodes of the adherend were not joined. Therefore, the forward voltage could not be measured. Further, the resin did not flow sufficiently and the solder joint was not formed, so that the adhesion of the LED chip was weak and the die shear strength was low.
  • thermoplastic resins A to D having a melt flow rate of 1 g / 10 min or more were used, and the thickness of the solder particles was 2-3 times as large as the average particle diameter of 10 ⁇ m. Since the anisotropic bonding film having a thickness of 20 to 30 ⁇ m was used, the resin melted and flowed, and the solder particles were solder-bonded between the electrodes of the adherend, and a value close to the rated voltage of 3.1 V could be obtained. The die shear strength was also good.
  • an LED mounting body was prepared using an anisotropic bonding film containing a radically polymerizable resin, and the forward voltage, the insulating property and the die shear strength of the LED mounting body were evaluated.
  • the manufacturing of the LED mounting body, the measurement of the forward voltage of the LED mounting body, and the measurement of the die-shake strength are the same as those in the first embodiment, and thus the description thereof is omitted here.
  • melt flow rate of solid resin According to JIS K7210: 1999 method for determining the melt flow rate of plastic plastics, using a melt flow rate measuring device (product name: Melt Indexer G-02, manufactured by Toyo Seiki Seisaku-sho, Ltd.), temperature 190 ° C., load 2.16 kg The melt flow rates of the thermoplastic resins AC and E and the solid radically polymerizable resin were measured by.
  • thermoplastic resin A a liquid radical polymerizable resin (hydrogenated bisphenol A diglycidyl ether, Epolite 4000, Kyoeisha Chemical Co., Ltd.), an initiator (diacyl peroxide, Perhexa 25B, NOF CORPORATION) )), Flux compound A (glutaric acid (1,3-propanedicarboxylic acid), Wako Pure Chemical Industries, Ltd.), solder particles (42Sn-58Bi, Type6, melting point 139 ° C., average particle size 10 ⁇ m, Mitsui Kinzoku Co., Ltd.) ) And titanium oxide (average particle size 0.21 ⁇ m, CR-60, Ishihara Sangyo Co., Ltd.) were mixed in a predetermined mass part to prepare an anisotropic bonding film.
  • a thermoplastic resin A a liquid radical polymerizable resin (hydrogenated bisphenol A diglycidyl ether, Epolite 4000, Kyoeisha Chemical Co., Ltd
  • Thermoplastic resin A and liquid radical-polymerizable resin are mixed and dissolved in toluene, flux compound A and titanium oxide are added thereto, and the mixture is dispersed with three rolls (three passes with a gap of 10 ⁇ m) and then started.
  • a resin solution was obtained by dispersing the agent and the solder particles. This resin solution was applied to a peeled PET (PET-02-BU, Shikoku Tocello Co., Ltd.) with a gap coater so that the thickness after drying with toluene was 20 ⁇ m. Toluene was dried at 80 ° C. for 10 minutes.
  • the LED mounting body manufactured using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 42 N / chip.
  • Example 2-2 As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the thermoplastic resin B was used instead of the thermoplastic resin A.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 46 N / chip.
  • Example 2-3 As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the thermoplastic resin C was used instead of the thermoplastic resin A.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 41 N / chip.
  • Example 2-4 As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the solid radically polymerizable resin was used instead of the thermoplastic resin A.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 47 N / chip.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 46 N / chip.
  • Example 2-6> As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the thickness of the anisotropic bonding film was 30 ⁇ m.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 49 N / chip.
  • thermoplastic resin E was dissolved with a reactive diluent (tetrahydrofurfuryl acrylate, biscoat # 150, Osaka Organic Chemical Industry Co., Ltd.), and then the radical polymerizable resin, the initiator and the flux compound A were dissolved.
  • An anisotropic bonding paste was prepared by mixing, dispersing, titanium oxide, and solder particles.
  • substrate (Dexerials evaluation ceramic substrate, 18 ⁇ m thickness)
  • a Cu pattern, Ni—Au plating, and space (space between patterns) of 50 ⁇ m) were prepared.
  • the anisotropic bonding paste was applied onto the substrate using a mask having a thickness of 30 ⁇ m, the LED chips were mounted by alignment, and then the LED chips were mounted by reflow (peak temperature of 260 ° C.).
  • the LED mounting body produced using the anisotropic bonding paste had a forward voltage of 3.0 V, an insulating property of NG, and a die shear strength of 45 N / chip.
  • Example 2-2 As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the thermoplastic resin E was used instead of the thermoplastic resin A.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 19 N / chip.
  • Example 2-3 As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the flux compound was not added.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 19 N / chip.
  • Example 2-4 As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the thickness of the anisotropic bonding film was 40 ⁇ m.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 26 N / chip.
  • Comparative Example 2-2 since the thermoplastic resin E having a melt flow rate of 1 g / 10 min was used, the fluidity of the resin was poor, the solder particles did not melt, and the electrodes of the adherend were not joined. Therefore, the forward voltage could not be measured. Further, the resin did not flow sufficiently and the solder joint was not formed, so that the adhesion of the LED chip was weak and the die shear strength was low.
  • thermoplastic resins A to D having a melt flow rate of 1 g / 10 min or more were used, and the thickness was 2-3 times as large as the average particle diameter of the solder particles of 10 ⁇ m. Since the anisotropic bonding film having a thickness of 20 to 30 ⁇ m was used, the resin melted and flowed, and the solder particles were solder-bonded between the electrodes of the adherend, and a value close to the rated voltage of 3.1 V could be obtained. The die shear strength was also good.
  • an LED mounting body was prepared using an anisotropic bonding film containing an epoxy resin, and the forward voltage, the insulating property and the die shear strength of the LED mounting body were evaluated.
  • the production of the LED mounting body, the measurement of the forward voltage of the LED mounting body, and the dieche strength are the same as those in the first embodiment, and the evaluation of the insulating property of the LED mounting body is the same as that in the second embodiment. The description is omitted here.
  • melt flow rate of solid resin According to JIS K7210: 1999 method for determining the melt flow rate of plastic plastics, using a melt flow rate measuring device (product name: Melt Indexer G-02, manufactured by Toyo Seiki Seisaku-sho, Ltd.), temperature 190 ° C., load 2.16 kg The melt flow rates of the thermoplastic resins AC and E and the solid epoxy resin were measured by.
  • thermoplastic resin A liquid epoxy resin (bisphenol A type epoxy resin, YL980, Mitsubishi Chemical Corporation), curing agent A (anion curing agent, microcapsule type imidazole curing agent, HX3941HP, Asahi Kasei ( Co., Ltd.), flux compound A (glutaric acid (1,3-propanedicarboxylic acid), Wako Pure Chemical Industries, Ltd.), solder particles (42Sn-58Bi, Type 6, melting point 139 ° C., average particle size 10 ⁇ m, Mitsui Kinzoku Co., Ltd. )) And titanium oxide (average particle size 0.21 ⁇ m, CR-60, Ishihara Sangyo Co., Ltd.) were mixed in a predetermined mass part to prepare an anisotropic bonding film.
  • thermoplastic resin A and the liquid epoxy resin are mixed and dissolved in toluene, and the flux compound A and titanium oxide are added thereto and dispersed by a three-roll (three passes with a gap of 10 ⁇ m), and then a curing agent A.
  • a resin solution was obtained by dispersing the solder particles. This resin solution was applied to a peeled PET (PET-02-BU, Shikoku Tocello Co., Ltd.) with a gap coater so that the thickness after drying with toluene was 20 ⁇ m. Toluene was dried at 80 ° C. for 10 minutes.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 43 N / chip.
  • Example 3-2 As shown in Table 3, an anisotropic bonding film was produced in the same manner as in Example 3-1 except that the thermoplastic resin B was used instead of the thermoplastic resin A.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 46 N / chip.
  • Example 3-3 As shown in Table 3, an anisotropic bonding film was produced in the same manner as in Example 3-1 except that the thermoplastic resin C was used instead of the thermoplastic resin A.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 41 N / chip.
  • Example 3-4 As shown in Table 3, an anisotropic bonding film was produced in the same manner as in Example 3-1 except that a solid epoxy resin was used instead of the thermoplastic resin A.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 47 N / chip.
  • Example 3-5 As shown in Table 3, except that the curing agent B (cationic curing agent, sulfonium salt, San-Aid SI-80L, manufactured by Sanshin Chemical Co., Ltd.) was used in place of the curing agent A and the mixing ratio of the liquid epoxy resin was adjusted.
  • An anisotropic bonding film was produced in the same manner as in Example 3-1.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 46 N / chip.
  • Example 3-6 As shown in Table 3, the anisotropic bonding film was the same as in Example 3-1 except that flux compound B (blocked carboxylic acid, Santacid G, NOF Corporation) was used in place of flux compound A. Was produced.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 44 N / chip.
  • Example 3-7 As shown in Table 3, an anisotropic bonding film was produced in the same manner as in Example 3-1, except that the thickness of the anisotropic bonding film was 30 ⁇ m.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 49 N / chip.
  • an anisotropic bonding paste was prepared by mixing and dispersing a liquid epoxy resin, a curing agent A, a flux compound A, titanium oxide, and solder particles.
  • substrate (Dexerials evaluation ceramic substrate, 18 ⁇ m thickness)
  • a Cu pattern, Ni—Au plating, and space (space between patterns) of 50 ⁇ m) were prepared.
  • the anisotropic bonding paste was applied onto the substrate using a mask having a thickness of 30 ⁇ m, the LED chips were mounted by alignment, and then the LED chips were mounted by reflow (peak temperature of 260 ° C.).
  • the LED mounting body manufactured using the anisotropic bonding paste had a forward voltage of 3.0 V, an insulating property of NG, and a die shear strength of 45 N / chip.
  • Example 3-2 As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 3-1 except that the thermoplastic resin E was used instead of the thermoplastic resin A.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 19 N / chip.
  • Example 3-3 As shown in Table 3, an anisotropic bonding film was produced in the same manner as in Example 3-1 except that the flux compound was not added.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 19 N / chip.
  • Example 3-4 As shown in Table 3, an anisotropic bonding film was produced in the same manner as in Example 3-1 except that the thickness of the anisotropic bonding film was 40 ⁇ m.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 26 N / chip.
  • Comparative Example 3-2 since the thermoplastic resin E having a melt flow rate of 1 g / 10 min was used, the fluidity of the resin was poor, the solder particles did not melt, and the electrodes of the adherend were not joined. Therefore, the forward voltage could not be measured. Further, the resin did not flow sufficiently and the solder joint was not formed, so that the adhesion of the LED chip was weak and the die shear strength was low.
  • thermoplastic resin A-D having a melt flow rate of 1 g / 10 min or more was used, and the thickness of the solder particles was 2-3 times the average particle diameter of 10 ⁇ m. Since the anisotropic bonding film having a thickness of 20 to 30 ⁇ m was used, the resin melted and flowed, and the solder particles were solder-bonded between the electrodes of the adherend, and a value close to the rated voltage of 3.1 V could be obtained. The die shear strength was also good. Also, good results could be obtained by using the blocked flux compound in which the carboxyl group was blocked by the vinyl ether of Example 3-6.
  • an LED mounting body was prepared using an anisotropic bonding film containing a carboxylic acid as a flux compound, and the forward voltage, insulation and die shear strength of the LED mounting body were evaluated. Since the manufacturing of the LED mounting body, the measurement of the forward voltage of the LED mounting body, and the die shear strength are the same as those in the first embodiment, the evaluation of the insulating property of the LED mounting body is the same as that in the second embodiment. The description is omitted here.
  • melt flow rate of solid resin According to JIS K7210: 1999 method for determining the melt flow rate of plastic plastics, using a melt flow rate measuring device (product name: Melt Indexer G-02, manufactured by Toyo Seiki Seisaku-sho, Ltd.), temperature 190 ° C., load 2.16 kg The melt flow rates of the thermoplastic resins A and E and the solid epoxy resin were measured by.
  • thermoplastic resin A liquid epoxy resin (bisphenol A type epoxy resin, YL980, Mitsubishi Chemical Corporation), flux compound A (glutaric acid (1,3-propanedicarboxylic acid), Wako Pure Chemical Industries, Ltd. Co., Ltd.), solder particles (42Sn-58Bi, Type 6, melting point 139 ° C., average particle size 10 ⁇ m, Mitsui Metals Co., Ltd.), titanium oxide (average particle size 0.21 ⁇ m, CR-60, Ishihara Sangyo Co., Ltd.) was blended in a predetermined mass part to prepare an anisotropic bonding film.
  • thermoplastic resin A and the liquid epoxy resin are mixed and dissolved in toluene, and the flux compound A and titanium oxide are put therein, and dispersed by three rolls (three passes with a gap of 10 ⁇ m), and then the solder particles are dispersed.
  • a resin solution was obtained by dispersing. This resin solution was applied to a peeled PET (PET-02-BU, Shikoku Tocello Co., Ltd.) with a gap coater so that the thickness after drying with toluene was 20 ⁇ m. Toluene was dried at 80 ° C. for 10 minutes.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 44 N / chip.
  • Example 4-2 As shown in Table 4, an anisotropic bonding film was produced in the same manner as in Example 4-1 except that a solid epoxy resin was used instead of the thermoplastic resin A.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 45 N / chip.
  • Example 4-3 As shown in Table 4, the anisotropic bonding film was the same as in Example 4-1 except that flux compound B (blocked carboxylic acid, Santacid G, NOF CORPORATION) was used in place of flux compound A. Was produced.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 44 N / chip.
  • Example 4-4 As shown in Table 4, an anisotropic bonding film was produced in the same manner as in Example 4-1, except that the thickness of the anisotropic bonding film was 30 ⁇ m.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 48 N / chip.
  • substrate (Dexerials evaluation ceramic substrate, 18 ⁇ m thickness)
  • a Cu pattern, Ni—Au plating, and space (space between patterns) of 50 ⁇ m) were prepared.
  • the anisotropic bonding paste was applied onto the substrate using a mask having a thickness of 30 ⁇ m, the LED chips were mounted by alignment, and then the LED chips were mounted by reflow (peak temperature of 260 ° C.).
  • the LED mounting body produced using the anisotropic bonding paste had a forward voltage of 3.0 V, an insulating property of NG, and a die shear strength of 45 N / chip.
  • Example 4-2 As shown in Table 4, an anisotropic bonding film was produced in the same manner as in Example 4-1 except that the thermoplastic resin E was used instead of the thermoplastic resin A.
  • the LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 19 N / chip.
  • Example 4-3 As shown in Table 4, an anisotropic bonding film was produced in the same manner as in Example 4-1 except that the flux compound was not added.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 18 N / chip.
  • Example 4-4 As shown in Table 4, an anisotropic bonding film was produced in the same manner as in Example 4-1 except that the thickness of the anisotropic bonding film was 40 ⁇ m.
  • the LED package manufactured using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 25 N / chip.
  • Comparative Example 4-1 since the solid resin was not mixed and the paste-like anisotropic bonding material was applied, a short circuit due to solder bonding occurred between the adjacent terminals of the substrate.
  • thermoplastic resin E having a melt flow rate of 1 g / 10 min since the thermoplastic resin E having a melt flow rate of 1 g / 10 min was used, the fluidity of the resin was poor, the solder particles did not melt, and the electrodes of the adherend were not joined. Therefore, the forward voltage could not be measured. Further, the resin did not flow sufficiently and the solder joint was not formed, so that the adhesion of the LED chip was weak and the die shear strength was low.
  • thermoplastic resin A or the solid epoxy resin having a melt flow rate of 1 g / 10 min or more was used, and the average particle diameter of the solder particles was 10 to 2 times 2-3 times. Since an anisotropic bonding film with a thickness of 20-30 ⁇ m was used, the resin melted and flowed, and solder particles were used to solder bond between the electrodes of the adherend, and a value close to the rated voltage of 3.1 V could be obtained. It was The die shear strength was also good. Further, in Example 4-3, good results could be obtained even when the flux compound was used as the curing agent.
  • film-shaped anisotropic bonding material was used in the above-mentioned examples, it is considered that the same result can be obtained by adjusting the paste-shaped anisotropic bonding material to a predetermined thickness.

Abstract

Provided are a method for manufacturing a connected body that is capable of bonding electronic components having fine-pitch electrodes, an anisotropic bonding film, and a connected body. An anisotropic bonding material which comprises solder particles, a flux compound, and at least one solid resin selected from among a thermoplastic resin, a solid radically polymerizable resin, and a solid epoxy resin that are solid at normal temperature and have a melt flow rate of 10 g/10 min or more measured under the condition of a temperature of 190°C and a load of 2.16 kg is interposed between an electrode of a first electronic component and an electrode of a second electronic component in a thickness that is 50 to 300% of the average particle size of the solder particles, and the electrode of the first electronic component and the electrode of the second electronic component are heat-bonded with no load.

Description

接続体の製造方法、異方性接合フィルム、接続体Method for manufacturing connected body, anisotropic bonding film, connected body
 本発明は、LED(Light Emitting Diode)等の半導体チップ(素子)を実装する接続体の製造方法、異方性接合フィルム、接続体に関する。本出願は、日本国において2018年10月31日に出願された日本特許出願番号特願2018-206058、及び2019年10月25日に出願された日本特許出願番号特願2019-194479を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present invention relates to a method for manufacturing a connection body for mounting a semiconductor chip (element) such as an LED (Light Emitting Diode), an anisotropic bonding film, and a connection body. This application is based on Japanese Patent Application No. 2018-206058 filed on October 31, 2018 and Japanese Patent Application No. 2019-194479 filed on October 25, 2019 in Japan. Claims priority and is incorporated herein by reference.
 LED等の半導体チップ(素子)を実装する方法の一つとして、フリップチップ実装が挙げられる。フリップチップ実装は、ワイヤーボンディングに比べて実装面積を小さくすることができ、小型、薄型の半導体チップを実装することができる。 Flip-chip mounting is one of the methods for mounting semiconductor chips (elements) such as LEDs. Flip-chip mounting can reduce the mounting area compared to wire bonding, and can mount a small and thin semiconductor chip.
 しかしながら、フリップチップ実装は、加熱圧着するため、例えば、多数の半導体チップと大型基板とを接合する場合、非常に高い圧力が必要であったり、平行度のあたり調整が必要であったりし、量産性が困難である。 However, since flip-chip mounting is performed by thermocompression bonding, for example, when a large number of semiconductor chips are bonded to a large substrate, very high pressure is required or parallelism needs to be adjusted. Sex is difficult.
特開2009-102545号公報JP-A-2009-102545
 特許文献1には、はんだ粒子、熱硬化性樹脂バインダー及びフラックス成分を含有するはんだペーストを用い、リフローにより複数の部品を配線板等に一括して実装することが記載されている。 Patent Document 1 describes that a solder paste containing solder particles, a thermosetting resin binder, and a flux component is used, and a plurality of components are collectively mounted on a wiring board or the like by reflow.
 しかしながら、特許文献1のはんだペーストは、はんだ粒子を溶融一体化させるために、はんだ粒子が多量に含まれており、ファインピッチの電極を備える電子部品の接合は困難である。 However, the solder paste of Patent Document 1 contains a large amount of solder particles in order to melt and integrate the solder particles, and it is difficult to join electronic components having fine pitch electrodes.
 図8は、従来のはんだペーストを用いて作製したLED実装体において、LEDチップを引き剥がした後の基板側のはんだ接合状態を観察したときの顕微鏡写真である。図8に示すように、一般的なはんだペーストでは、はんだ粒子が溶融一体化するセルフアライメントが起きる場合、隣接する端子間にはんだ粒子が凝集してブリッジAが形成され、ショートが発生することがあった。 FIG. 8 is a micrograph of an LED mounting body manufactured using a conventional solder paste, in which a solder joint state on the board side after peeling off the LED chip is observed. As shown in FIG. 8, in a general solder paste, when self-alignment in which solder particles are melted and integrated occurs, the solder particles agglomerate between adjacent terminals to form a bridge A, which may cause a short circuit. there were.
 本技術は、このような従来の実情に鑑みて提案されたものであり、ファインピッチの電極を備える電子部品を接合させることができる接続体の製造方法、異方性接合フィルム、接続体を提供する。 The present technology has been proposed in view of such conventional circumstances, and provides a method for manufacturing a connector, an anisotropic bonding film, and a connector capable of bonding an electronic component including fine-pitch electrodes. To do.
 本件発明者は、鋭意検討を行った結果、常温で固形であり、所定のメルトフローレートを有する固形樹脂を含有する異方性接合材料を用い、電極間の異方性接合材料の厚みをはんだ粒子の平均粒径に対し所定の値とすることにより、上述の目的を達成できることを見出し、本発明を完成させるに至った。 As a result of earnest studies, the inventors of the present application have used an anisotropic bonding material containing a solid resin that is solid at room temperature and has a predetermined melt flow rate, and solder the thickness of the anisotropic bonding material between electrodes by soldering. The inventors have found that the above-mentioned object can be achieved by setting a predetermined value with respect to the average particle diameter of the particles, and have completed the present invention.
 すなわち、本発明に係る接続体の製造方法は、常温で固形であり、温度190℃、荷重2.16kgの条件で測定されたメルトフローレートが10g/10min以上である熱可塑性樹脂、固形ラジカル重合性樹脂、及び固形エポキシ樹脂から選ばれる少なくとも1種の固形樹脂と、はんだ粒子と、フラックス化合物とを含有する異方性接合材料を、第1の電子部品の電極と第2の電子部品の電極との間に前記はんだ粒子の平均粒径の50%以上300%以下の厚みで介在させ、前記第1の電子部品の電極と前記第2の電子部品の電極とを無荷重で加熱接合させる。 That is, the method for producing a connector according to the present invention is a solid resin at room temperature, a thermoplastic resin having a melt flow rate of 10 g / 10 min or more measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg, solid radical polymerization. Of an anisotropic bonding material containing at least one solid resin selected from a conductive resin and a solid epoxy resin, a solder particle, and a flux compound is used as an electrode of a first electronic component and an electrode of a second electronic component. And 50% or more and 300% or less of the average particle diameter of the solder particles, and the electrodes of the first electronic component and the electrodes of the second electronic component are heat-bonded with no load.
 また、本発明に係る異方性接合フィルムは、常温で固形であり、温度190℃、荷重2.16kgの条件で測定されたメルトフローレートが10g/10min以上である熱可塑性樹脂、固形ラジカル重合性樹脂、及び固形エポキシ樹脂から選ばれる少なくとも1種の固形樹脂と、はんだ粒子と、フラックス化合物とを含有し、厚みが、前記はんだ粒子の平均粒径の50%以上300%以下である。 Further, the anisotropic bonding film according to the present invention is a solid at room temperature, a thermoplastic resin having a melt flow rate of 10 g / 10 min or more measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg, solid radical polymerization. Resin, and at least one solid resin selected from solid epoxy resins, solder particles, and a flux compound, and the thickness is 50% or more and 300% or less of the average particle diameter of the solder particles.
 また、本発明に係る接続体は、上述の異方性接合フィルムを用いて、第1の電子部品の電極と第2の電子部品の電極とが接合されてなる The connection body according to the present invention is formed by joining the electrodes of the first electronic component and the electrodes of the second electronic component by using the anisotropic bonding film described above.
 本発明によれば、加熱により固形樹脂が溶融し、はんだ粒子が電極間に挟持されて溶融するため、ファインピッチの電極を備える電子部品を接合させることができる。 According to the present invention, the solid resin is melted by heating and the solder particles are sandwiched between the electrodes and melted, so that an electronic component having fine pitch electrodes can be joined.
図1は、接合工程の一部を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a part of the joining process. 図2は、LED実装体の構成例を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration example of the LED mounting body. 図3は、本技術を適用させた異方性接合フィルムの一部を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a part of the anisotropic bonding film to which the present technology is applied. 図4は、実施例1-1のLEDチップを引き剥がした後の基板側のはんだ接合状態を観察したときの顕微鏡写真である。FIG. 4 is a photomicrograph of the solder bonding state on the substrate side after peeling off the LED chip of Example 1-1. 図5は、比較例1-1のLEDチップを引き剥がした後の基板側のはんだ接合状態を観察したときの顕微鏡写真である。FIG. 5 is a photomicrograph of the solder bonding state on the substrate side after peeling off the LED chip of Comparative Example 1-1. 図6は、比較例1-2のLEDチップを引き剥がした後の基板側のはんだ接合状態を観察したときの顕微鏡写真である。FIG. 6 is a photomicrograph of the solder bonding state on the substrate side after peeling off the LED chip of Comparative Example 1-2. 図7は、比較例1-3のLEDチップを引き剥がした後の基板側のはんだ接合状態を観察したときの顕微鏡写真である。FIG. 7 is a photomicrograph when observing the solder joint state on the substrate side after peeling off the LED chip of Comparative Example 1-3. 図8は、従来のはんだペーストを用いて作製したLED実装体について、LEDチップを引き剥がした後の基板側のはんだ接合状態を観察したときの顕微鏡写真である。FIG. 8 is a micrograph of an LED mounting body manufactured using a conventional solder paste, in which a solder joint state on the substrate side after the LED chip is peeled off is observed.
 以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.接続体の製造方法
2.異方性接合フィルム(異方性接合材料)
3.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. 1. Method of manufacturing connected body Anisotropic bonding film (anisotropic bonding material)
3. Example
 <1.接続体の製造方法>
 本実施の形態における接続体の製造方法は、常温で固形であり、温度190℃、荷重2.16kgの条件で測定されたメルトフローレートが10g/10min以上である熱可塑性樹脂、固形ラジカル重合性樹脂、及び固形エポキシ樹脂から選ばれる少なくとも1種の固形樹脂と、はんだ粒子と、フラックス化合物とを含有する異方性接合材料を、第1の電子部品の電極と第2の電子部品の電極との間にはんだ粒子の平均粒径の50%以上300%以下の厚みで介在させ、第1の電子部品の電極と第2の電子部品の電極とを無荷重で加熱接合させるものである。
<1. Manufacturing method of connection body>
The method for producing a connector in the present embodiment is a thermoplastic resin that is solid at room temperature and has a melt flow rate of 10 g / 10 min or more measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg, and a solid radical-polymerizable resin. An anisotropic bonding material containing at least one solid resin selected from a resin and a solid epoxy resin, solder particles, and a flux compound is used for an electrode of a first electronic component and an electrode of a second electronic component. The thickness of the solder particles is 50% or more and 300% or less of the average particle diameter of the solder particles, and the electrodes of the first electronic component and the electrodes of the second electronic component are heat-bonded with no load.
 本明細書において、メルトフローレートとは、JIS K7210:1999にて熱可塑性プラスチックのメルトフローレートの求め方に規定された、190℃、2.16kg荷重の条件で測定された値であり、メルトマスフローレイト(MFR)とも呼ぶ。また、常温とは、JISZ 8703で規定する20℃±15℃(5℃~35℃)の範囲である。また、接続体とは、二つの材料または部材が電気的に接続されたものである。また、接合とは、二つの材料または部材をつなぎ合わせることである。また、無荷重とは、機械的な加圧がない状態をいう。 In the present specification, the melt flow rate is a value measured under the conditions of 190 ° C. and 2.16 kg load, which is specified in JIS K7210: 1999 for determining the melt flow rate of thermoplastics. Also called mass flow rate (MFR). Further, the room temperature is a range of 20 ° C. ± 15 ° C. (5 ° C. to 35 ° C.) specified by JISZ8703. Further, the connection body is one in which two materials or members are electrically connected. Moreover, joining means joining two materials or members. Further, no load means a state in which no mechanical pressure is applied.
 また、平均粒径は、金属顕微鏡、光学顕微鏡、SEM(Scanning Electron Microscope)等の電子顕微鏡などを用いた観察画像において、N=50以上、好ましくはN=100以上、さらに好ましくはN=200以上で測定した粒子の長軸径の平均値であり、粒子が球形の場合は、粒子の直径の平均値である。また、観察画像を公知の画像解析ソフト(WinROOF、三谷商事(株))を用いて計測された測定値、画像型粒度分布測定装置(例として、FPIA-3000(マルバーン社))を用いて測定した測定値(N=1000以上)であってもよい。観察画像や画像型粒度分布測定装置から求めた平均粒径は、粒子の最大長の平均値とすることができる。なお、異方性接合材料を作製する際には、簡易的にレーザー回折・散乱法によって求めた粒度分布における頻度の累積が50%になる粒径(D50)、算術平均径(体積基準であることが好ましい)などのメーカー値を用いることができる。 The average particle size is N = 50 or more, preferably N = 100 or more, more preferably N = 200 or more in an observation image using a metallographic microscope, an optical microscope, an electron microscope such as an SEM (Scanning Electron Microscope). It is the average value of the major axis diameters of the particles measured in 1., and when the particles are spherical, it is the average value of the particle diameters. In addition, the observed image is measured using a known image analysis software (WinROOF, Mitani Shoji Co., Ltd.) and an image type particle size distribution measuring device (for example, FPIA-3000 (Malvern)). The measured value (N = 1000 or more) may be used. The average particle diameter obtained from an observation image or an image type particle size distribution measuring device can be an average value of the maximum length of particles. When producing an anisotropic bonding material, the particle diameter (D50) and the arithmetic mean diameter (volume basis) at which the cumulative frequency in the particle size distribution obtained by the laser diffraction / scattering method becomes 50% simply. Manufacturer values such as (preferably)) can be used.
 第1の電子部品としては、LED(Light Emitting Diode)、ドライバーIC(Integrated Circuit)等のチップ(素子)が好適であり、第2の電子部品としては、配線が設けられたものであれば特に限定はなく、第1の電子部品を搭載できる電極が設けられた基板(所謂、プリント配線板:PWB)として広義に定義できるものであればよい。例えば、リジット基板、ガラス基板、フレキシブル基板(FPC:Flexible Printed Circuits)、セラミック基板、プラスチック基板等の基板が挙げられる。第1の電子部品及び第2の電子部品にそれぞれに設けられた電極(電極配列、電極群)は、対向して異方性接続されるように設けられており、複数の第1の電子部品が一つの第2電子部品に搭載されるように電極(電極配列、電極群)が設けられていてもよい。第1の電子部品としては、LED(Light Emitting Diode)以外に、ドライバーIC(Integrated Circuit)等のチップ(例えば、半導体素子)、フレキシブル基板(FPC:Flexible Printed Circuits、樹脂成形された部品など、配線(導通材)が設けられたものでもよい。第2の電子部品としては、第1の電子部品の端子と少なくとも一部対応する端子が設けられたものであれば特に限定はなく、第1の電子部品を搭載できる電極が設けられた基板(所謂、プリント配線板:PWB)として広義に定義できるものであればよい。また、同じ部品を積層して接続してもよい。この積層の数は、接続に支障を来さなければ特に限定はない。異種部品の多数積層であっても同様である。第1の電子部品及び第2の電子部品にそれぞれに設けられた電極(電極配列、電極群)は、対向して異方性接続されるように設けられており、複数の第1の電子部品が一つの第2電子部品に搭載されるように電極(電極配列、電極群)が設けられていてもよい。なお、上記の電子部品は、リフロー工程における耐熱性を備えていることが望ましい。 As the first electronic component, a chip (element) such as an LED (Light Emitting Diode) or a driver IC (Integrated Circuit) is suitable, and as the second electronic component, particularly if a wiring is provided, There is no limitation, and any substrate that can be broadly defined as a substrate (so-called printed wiring board: PWB) provided with an electrode on which the first electronic component can be mounted may be used. Examples thereof include a rigid substrate, a glass substrate, a flexible printed circuit (FPC), a ceramic substrate, and a plastic substrate. Electrodes (electrode array, electrode group) provided on each of the first electronic component and the second electronic component are provided so as to face each other and are anisotropically connected, and the plurality of first electronic components are provided. The electrodes (electrode array, electrode group) may be provided so that the components are mounted on one second electronic component. As the first electronic components, in addition to LEDs (Light Emitting Diodes), chips such as driver ICs (Integrated Circuits) (for example, semiconductor elements), flexible substrates (FPC: Flexible Printed Circuits, resin molded components, wiring, etc.) The second electronic component is not particularly limited as long as it is provided with terminals that at least partially correspond to the terminals of the first electronic component. It is sufficient if it can be broadly defined as a substrate (so-called printed wiring board: PWB) provided with electrodes on which electronic components can be mounted, and the same components may be laminated and connected. There is no particular limitation as long as it does not hinder the connection.The same applies to the case where a large number of different kinds of components are laminated. Electrodes (electrode arrangements) provided on the first electronic component and the second electronic component, respectively. The electrode group) is provided so as to face and be anisotropically connected, and the electrodes (electrode array, electrode group) are arranged so that the plurality of first electronic components are mounted on one second electronic component. It is desirable that the above electronic component has heat resistance in the reflow process.
 異方性接合材料は、常温で固形であり、MFRが10g/10min以上である熱可塑性樹脂、固形ラジカル重合性樹脂、及び固形エポキシ樹脂から選ばれる1種からなる固形樹脂と、はんだ粒子と、フラックス化合物とを含有する。フラックス化合物は、カルボン酸であることが好ましい。これにより、良好なはんだ接続を得ることができるとともに、エポキシ樹脂を配合した場合、エポキシ樹脂の硬化剤として機能させることができる。また、フラックス化合物は、カルボキシル基がアルキルビニルエーテルでブロック化されたブロック化カルボン酸であることが好ましい。これにより、フラックス効果、及び硬化剤機能が発揮される温度をコントロールすることができる。 The anisotropic bonding material is solid at room temperature and has a MFR of 10 g / 10 min or more, a solid resin made of one kind selected from a thermoplastic resin, a solid radically polymerizable resin, and a solid epoxy resin, and solder particles, And a flux compound. The flux compound is preferably a carboxylic acid. As a result, good solder connection can be obtained, and when an epoxy resin is mixed, it can function as a curing agent for the epoxy resin. Further, the flux compound is preferably a blocked carboxylic acid in which a carboxyl group is blocked with an alkyl vinyl ether. This makes it possible to control the temperature at which the flux effect and the curing agent function are exhibited.
 また、異方性接合材料の樹脂フロー量は、1.3~2.5であってもよく、1.3未満とすることが好ましい場合がある。樹脂フロー量がこれらの値となることにより、後述するように無荷重で加熱接合させることができる。樹脂フロー量は、特開2016-178225号公報に記載の測定方法に準じて測定することができる。先ず、異方性接合フィルムを2.0mm幅にカットし、カット済みの異方性接合フィルムをノンアルカリガラス(厚み0.7μm)で挟み、リフロー工程に通す。これは接続に使用する条件と同様にすればよい。そして、リフロー前後の樹脂広がり量を測定し、加圧後の異方性接合フィルムの幅の最大値Bを加圧前の幅A(=2.0mm)で除算した値を樹脂フロー量とすることができる。また、ノンアルカリガラスで挟まずに、異方性接合材料を載置してリフロー工程に通し、上記の数値となることがより好ましい。異方性接合材料の樹脂フロー量が小さい場合、リフロー工程において無荷重では樹脂溶融が進行せず、はんだ粒子と電極間の挟持に支障を来す虞が生じる。本技術では、バインダー樹脂の加熱硬化時に荷重をかけないため、荷重をかける(一般的な異方性接続のようにツールで押圧する)ことを前提にしたバインダー樹脂の設計よりも溶融性を高くすることが望ましい。 The resin flow amount of the anisotropic bonding material may be 1.3 to 2.5, and it may be preferable to set it to less than 1.3. By setting the resin flow amount to these values, it is possible to perform heat bonding without load, as described later. The resin flow amount can be measured according to the measuring method described in JP-A-2016-178225. First, the anisotropic bonding film is cut into a width of 2.0 mm, and the cut anisotropic bonding film is sandwiched by non-alkali glass (thickness 0.7 μm) and passed through a reflow process. This may be the same as the condition used for connection. Then, the amount of resin spread before and after reflow is measured, and the value obtained by dividing the maximum value B of the width of the anisotropic bonding film after pressurization by the width A (= 2.0 mm) before pressurization is taken as the resin flow amount. be able to. Further, it is more preferable that the anisotropic bonding material is placed without being sandwiched by the non-alkali glass and is subjected to the reflow step to obtain the above numerical values. When the resin flow amount of the anisotropic bonding material is small, the resin melting does not proceed without a load in the reflow process, and there is a possibility that the sandwiching between the solder particles and the electrode may be hindered. Since this technology does not apply a load when heat-curing the binder resin, it has a higher meltability than the binder resin designed on the premise of applying a load (pressing with a tool like general anisotropic connection). It is desirable to do.
 異方性接合材料は、フィルム状の異方性接合フィルム、又はペースト状の異方性接合ペーストのいずれであってもよい。また、異方性接合ペーストを接続時にフィルム状にしても、部品を搭載することでフィルムに近い形態としてもよい。 The anisotropic bonding material may be a film-shaped anisotropic bonding film or a paste-shaped anisotropic bonding paste. Further, the anisotropic bonding paste may be formed into a film at the time of connection, or may have a form close to a film by mounting components.
 異方性接合ペーストの場合、基板上に所定量を均一に塗布することができればよく、例えば、ディスペンス、スタンピング、スクリーン印刷等の塗布方法を用いることができ、必要に応じて乾燥させてもよい。異方性接合フィルムの場合、フィルム厚により異方性接合材料の量を均一化することができるだけでなく、基板上に一括ラミネートすることができ、タクトを短縮することができるため特に好ましい。また、予めフィルム状とすることで取り扱い易いので作業効率も高くすることが期待できる。 In the case of the anisotropic bonding paste, it is sufficient that a predetermined amount can be uniformly applied onto the substrate. For example, a coating method such as dispensing, stamping, screen printing or the like can be used, and it may be dried if necessary. .. The anisotropic bonding film is particularly preferable because not only the amount of the anisotropic bonding material can be made uniform by the film thickness but also the substrate can be laminated on the substrate at one time and the tact time can be shortened. Further, since it is easy to handle by forming it in a film shape in advance, it can be expected that the work efficiency is improved.
 第1の電子部品の電極と第2の電子部品の電極との間の異方性接合材料の厚みの下限は、はんだ粒子の平均粒径の50%以上、好ましくは80%以上、より好ましくは90%以上である。異方性接合材料の厚みが薄すぎると、はんだ粒子の電極間への挟持が容易になるが、フィルム状にする際の難易度が高くなる虞がある。また、第1の電子部品の電極と第2の電子部品の電極との間の異方性接合材料の厚みの上限は、はんだ粒子の平均粒径の300%以下、好ましくは200%以下、より好ましくは150%以下である。異方性接合材料の厚みが厚すぎると接合に支障を来たす虞がある。 The lower limit of the thickness of the anisotropic bonding material between the electrode of the first electronic component and the electrode of the second electronic component is 50% or more, preferably 80% or more, and more preferably the average particle size of the solder particles. 90% or more. If the thickness of the anisotropic bonding material is too thin, the solder particles can be easily sandwiched between the electrodes, but the difficulty in forming a film may increase. In addition, the upper limit of the thickness of the anisotropic bonding material between the electrode of the first electronic component and the electrode of the second electronic component is 300% or less, preferably 200% or less of the average particle diameter of the solder particles. It is preferably 150% or less. If the anisotropic bonding material is too thick, the bonding may be hindered.
 以下、接続体の製造方法の具体例として、LED実装体の製造方法について説明する。LED実装体の製造方法は、はんだ粒子の平均粒径の50%以上300%以下の厚みを有する異方性接合材料を基板上に設ける工程と、LED素子を異方性接合材料上に搭載する搭載工程と、LED素子の電極と基板の電極とを無荷重で加熱接合させる接合工程とを有する。 A method for manufacturing an LED mounting body will be described below as a specific example of a method for manufacturing a connection body. The manufacturing method of an LED mounting body is a step of providing an anisotropic bonding material having a thickness of 50% to 300% of an average particle diameter of solder particles on a substrate, and mounting an LED element on the anisotropic bonding material. There is a mounting process and a bonding process for heating and bonding the electrode of the LED element and the electrode of the substrate with no load.
 異方性接合材料を設ける工程は、異方性接合ペーストを接続前に基板上にフィルム状にする工程であってもよく、従来の異方性導電フィルムで用いられているように、異方性接合フィルムを基板上に低温低圧で貼着する仮貼り工程であってもよく、異方性接合フィルムを基板上にラミネートするラミネート工程であってもよい。 The step of providing the anisotropic bonding material may be a step of forming a film of the anisotropic bonding paste on the substrate before connection, and as in the conventional anisotropic conductive film, it is anisotropic. It may be a temporary attaching step of attaching the sexual bonding film to the substrate at low temperature and low pressure, or a laminating step of laminating the anisotropic bonding film on the substrate.
 異方性接合材料を設ける工程が仮貼り工程の場合、公知の使用条件で基板上に異方性接合フィルムを設けることができる。この場合、従前の装置からツールの変更といった最低限の変更だけですむため、経済的なメリットが得られる。 When the process of providing the anisotropic bonding material is a temporary bonding process, the anisotropic bonding film can be provided on the substrate under known use conditions. In this case, since there is only a minimum change such as a tool change from the conventional device, an economic advantage can be obtained.
 異方性接合材料を設ける工程がラミネート工程の場合、例えば、加圧式ラミネータを用いて異方性接合フィルムを基板上にラミネートする。ラミネート温度は、好ましくは40℃以上160℃以下、より好ましくは50℃以上140℃以下、さらに好ましくは60℃以上120℃以下である。また、ラミネート圧力は、好ましくは0.1MPa以上10MPa以下、より好ましくは0.5MPa以上5MPa以下、さらに好ましくは1MPa以上3MPa以下である。また、ラミネート時間は、好ましくは0.1sec以上10sec以下、好ましくは0.5sec以上8sec以下、さらに好ましくは1sec以上5sec以下である。また、真空加圧式ラミネートであってもよい。従来の異方性導電フィルムが加熱加圧ツールを用いた仮貼りであると、フィルムの幅がツール幅の制約を受けるが、ラミネート工程の場合、加熱加圧ツールを用いないため、比較的広い幅を一括で搭載できるようになることが期待できる。また、一つの基板に対して一つの異方性接合フィルムをラミネートしてもよい。これにより、加熱圧着ツールの上下動と異方性接合フィルムの搬送とを複数回することがないため、異方性接合材料を設ける工程の時間を短縮することができる。 When the process of providing the anisotropic bonding material is a laminating process, the anisotropic bonding film is laminated on the substrate using, for example, a pressure laminator. The laminating temperature is preferably 40 ° C or higher and 160 ° C or lower, more preferably 50 ° C or higher and 140 ° C or lower, and further preferably 60 ° C or higher and 120 ° C or lower. The laminating pressure is preferably 0.1 MPa or more and 10 MPa or less, more preferably 0.5 MPa or more and 5 MPa or less, and further preferably 1 MPa or more and 3 MPa or less. The laminating time is preferably 0.1 sec or more and 10 sec or less, preferably 0.5 sec or more and 8 sec or less, and more preferably 1 sec or more and 5 sec or less. Further, it may be a vacuum pressure type laminate. If the conventional anisotropic conductive film is temporarily attached using a heating and pressing tool, the width of the film is restricted by the tool width, but in the laminating process, the heating and pressing tool is not used, so it is relatively wide. It can be expected that the width can be installed at once. Also, one anisotropic bonding film may be laminated on one substrate. Accordingly, since the vertical movement of the thermocompression bonding tool and the conveyance of the anisotropic bonding film are not performed a plurality of times, the time for providing the anisotropic bonding material can be shortened.
 搭載工程では、例えば複数のLED素子を異方性接合フィルム上に配置し、搭載する。本技術では、はんだ粒子によるセルフアライメントが期待できないため、搭載工程では、LED素子を正確にアライメントすることが好ましい。各LED素子は、例えば、片面に第1導電型電極と第2導電型電極とを有し、第1導電型電極及び第2導電型電極に対応する基板30の電極上に配置される。 In the mounting process, for example, multiple LED elements are arranged and mounted on an anisotropic bonding film. In the present technology, since self-alignment due to solder particles cannot be expected, it is preferable to accurately align the LED element in the mounting process. Each LED element has, for example, a first conductivity type electrode and a second conductivity type electrode on one surface, and is arranged on the electrodes of the substrate 30 corresponding to the first conductivity type electrode and the second conductivity type electrode.
 なお、前述の異方性導電接合材料を設ける工程において、LED素子の電極と基板の電極との間の異方性接合材料の厚みを、はんだ粒子の平均粒径に近似させることとしたが、これに限られず、搭載工程において、加圧(例えば、仮圧着)により異方性接合材料の厚みをはんだ粒子の平均粒径に近似させてもよい。この加圧工程は、例えば、第2の電子部品に載置されている第1の電子部品側から加圧することにより、LED素子の電極と基板の電極との間の異方性接合材料の厚みを、はんだ粒子の平均粒径に近似させる。ここで、異方性接合材料の厚みが大きすぎると、加圧に支障をきたす虞があるため、上述の上限の厚みとすることが好ましいともいえる。平均粒径に近似とは、この加圧工程を経ると理論上、はんだ粒子の最大径が異方性接続材料の厚みとなるため、異方性接続材料の厚みは、はんだ粒子の最大径と同等と考えてもよく、厚みバラツキを考慮するなら、はんだ粒子の最大径の130%以下、好ましくは120%以下としてもよい。また、加圧工程の圧力の下限は、好ましくは0.2MPa以上、より好ましくは0.4MPa以上であり、また、加圧工程の圧力の上限は、2.0MPa以下でもよく、好ましくは1.0MPa以下、より好ましくは0.8MPa以下である。上限および下限は、装置の仕様によって変動することがあるため、樹脂をはんだ粒子径まで押し込む目的が達成できれば、上の数値範囲に限定されるものではない。この加圧(仮圧着)工程は、はんだ粒子を溶融させず、電極とはんだ粒子の距離を近づけるために行うものである。 In the step of providing the anisotropic conductive bonding material described above, the thickness of the anisotropic bonding material between the electrode of the LED element and the electrode of the substrate is set to be close to the average particle diameter of the solder particles. The present invention is not limited to this, and the thickness of the anisotropic bonding material may be approximated to the average particle diameter of the solder particles by pressing (for example, temporary compression bonding) in the mounting process. In this pressurizing step, for example, the thickness of the anisotropic bonding material between the electrode of the LED element and the electrode of the substrate is applied by applying pressure from the side of the first electronic component mounted on the second electronic component. Is approximated to the average particle size of the solder particles. Here, if the thickness of the anisotropic bonding material is too large, the pressurization may be hindered, so it can be said that it is preferable to set the thickness to the upper limit described above. Approximate to the average particle size means that theoretically the maximum diameter of the solder particles becomes the thickness of the anisotropic connecting material after this pressing step, so the thickness of the anisotropic connecting material is the maximum diameter of the solder particles. It may be considered to be equivalent, and if the thickness variation is taken into consideration, the maximum diameter of the solder particles may be 130% or less, preferably 120% or less. Further, the lower limit of the pressure in the pressurizing step is preferably 0.2 MPa or more, more preferably 0.4 MPa or more, and the upper limit of the pressure in the pressurizing step may be 2.0 MPa or less, preferably 1. It is 0 MPa or less, more preferably 0.8 MPa or less. The upper and lower limits may vary depending on the specifications of the apparatus, and are not limited to the above numerical range as long as the purpose of pushing the resin to the solder particle size can be achieved. This pressurization (temporary compression) step is performed in order to bring the electrodes and the solder particles closer to each other without melting the solder particles.
 図1は、接合工程の一部を模式的に示す断面図である。接合工程では、LED素子10の電極11,12と基板20の電極21,21とを無荷重で加熱接合させる。機械的な加圧をせずに無荷重で加熱接合させる方法としては、大気圧リフロー、真空リフロー、大気圧オーブン、オートクレーブ(加圧オーブン)等が挙げられ、これらの中でも、接合部に内包する気泡を排除することができる真空リフロー、オートクレーブ等を用いることが好ましい。無荷重であることで、一般的な加熱加圧ツールを用いた異方性導電接続と比べて、不要な樹脂流動が発生しないことから、気泡の巻き込みも抑制される効果が期待できる。 FIG. 1 is a sectional view schematically showing a part of the joining process. In the joining step, the electrodes 11 and 12 of the LED element 10 and the electrodes 21 and 21 of the substrate 20 are heated and joined with no load. Examples of the method of heat-bonding without load without mechanical pressure include atmospheric pressure reflow, vacuum reflow, atmospheric pressure oven, autoclave (pressurizing oven), and the like. It is preferable to use a vacuum reflow, an autoclave, or the like that can eliminate bubbles. Since there is no load, unnecessary resin flow does not occur as compared with anisotropic conductive connection using a general heating / pressurizing tool, and therefore an effect of suppressing entrainment of bubbles can be expected.
 加熱により固形樹脂が溶融し、LED素子10の自重によりはんだ粒子31が電極間に挟持され、はんだ溶融温度以上である本加熱によりはんだ粒子31が溶融し、はんだが電極に濡れ広がり、冷却によりLED素子10の電極と基板20の電極とが接合される。接合工程では、一例として好ましくは200℃以上300℃以下の温度、より好ましくは220℃以上290℃以下の温度、さらに好ましくは240℃以上280℃以下の温度で本加熱する。これにより、LED素子10の電極と基板20の電極とが接合されるため、優れた導通性、放熱性、及び接着性を得ることができる。接合工程では、無荷重であることから、はんだ粒子の移動量が小さくなり、はんだ粒子の捕捉効率は高いことが予想される。また、はんだ粒子の含有量は、セルフアライメントが期待できない程度であり、接合工程において、異方性接合フィルムに含有されている多数のはんだ粒子は一体とならないため、一つの電極内に複数のはんだ接合箇所が存在する。ここで、はんだ接合とは、対向した電子部品のそれぞれの電極を、はんだを溶融させて繋ぐことをいう。 The solid resin is melted by heating, the solder particles 31 are sandwiched between the electrodes by the self-weight of the LED element 10, the solder particles 31 are melted by the main heating that is the solder melting temperature or higher, the solder wets and spreads on the electrodes, and the LED is cooled by cooling. The electrode of the element 10 and the electrode of the substrate 20 are bonded. In the joining step, as an example, the main heating is preferably performed at a temperature of 200 ° C. or higher and 300 ° C. or lower, more preferably 220 ° C. or higher and 290 ° C. or lower, and further preferably 240 ° C. or higher and 280 ° C. or lower. As a result, the electrode of the LED element 10 and the electrode of the substrate 20 are bonded to each other, and thus excellent conductivity, heat dissipation and adhesiveness can be obtained. Since no load is applied in the joining step, the amount of movement of the solder particles is reduced, and it is expected that the solder particle capturing efficiency is high. In addition, the content of solder particles is such that self-alignment cannot be expected, and since many solder particles contained in the anisotropic bonding film are not integrated in the bonding process, multiple solder particles can be used in one electrode. There is a joint. Here, the solder joining refers to melting and connecting the respective electrodes of the electronic components facing each other.
 図2は、LED実装体の構成例を示す断面図である。このLED実装体は、LED素子10と基板20とを、固形樹脂にはんだ粒子31が分散された異方性接合フィルムを用いて接続されたものである。すなわち、LED実装体は、LED素子10と、基板20と、半田粒子31とを有し、LED素子10の電極11,12と基板20の電極21,22とを接続してなる異方性接合膜32とを備え、LED素子10の電極11,12と基板20の電極21,22とが、はんだ接合部33によって接合されてなり、固形樹脂が、LED素子10と基板20との間に充填されてなるものである。 FIG. 2 is a sectional view showing a configuration example of an LED mounting body. In this LED mounting body, the LED element 10 and the substrate 20 are connected using an anisotropic bonding film in which solder particles 31 are dispersed in a solid resin. That is, the LED mounting body has the LED element 10, the substrate 20, and the solder particles 31, and is anisotropically joined by connecting the electrodes 11 and 12 of the LED element 10 and the electrodes 21 and 22 of the substrate 20. A film 32 is provided, the electrodes 11 and 12 of the LED element 10 and the electrodes 21 and 22 of the substrate 20 are joined by a solder joint 33, and the solid resin is filled between the LED element 10 and the substrate 20. It has been done.
 LED素子10は、第1導電型電極11及び第2導電型電極12を備え、第1導電型電極11と第2導電型電極12との間に電圧を印加すると、素子内の活性層にキャリアが集中し、再結合することにより発光が生じる。第1導電型電極11と第2導電型電極12とのスペース間の距離は、素子サイズにより、例えば100μm以上200μm以下であるもの、100μm以上50μm以下であるもの、20μm以上50μm以下であるものがある。LED素子10としては、特に限定されないが、例えば、400nm-500nmのピーク波長を有する青色LED等を好適に用いることができる。 The LED element 10 includes a first conductivity type electrode 11 and a second conductivity type electrode 12, and when a voltage is applied between the first conductivity type electrode 11 and the second conductivity type electrode 12, carriers are generated in an active layer in the element. Are concentrated and recombine to generate light. The distance between the spaces between the first conductivity type electrode 11 and the second conductivity type electrode 12 is, for example, 100 μm or more and 200 μm or less, 100 μm or more and 50 μm or less, or 20 μm or more and 50 μm or less depending on the element size. is there. The LED element 10 is not particularly limited, but for example, a blue LED having a peak wavelength of 400 nm to 500 nm can be preferably used.
 基板20は、基材上にLED素子10の第1導電型電極11及び第2導電型電極12に対応する位置にそれぞれ第1の電極21及び第2の電極22を有する。基板20としては、プリント配線板、ガラス基板、フレキシブル基板、セラミック基板、プラスチック基板等が挙げられる。プリント配線板の電極高さは、例えば10μm以上40μm以下であり、ガラス基板の電極高さは、例えば3μm以下であり、フレキシブル基板の電極高さは、例えば5μm以上20μm以下である。 The substrate 20 has a first electrode 21 and a second electrode 22 on the base material at positions corresponding to the first conductivity type electrode 11 and the second conductivity type electrode 12 of the LED element 10, respectively. Examples of the substrate 20 include a printed wiring board, a glass substrate, a flexible substrate, a ceramic substrate and a plastic substrate. The electrode height of the printed wiring board is, for example, 10 μm or more and 40 μm or less, the electrode height of the glass substrate is, for example, 3 μm or less, and the electrode height of the flexible substrate is, for example, 5 μm or more and 20 μm or less.
 異方性接合膜32は、接合工程後に異方性接合材料が膜状となったものであり、LED素子10の電極11,12と基板20の電極21,22とをはんだ接合部33にて金属接合するとともに、LED素子10と基板20との間に異方性接合材料を充填してなる。 The anisotropic bonding film 32 is a film made of an anisotropic bonding material after the bonding process, and the electrodes 11 and 12 of the LED element 10 and the electrodes 21 and 22 of the substrate 20 are bonded at the solder bonding portion 33. Along with metal bonding, an anisotropic bonding material is filled between the LED element 10 and the substrate 20.
 図2に示すように、LED実装体は、LED素子10の端子(電極11,12)と、基板20の端子(電極21,22)とがはんだ接合部33により金属結合しており、LED素子20と基板30との間に固形樹脂が充填されてなる。これにより、LED素子10と基板20との間への水分等の侵入を防止することができる。 As shown in FIG. 2, in the LED mounting body, the terminals (electrodes 11 and 12) of the LED element 10 and the terminals (electrodes 21 and 22) of the substrate 20 are metal-bonded to each other by the solder joint portion 33. A solid resin is filled between 20 and the substrate 30. As a result, it is possible to prevent water and the like from entering between the LED element 10 and the substrate 20.
 <2.異方性接合フィルム(異方性接合材料)>
 図3は、本技術を適用させた異方性接合フィルムの一部を模式的に示す断面図である。図3に示すように、異方性接合フィルム30は、固形樹脂と、はんだ粒子31と、フラックス化合物とを含有する。また、異方性導電フィルム30には、必要に応じて、第1の面に第1のフィルムが貼付され、第2の面に第2のフィルムが貼付されてもよい。なお、異方性接合フィルムは、異方性接合材料をフィルム状に形成したものである。
<2. Anisotropic Bonding Film (Anisotropic Bonding Material)>
FIG. 3 is a cross-sectional view schematically showing a part of the anisotropic bonding film to which the present technology is applied. As shown in FIG. 3, the anisotropic bonding film 30 contains a solid resin, solder particles 31, and a flux compound. Further, in the anisotropic conductive film 30, the first film may be attached to the first surface and the second film may be attached to the second surface, if necessary. The anisotropic bonding film is formed by forming an anisotropic bonding material into a film.
 フィルム厚みの下限は、はんだ粒子の平均粒径の50%以上、好ましくは80%以上、より好ましくは90%以上である。フィルム厚みが薄すぎると、はんだ粒子の電極間への挟持が容易になるが、フィルム状にする際の難易度が高くなる虞がある。また、フィルム厚みの上限は、はんだ粒子の平均粒径の300%以下、好ましくは200%以下、より好ましくは150%以下である。フィルム厚みが厚すぎると接合に支障を来たす虞がある。フィルム厚みは、1μm以下、好ましくは0.1μm以下を測定できる公知のマイクロメータやデジタルシックネスゲージ(例えば、株式会社ミツトヨ:MDE-25M、最小表示量0.0001mm)を用いて測定することができる。フィルム厚みは、10箇所以上を測定し、平均して求めればよい。但し、粒子径よりもフィルム厚みが薄い場合には、接触式の厚み測定器は適さないので、レーザー変位計(例えば、株式会社キーエンス、分光干渉変位タイプSI-Tシリーズなど)を用いることが好ましい。ここで、フィルム厚みとは、樹脂層のみの厚みであり、粒子径は含まない。 The lower limit of the film thickness is 50% or more, preferably 80% or more, more preferably 90% or more of the average particle diameter of the solder particles. When the film thickness is too thin, the sandwiching of the solder particles between the electrodes becomes easy, but the difficulty in forming the film may increase. The upper limit of the film thickness is 300% or less, preferably 200% or less, more preferably 150% or less of the average particle diameter of the solder particles. If the film is too thick, there is a risk that it will interfere with the joining. The film thickness can be measured using a known micrometer or digital thickness gauge (eg Mitutoyo Corporation: MDE-25M, minimum display amount 0.0001 mm) capable of measuring 1 μm or less, preferably 0.1 μm or less. .. The film thickness may be obtained by measuring 10 or more points and averaging them. However, when the film thickness is smaller than the particle size, a contact-type thickness measuring instrument is not suitable, so it is preferable to use a laser displacement meter (eg, Keyence Corporation, spectral interference displacement type SI-T series, etc.). .. Here, the film thickness is the thickness of only the resin layer and does not include the particle diameter.
 [固形樹脂]
 固形樹脂は、常温で固形であり、温度190℃、荷重2.16kgの条件で測定されたMFRが10g/10min以上である。MFRの上限は、好ましくは5000g/10min以下、より好ましくは4000g/10min以下、さらに好ましくは3000g/10min以下である。MFRが大き過ぎると、第1の電子部品と第2の電子部品との間への固形樹脂の充填が困難となる。
[Solid resin]
The solid resin is solid at room temperature and has an MFR of 10 g / 10 min or more measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg. The upper limit of MFR is preferably 5000 g / 10 min or less, more preferably 4000 g / 10 min or less, still more preferably 3000 g / 10 min or less. If the MFR is too large, it becomes difficult to fill the solid resin between the first electronic component and the second electronic component.
 熱可塑性樹脂は、常温で固形であり、上記MFRを満たせば、特に限定されるものではなく、例えば、エチレン酢ビニル共重合樹脂、エチレンアクリル酸共重合樹脂、ポリアミド樹脂、ポリエステル樹脂等であってもよい。固形樹脂が熱可塑性樹脂である場合、ホットメルトにより第1の電子部品の電極と第2の電子部品の電極とが金属接合するため、十分な接合強度を得ることができる。また、熱可塑性樹脂は、反応を伴わないため、ポットライフを気にする必要がなく(製品ライフが硬化性樹脂及び硬化剤(反応開始剤)を用いるものに比べて長くなる)、取り扱いが容易になる。また、熱可塑性樹脂は、常温で固体であるため、使用時に樹脂は溶融しないが、溶融してしまう場合は、フィラーを含有させ、溶融を防ぐようにしてもよい。 The thermoplastic resin is solid at room temperature and is not particularly limited as long as it satisfies the above MFR, and examples thereof include ethylene vinyl acetate copolymer resin, ethylene acrylic acid copolymer resin, polyamide resin, and polyester resin. Good. When the solid resin is a thermoplastic resin, the electrodes of the first electronic component and the electrodes of the second electronic component are metal-bonded to each other by hot melt, so that sufficient bonding strength can be obtained. In addition, since the thermoplastic resin does not undergo a reaction, it is not necessary to care about the pot life (the product life is longer than that using a curable resin and a curing agent (reaction initiator)), and handling is easy. become. Further, since the thermoplastic resin is a solid at room temperature, the resin does not melt at the time of use, but when it melts, a filler may be added to prevent melting.
 固形ラジカル重合成樹脂は、常温で固形であり、上記MFRを満たし、分子内に1つ以上の不飽和二重結合を有するラジカル重合性樹脂であれば、特に限定されるものではなく、例えば、不飽和ポリエステル(ビニルエステルとも呼ぶ)、エポキシ変性やウレタン変性の(メタ)アクリレート等であってもよい。これにより、フィルム形状を維持することができる。 The solid radical polysynthetic resin is not particularly limited as long as it is a radical polymerizable resin that is solid at room temperature, satisfies the above MFR, and has one or more unsaturated double bonds in the molecule. It may be unsaturated polyester (also called vinyl ester), epoxy-modified or urethane-modified (meth) acrylate. Thereby, the film shape can be maintained.
 固形エポキシ樹脂は、常温で固形であり、上記MFRを満たし、分子内に1つ以上のエポキシ基を有するエポキシ樹脂であれば、特に限定されるものではなく、例えば、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂等であってもよい。これにより、フィルム形状を維持することができる。 The solid epoxy resin is not particularly limited as long as it is a solid at room temperature, satisfies the above MFR, and has one or more epoxy groups in the molecule, and examples thereof include bisphenol A type epoxy resin and biphenyl. Type epoxy resin or the like may be used. Thereby, the film shape can be maintained.
 また、異方性接合フィルムは、常温で液状の液状ラジカル重合性樹脂と、重合開始剤とをさらに含有してもよい。液状ラジカル重合性樹脂は、常温で液状であれば、特に限定されるものではなく、例えば、アクリレート、メタクリレート、不飽和ポリエステル等であってもよく、ウレタン変性されていても構わない。液状ラジカル重合性樹脂を用いることにより、異方性接合フィルムにタック性を付与することができ、被着体へのラミネート性が向上すだけでなく、実装時のバインダー全体の流動性を向上させることができる。 The anisotropic bonding film may further contain a liquid radical polymerizable resin which is liquid at room temperature and a polymerization initiator. The liquid radical polymerizable resin is not particularly limited as long as it is liquid at room temperature, and may be, for example, acrylate, methacrylate, unsaturated polyester, or urethane-modified. By using a liquid radically polymerizable resin, tackiness can be imparted to the anisotropic bonding film, and not only the laminate property to the adherend is improved but also the fluidity of the entire binder at the time of mounting is improved. be able to.
 液状ラジカル重合性樹脂の配合量は、固形樹脂100質量部に対し、好ましくは100質量部以下、より好ましくは80質量部以下、さらに好ましくは70質量部以下である。液状ラジカル重合性樹脂の配合量が多くなると、フィルム形状を維持することが困難となる。 The blending amount of the liquid radical-polymerizable resin is preferably 100 parts by mass or less, more preferably 80 parts by mass or less, and further preferably 70 parts by mass or less with respect to 100 parts by mass of the solid resin. If the blending amount of the liquid radically polymerizable resin increases, it becomes difficult to maintain the film shape.
 重合開始剤は、ジアシルパーオキサイド等の有機過酸化物であることが好ましい。また、重合開始剤の反応開始温度は、はんだ粒子の融点よりも高いことが好ましい。これにより、固形樹脂の流動後に硬化が開始されるため、良好なはんだ接合を得ることができる。 The polymerization initiator is preferably an organic peroxide such as diacyl peroxide. Further, the reaction initiation temperature of the polymerization initiator is preferably higher than the melting point of the solder particles. As a result, curing starts after the solid resin flows, so that good solder joint can be obtained.
 また、異方性接合フィルムは、常温で液状エポキシ樹脂と、硬化剤とをさらに含有してもよい。液状エポキシ樹脂は、常温で液状であれば、特に限定されるものではなく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等であってもよく、ウレタン変性のエポキシ樹脂であっても構わない。 Further, the anisotropic bonding film may further contain a liquid epoxy resin and a curing agent at room temperature. The liquid epoxy resin is not particularly limited as long as it is liquid at room temperature, and may be, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, or urethane modified epoxy resin. Absent.
 液状エポキシ樹脂の配合量は、固形樹脂100質量部に対し、好ましくは160質量部以下、より好ましくは100質量部以下、さらに好ましくは70質量部以下である。液状エポキシ樹脂の配合量が多くなると、フィルム形状を維持することが困難となる。 The blending amount of the liquid epoxy resin is preferably 160 parts by mass or less, more preferably 100 parts by mass or less, and further preferably 70 parts by mass or less based on 100 parts by mass of the solid resin. When the blending amount of the liquid epoxy resin is large, it becomes difficult to maintain the film shape.
 硬化剤は、熱で硬化が開始する熱硬化剤であれば、特に限定されるものではなく、例えば、アミン、イミダゾール等のアニオン系硬化剤、スルホニウム塩等のカチオン系硬化剤が挙げられる。また、硬化剤は、フィルム化させる際に使用される溶剤に対して耐性が得られるようにマイクロカプセル化されていてもよい。 The curing agent is not particularly limited as long as it is a thermal curing agent that starts to cure by heat, and examples thereof include anionic curing agents such as amine and imidazole, and cationic curing agents such as sulfonium salts. Further, the curing agent may be microencapsulated so as to obtain resistance to the solvent used when forming a film.
 また、硬化剤は、カルボン酸、又はカルボキシル基がアルキルビニルエーテルでブロック化されたブロック化カルボン酸であってもよい。すなわち、硬化剤は、フラックス化合物であってもよい。 Further, the curing agent may be a carboxylic acid or a blocked carboxylic acid in which a carboxyl group is blocked with an alkyl vinyl ether. That is, the curing agent may be a flux compound.
 [はんだ粒子]
 はんだ粒子は、異方性接合フィルム中にランダムに混練りされて分散されていてもよく、平面視で配置されていてもよい。異方性接合フィルムの平面視におけるはんだ粒子全体の配置は、規則的配置でもランダム配置でもよい。規則的配置の態様としては、正方格子、六方格子、斜方格子、長方格子等の格子配列を挙げることができ、特に制約はない。また、ランダム配置の態様としては、フィルムの平面視にて各はんだ粒子が互いに接触することなく存在し、フィルム厚方向にもはんだ粒子が互いに重なることなく存在していることが好ましい。また、異方性接合フィルム中のはんだ粒子の全個数の95%以上が、他のはんだ粒子と非接触であり、独立していることが好ましい。これは公知の金属顕微鏡や光学顕微鏡を用いて、フィルム平面視における1mm以上の面積を任意に5箇所以上抜き取って、はんだ粒子を200個以上、好ましくは1000個以上を観察して確認することができる。また、はんだ粒子が異方性接合フィルム中に平面視で配置されている場合において、はんだ粒子がフィルム厚方向の同じ位置に揃っていてもよい。
[Solder particles]
The solder particles may be randomly kneaded and dispersed in the anisotropic bonding film, or may be arranged in a plan view. The arrangement of the entire solder particles in a plan view of the anisotropic bonding film may be regular arrangement or random arrangement. Examples of the regular arrangement include a lattice arrangement such as a square lattice, a hexagonal lattice, an orthorhombic lattice, and a rectangular lattice, and there is no particular limitation. Further, as a mode of the random arrangement, it is preferable that the solder particles exist without contacting each other in a plan view of the film, and the solder particles also exist in the film thickness direction without overlapping each other. Further, it is preferable that 95% or more of all the solder particles in the anisotropic bonding film are not in contact with other solder particles and are independent. This can be confirmed by using a known metallographic microscope or optical microscope to arbitrarily extract 5 or more areas of 1 mm 2 or more in a plane view of the film and observe 200 or more, preferably 1000 or more solder particles. You can Further, when the solder particles are arranged in the anisotropic bonding film in a plan view, the solder particles may be aligned at the same position in the film thickness direction.
 また、はんだ粒子は、複数個が凝集した凝集体として配置されていてもよい。この場合、異方性接合フィルムの平面視における凝集体の配置は、前述のはんだ粒子の配置と同様に、規則的配置でもランダム配置でもよい。また、フィルムの平面視にて各凝集体が互いに接触することなく存在し、フィルム厚方向にも凝集体が互いに重なることなく存在していることが好ましい。凝集体の個々のはんだ粒子の平均粒径は、前述した平均粒径と同様に計測することができる。 Also, the solder particles may be arranged as an aggregate of a plurality of particles. In this case, the arrangement of the agglomerates in a plan view of the anisotropic bonding film may be a regular arrangement or a random arrangement, similar to the arrangement of the solder particles described above. Further, it is preferable that the agglomerates exist without contacting each other in a plan view of the film, and the agglomerates also exist in the film thickness direction without overlapping with each other. The average particle size of the individual solder particles of the aggregate can be measured in the same manner as the above-mentioned average particle size.
 はんだ粒子の平均粒径は、好ましくは被着体である半導体素子の電極のスペース間の距離の1/3以下であり、より好ましくは1/4以下であり、さらに好ましくは1/5以下である。はんだ粒子の平均粒径が半導体素子の電極のスペース間の距離の1/3よりも大きくなると、ショートが発生する可能性が高くなる。具体的なはんだ粒子の粒子径としては、好ましくは1μm以上30μm以下である。平均粒径が1μmより小さいと電極部と良好なはんだ接合状態を得ることができず、信頼性が悪化する傾向にある。また、フィルムの塗布厚みを一定にするためには、はんだ粒子の平均粒径の下限は、好ましくは3μm以上、より好ましくは5μm以上である。また、はんだ粒子の平均粒径が30μm以上になるとファインピッチ接続が困難となる。はんだ粒子の平均粒径の上限は30μm以下であり、好ましくは25μm以下、さらに好ましくは20μm以下である。接続対象によっては、はんだ粒子の平均粒径の上限は15μm以下とすることが望ましい。また、複数のはんだ粒子が凝集した凝集体である場合、凝集体の大きさを前述のはんだ粒子の平均粒径と同等にしてもよい。凝集体とする場合は、はんだ粒子の平均粒径を上述の値より小さくしてもよい。個々のはんだ粒子の大きさは、電子顕微鏡で観察して求めることができる。 The average particle diameter of the solder particles is preferably ⅓ or less of the distance between the spaces of the electrodes of the semiconductor element which is the adherend, more preferably ¼ or less, and further preferably ⅕ or less. is there. When the average particle diameter of the solder particles is larger than 1/3 of the distance between the spaces of the electrodes of the semiconductor element, the possibility of short circuiting increases. The specific particle diameter of the solder particles is preferably 1 μm or more and 30 μm or less. If the average particle diameter is smaller than 1 μm, a good solder joint state with the electrode cannot be obtained, and reliability tends to deteriorate. Further, in order to keep the coating thickness of the film constant, the lower limit of the average particle diameter of the solder particles is preferably 3 μm or more, more preferably 5 μm or more. If the average particle size of the solder particles is 30 μm or more, fine pitch connection becomes difficult. The upper limit of the average particle diameter of the solder particles is 30 μm or less, preferably 25 μm or less, and more preferably 20 μm or less. Depending on the object to be connected, the upper limit of the average particle diameter of the solder particles is preferably 15 μm or less. In the case of an aggregate of a plurality of solder particles, the size of the aggregate may be equal to the average particle diameter of the solder particles described above. In the case of forming an aggregate, the average particle size of the solder particles may be smaller than the above value. The size of each solder particle can be determined by observing with an electron microscope.
 はんだ粒子は、例えばJIS Z 3282-1999に規定されている、Sn-Pb系、Pb-Sn-Sb系、Sn-Sb系、Sn-Pb-Bi系、Bi-Sn系、Sn-Cu系、Sn-Pb-Cu系、Sn-In系、Sn-Ag系、Sn-Pb-Ag系、Pb-Ag系などから、電極材料や接続条件などに応じて適宜選択することができる。はんだ粒子の融点は、好ましくは110℃以上180℃以下、より好ましくは120℃以上160℃以下、さらに好ましくは130℃以上150℃以下である。また、はんだ粒子は、表面を活性化させる目的でフラックス化合物が直接表面に結合されていても構わない。表面を活性化させることで電極部との金属結合を促進することができる。 The solder particles are, for example, Sn-Pb type, Pb-Sn-Sb type, Sn-Sb type, Sn-Pb-Bi type, Bi-Sn type, Sn-Cu type, and Sn-Cu type specified in JIS Z3282-1999. It can be appropriately selected from Sn-Pb-Cu-based, Sn-In-based, Sn-Ag-based, Sn-Pb-Ag-based, Pb-Ag-based, etc. depending on the electrode material, connection conditions and the like. The melting point of the solder particles is preferably 110 ° C. or higher and 180 ° C. or lower, more preferably 120 ° C. or higher and 160 ° C. or lower, and further preferably 130 ° C. or higher and 150 ° C. or lower. Further, in the solder particles, a flux compound may be directly bonded to the surface for the purpose of activating the surface. By activating the surface, metal bonding with the electrode part can be promoted.
 はんだ粒子の配合量の質量比範囲の下限は、好ましくは20wt%以上、より好ましくは30wt%以上、さらに好ましくは40wt%以上であり、はんだ粒子の配合量の質量比範囲の下限は、好ましくは80wt%以下、より好ましくは70wt%以下、さらに好ましくは60wt%以下である。また、はんだ粒子の配合量の体積比範囲の下限は、好ましくは5vol%以上、より好ましくは10vol%以上、さらに好ましくは15vol%以上であり、はんだ粒子の配合量の体積比範囲の上限は、好ましくは30vol%以下、より好ましくは25vol%以下、さらに好ましくは20vol%以下である。はんだ粒子の配合量は、前述の質量比範囲又は体積比範囲を満たすことにより、優れた導通性、放熱性、及び接着性を得ることができる。はんだ粒子がバインダー中に存在する場合には、体積比を用いてもよく、異方性導電接合材料を製造する場合(はんだ粒子がバインダーに存在する前)には、質量比を用いてもよい。質量比は、配合物の比重や配合比などから体積比に変換することができる。はんだ粒子の配合量が少なすぎると優れた導通性、放熱性、及び接着性が得られなくなり、配合量が多すぎると異方性が損なわれ、優れた導通信頼性が得られなくなる。 The lower limit of the mass ratio range of the blending amount of the solder particles is preferably 20 wt% or more, more preferably 30 wt% or more, further preferably 40 wt% or more, and the lower limit of the mass ratio range of the blending amount of the solder particles is preferably It is 80 wt% or less, more preferably 70 wt% or less, and further preferably 60 wt% or less. Further, the lower limit of the volume ratio range of the blending amount of the solder particles is preferably 5 vol% or more, more preferably 10 vol% or more, further preferably 15 vol% or more, the upper limit of the volume ratio range of the blending amount of the solder particles, It is preferably 30 vol% or less, more preferably 25 vol% or less, and further preferably 20 vol% or less. When the blending amount of the solder particles satisfies the above mass ratio range or volume ratio range, excellent conductivity, heat dissipation and adhesiveness can be obtained. When the solder particles are present in the binder, the volume ratio may be used, and when manufacturing the anisotropic conductive bonding material (before the solder particles are present in the binder), the mass ratio may be used. .. The mass ratio can be converted into a volume ratio from the specific gravity of the compound or the compounding ratio. If the blending amount of the solder particles is too small, excellent conductivity, heat dissipation and adhesiveness cannot be obtained, and if the blending amount is too large, anisotropy is impaired and excellent conduction reliability cannot be obtained.
 [フラックス化合物]
 フラックス化合物は、電極表面の異物や酸化膜を取り除いたり、電極表面の酸化を防止したり、溶融はんだの表面張力を低下させたりする。フラックス化合物としては、例えば、レブリン酸、マレイン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸等のカルボン酸を用いることが好ましい。これにより、良好なはんだ接続を得ることができるとともに、エポキシ樹脂を配合した場合、エポキシ樹脂の硬化剤として機能させることができる。
[Flux compound]
The flux compound removes foreign matters and oxide film on the electrode surface, prevents oxidation on the electrode surface, and lowers the surface tension of the molten solder. As the flux compound, for example, carboxylic acids such as levulinic acid, maleic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid and sebacic acid are preferably used. As a result, good solder connection can be obtained, and when an epoxy resin is mixed, it can function as a curing agent for the epoxy resin.
 また、フラックス化合物として、カルボキシル基がアルキルビニルエーテルでブロック化されたブロック化カルボン酸を用いることが好ましい。これにより、フラックス効果、及び硬化剤機能が発揮される温度をコントロールすることができる。また、樹脂に対する溶解性が向上するため、フィルム化する際の混合・塗布ムラを改善することができる。また、ブロック化が解除される解離温度は、はんだ粒子の融点以上であることが好ましい。これにより、良好なはんだ接続を得ることができるとともに、エポキシ樹脂を配合した場合、エポキシ樹脂の流動後に硬化が開始されるため、良好なはんだ接合を得ることができる。 Also, it is preferable to use a blocked carboxylic acid having a carboxyl group blocked with an alkyl vinyl ether as the flux compound. This makes it possible to control the temperature at which the flux effect and the curing agent function are exhibited. Further, since the solubility in the resin is improved, it is possible to improve the mixing and coating unevenness when forming a film. The dissociation temperature at which the blocking is released is preferably equal to or higher than the melting point of the solder particles. As a result, good solder connection can be obtained, and when the epoxy resin is blended, curing is started after the epoxy resin flows, so that good solder joint can be obtained.
 [他の添加剤]
 異方性接合フィルムには、上述した固形樹脂、はんだ粒子、及びフラックス化合物に加えて、本発明の効果を損なわない範囲で種々の添加剤を配合することができる。例えば、異方性接合フィルムは、無機フィラー、有機フィラー、金属フィラー、カップリング剤、レベリング剤、安定剤、チクソ剤等を含有しても構わない。無機フィラー、有機フィラー、及び金属フィラーの粒子径は、接続安定性の観点から、はんだ粒子の平均粒径よりも小さく、例えば、10-1000nmのナノフィラー、1-10μmのマイクロフィラー等が用いられる。
[Other additives]
In addition to the above-mentioned solid resin, solder particles, and flux compound, various additives can be added to the anisotropic bonding film within a range that does not impair the effects of the present invention. For example, the anisotropic bonding film may contain an inorganic filler, an organic filler, a metal filler, a coupling agent, a leveling agent, a stabilizer, a thixotropic agent and the like. The particle size of the inorganic filler, the organic filler, and the metal filler is smaller than the average particle size of the solder particles from the viewpoint of connection stability. For example, a nanofiller of 10-1000 nm, a microfiller of 1-10 μm, or the like is used. ..
 無機フィラーとしては、シリカ、酸化アルミ、水酸化アルミ、酸化チタン、水酸化アルミニム、水酸化カルシウム、炭酸カルシウム、タルク、酸化亜鉛、ゼオライト等が挙げられ、吸湿信頼性の向上を目的にシリカを添加したり、光反射の向上を目的に酸化チタンを添加したり、酸による腐食防止を目的に水酸化アルミニウム、水酸化カルシウム等を添加しても構わない。 Examples of the inorganic filler include silica, aluminum oxide, aluminum hydroxide, titanium oxide, aluminum hydroxide, calcium hydroxide, calcium carbonate, talc, zinc oxide, zeolite, etc., and silica is added for the purpose of improving moisture absorption reliability. Alternatively, titanium oxide may be added for the purpose of improving light reflection, or aluminum hydroxide, calcium hydroxide, or the like may be added for the purpose of preventing corrosion by acid.
 有機フィラーとしては、アクリル系樹脂、カーボン、コアシェル粒子等が挙げられ、有機フィラーの添加により、ブロッキング防止、光散乱等の効果を得ることができる。 As the organic filler, acrylic resin, carbon, core shell particles and the like can be mentioned. By adding the organic filler, effects such as blocking prevention and light scattering can be obtained.
 金属フィラーとしては、Ni、Cu、Ag、Auが挙げられ、これらの合金でも構わない。例えば、Cuフィラーは、酸と錯体を形成するため電極等の腐食を防止することができる。なお、金属フィラーは、導通に寄与しても寄与しなくもよく、金属フィラーの配合量は、はんだ粒子を含めて、ショートしない程度に調整すればよい。 Examples of the metal filler include Ni, Cu, Ag and Au, and alloys of these may be used. For example, the Cu filler forms a complex with an acid and therefore can prevent corrosion of the electrodes and the like. The metal filler may or may not contribute to conduction, and the compounding amount of the metal filler, including the solder particles, may be adjusted so as not to cause a short circuit.
 また、上述の異方性接合フィルムは、例えば、固形樹脂、はんだ粒子、及びフラックス化合物を溶剤中で混合し、この混合物を、バーコーターにより、剥離処理フィルム上に所定厚みとなるように塗布した後、乾燥させて溶媒を揮発させることにより得ることができる。また、はんだ粒子の分散性を高くするために、溶媒を含んだ状態で高シェアをかけることが好ましい。例えば、公知のバッチ式遊星攪拌装置を用いることができる。真空環境下で行えるものであってもよい。また、異方性接合フィルムの残溶剤量は、好ましくは2%以下、より好ましくは1%以下である。 Further, the above-mentioned anisotropic bonding film is prepared by, for example, mixing solid resin, solder particles, and a flux compound in a solvent, and applying this mixture by a bar coater to a predetermined thickness on a release-treated film. Then, it can be obtained by drying and volatilizing the solvent. Further, in order to enhance the dispersibility of the solder particles, it is preferable to apply a high share in a state of containing a solvent. For example, a known batch type planetary stirring device can be used. It may be one that can be performed in a vacuum environment. The amount of residual solvent in the anisotropic bonding film is preferably 2% or less, more preferably 1% or less.
 <3.1 第1の実施例>
 第1の実施例では、熱可塑性樹脂を含有する異方性接合フィルムを用いてLED実装体を作製し、LED実装体の順電圧、ダイシェア強度、及び接合状態について評価した。
<3.1 First Example>
In the first example, an LED mounting body was produced using an anisotropic bonding film containing a thermoplastic resin, and the forward voltage, die shear strength, and bonding state of the LED mounting body were evaluated.
 [固形樹脂のメルトフローレートの測定]
 JIS K7210:1999の塑性プラスチックのメルトフローレートの求め方に従い、メルトフローレート測定装置(品名:メルトインデックサG-02、東洋精機製作所社製)を用いて温度190℃,荷重2.16kgの条件で熱可塑性樹脂A-Eのメルトフローレートを測定した。
A:ポリエステル樹脂、プリマロイA1500(三菱ケミカル(株))、MFR=11g/10min
B:エチレン酢ビニル共重合樹脂、エバフレックスEV205WR(三井デュポンケミカル(株))、MFR=800g/10min
C:エチレンアクリル酸共重合樹脂、ニュクレルN1050H(デュポン(株))、MFR=500g/10min
D:ポリアミド樹脂、Griltex D1666A(EMS GRIVORY(株))、MFR=130g/10min
E:フェノキシ樹脂、フェノトートYP70(新日鉄住金化学(株))、MFR=1g/10min
[Measurement of melt flow rate of solid resin]
According to JIS K7210: 1999 method for determining the melt flow rate of plastic plastics, using a melt flow rate measuring device (product name: Melt Indexer G-02, manufactured by Toyo Seiki Seisaku-sho, Ltd.), temperature 190 ° C., load 2.16 kg The melt flow rate of the thermoplastic resins AE was measured by.
A: Polyester resin, Primalloy A1500 (Mitsubishi Chemical Corporation), MFR = 11 g / 10 min
B: ethylene vinyl acetate copolymer resin, Evaflex EV205WR (Mitsui DuPont Chemical Co., Ltd.), MFR = 800 g / 10 min
C: ethylene acrylic acid copolymer resin, Nucrel N1050H (DuPont Co., Ltd.), MFR = 500 g / 10 min
D: Polyamide resin, Grillex D1666A (EMS GRIVORY Co., Ltd.), MFR = 130 g / 10 min
E: Phenoxy resin, Phenothote YP70 (Nippon Steel & Sumitomo Metal Corporation), MFR = 1g / 10min
 [LED実装体の作製]
 LEDチップ(デクセリアルズ評価用LEDチップ、サイズ45mil、If=350mA、Vf=3.1V、Au-Snパッド、パッドサイズ300μm×800μmのP電極とN電極がそれぞれ設けられており、パッド間距離(P電極とN電極間距離)150μm)と、基板(デクセリアルズ評価用セラミック基板、18μm厚Cuパターン、Ni-Auメッキ、パターン間(スペース)50μm)とを準備した。異方性接合フィルムを80℃-2MPa-3secの条件で基板上にラミネートし、LEDチップをアライメント搭載した後、リフロー(ピーク温度260℃)によりLEDチップを実装した。
[Production of LED mounting body]
LED chip (LED chip for evaluation of Dexerials, size 45 mil, If = 350 mA, Vf = 3.1 V, Au-Sn pad, P electrode and N electrode of pad size 300 μm × 800 μm are provided respectively, and the distance between pads (P (Distance between electrodes and N electrode) 150 μm), and a substrate (ceramic substrate for Dexerials evaluation, 18 μm thick Cu pattern, Ni—Au plating, space between patterns (50 μm)) were prepared. The anisotropic bonding film was laminated on the substrate under the condition of 80 ° C.-2 MPa-3 sec, the LED chip was aligned and mounted, and then the LED chip was mounted by reflow (peak temperature 260 ° C.).
 [順電圧の測定]
 定格電流であるIf=350mAを基板のパターンを介してLEDチップに流し、LEDチップの順電圧値Vfを測定した。電圧オーバーで読み取れない場合を「OPEN」とした。
[Measurement of forward voltage]
A rated current If = 350 mA was passed through the LED chip through the pattern of the substrate, and the forward voltage value Vf of the LED chip was measured. The case where reading was not possible due to overvoltage was designated as "OPEN".
 [ダイシェア強度の測定]
 ボンディングテスター(品番:PTR-1100、レスカ社製)を用いて、測定速度20μm/secでLEDチップのダイシェア強度を測定した。
[Measurement of die shear strength]
The die shear strength of the LED chip was measured at a measurement speed of 20 μm / sec using a bonding tester (product number: PTR-1100, manufactured by Reska Co.).
 [接合状態の観察]
 ダイシェア強度を測定した後、すなわちLEDチップを引き剥がした後の基板側のはんだ接合状態を光学顕微鏡にて観察した。
[Observation of bonding state]
After measuring the die shear strength, that is, the solder bonding state on the substrate side after peeling off the LED chip was observed with an optical microscope.
 [フィルム厚みの測定]
 フィルム厚みは、デジタルマイクロメータを用いて、10箇所以上測定し、その平均をフィルム厚みとした。
[Measurement of film thickness]
The film thickness was measured at 10 or more points using a digital micrometer, and the average was taken as the film thickness.
 <実施例1-1>
 表1に示すように、熱可塑性樹脂A、フラックス化合物(グルタル酸(1,3-プロパンジカルボン酸)、和光純薬(株))、はんだ粒子(42Sn-58Bi、Type6 、融点139℃、平均粒子径10μm、三井金属(株))、酸化チタン(平均粒子径0.21μm、CR-60、石原産業(株))を所定の質量部で配合し、異方性接合フィルムを作製した。
<Example 1-1>
As shown in Table 1, thermoplastic resin A, flux compound (glutaric acid (1,3-propanedicarboxylic acid), Wako Pure Chemical Industries, Ltd.), solder particles (42Sn-58Bi, Type 6, melting point 139 ° C, average particle) A diameter of 10 μm, Mitsui Kinzoku Co., Ltd., and titanium oxide (average particle size 0.21 μm, CR-60, Ishihara Sangyo Co., Ltd.) were mixed in a predetermined mass part to prepare an anisotropic bonding film.
 熱可塑性樹脂A、フラックス化合物、及び酸化チタンを混合溶解したトルエン溶液中にはんだ粒子を分散させた後、ギャップコーターにて、トルエン乾燥後の厚みが20μmになるよう剥離PET(PET-02-BU、四国トーセロ(株))上に塗布して作製した。トルエン乾燥は80℃-10minの条件で行った。乾燥後のフィルム厚みの測定値は20μmであった。 After the solder particles are dispersed in a toluene solution in which a thermoplastic resin A, a flux compound, and titanium oxide are mixed and dissolved, a PET (PET-02-BU) PET (PET-02-BU) is peeled off with a gap coater so that the thickness after drying is 20 μm. , Shikoku Tohcello Co., Ltd.). Toluene was dried at 80 ° C. for 10 minutes. The measured film thickness after drying was 20 μm.
 表1に、異方性接合フィルムを用いて作製したLED実装体の順電圧、及びダイシェア強度の測定結果を示す。順電圧が3.1V、ダイシェア強度が40N/chipであった。 Table 1 shows the measurement results of the forward voltage and the die shear strength of the LED mounting body manufactured using the anisotropic bonding film. The forward voltage was 3.1 V and the die shear strength was 40 N / chip.
 図4は、実施例1-1のLEDチップを引き剥がした後の基板側のはんだ接合状態を観察したときの顕微鏡写真である。はんだがLEDチップ側及び基板側に濡れ広がっており、良好なはんだ接合状態であった。また、一つの電極内に複数のはんだ接合箇所が存在することが確認できた。 FIG. 4 is a photomicrograph when observing the solder joint state on the substrate side after peeling off the LED chip of Example 1-1. The solder was wet and spread on the LED chip side and the substrate side, and was in a good solder joint state. It was also confirmed that there were a plurality of solder joints in one electrode.
 <実施例1-2>
 表1に示すように、熱可塑性樹脂Aに代えて熱可塑性樹脂Bを用いた以外は、実施例1-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、ダイシェア強度が45N/chipであった。
<Example 1-2>
As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the thermoplastic resin B was used instead of the thermoplastic resin A. The LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V and a die shear strength of 45 N / chip.
 <実施例1-3>
 表1に示すように、熱可塑性樹脂Aに代えて熱可塑性樹脂Cを用いた以外は、実施例1-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、ダイシェア強度が43N/chipであった。
<Example 1-3>
As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the thermoplastic resin C was used instead of the thermoplastic resin A. The LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.0 V and a die shear strength of 43 N / chip.
 <実施例1-4>
 表1に示すように、熱可塑性樹脂Aに代えて熱可塑性樹脂Dを用いた以外は、実施例1-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、ダイシェア強度が46N/chipであった。
<Example 1-4>
As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the thermoplastic resin D was used instead of the thermoplastic resin A. The LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.0 V and a die shear strength of 46 N / chip.
 <実施例1-5>
 表1に示すように、異方性接合フィルムの厚みを30μmとした以外は、実施例1-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.1V、ダイシェア強度が47N/chipであった。
<Example 1-5>
As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the thickness of the anisotropic bonding film was 30 μm. The LED package manufactured using the anisotropic bonding film had a forward voltage of 3.1 V and a die shear strength of 47 N / chip.
 <比較例1-1>
 表1に示すように、熱可塑性樹脂Aに代えて熱可塑性樹脂Eを用いた以外は、実施例1-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧がオープンとなり、ダイシェア強度が19N/chipであった。
<Comparative Example 1-1>
As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the thermoplastic resin E was used instead of the thermoplastic resin A. The LED package manufactured using the anisotropic bonding film had an open forward voltage and a die shear strength of 19 N / chip.
 図5は、比較例1-1のLEDチップを引き剥がした後の基板側のはんだ接合状態を観察したときの顕微鏡写真である。熱可塑性樹脂Eのメルトフローレートが1g/10minであるため、樹脂がほとんど流動せず、はんだ粒子がLEDチップのパッドや基板のパターンに接触せず溶融しなかった。 FIG. 5 is a photomicrograph of the solder bonding state on the substrate side after peeling off the LED chip of Comparative Example 1-1. Since the melt flow rate of the thermoplastic resin E was 1 g / 10 min, the resin hardly flowed and the solder particles did not contact the pad of the LED chip or the pattern of the substrate and were not melted.
 <比較例1-2>
 表1に示すように、フラックス化合物を配合しなかった以外は、実施例1-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧がオープンとなり、ダイシェア強度が18N/chipであった。
<Comparative Example 1-2>
As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the flux compound was not added. The LED package manufactured using the anisotropic bonding film had an open forward voltage and a die shear strength of 18 N / chip.
 図6は、比較例1-2のLEDチップを引き剥がした後の基板側のはんだ接合状態を観察したときの顕微鏡写真である。フラックス化合物が配合されていないため、はんだ粒子が溶融しなかった。 FIG. 6 is a photomicrograph when observing the solder joint state on the substrate side after peeling off the LED chip of Comparative Example 1-2. Since no flux compound was added, the solder particles did not melt.
 <比較例1-3>
 表1に示すように、異方性接合フィルムの厚みを40μmとした以外は、実施例1-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧がオープンとなり、ダイシェア強度が25N/chipであった。
<Comparative Example 1-3>
As shown in Table 1, an anisotropic bonding film was produced in the same manner as in Example 1-1, except that the thickness of the anisotropic bonding film was 40 μm. The LED mounting body produced using the anisotropic bonding film had an open forward voltage and a die shear strength of 25 N / chip.
 図7は、比較例1-3のLEDチップを引き剥がした後の基板側のはんだ接合状態を観察したときの顕微鏡写真である。異方性接合フィルムの厚みが40μmと厚いため、はんだ粒子の電極間への挟持が不十分で、はんだ接合が不十分となり、はんだ粒子の濡れ広がりがLEDチップ側のみの箇所と基板側のみの箇所が見られた。 FIG. 7 is a photomicrograph of the solder bonding state on the substrate side after peeling off the LED chip of Comparative Example 1-3. Since the thickness of the anisotropic bonding film is as thick as 40 μm, the sandwiching of the solder particles between the electrodes is insufficient, the solder bonding becomes insufficient, and the wetting and spreading of the solder particles occurs only on the LED chip side and only on the substrate side. The spot was seen.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1-1では、メルトフローレートが1g/10minである熱可塑性樹脂Eを用いたため、樹脂の流動性が悪く、はんだ粒子が溶融せず、被着体の電極と接合しなかった。このため、順電圧を測定することができなかった。また、樹脂が十分に流動しておらず、はんだ接合も形成されていなためLEDチップの密着性が弱く、ダイシェア強度が低い結果となった。 In Comparative Example 1-1, since the thermoplastic resin E having a melt flow rate of 1 g / 10 min was used, the fluidity of the resin was poor, the solder particles did not melt, and the electrodes of the adherend were not joined. Therefore, the forward voltage could not be measured. Further, the resin did not flow sufficiently and the solder joint was not formed, so that the adhesion of the LED chip was weak and the die shear strength was low.
 比較例1-2では、フラックス化合物を配合していないため、はんだ粒子が溶融せず、順電圧を測定することができなかった。 In Comparative Example 1-2, since the flux compound was not mixed, the solder particles did not melt and the forward voltage could not be measured.
 比較例1-3では、はんだ粒子の平均粒子径10μmに対し、4倍厚みの40μm厚みの異方性接合フィルムを用いたため、はんだ接合が形成されず、順電圧を測定することができなかった。また、ダイシェア強度も低い結果となった。 In Comparative Example 1-3, since the anisotropic bonding film having a thickness of 40 μm, which is four times as thick as the average particle size of the solder particles, was used, solder bonding was not formed and the forward voltage could not be measured. .. The die shear strength was also low.
 一方、実施例1-1~実施例1-5では、メルトフローレートが1g/10min以上である熱可塑性樹脂A-Dを用い、はんだ粒子の平均粒子径10μmに対し、2-3倍厚みの20-30μm厚みの異方性接合フィルムを用いたため、樹脂が溶融・流動し、はんだ粒子により被着体の電極間ではんだ接合し、定格電圧3.1Vに近い値を得ることができた。また、ダイシェア強度も良好な結果となった。 On the other hand, in Examples 1-1 to 1-5, the thermoplastic resins A to D having a melt flow rate of 1 g / 10 min or more were used, and the thickness of the solder particles was 2-3 times as large as the average particle diameter of 10 μm. Since the anisotropic bonding film having a thickness of 20 to 30 μm was used, the resin melted and flowed, and the solder particles were solder-bonded between the electrodes of the adherend, and a value close to the rated voltage of 3.1 V could be obtained. The die shear strength was also good.
 <3.2 第2の実施例>
 第2の実施例では、ラジカル重合性樹脂を含有する異方性接合フィルムを用いてLED実装体を作製し、LED実装体の順電圧、絶縁性及びダイシェア強度ついて評価した。LED実装体の作製、LED実装体の順電圧、及びダイシェ強度の測定は、第1の実施例と同様のため、ここでは説明を省略する。
<3.2 Second Example>
In the second example, an LED mounting body was prepared using an anisotropic bonding film containing a radically polymerizable resin, and the forward voltage, the insulating property and the die shear strength of the LED mounting body were evaluated. The manufacturing of the LED mounting body, the measurement of the forward voltage of the LED mounting body, and the measurement of the die-shake strength are the same as those in the first embodiment, and thus the description thereof is omitted here.
 [固形樹脂のメルトフローレートの測定]
 JIS K7210:1999の塑性プラスチックのメルトフローレートの求め方に従い、メルトフローレート測定装置(品名:メルトインデックサG-02、東洋精機製作所社製)を用いて温度190℃,荷重2.16kgの条件で熱可塑性樹脂A-C,E及び固形ラジカル重合性樹脂のメルトフローレートを測定した。
A:ポリエステル樹脂、プリマロイA1500(三菱ケミカル(株))、MFR=11g/10min
B:エチレン酢ビニル共重合樹脂、エバフレックスEV205WR(三井デュポンケミカル(株))、MFR=800g/10min
C:エチレンアクリル酸共重合樹脂、ニュクレルN1050H(デュポン(株))、MFR=500g/10min
E:フェノキシ樹脂、フェノトートYP70(新日鉄住金化学(株))、MFR=1g/10min
固形ラジカル重合性樹脂:ビニルエステル樹脂、リポキシVR-90、昭和電工(株)、MFR=100g/10min
[Measurement of melt flow rate of solid resin]
According to JIS K7210: 1999 method for determining the melt flow rate of plastic plastics, using a melt flow rate measuring device (product name: Melt Indexer G-02, manufactured by Toyo Seiki Seisaku-sho, Ltd.), temperature 190 ° C., load 2.16 kg The melt flow rates of the thermoplastic resins AC and E and the solid radically polymerizable resin were measured by.
A: Polyester resin, Primalloy A1500 (Mitsubishi Chemical Corporation), MFR = 11 g / 10 min
B: ethylene vinyl acetate copolymer resin, Evaflex EV205WR (Mitsui DuPont Chemical Co., Ltd.), MFR = 800 g / 10 min
C: ethylene acrylic acid copolymer resin, Nucrel N1050H (DuPont Co., Ltd.), MFR = 500 g / 10 min
E: Phenoxy resin, Phenothote YP70 (Nippon Steel & Sumitomo Metal Corporation), MFR = 1g / 10min
Solid radical polymerizable resin: vinyl ester resin, Lipoxy VR-90, Showa Denko KK, MFR = 100g / 10min
 [絶縁性の評価]
 基板のパターンを介してLEDチップに逆電流0.1μAを流し、電流が流れない場合の評価を「OK」とし、電流が流れた場合の評価を「NG」とした。
[Evaluation of insulation]
A reverse current of 0.1 μA was applied to the LED chip through the pattern of the substrate, and the evaluation when the current did not flow was “OK”, and the evaluation when the current flowed was “NG”.
 <実施例2-1>
 表2に示すように、熱可塑性樹脂A、液状ラジカル重合性樹脂(水添ビスフェノールAジグリシジルエーテル、エポライト4000、共栄社化学(株))、開始剤(ジアシルパーオキサイド、パーヘキサ25B、日油(株))、フラックス化合物A(グルタル酸(1,3-プロパンジカルボン酸)、和光純薬(株))、はんだ粒子(42Sn-58Bi、Type6 、融点139℃、平均粒子径10μm、三井金属(株))、酸化チタン(平均粒子径0.21μm、CR-60、石原産業(株))を所定の質量部で配合し、異方性接合フィルムを作製した。
<Example 2-1>
As shown in Table 2, a thermoplastic resin A, a liquid radical polymerizable resin (hydrogenated bisphenol A diglycidyl ether, Epolite 4000, Kyoeisha Chemical Co., Ltd.), an initiator (diacyl peroxide, Perhexa 25B, NOF CORPORATION) )), Flux compound A (glutaric acid (1,3-propanedicarboxylic acid), Wako Pure Chemical Industries, Ltd.), solder particles (42Sn-58Bi, Type6, melting point 139 ° C., average particle size 10 μm, Mitsui Kinzoku Co., Ltd.) ) And titanium oxide (average particle size 0.21 μm, CR-60, Ishihara Sangyo Co., Ltd.) were mixed in a predetermined mass part to prepare an anisotropic bonding film.
 熱可塑性樹脂A、及び液状ラジカル重合性樹脂をトルエンで混合溶解させ、その中にフラックス化合物A、及び酸化チタンを投入し、3本ロール(ギャップ10μmで3回パス)で分散させた後、開始剤とはんだ粒子を分散させることで樹脂溶液を得た。この樹脂溶液をギャップコーターにて、トルエン乾燥後の厚みが20μmになるよう剥離PET(PET-02-BU、四国トーセロ(株))上に塗布して作製した。トルエン乾燥は80℃-10minの条件で行った。 Thermoplastic resin A and liquid radical-polymerizable resin are mixed and dissolved in toluene, flux compound A and titanium oxide are added thereto, and the mixture is dispersed with three rolls (three passes with a gap of 10 μm) and then started. A resin solution was obtained by dispersing the agent and the solder particles. This resin solution was applied to a peeled PET (PET-02-BU, Shikoku Tocello Co., Ltd.) with a gap coater so that the thickness after drying with toluene was 20 μm. Toluene was dried at 80 ° C. for 10 minutes.
 表2に示すように、異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.1V、絶縁性がOK、ダイシェア強度が42N/chipであった。 As shown in Table 2, the LED mounting body manufactured using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 42 N / chip.
 <実施例2-2>
 表2に示すように、熱可塑性樹脂Aに代えて熱可塑性樹脂Bを用いた以外は、実施例2-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がOK、ダイシェア強度が46N/chipであった。
<Example 2-2>
As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the thermoplastic resin B was used instead of the thermoplastic resin A. The LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 46 N / chip.
 <実施例2-3>
 表2に示すように、熱可塑性樹脂Aに代えて熱可塑性樹脂Cを用いた以外は、実施例2-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がOK、ダイシェア強度が41N/chipであった。
<Example 2-3>
As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the thermoplastic resin C was used instead of the thermoplastic resin A. The LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 41 N / chip.
 <実施例2-4>
 表2に示すように、熱可塑性樹脂Aに代えて固形ラジカル重合性樹脂を用いた以外は、実施例2-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がOK、ダイシェア強度が47N/chipであった。
<Example 2-4>
As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the solid radically polymerizable resin was used instead of the thermoplastic resin A. The LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 47 N / chip.
 <実施例2-5>
 表2に示すように、フラックス化合物Aに代えてフラックス化合物B(ブロック化カルボン酸、サンタシッドG、日油(株))を用いた以外は、実施例2-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がOK、ダイシェア強度が46N/chipであった。
<Example 2-5>
As shown in Table 2, the anisotropic bonding film was the same as in Example 2-1 except that flux compound B (blocked carboxylic acid, Santacid G, NOF Corporation) was used in place of flux compound A. Was produced. The LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 46 N / chip.
 <実施例2-6>
 表2に示すように、異方性接合フィルムの厚みを30μmとした以外は、実施例2-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.1V、絶縁性がOK、ダイシェア強度が49N/chipであった。
<Example 2-6>
As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the thickness of the anisotropic bonding film was 30 μm. The LED package manufactured using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 49 N / chip.
 <比較例2-1>
 表2に示すように、熱可塑性樹脂Eを反応性希釈剤(テトラヒドロフルフリルアクリレート、ビスコート♯150、大阪有機化学工業(株))で溶解させたのちラジカル重合性樹脂、開始剤、フラックス化合物A、酸化チタン、及びはんだ粒子を混合分散させることで異方性接合ペーストを作成した。
<Comparative Example 2-1>
As shown in Table 2, the thermoplastic resin E was dissolved with a reactive diluent (tetrahydrofurfuryl acrylate, biscoat # 150, Osaka Organic Chemical Industry Co., Ltd.), and then the radical polymerizable resin, the initiator and the flux compound A were dissolved. An anisotropic bonding paste was prepared by mixing, dispersing, titanium oxide, and solder particles.
 LEDチップ(デクセリアルズ評価用LEDチップ、サイズ45mil、If=350mA、Vf=3.1V、Au-Snパッド、パッドサイズ300μm×800μm、パッド間距離200μm)と、基板(デクセリアルズ評価用セラミック基板、18μm厚Cuパターン、Ni-Auメッキ、パターン間(スペース)50μm)とを準備した。異方性接合ペーストを厚み30μmのマスクを使用して基板上に塗布し、LEDチップをアライメント搭載した後、リフロー(ピーク温度260℃)によりLEDチップを実装した。 LED chip (LED chip for Dexerials evaluation, size 45 mil, If = 350 mA, Vf = 3.1 V, Au-Sn pad, pad size 300 μm × 800 μm, distance between pads 200 μm), substrate (Dexerials evaluation ceramic substrate, 18 μm thickness) A Cu pattern, Ni—Au plating, and space (space between patterns) of 50 μm) were prepared. The anisotropic bonding paste was applied onto the substrate using a mask having a thickness of 30 μm, the LED chips were mounted by alignment, and then the LED chips were mounted by reflow (peak temperature of 260 ° C.).
 表2に示すように、異方性接合ペーストを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がNG、ダイシェア強度が45N/chipであった。 As shown in Table 2, the LED mounting body produced using the anisotropic bonding paste had a forward voltage of 3.0 V, an insulating property of NG, and a die shear strength of 45 N / chip.
 <比較例2-2>
 表2に示すように、熱可塑性樹脂Aに代えて熱可塑性樹脂Eを用いた以外は、実施例2-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧がOPEN、絶縁性がOK、ダイシェア強度が19N/chipであった。
<Comparative Example 2-2>
As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the thermoplastic resin E was used instead of the thermoplastic resin A. The LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 19 N / chip.
 <比較例2-3>
 表2に示すように、フラックス化合物を配合しなかったこと以外は、実施例2-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧がOPEN、絶縁性がOK、ダイシェア強度が19N/chipであった。
<Comparative Example 2-3>
As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the flux compound was not added. The LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 19 N / chip.
 <比較例2-4>
 表2に示すように、異方性接合フィルムの厚みを40μmとした以外は、実施例2-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧がOPEN、絶縁性がOK、ダイシェア強度が26N/chipであった。
<Comparative Example 2-4>
As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 2-1 except that the thickness of the anisotropic bonding film was 40 μm. The LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 26 N / chip.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例2-1では、メルトフローレートが1g/10minである熱可塑性樹脂Eを用い、ペースト状の異方性接合材料を塗布したため、基板の隣接する端子間ではんだ接合によるショートが発生した。 In Comparative Example 2-1, since the paste resin anisotropic bonding material was applied using the thermoplastic resin E having a melt flow rate of 1 g / 10 min, a short circuit due to solder bonding occurred between the adjacent terminals of the substrate.
 比較例2-2では、メルトフローレートが1g/10minである熱可塑性樹脂Eを用いたため、樹脂の流動性が悪く、はんだ粒子が溶融せず、被着体の電極と接合しなかった。このため、順電圧を測定することができなかった。また、樹脂が十分に流動しておらず、はんだ接合も形成されていなためLEDチップの密着性が弱く、ダイシェア強度が低い結果となった。 In Comparative Example 2-2, since the thermoplastic resin E having a melt flow rate of 1 g / 10 min was used, the fluidity of the resin was poor, the solder particles did not melt, and the electrodes of the adherend were not joined. Therefore, the forward voltage could not be measured. Further, the resin did not flow sufficiently and the solder joint was not formed, so that the adhesion of the LED chip was weak and the die shear strength was low.
 比較例2-3では、フラックス化合物を配合していないため、はんだ粒子が溶融せず、順電圧を測定することができなかった。 In Comparative Example 2-3, since the flux compound was not mixed, the solder particles did not melt and the forward voltage could not be measured.
 比較例2-4では、はんだ粒子の平均粒子径10μmに対し、4倍厚みの40μm厚みの異方性接合フィルムを用いたため、はんだ接合が形成されず、順電圧を測定することができなかった。また、ダイシェア強度も低い結果となった。 In Comparative Example 2-4, since the anisotropic bonding film having a thickness of 40 μm, which is four times the thickness of the solder particles having an average particle diameter of 10 μm, was used, solder bonding was not formed and the forward voltage could not be measured. .. The die shear strength was also low.
 一方、実施例2-1~実施例2-5では、メルトフローレートが1g/10min以上である熱可塑性樹脂A-Dを用い、はんだ粒子の平均粒子径10μmに対し、2-3倍厚みの20-30μm厚みの異方性接合フィルムを用いたため、樹脂が溶融・流動し、はんだ粒子により被着体の電極間ではんだ接合し、定格電圧3.1Vに近い値を得ることができた。また、ダイシェア強度も良好な結果となった。 On the other hand, in Examples 2-1 to 2-5, the thermoplastic resins A to D having a melt flow rate of 1 g / 10 min or more were used, and the thickness was 2-3 times as large as the average particle diameter of the solder particles of 10 μm. Since the anisotropic bonding film having a thickness of 20 to 30 μm was used, the resin melted and flowed, and the solder particles were solder-bonded between the electrodes of the adherend, and a value close to the rated voltage of 3.1 V could be obtained. The die shear strength was also good.
 <3.3 第3の実施例>
 第3の実施例では、エポキシ樹脂を含有する異方性接合フィルムを用いてLED実装体を作製し、LED実装体の順電圧、絶縁性及びダイシェア強度ついて評価した。LED実装体の作製、LED実装体の順電圧、及びダイシェ強度の測定は、第1の実施例と同様のため、LED実装体の絶縁性の評価は、第2の実施例と同様のため、ここでは説明を省略する。
<3.3 Third Example>
In the third example, an LED mounting body was prepared using an anisotropic bonding film containing an epoxy resin, and the forward voltage, the insulating property and the die shear strength of the LED mounting body were evaluated. The production of the LED mounting body, the measurement of the forward voltage of the LED mounting body, and the dieche strength are the same as those in the first embodiment, and the evaluation of the insulating property of the LED mounting body is the same as that in the second embodiment. The description is omitted here.
 [固形樹脂のメルトフローレートの測定]
 JIS K7210:1999の塑性プラスチックのメルトフローレートの求め方に従い、メルトフローレート測定装置(品名:メルトインデックサG-02、東洋精機製作所社製)を用いて温度190℃,荷重2.16kgの条件で熱可塑性樹脂A-C,E及び固形エポキシ樹脂のメルトフローレートを測定した。
A:ポリエステル樹脂、プリマロイA1500(三菱ケミカル(株))、MFR=11g/10min
B:エチレン酢ビニル共重合樹脂、エバフレックスEV205WR(三井デュポンケミカル(株))、MFR=800g/10min
C:エチレンアクリル酸共重合樹脂、ニュクレルN1050H(デュポン(株))、MFR=500g/10min
E:フェノキシ樹脂、フェノトートYP70(新日鉄住金化学(株))、MFR=1g/10min
固形エポキシ樹脂:ビスフェノールA型エポキシ樹脂、1001、三菱化学(株)、MFR=2600g/10min
[Measurement of melt flow rate of solid resin]
According to JIS K7210: 1999 method for determining the melt flow rate of plastic plastics, using a melt flow rate measuring device (product name: Melt Indexer G-02, manufactured by Toyo Seiki Seisaku-sho, Ltd.), temperature 190 ° C., load 2.16 kg The melt flow rates of the thermoplastic resins AC and E and the solid epoxy resin were measured by.
A: Polyester resin, Primalloy A1500 (Mitsubishi Chemical Corporation), MFR = 11 g / 10 min
B: ethylene vinyl acetate copolymer resin, Evaflex EV205WR (Mitsui DuPont Chemical Co., Ltd.), MFR = 800 g / 10 min
C: ethylene acrylic acid copolymer resin, Nucrel N1050H (DuPont Co., Ltd.), MFR = 500 g / 10 min
E: Phenoxy resin, Phenothote YP70 (Nippon Steel & Sumitomo Metal Corporation), MFR = 1g / 10min
Solid epoxy resin: Bisphenol A type epoxy resin, 1001, Mitsubishi Chemical Co., MFR = 2600g / 10min
 <実施例3-1>
 表3に示すように、熱可塑性樹脂A、液状エポキシ樹脂(ビスフェノールA型エポキシ樹脂、YL980、三菱化学(株))、硬化剤A(アニオン硬化剤、マイクロカプセル型イミダゾール硬化剤、HX3941HP、旭化成(株))、フラックス化合物A(グルタル酸(1,3-プロパンジカルボン酸)、和光純薬(株))、はんだ粒子(42Sn-58Bi、Type6 、融点139℃、平均粒子径10μm、三井金属(株))、酸化チタン(平均粒子径0.21μm、CR-60、石原産業(株))を所定の質量部で配合し、異方性接合フィルムを作製した。
<Example 3-1>
As shown in Table 3, thermoplastic resin A, liquid epoxy resin (bisphenol A type epoxy resin, YL980, Mitsubishi Chemical Corporation), curing agent A (anion curing agent, microcapsule type imidazole curing agent, HX3941HP, Asahi Kasei ( Co., Ltd.), flux compound A (glutaric acid (1,3-propanedicarboxylic acid), Wako Pure Chemical Industries, Ltd.), solder particles (42Sn-58Bi, Type 6, melting point 139 ° C., average particle size 10 μm, Mitsui Kinzoku Co., Ltd. )) And titanium oxide (average particle size 0.21 μm, CR-60, Ishihara Sangyo Co., Ltd.) were mixed in a predetermined mass part to prepare an anisotropic bonding film.
 熱可塑性樹脂A、及び液状エポキシ樹脂をトルエンで混合溶解させ、その中にフラックス化合物A、及び酸化チタンを投入し、3本ロール(ギャップ10μmで3回パス)で分散させた後、硬化剤Aとはんだ粒子を分散させることで樹脂溶液を得た。この樹脂溶液をギャップコーターにて、トルエン乾燥後の厚みが20μmになるよう剥離PET(PET-02-BU、四国トーセロ(株))上に塗布して作製した。トルエン乾燥は80℃-10minの条件で行った。 The thermoplastic resin A and the liquid epoxy resin are mixed and dissolved in toluene, and the flux compound A and titanium oxide are added thereto and dispersed by a three-roll (three passes with a gap of 10 μm), and then a curing agent A. A resin solution was obtained by dispersing the solder particles. This resin solution was applied to a peeled PET (PET-02-BU, Shikoku Tocello Co., Ltd.) with a gap coater so that the thickness after drying with toluene was 20 μm. Toluene was dried at 80 ° C. for 10 minutes.
 表3に示すように、異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.1V、絶縁性がOK、ダイシェア強度が43N/chipであった。 As shown in Table 3, the LED package manufactured using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 43 N / chip.
 <実施例3-2>
 表3に示すように、熱可塑性樹脂Aに代えて熱可塑性樹脂Bを用いた以外は、実施例3-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がOK、ダイシェア強度が46N/chipであった。
<Example 3-2>
As shown in Table 3, an anisotropic bonding film was produced in the same manner as in Example 3-1 except that the thermoplastic resin B was used instead of the thermoplastic resin A. The LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 46 N / chip.
 <実施例3-3>
 表3に示すように、熱可塑性樹脂Aに代えて熱可塑性樹脂Cを用いた以外は、実施例3-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がOK、ダイシェア強度が41N/chipであった。
<Example 3-3>
As shown in Table 3, an anisotropic bonding film was produced in the same manner as in Example 3-1 except that the thermoplastic resin C was used instead of the thermoplastic resin A. The LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 41 N / chip.
 <実施例3-4>
 表3に示すように、熱可塑性樹脂Aに代えて固形エポキシ樹脂を用いた以外は、実施例3-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がOK、ダイシェア強度が47N/chipであった。
<Example 3-4>
As shown in Table 3, an anisotropic bonding film was produced in the same manner as in Example 3-1 except that a solid epoxy resin was used instead of the thermoplastic resin A. The LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 47 N / chip.
 <実施例3-5>
 表3に示すように、硬化剤Aに代えて硬化剤B(カチオン硬化剤、スルホニウム塩、サンエイドSI-80L、三新化学社製)を用い、液状エポキシ樹脂の配合比を調整した以外は、実施例3-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がOK、ダイシェア強度が46N/chipであった。
<Example 3-5>
As shown in Table 3, except that the curing agent B (cationic curing agent, sulfonium salt, San-Aid SI-80L, manufactured by Sanshin Chemical Co., Ltd.) was used in place of the curing agent A and the mixing ratio of the liquid epoxy resin was adjusted. An anisotropic bonding film was produced in the same manner as in Example 3-1. The LED package manufactured using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 46 N / chip.
 <実施例3-6>
 表3に示すように、フラックス化合物Aに代えてフラックス化合物B(ブロック化カルボン酸、サンタシッドG、日油(株))を用いた以外は、実施例3-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がOK、ダイシェア強度が44N/chipであった。
<Example 3-6>
As shown in Table 3, the anisotropic bonding film was the same as in Example 3-1 except that flux compound B (blocked carboxylic acid, Santacid G, NOF Corporation) was used in place of flux compound A. Was produced. The LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 44 N / chip.
 <実施例3-7>
 表3に示すように、異方性接合フィルムの厚みを30μmとした以外は、実施例3-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.1V、絶縁性がOK、ダイシェア強度が49N/chipであった。
<Example 3-7>
As shown in Table 3, an anisotropic bonding film was produced in the same manner as in Example 3-1, except that the thickness of the anisotropic bonding film was 30 μm. The LED package manufactured using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 49 N / chip.
 <比較例3-1>
 表3に示すように、液状エポキシ樹脂、硬化剤A、フラックス化合物A、酸化チタン、及びはんだ粒子を混合分散させることで異方性接合ペーストを作成した。
<Comparative Example 3-1>
As shown in Table 3, an anisotropic bonding paste was prepared by mixing and dispersing a liquid epoxy resin, a curing agent A, a flux compound A, titanium oxide, and solder particles.
 LEDチップ(デクセリアルズ評価用LEDチップ、サイズ45mil、If=350mA、Vf=3.1V、Au-Snパッド、パッドサイズ300μm×800μm、パッド間距離200μm)と、基板(デクセリアルズ評価用セラミック基板、18μm厚Cuパターン、Ni-Auメッキ、パターン間(スペース)50μm)とを準備した。異方性接合ペーストを厚み30μmのマスクを使用して基板上に塗布し、LEDチップをアライメント搭載した後、リフロー(ピーク温度260℃)によりLEDチップを実装した。 LED chip (LED chip for Dexerials evaluation, size 45 mil, If = 350 mA, Vf = 3.1 V, Au-Sn pad, pad size 300 μm × 800 μm, distance between pads 200 μm), substrate (Dexerials evaluation ceramic substrate, 18 μm thickness) A Cu pattern, Ni—Au plating, and space (space between patterns) of 50 μm) were prepared. The anisotropic bonding paste was applied onto the substrate using a mask having a thickness of 30 μm, the LED chips were mounted by alignment, and then the LED chips were mounted by reflow (peak temperature of 260 ° C.).
 表3に示すように、異方性接合ペーストを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がNG、ダイシェア強度が45N/chipであった。 As shown in Table 3, the LED mounting body manufactured using the anisotropic bonding paste had a forward voltage of 3.0 V, an insulating property of NG, and a die shear strength of 45 N / chip.
 <比較例3-2>
 表2に示すように、熱可塑性樹脂Aに代えて熱可塑性樹脂Eを用いた以外は、実施例3-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧がOPEN、絶縁性がOK、ダイシェア強度が19N/chipであった。
<Comparative Example 3-2>
As shown in Table 2, an anisotropic bonding film was produced in the same manner as in Example 3-1 except that the thermoplastic resin E was used instead of the thermoplastic resin A. The LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 19 N / chip.
 <比較例3-3>
 表3に示すように、フラックス化合物を配合しなかったこと以外は、実施例3-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧がOPEN、絶縁性がOK、ダイシェア強度が19N/chipであった。
<Comparative Example 3-3>
As shown in Table 3, an anisotropic bonding film was produced in the same manner as in Example 3-1 except that the flux compound was not added. The LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 19 N / chip.
 <比較例3-4>
 表3に示すように、異方性接合フィルムの厚みを40μmとした以外は、実施例3-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧がOPEN、絶縁性がOK、ダイシェア強度が26N/chipであった。
<Comparative Example 3-4>
As shown in Table 3, an anisotropic bonding film was produced in the same manner as in Example 3-1 except that the thickness of the anisotropic bonding film was 40 μm. The LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 26 N / chip.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比較例3-1では、液状エポキシ樹脂を用い、ペースト状の異方性接合材料を塗布したため、基板の隣接する端子間ではんだ接合によるショートが発生した。 In Comparative Example 3-1, since the liquid epoxy resin was used and the paste-like anisotropic bonding material was applied, a short circuit due to solder bonding occurred between the adjacent terminals of the substrate.
 比較例3-2では、メルトフローレートが1g/10minである熱可塑性樹脂Eを用いたため、樹脂の流動性が悪く、はんだ粒子が溶融せず、被着体の電極と接合しなかった。このため、順電圧を測定することができなかった。また、樹脂が十分に流動しておらず、はんだ接合も形成されていなためLEDチップの密着性が弱く、ダイシェア強度が低い結果となった。 In Comparative Example 3-2, since the thermoplastic resin E having a melt flow rate of 1 g / 10 min was used, the fluidity of the resin was poor, the solder particles did not melt, and the electrodes of the adherend were not joined. Therefore, the forward voltage could not be measured. Further, the resin did not flow sufficiently and the solder joint was not formed, so that the adhesion of the LED chip was weak and the die shear strength was low.
 比較例3-3では、フラックス化合物を配合していないため、はんだ粒子が溶融せず、順電圧を測定することができなかった。 In Comparative Example 3-3, since the flux compound was not mixed, the solder particles did not melt and the forward voltage could not be measured.
 比較例3-4では、はんだ粒子の平均粒子径10μmに対し、4倍厚みの40μm厚みの異方性接合フィルムを用いたため、はんだ接合が形成されず、順電圧を測定することができなかった。また、ダイシェア強度も低い結果となった。 In Comparative Example 3-4, since the anisotropic bonding film having a thickness of 40 μm, which is four times the thickness of the solder particles having an average particle diameter of 10 μm, was used, solder bonding was not formed and the forward voltage could not be measured. .. The die shear strength was also low.
 一方、実施例3-1~実施例3-7では、メルトフローレートが1g/10min以上である熱可塑性樹脂A-Dを用い、はんだ粒子の平均粒子径10μmに対し、2-3倍厚みの20-30μm厚みの異方性接合フィルムを用いたため、樹脂が溶融・流動し、はんだ粒子により被着体の電極間ではんだ接合し、定格電圧3.1Vに近い値を得ることができた。また、ダイシェア強度も良好な結果となった。また、実施例3-6のビニルエーテルでカルボキシル基をブロックしたブロック化フラックス化合物を用いても、良好な結果を得ることができた。 On the other hand, in Examples 3-1 to 3-7, the thermoplastic resin A-D having a melt flow rate of 1 g / 10 min or more was used, and the thickness of the solder particles was 2-3 times the average particle diameter of 10 μm. Since the anisotropic bonding film having a thickness of 20 to 30 μm was used, the resin melted and flowed, and the solder particles were solder-bonded between the electrodes of the adherend, and a value close to the rated voltage of 3.1 V could be obtained. The die shear strength was also good. Also, good results could be obtained by using the blocked flux compound in which the carboxyl group was blocked by the vinyl ether of Example 3-6.
 <3.4 第4の実施例>
 第4の実施例では、フラックス化合物としてカルボン酸を含有する異方性接合フィルムを用いてLED実装体を作製し、LED実装体の順電圧、絶縁性及びダイシェア強度ついて評価した。LED実装体の作製、LED実装体の順電圧、及びダイシェア強度の測定は、第1の実施例と同様のため、LED実装体の絶縁性の評価は、第2の実施例と同様のため、ここでは説明を省略する。
<3.4 Fourth Embodiment>
In the fourth example, an LED mounting body was prepared using an anisotropic bonding film containing a carboxylic acid as a flux compound, and the forward voltage, insulation and die shear strength of the LED mounting body were evaluated. Since the manufacturing of the LED mounting body, the measurement of the forward voltage of the LED mounting body, and the die shear strength are the same as those in the first embodiment, the evaluation of the insulating property of the LED mounting body is the same as that in the second embodiment. The description is omitted here.
 [固形樹脂のメルトフローレートの測定]
 JIS K7210:1999の塑性プラスチックのメルトフローレートの求め方に従い、メルトフローレート測定装置(品名:メルトインデックサG-02、東洋精機製作所社製)を用いて温度190℃,荷重2.16kgの条件で熱可塑性樹脂A,E及び固形エポキシ樹脂のメルトフローレートを測定した。
A:ポリエステル樹脂、プリマロイA1500(三菱ケミカル(株))、MFR=11g/10min
E:フェノキシ樹脂、フェノトートYP70(新日鉄住金化学(株))、MFR=1g/10min
固形エポキシ樹脂:ビスフェノールA型エポキシ樹脂、1001、三菱化学(株)、MFR=2600g/10min
[Measurement of melt flow rate of solid resin]
According to JIS K7210: 1999 method for determining the melt flow rate of plastic plastics, using a melt flow rate measuring device (product name: Melt Indexer G-02, manufactured by Toyo Seiki Seisaku-sho, Ltd.), temperature 190 ° C., load 2.16 kg The melt flow rates of the thermoplastic resins A and E and the solid epoxy resin were measured by.
A: Polyester resin, Primalloy A1500 (Mitsubishi Chemical Corporation), MFR = 11 g / 10 min
E: Phenoxy resin, Phenothote YP70 (Nippon Steel & Sumitomo Metal Corporation), MFR = 1g / 10min
Solid epoxy resin: Bisphenol A type epoxy resin, 1001, Mitsubishi Chemical Co., MFR = 2600g / 10min
 <実施例4-1>
 表4に示すように、熱可塑性樹脂A、液状エポキシ樹脂(ビスフェノールA型エポキシ樹脂、YL980、三菱化学(株))、フラックス化合物A(グルタル酸(1,3-プロパンジカルボン酸)、和光純薬(株))、はんだ粒子(42Sn-58Bi、Type6 、融点139℃、平均粒子径10μm、三井金属(株))、酸化チタン(平均粒子径0.21μm、CR-60、石原産業(株))を所定の質量部で配合し、異方性接合フィルムを作製した。
<Example 4-1>
As shown in Table 4, thermoplastic resin A, liquid epoxy resin (bisphenol A type epoxy resin, YL980, Mitsubishi Chemical Corporation), flux compound A (glutaric acid (1,3-propanedicarboxylic acid), Wako Pure Chemical Industries, Ltd. Co., Ltd.), solder particles (42Sn-58Bi, Type 6, melting point 139 ° C., average particle size 10 μm, Mitsui Metals Co., Ltd.), titanium oxide (average particle size 0.21 μm, CR-60, Ishihara Sangyo Co., Ltd.) Was blended in a predetermined mass part to prepare an anisotropic bonding film.
 熱可塑性樹脂A、及び液状エポキシ樹脂をトルエンで混合溶解させ、その中にフラックス化合物A、及び酸化チタンを投入し、3本ロール(ギャップ10μmで3回パス)で分散させた後、はんだ粒子を分散させることで樹脂溶液を得た。この樹脂溶液をギャップコーターにて、トルエン乾燥後の厚みが20μmになるよう剥離PET(PET-02-BU、四国トーセロ(株))上に塗布して作製した。トルエン乾燥は80℃-10minの条件で行った。 The thermoplastic resin A and the liquid epoxy resin are mixed and dissolved in toluene, and the flux compound A and titanium oxide are put therein, and dispersed by three rolls (three passes with a gap of 10 μm), and then the solder particles are dispersed. A resin solution was obtained by dispersing. This resin solution was applied to a peeled PET (PET-02-BU, Shikoku Tocello Co., Ltd.) with a gap coater so that the thickness after drying with toluene was 20 μm. Toluene was dried at 80 ° C. for 10 minutes.
 表4に示すように、異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.1V、絶縁性がOK、ダイシェア強度が44N/chipであった。 As shown in Table 4, the LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 44 N / chip.
 <実施例4-2>
 表4に示すように、熱可塑性樹脂Aに代えて固形エポキシ樹脂を用いた以外は、実施例4-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.1V、絶縁性がOK、ダイシェア強度が45N/chipであった。
<Example 4-2>
As shown in Table 4, an anisotropic bonding film was produced in the same manner as in Example 4-1 except that a solid epoxy resin was used instead of the thermoplastic resin A. The LED package manufactured using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 45 N / chip.
 <実施例4-3>
 表4に示すように、フラックス化合物Aに代えてフラックス化合物B(ブロック化カルボン酸、サンタシッドG、日油(株))を用いた以外は、実施例4-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がOK、ダイシェア強度が44N/chipであった。
<Example 4-3>
As shown in Table 4, the anisotropic bonding film was the same as in Example 4-1 except that flux compound B (blocked carboxylic acid, Santacid G, NOF CORPORATION) was used in place of flux compound A. Was produced. The LED mounting body produced using the anisotropic bonding film had a forward voltage of 3.0 V, an insulating property of OK, and a die shear strength of 44 N / chip.
 <実施例4-4>
 表4に示すように、異方性接合フィルムの厚みを30μmとした以外は、実施例4-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧が3.1V、絶縁性がOK、ダイシェア強度が48N/chipであった。
<Example 4-4>
As shown in Table 4, an anisotropic bonding film was produced in the same manner as in Example 4-1, except that the thickness of the anisotropic bonding film was 30 μm. The LED package manufactured using the anisotropic bonding film had a forward voltage of 3.1 V, an insulating property of OK, and a die shear strength of 48 N / chip.
 <比較例4-1>
 表4に示すように、液状エポキシ樹脂、硬化剤A、フラックス化合物B、酸化チタン、及びはんだ粒子を混合分散させることで異方性接合ペーストを作成した。
<Comparative Example 4-1>
As shown in Table 4, an anisotropic bonding paste was prepared by mixing and dispersing a liquid epoxy resin, a curing agent A, a flux compound B, titanium oxide, and solder particles.
 LEDチップ(デクセリアルズ評価用LEDチップ、サイズ45mil、If=350mA、Vf=3.1V、Au-Snパッド、パッドサイズ300μm×800μm、パッド間距離200μm)と、基板(デクセリアルズ評価用セラミック基板、18μm厚Cuパターン、Ni-Auメッキ、パターン間(スペース)50μm)とを準備した。異方性接合ペーストを厚み30μmのマスクを使用して基板上に塗布し、LEDチップをアライメント搭載した後、リフロー(ピーク温度260℃)によりLEDチップを実装した。 LED chip (LED chip for Dexerials evaluation, size 45 mil, If = 350 mA, Vf = 3.1 V, Au-Sn pad, pad size 300 μm × 800 μm, distance between pads 200 μm), substrate (Dexerials evaluation ceramic substrate, 18 μm thickness) A Cu pattern, Ni—Au plating, and space (space between patterns) of 50 μm) were prepared. The anisotropic bonding paste was applied onto the substrate using a mask having a thickness of 30 μm, the LED chips were mounted by alignment, and then the LED chips were mounted by reflow (peak temperature of 260 ° C.).
 表4に示すように、異方性接合ペーストを用いて作製したLED実装体は、順電圧が3.0V、絶縁性がNG、ダイシェア強度が45N/chipであった。 As shown in Table 4, the LED mounting body produced using the anisotropic bonding paste had a forward voltage of 3.0 V, an insulating property of NG, and a die shear strength of 45 N / chip.
 <比較例4-2>
 表4に示すように、熱可塑性樹脂Aに代えて熱可塑性樹脂Eを用いた以外は、実施例4-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧がOPEN、絶縁性がOK、ダイシェア強度が19N/chipであった。
<Comparative Example 4-2>
As shown in Table 4, an anisotropic bonding film was produced in the same manner as in Example 4-1 except that the thermoplastic resin E was used instead of the thermoplastic resin A. The LED mounting body produced using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 19 N / chip.
 <比較例4-3>
 表4に示すように、フラックス化合物を配合しなかったこと以外は、実施例4-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧がOPEN、絶縁性がOK、ダイシェア強度が18N/chipであった。
<Comparative Example 4-3>
As shown in Table 4, an anisotropic bonding film was produced in the same manner as in Example 4-1 except that the flux compound was not added. The LED package manufactured using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 18 N / chip.
 <比較例4-4>
 表4に示すように、異方性接合フィルムの厚みを40μmとした以外は、実施例4-1と同様に異方性接合フィルムを作製した。異方性接合フィルムを用いて作製したLED実装体は、順電圧がOPEN、絶縁性がOK、ダイシェア強度が25N/chipであった。
<Comparative Example 4-4>
As shown in Table 4, an anisotropic bonding film was produced in the same manner as in Example 4-1 except that the thickness of the anisotropic bonding film was 40 μm. The LED package manufactured using the anisotropic bonding film had a forward voltage of OPEN, an insulating property of OK, and a die shear strength of 25 N / chip.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 比較例4-1では、固形樹脂を配合せず、ペースト状の異方性接合材料を塗布したため、基板の隣接する端子間ではんだ接合によるショートが発生した。 In Comparative Example 4-1, since the solid resin was not mixed and the paste-like anisotropic bonding material was applied, a short circuit due to solder bonding occurred between the adjacent terminals of the substrate.
 比較例4-2では、メルトフローレートが1g/10minである熱可塑性樹脂Eを用いたため、樹脂の流動性が悪く、はんだ粒子が溶融せず、被着体の電極と接合しなかった。このため、順電圧を測定することができなかった。また、樹脂が十分に流動しておらず、はんだ接合も形成されていなためLEDチップの密着性が弱く、ダイシェア強度が低い結果となった。 In Comparative Example 4-2, since the thermoplastic resin E having a melt flow rate of 1 g / 10 min was used, the fluidity of the resin was poor, the solder particles did not melt, and the electrodes of the adherend were not joined. Therefore, the forward voltage could not be measured. Further, the resin did not flow sufficiently and the solder joint was not formed, so that the adhesion of the LED chip was weak and the die shear strength was low.
 比較例4-3では、フラックス化合物を配合していないため、はんだ粒子が溶融せず、順電圧を測定することができなかった。 In Comparative Example 4-3, since the flux compound was not mixed, the solder particles did not melt and the forward voltage could not be measured.
 比較例4-4では、はんだ粒子の平均粒子径10μmに対し、4倍厚みの40μm厚みの異方性接合フィルムを用いたため、はんだ接合が形成されず、順電圧を測定することができなかった。また、ダイシェア強度も低い結果となった。 In Comparative Example 4-4, since an anisotropic bonding film having a thickness of 40 μm, which is four times as thick as the average particle diameter of solder particles of 10 μm, was used, solder bonding was not formed and forward voltage could not be measured. .. The die shear strength was also low.
 一方、実施例4-1~実施例4-4では、メルトフローレートが1g/10min以上である熱可塑性樹脂A又は固形エポキシ樹脂を用い、はんだ粒子の平均粒子径10μmに対し、2-3倍厚みの20-30μm厚みの異方性接合フィルムを用いたため、樹脂が溶融・流動し、はんだ粒子により被着体の電極間ではんだ接合し、定格電圧3.1Vに近い値を得ることができた。また、ダイシェア強度も良好な結果となった。また、実施例4-3では、硬化剤としてフラックス化合物を用いても、良好な結果を得ることができた。 On the other hand, in Examples 4-1 to 4-4, the thermoplastic resin A or the solid epoxy resin having a melt flow rate of 1 g / 10 min or more was used, and the average particle diameter of the solder particles was 10 to 2 times 2-3 times. Since an anisotropic bonding film with a thickness of 20-30 μm was used, the resin melted and flowed, and solder particles were used to solder bond between the electrodes of the adherend, and a value close to the rated voltage of 3.1 V could be obtained. It was The die shear strength was also good. Further, in Example 4-3, good results could be obtained even when the flux compound was used as the curing agent.
 なお、上述の実施例では、フィルム状の異方性接合材料を用いたが、ペースト状の異方性接合材料を所定厚みに調整すれば、同様の結果が得られると考えられる。 Although the film-shaped anisotropic bonding material was used in the above-mentioned examples, it is considered that the same result can be obtained by adjusting the paste-shaped anisotropic bonding material to a predetermined thickness.
 10 LED素子、11 第1導電型電極、12 第2導電型電極、20 基板、21 第1の電極、22 第2の電極、30 異方性接合フィルム、31 はんだ粒子、32 異方性導電膜、33 はんだ接合部
 
DESCRIPTION OF SYMBOLS 10 LED element, 11 1st conductivity type electrode, 12 2nd conductivity type electrode, 20 board | substrate, 21 1st electrode, 22 2nd electrode, 30 anisotropic bonding film, 31 solder particle, 32 anisotropic conductive film , 33 Solder joint

Claims (13)

  1.  常温で固形であり、温度190℃、荷重2.16kgの条件で測定されたメルトフローレートが10g/10min以上である熱可塑性樹脂、固形ラジカル重合性樹脂、及び固形エポキシ樹脂から選ばれる少なくとも1種の固形樹脂と、はんだ粒子と、フラックス化合物とを含有する異方性接合材料を、第1の電子部品の電極と第2の電子部品の電極との間に前記はんだ粒子の平均粒径の50%以上300%以下の厚みで介在させ、
     前記第1の電子部品の電極と前記第2の電子部品の電極とを無荷重で加熱接合させる接続体の製造方法。
    At least one selected from a thermoplastic resin, a solid radically polymerizable resin, and a solid epoxy resin, which is solid at room temperature and has a melt flow rate of 10 g / 10 min or more measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg. Of the anisotropic bonding material containing the solid resin, the solder particles, and the flux compound between the electrodes of the first electronic component and the electrodes of the second electronic component, the average particle size of the solder particles being 50 % And 300% or less in thickness,
    A method for manufacturing a connection body, in which an electrode of the first electronic component and an electrode of the second electronic component are heat-bonded without load.
  2.  前記異方性接合材料が、前記はんだ粒子の平均粒径の50%以上300%以下の厚みを有する異方性接合フィルムである請求項1記載の接続体の製造方法。 The method for producing a connector according to claim 1, wherein the anisotropic bonding material is an anisotropic bonding film having a thickness of 50% or more and 300% or less of an average particle diameter of the solder particles.
  3.  前記第2の電子部品が、基板であり、
     前記基板上に前記異方性接合フィルムをラミネートし、前記異方性接合フィルム上に複数の前記第1の電子部品を搭載し、加熱接合させる請求項2記載の接続体の製造方法。
    The second electronic component is a substrate,
    The method for manufacturing a connector according to claim 2, wherein the anisotropic bonding film is laminated on the substrate, a plurality of the first electronic components are mounted on the anisotropic bonding film, and heat bonding is performed.
  4.  前記フラックス化合物が、カルボン酸である請求項1乃至3のいずれか1項に記載の接続体の製造方法。 The method for manufacturing a connector according to any one of claims 1 to 3, wherein the flux compound is a carboxylic acid.
  5.  前記フラックス化合物が、カルボキシル基がアルキルビニルエーテルでブロック化されたブロック化カルボン酸である請求項1乃至3のいずれか1項に記載の接続体の製造方法。 The method for producing a connector according to any one of claims 1 to 3, wherein the flux compound is a blocked carboxylic acid having a carboxyl group blocked with an alkyl vinyl ether.
  6.  常温で固形であり、温度190℃、荷重2.16kgの条件で測定されたメルトフローレートが10g/10min以上である熱可塑性樹脂、固形ラジカル重合性樹脂、及び固形エポキシ樹脂から選ばれる少なくとも1種の固形樹脂と、はんだ粒子と、フラックス化合物とを含有し、
     厚みが、前記はんだ粒子の平均粒径の50%以上300%以下である異方性接合材料。
    At least one selected from a thermoplastic resin, a solid radically polymerizable resin, and a solid epoxy resin, which is solid at room temperature and has a melt flow rate of 10 g / 10 min or more measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg. Containing a solid resin, solder particles, and a flux compound,
    An anisotropic bonding material having a thickness of 50% or more and 300% or less of the average particle diameter of the solder particles.
  7.  前記フラックス化合物が、カルボン酸である請求項6記載の異方性接合材料。 The anisotropic bonding material according to claim 6, wherein the flux compound is a carboxylic acid.
  8.  前記フラックス化合物が、カルボキシル基がアルキルビニルエーテルでブロック化されたブロック化カルボン酸である請求項6記載の異方性接合材料。 The anisotropic bonding material according to claim 6, wherein the flux compound is a blocked carboxylic acid in which a carboxyl group is blocked with an alkyl vinyl ether.
  9.  常温で液状の液状ラジカル重合性樹脂と、重合開始剤とをさらに含有する請求項6乃至8のいずれか1項に記載の異方性接合材料。 The anisotropic bonding material according to any one of claims 6 to 8, which further contains a liquid radical polymerizable resin that is liquid at room temperature and a polymerization initiator.
  10.  常温で液状エポキシ樹脂と、硬化剤とをさらに含有する請求項6乃至8のいずれか1項に記載の異方性接合材料。 The anisotropic bonding material according to any one of claims 6 to 8, which further contains a liquid epoxy resin at room temperature and a curing agent.
  11.  前記硬化剤が、カルボン酸、又はカルボキシル基がアルキルビニルエーテルでブロック化されたブロック化カルボン酸である請求項10記載の異方性接合材料。 The anisotropic bonding material according to claim 10, wherein the curing agent is a carboxylic acid or a blocked carboxylic acid in which a carboxyl group is blocked with an alkyl vinyl ether.
  12.  請求項6乃至11のいずれか1項に記載の異方性接合材料がフィルム状である異方性接合フィルム。 An anisotropic bonding film in which the anisotropic bonding material according to any one of claims 6 to 11 is in the form of a film.
  13.  請求項6乃至11のいずれか1項に記載の異方性接合材料、又は請求項12に記載の異方性接合フィルムを用いて、第1の電子部品の電極と第2の電子部品の電極とが接合されてなる接続体。 An electrode for a first electronic component and an electrode for a second electronic component, using the anisotropic bonding material according to claim 6 or the anisotropic bonding film according to claim 12. A connection body made by joining and.
PCT/JP2019/042035 2018-10-31 2019-10-25 Method for manufacturing connected body, anisotropic bonding film, and connected body WO2020090684A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980068452.4A CN112823448B (en) 2018-10-31 2019-10-25 Method for producing connector, anisotropic bonding film, and connector
KR1020217007724A KR102568476B1 (en) 2018-10-31 2019-10-25 Manufacturing method of connected body, anisotropic bonding film, connected body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018206058 2018-10-31
JP2018-206058 2018-10-31
JP2019194479A JP6898413B2 (en) 2018-10-31 2019-10-25 Manufacturing method of connecting body, anisotropic bonded film, connecting body
JP2019-194479 2019-10-25

Publications (1)

Publication Number Publication Date
WO2020090684A1 true WO2020090684A1 (en) 2020-05-07

Family

ID=70463673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042035 WO2020090684A1 (en) 2018-10-31 2019-10-25 Method for manufacturing connected body, anisotropic bonding film, and connected body

Country Status (1)

Country Link
WO (1) WO2020090684A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140366A (en) * 2003-10-15 2004-05-13 Hitachi Chem Co Ltd Method for connecting electrode
WO2007020764A1 (en) * 2005-08-17 2007-02-22 Sumitomo Chemical Company, Limited Laminate to be used in flexible printed wiring boards and wiring boards made by using the same
JP2007157820A (en) * 2005-12-01 2007-06-21 Nitto Denko Corp Method of manufacturing semiconductor device and electronic components
JP2007232627A (en) * 2006-03-02 2007-09-13 Asahi Kasei Electronics Co Ltd Anisotropic conductive film for inspecting minute circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140366A (en) * 2003-10-15 2004-05-13 Hitachi Chem Co Ltd Method for connecting electrode
WO2007020764A1 (en) * 2005-08-17 2007-02-22 Sumitomo Chemical Company, Limited Laminate to be used in flexible printed wiring boards and wiring boards made by using the same
JP2007157820A (en) * 2005-12-01 2007-06-21 Nitto Denko Corp Method of manufacturing semiconductor device and electronic components
JP2007232627A (en) * 2006-03-02 2007-09-13 Asahi Kasei Electronics Co Ltd Anisotropic conductive film for inspecting minute circuit

Similar Documents

Publication Publication Date Title
JP6898413B2 (en) Manufacturing method of connecting body, anisotropic bonded film, connecting body
JP6176910B2 (en) Method for manufacturing connection structure
JP7226498B2 (en) Semiconductor film adhesive, semiconductor device manufacturing method, and semiconductor device
WO2020090684A1 (en) Method for manufacturing connected body, anisotropic bonding film, and connected body
JP7032367B2 (en) Manufacturing method of connecting body, anisotropic conductive bonding material, and connecting body
JP5113390B2 (en) Wiring connection method
JP2022074048A (en) Conductive adhesive, anisotropic conductive film, connection structure, and manufacturing method for connection structure
CN115053640A (en) Method for producing connected body, and connected body
WO2023162666A1 (en) Connection structure manufacturing method, film structure, and film structure manufacturing method
JP2023079630A (en) Manufacturing method for connection structure and connection structure
KR20230057466A (en) Conductive adhesive, anisotropic conductive film, connected structure, and manufacturing method of connected structure
TW202349521A (en) Method for producing circuit connection structure, and circuit connection device
JP2019160839A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879608

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20217007724

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879608

Country of ref document: EP

Kind code of ref document: A1