JP2022071380A - Paper sheet carrying device - Google Patents

Paper sheet carrying device Download PDF

Info

Publication number
JP2022071380A
JP2022071380A JP2020180298A JP2020180298A JP2022071380A JP 2022071380 A JP2022071380 A JP 2022071380A JP 2020180298 A JP2020180298 A JP 2020180298A JP 2020180298 A JP2020180298 A JP 2020180298A JP 2022071380 A JP2022071380 A JP 2022071380A
Authority
JP
Japan
Prior art keywords
transport
twist
twisted
wall
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020180298A
Other languages
Japanese (ja)
Other versions
JP6833239B1 (en
Inventor
哲 野口
Satoru Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Game Card Corp
Original Assignee
Nippon Game Card Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Game Card Corp filed Critical Nippon Game Card Corp
Priority to JP2020180298A priority Critical patent/JP6833239B1/en
Application granted granted Critical
Publication of JP6833239B1 publication Critical patent/JP6833239B1/en
Publication of JP2022071380A publication Critical patent/JP2022071380A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Delivering By Means Of Belts And Rollers (AREA)

Abstract

To provide a paper sheet carrying device allowing positioning of a twisted carrying pipe capable of changing the direction of a paper face while stably carrying the paper sheets by a carrying stream, close to the other carrying pipe in a narrow space.SOLUTION: The twisted carrying passage 331 of a twisted carrying pipe 3 is supplied with bank bills with paper faces erected is twisted around a downward eccentrically twisted shaft TA. A right side protrusion amount toward the blowing direction WD is large, and the left side protrusion amount is small, therefore, another carrying pipe can be arranged close to the left side of the twisted carrying pipe 3.SELECTED DRAWING: Figure 13

Description

本発明は、上流から下流に向けて搬送用流体が流れる搬送管にて、紙葉類を上流から下流へ搬送する紙葉類搬送装置に関する。 The present invention relates to a paper leaf transport device for transporting paper leaves from upstream to downstream in a transport pipe through which a transport fluid flows from upstream to downstream.

従来、薄いプラスチック製あるいは紙製のカードや紙幣といった紙葉類を搬送するとき、ベルトやローラを用いて紙葉類を挟み込んで送り出す紙葉類搬送装置が知られており、市場にも普及している。例えば、パチンコやスロットマシン等の遊技機が設置された遊技場においては、遊技機に隣接させて遊技媒体貸出装置等が設けられており、この遊技媒体貸出装置内で紙幣をストックせずに、紙幣金庫部等へ搬送して管理する場合、紙葉類搬送装置が用いられる。遊技場の紙葉類搬送装置では、遊技媒体貸出装置等の紙幣識別部により判別された紙幣を取り込み、ベルトやローラから成る搬送機構によって、遊技機を設置した遊技島の島端に取り付けられた紙幣金庫部まで搬送するのである。 Conventionally, when transporting paper leaves such as thin plastic or paper cards and banknotes, a paper leaf transport device that uses a belt or roller to sandwich and send the paper leaves has been known and has become widespread in the market. ing. For example, in a game hall where a game machine such as a pachinko machine or a slot machine is installed, a game medium lending device or the like is provided adjacent to the game machine, and the banknotes are not stocked in the game medium lending device. When transporting to a banknote vault or the like for management, a paper leaf transport device is used. The paper leaf transport device in the game hall takes in the banknotes identified by the bill identification unit of the game medium lending device, etc., and is attached to the island edge of the game island where the game machine is installed by a transport mechanism consisting of belts and rollers. It is transported to the banknote vault.

このような紙葉類搬送装置として、近年においては、搬送管内に搬送用の空気流を発生させ、空気流に乗せて紙幣を搬送する紙葉類搬送装置が提案されている。空気流により紙幣を搬送するなら、ベルトやローラといった機構を使わないので、機構部分で紙幣が詰まるというリスクがない。空気搬送の紙葉類搬送装置として、紙幣の後端部を変形させ、変形部に搬送用の空気流の風圧を作用させることにより、紙幣の搬送をスムーズにしたものが提案されている(例えば、特許文献1を参照)。また、軽量の搬送補助体を紙幣の後方に配置し、搬送補助体を空気流で搬送方向へ送り出すことにより、搬送補助体が紙幣を後方から搬送方向へ押し動かし、間接的に紙幣の搬送を行う紙葉類搬送装置も提案されている(例えば、特許文献2を参照)。 As such a paper leaf transport device, in recent years, a paper leaf transport device has been proposed in which an air flow for transport is generated in a transport pipe and the banknotes are transported on the air flow. If the banknotes are transported by air flow, there is no risk of the banknotes being jammed at the mechanism because no mechanism such as a belt or roller is used. As a paper leaf transport device for air transport, a device has been proposed in which the rear end portion of a banknote is deformed and the wind pressure of an air flow for transport is applied to the deformed portion to facilitate the transport of banknotes (for example). , Patent Document 1). Further, by arranging a lightweight transport auxiliary body behind the banknote and sending the transport auxiliary body in the transport direction by an air flow, the transport auxiliary body pushes the banknote from the rear to the transport direction and indirectly transports the banknote. A paper leaf transporting device for performing is also proposed (see, for example, Patent Document 2).

また、紙葉類を搬送する場合、横方向(水平に近い方向)に搬送するだけでなく、縦方向(鉛直に近い方向)に搬送しなければならない場合もある。紙葉類は、その性質上、紙面に直交する向きであれば曲げることができるので、紙面を縦向きから横向きに変えれば、紙葉類を縦方向(上下)に曲げることが可能となる。したがって、紙面が縦向きとなっている紙葉類の向きを変えて、紙面が横向きとなるようにすれば、紙葉類の搬送方向を上下に変更できる。 Further, when transporting paper sheets, it may be necessary to transport not only in the horizontal direction (direction close to horizontal) but also in the vertical direction (direction close to vertical). Due to its nature, paper leaves can be bent in any direction orthogonal to the paper surface, so if the paper surface is changed from vertical to horizontal, the paper leaves can be bent in the vertical direction (up and down). Therefore, if the orientation of the paper leaves whose paper surface is vertical is changed so that the paper surface is horizontal, the transport direction of the paper leaves can be changed up and down.

特許文献1には、縦向きの紙面を横向きに変換する捻れ管が開示(例えば、明細書の段落〔0078〕および図23)されているものの、具体的な構造理論の記載がない。すなわち、空気流で紙葉類を搬送する場合、紙葉類が管壁に当たるなどして、空気流の搬送力を上回る抵抗が紙葉類と管壁の間に生ずると、紙幣が管内に滞留してしまうことになる。管内にリブが設けられていても、無理に捻れ変形させられた紙葉類の紙面とリブとの摩擦抵抗は相当高くなると推認される。よって、捻れ管の中でリブと接触している紙葉類を、空気流の搬送力のみで通過させることは到底現実的ではない。しかるに、特許文献1を精査しても、空気流の搬送力のみで紙葉類が捻れ管内を通過できると合理的に解釈できる記載は見当たらない。 Although Patent Document 1 discloses a twisted tube that converts a vertically oriented paper surface into a horizontally oriented one (for example, paragraph [0078] of the specification and FIG. 23), there is no description of a specific structural theory. That is, when transporting paper sheets by air flow, if the paper sheets hit the tube wall and a resistance exceeding the transport force of the air flow occurs between the paper sheets and the tube wall, the banknotes stay in the tube. Will be done. Even if the ribs are provided in the pipe, it is presumed that the frictional resistance between the paper surface of the paper leaves that have been forcibly twisted and deformed and the ribs will be considerably high. Therefore, it is not realistic to let the paper sheets that are in contact with the ribs in the twisted tube pass only by the carrying force of the air flow. However, even if Patent Document 1 is scrutinized, there is no description that can be reasonably interpreted that the paper leaves can pass through the twisted pipe only by the carrying force of the air flow.

また、特許文献2には、紙面が鉛直方向となるように搬送されてきた紙幣を横倒しにして、紙面が水平向きとなるように紙幣の向きを変える姿勢変換部を備えた一時貯留装置が記載されている。一時貯留装置に収納されることで紙面が水平向き(紙幣の短辺も長辺も水平方向)となった紙幣が、長辺に沿った横向きの搬送方向から縦向きの搬送方向へ略90〔°〕曲がる湾曲搬送路を通過すると、紙幣の紙面の向きが縦方向に変わる。したがって、特許文献2に記載の一時貯留装置に紙幣を収納して、紙幣の紙面を水平向きに変えれば、紙幣を上方あるいは下方へ搬送することが可能になる。とはいえ、特許文献2に記載の一時収納装置では、紙幣の紙面を水平向きに変えるために、搬送途中の紙幣を一旦止めて姿勢を変えた上に、エレベータ部で繰り出し搬送部まで移動させなければならず、到底効率的とは言えない。 Further, Patent Document 2 describes a temporary storage device provided with a posture changing unit that lays down a banknote that has been conveyed so that the paper surface is in the vertical direction and changes the direction of the banknote so that the paper surface is in the horizontal direction. Has been done. Banknotes whose paper surface is horizontally oriented (both short and long sides of the banknote are horizontal) by being stored in the temporary storage device are approximately 90 [from the horizontal transport direction along the long side to the vertical transport direction. °] When passing through a curved transport path that bends, the orientation of the paper surface of the banknote changes in the vertical direction. Therefore, if the banknotes are stored in the temporary storage device described in Patent Document 2 and the paper surface of the banknotes is changed horizontally, the banknotes can be transported upward or downward. However, in the temporary storage device described in Patent Document 2, in order to change the paper surface of the bill horizontally, the bill being transported is temporarily stopped and changed in posture, and then moved to the feeding and transporting portion by the elevator section. It has to be, and it cannot be said to be efficient at all.

さらに、紙葉類が搬送管内で変形することなく、平板状のまま通過できるように、一定の距離で一定の角度を超えないように搬送管を捻る構造の捻れ搬送管を用いた紙葉類搬送装置が、本件出願人により提案されている(例えば、特許文献3を参照)。特許文献3に記載の捻れ搬送管であれば、紙葉類が折れ曲がることなく平板状のまま通過できる紙幣通過領域が形成される流路構造を採用しているので、空気の搬送流によって紙葉類を捻れ管内に導入すると、管内で紙葉類が滞留することなく、捻れ搬送管の下流端へ効率良く搬送されるのである。 Furthermore, paper leaves using a twisted transport tube with a structure that twists the transport tube so that the transport tube does not exceed a certain angle at a certain distance so that the paper leaves can pass through in a flat plate shape without being deformed in the transport tube. The carrier has been proposed by the applicant (see, eg, Patent Document 3). The twisted transport tube described in Patent Document 3 employs a flow path structure in which a banknote passing region is formed so that the paper leaves can pass through in a flat plate shape without bending. When the kind is introduced into the twisted pipe, the paper leaves do not stay in the pipe and are efficiently transported to the downstream end of the twisted transport pipe.

特許第4130697号公報Japanese Patent No. 4130697 特許第6247012号公報Japanese Patent No. 6247012 特許第6727686号公報Japanese Patent No. 6727686

しかしながら、以下のような問題が考えられる。 However, the following problems can be considered.

パチンコやスロットマシン等の遊技機が設置された遊技島内では、遊技機が背中合わせで設置されており搬送管を設置できる空間が非常に狭い。遊技島内に2列の搬送管を略平行に設置する場合、特許文献3に記載の捻れ搬送管を使うためには、捻れ搬送管の捻れ量を加味した距離だけ余計に2列の搬送管を離隔させておかないと、捻れ搬送管が他列の搬送管と干渉してしまう。両方の列で同じ箇所に捻れ搬送管を用いる場合には、更に離隔距離を広げておく必要がある。遊技島内の狭小な空間で、2列の搬送管を十分に離隔させて配置するスペースを確保することは困難であるし、遊技機等の保守に際しても障害となってしまう。 In the game island where game machines such as pachinko and slot machines are installed, the game machines are installed back to back and the space where the transport pipe can be installed is very narrow. When two rows of transport pipes are installed substantially in parallel in the game island, in order to use the twisted transport pipes described in Patent Document 3, two rows of transport pipes are additionally provided for a distance considering the amount of twist of the twisted transport pipes. If they are not separated, the twisted transport pipes will interfere with the transport pipes in other rows. When twisting transport pipes are used at the same location in both rows, it is necessary to further increase the separation distance. It is difficult to secure a space in which two rows of transport pipes are sufficiently separated and arranged in a narrow space in the game island, and it becomes an obstacle in the maintenance of the game machine and the like.

また、捻れ搬送管を設けることによる2列の搬送管の空間的干渉を防ぐために、捻れ搬送管を取り付ける手前(上流側)で湾曲搬送管などを使い、2列の搬送管を十分に離隔させてから捻れ搬送管を接続する方法も考えられる。しかしながら、遊技機と遊技島の島端に取り付けられた紙幣金庫部との狭い空間内に、捻れ搬送管と離隔用の湾曲搬送管とを配置することは困難である。 In addition, in order to prevent spatial interference between the two rows of transport pipes due to the provision of the twist transport pipes, a curved transport pipe or the like is used before the twist transport pipes are attached (upstream side) to sufficiently separate the two rows of transport pipes. It is also conceivable to connect the twisted carrier pipe after the operation. However, it is difficult to arrange the twisted transport pipe and the curved transport pipe for separation in the narrow space between the gaming machine and the banknote vault attached to the island edge of the gaming island.

そこで、本発明は、搬送流によって紙葉類を安定搬送しつつ紙面の向きを変更可能な捻れ搬送管を、狭い空間に他の搬送管と近接配置できる紙葉類搬送装置の提供を目的とする。 Therefore, an object of the present invention is to provide a paper leaf transport device capable of stably transporting paper leaves by a transport flow and arranging a twisted transport pipe capable of changing the direction of the paper surface in a narrow space in close proximity to other transport pipes. do.

前記課題を解決するために、上流から下流に向けて搬送用流体が流れる搬送路が形成された搬送管にて、紙面が搬送方向と平行に配された紙葉類を、上流から下流へ搬送する紙葉類搬送装置であって、前記紙葉類は、前記搬送方向と平行な向きに配される2つの搬送平行辺と前記搬送方向と直交する向きに配される2つの搬送直交辺とを備える矩形状とし、上流より受け入れる前記紙葉類の前記紙面に臨む第1長側部および第2長側部と、前記紙葉類の前記搬送直交辺に臨む第1短側部および第2短側部で形成された矩形状の上流端開口を、前記搬送方向と平行な偏心捻れ軸回りに一定角度で連続的に回転させながら、前記上流端開口と同一形状の下流端開口へ至ることで、前記偏心捻れ軸に直交する任意箇所の断面である捻れ流路断面の形状が前記上流端開口の形状および前記下流端開口の形状と同じになる捻れ搬送路が形成され、前記紙葉類の前記搬送直交辺が臨む向きを前記上流端開口の前記第1,第2短側部から前記下流端開口の前記第1,第2短側部へ変えるように前記紙面を回転させながら、前記紙葉類が前記捻れ搬送路内を前記上流端開口から前記下流端開口まで通過し得る捻れ搬送管を備え、前記偏心捻れ軸は、前記上流端開口における偏心捻れ点設定可能範囲から任意に選定した偏心捻れ点を前記搬送方向へ延ばして前記下流端開口へ至る直線状の軸とし、前記捻れ搬送路の任意箇所における上流側捻れ流路断面から前記紙葉類の前記搬送平行辺に相当する距離だけ下流に離れた位置における下流側捻れ流路断面に至る基準捻れ搬送路を、前記上流側捻れ流路断面の中心点から前記下流側捻れ流路断面の中心点を結ぶ通過指標軸と平行な視点で見たときに、前記上流側捻れ流路断面から前記下流側捻れ流路断面に向けて見通すことができる貫通空間が生じ、前記紙葉類が前記上流側捻れ流路断面から前記下流側捻れ流路断面まで通過できる紙葉類通過空部が形成されるようにしたことを特徴とする。 In order to solve the above-mentioned problems, paper sheets whose paper surfaces are arranged parallel to the transport direction are transported from upstream to downstream in a transport pipe in which a transport path through which transport fluid flows from upstream to downstream is formed. In the paper leaf transport device, the paper strips have two transport parallel sides arranged in a direction parallel to the transport direction and two transport orthogonal sides arranged in a direction orthogonal to the transport direction. The first long side portion and the second long side portion facing the paper surface of the paper leaf to be received from the upstream, and the first short side portion and the second short side portion facing the transport orthogonal side of the paper leaf. The rectangular upstream end opening formed on the short side is continuously rotated at a constant angle around the eccentric twist axis parallel to the transport direction to reach the downstream end opening having the same shape as the upstream end opening. A twisting transport path is formed in which the shape of the twisted flow path cross section, which is a cross section at an arbitrary position parallel to the eccentric twist axis, is the same as the shape of the upstream end opening and the shape of the downstream end opening. While rotating the paper surface so as to change the direction in which the transport orthogonal side faces from the first and second short side portions of the upstream end opening to the first and second short side portions of the downstream end opening, the said The eccentric twist axis is arbitrarily selected from the eccentric twist point settable range in the upstream end opening, provided with a twist transfer tube capable of allowing paper sheets to pass through the twist transfer path from the upstream end opening to the downstream end opening. The eccentric twist point is extended in the transport direction to form a linear axis leading to the downstream end opening, and corresponds to the transport parallel side of the paper leaf from the upstream twist flow path cross section at an arbitrary point of the twist transport path. The reference torsion transport path leading to the downstream twisted flow path cross section at a position separated downstream by a distance is parallel to the passage index axis connecting the center point of the upstream twisted flow path cross section to the center point of the downstream twisted channel cross section. A through space is created that can be seen from the upstream twisted flow path cross section toward the downstream twisted flow path cross section, and the paper leaves are seen from the upstream twisted flow path cross section to the downstream side. It is characterized in that an empty space through which paper leaves can pass to the cross section of the side twisted flow path is formed.

また、上記構成において、前記偏心捻れ点設定可能範囲は、前記偏心捻れ軸回りに前記上流端開口を180度回転させて得られる前記捻れ搬送路を、前記偏心捻れ軸と平行な視点で前記上流端開口から前記下流端開口に向けて、あるいは前記下流端開口から前記上流端開口に向けて見通すことができる貫通空間の断面積が、前記第1長側部と前記第2長側部との離隔距離を直径とする円の面積の1/2以上となる条件を満たす範囲に設定してもよい。 Further, in the above configuration, the eccentric twist point settable range is the upstream of the twist transfer path obtained by rotating the upstream end opening 180 degrees around the eccentric twist axis from a viewpoint parallel to the eccentric twist axis. The cross-sectional area of the through space that can be seen from the end opening toward the downstream end opening or from the downstream end opening toward the upstream end opening is the first long side portion and the second long side portion. It may be set in a range satisfying the condition that the separation distance is ½ or more of the area of the circle whose diameter is the diameter.

また、上記構成において、前記紙葉類通過空部の前記第1,第2短側部に臨む側には、前記捻れ搬送路内を通過する前記紙葉類が前記紙葉類通過空部の前記第1短側部側あるいは前記第2短側部側にぶれても前記搬送平行辺が前記捻れ搬送管の内面と接触することを抑制できる余剰空間としての通過猶予部が形成されるようにしてもよい。 Further, in the above configuration, on the side of the paper leaf passing empty portion facing the first and second short sides, the paper leaves passing through the twisting transport path are the paper leaf passing empty space. A passage grace portion is formed as a surplus space that can prevent the transport parallel side from coming into contact with the inner surface of the twisted transport pipe even if the transport parallel side is shaken to the first short side portion side or the second short side portion side. You may.

また、上記構成において、前記通過猶予部は、前記偏心捻れ点が前記上流端開口の開口中心から離隔している第1ずれ量に応じて定めた第1補正条件に基づいて、前記偏心捻れ流路における前記上流端開口から前記下流端開口に至るまでの前記第1,第2長側部の長さを増加させるように補正することで形成するようにしてもよい。 Further, in the above configuration, the passage grace portion has the eccentric twist flow based on the first correction condition determined according to the first deviation amount in which the eccentric twist point is separated from the opening center of the upstream end opening. It may be formed by correcting so as to increase the length of the first and second long side portions from the upstream end opening to the downstream end opening in the road.

また、上記構成において、前記通過猶予部は、前記基準捻れ搬送路における基準捻れ角よりも大きく捻れている第2ずれ量に応じて定めた第2補正条件に基づいて、前記偏心捻れ流路における前記上流端開口から前記下流端開口に至るまでの前記第1,第2長側部の長さを増加させるように補正することで形成するようにしてもよい。 Further, in the above configuration, the passage grace portion is in the eccentric twist flow path based on the second correction condition determined according to the second deviation amount twisted larger than the reference twist angle in the reference twist transport path. It may be formed by correcting so as to increase the length of the first and second long side portions from the upstream end opening to the downstream end opening.

本発明によれば、捻れ搬送管の捻れ搬送路には、基準捻れ搬送路毎に紙葉類通過空部が形成されるので、紙葉類は捻れ搬送路の上流から下流まで通過できる。しかも、紙葉類に捻れ搬送路を通過させるだけで、効率的に紙葉類の紙面の向きを変えることができる。また、捻れ搬送管には、偏心捻れ軸回りに上流端開口を回転させた形状の捻れ搬送路が形成されるので、第1長側部側もしくは第2長側部側のどちらか一方の突出量が大きくなり、他方の突出量が小さくなる。したがって、捻れ搬送路における突出量の小さい側が、並設される他の搬送管と近接するように捻れ搬送管を配設すれば、2列の搬送管の離隔距離が小さく抑えられ、狭い空間に捻れ搬送管と他の搬送管を近接配置できる。 According to the present invention, in the twist transport path of the twist transport tube, a paper leaf passage empty space is formed for each reference twist transport path, so that the paper leaves can pass from the upstream to the downstream of the twist transport path. Moreover, the orientation of the paper surface of the paper leaves can be efficiently changed only by passing the paper leaves through the twisting transport path. Further, since the twist transfer path having a shape in which the upstream end opening is rotated around the eccentric twist axis is formed in the twist transfer pipe, either the first long side side or the second long side side protrudes. The amount increases and the amount of protrusion on the other side decreases. Therefore, if the twisted transport pipes are arranged so that the side having a small protrusion amount in the twisted transport path is close to other transport pipes arranged side by side, the separation distance between the two rows of transport pipes can be suppressed to a small size, and the space can be narrowed. Twist transport pipes and other transport pipes can be placed close to each other.

本発明の実施形態に係る紙葉類搬送装置の概略構成図である。It is a schematic block diagram of the paper leaf transfer apparatus which concerns on embodiment of this invention. (A)は直線搬送管を搬送方向に直交する縦方向に割った概略縦断面図である。(B)は図2(A)におけるIIB-IIB線の矢視断面図である。(C)は図2(A)におけるIIC-IIC線の矢視断面図である。(A) is a schematic vertical sectional view of a straight transport pipe divided in a vertical direction orthogonal to the transport direction. (B) is a cross-sectional view taken along the line IIB-IIB in FIG. 2 (A). (C) is a cross-sectional view taken along the line IIC-IIC in FIG. 2 (A). (A)は直線搬送管の搬送方向に直交する縦断面における帰還流の概略説明図である。(B)は直線搬送管の搬送方向に平行な縦断面における帰還流の概略説明図である。(A) is a schematic explanatory view of a feedback flow in a vertical cross section orthogonal to the transport direction of a straight transport pipe. (B) is a schematic explanatory view of a feedback flow in a vertical cross section parallel to the transport direction of the straight transport pipe. (A)は直線搬送路における理想的な帰還流の挙動を示す直線搬送管の概略説明図である。(B)は直線搬送路における弱い帰還流の挙動を示す直線搬送管の概略説明図である。(C)は直線搬送路における強い帰還流の挙動を示す直線搬送管の概略説明図である。(A) is a schematic explanatory view of a straight transport pipe showing the behavior of an ideal return flow in a straight transport path. (B) is a schematic explanatory view of a linear transport pipe showing the behavior of a weak feedback flow in a straight transport path. (C) is a schematic explanatory view of a straight transport pipe showing the behavior of a strong feedback flow in a straight transport path. (A)は搬送ガイドを備えた第2構成例の直線搬送管を搬送方向に直交する縦方向に割った概略縦断面図である。(B)は図5(A)におけるVB-VB線の矢視断面図である。(C)は図5(A)におけるVC-VC線の矢視断面図である。(A) is a schematic vertical sectional view of a linear transport pipe of a second configuration example provided with a transport guide divided in a vertical direction orthogonal to the transport direction. (B) is a cross-sectional view taken along the line VB-VB in FIG. 5 (A). (C) is a cross-sectional view taken along the line VC-VC in FIG. 5 (A). (A)は直線搬送壁の下部に設けた搬送ガイドを直線搬送路側から見た平面図である。(B)は図6(A)におけるVIB-VIB線の矢視断面図である。(A) is a plan view of the transport guide provided at the bottom of the straight transport wall as viewed from the straight transport path side. (B) is a cross-sectional view taken along the line VIB-VIB in FIG. 6 (A). (A)は第2構成例に係る搬送ガイドの概略断面図である。(B)は第3構成例に係る搬送ガイドの概略断面図である。(A) is a schematic cross-sectional view of a transport guide according to a second configuration example. (B) is a schematic cross-sectional view of a transport guide according to a third configuration example. 中心軸回りに紙幣の紙面を90〔°〕回転させる中心捻れ搬送管の構造説明図である。It is a structural explanatory drawing of the central twist transfer tube which rotates the paper surface of a banknote by 90 [°] around the central axis. 中心捻れ搬送管における捻れ搬送路を示し、(A)は上流から見た捻れ搬送路の正面図、(B)は捻れ搬送路の右側面図、(C1)は上流端における捻れ流路断面図、(C2)は上流端から150〔mm〕の位置における捻れ流路断面図、(C3)は上流端から300〔mm〕の位置における捻れ流路断面図、(C4)は上流端から450〔mm〕の位置における捻れ流路断面図、(C5)は上流端から600〔mm〕の位置における捻れ流路断面図、(C6)は上流端から750〔mm〕の位置における捻れ流路断面図、(C7)は下流端(上流端から900〔mm〕の位置)における捻れ流路断面図である。The twist transport path in the central twist transport pipe is shown, (A) is a front view of the twist transport path seen from the upstream, (B) is a right side view of the twist transport path, and (C1) is a cross-sectional view of the twist flow path at the upstream end. , (C2) is a cross-sectional view of the twisted flow path at a position of 150 [mm] from the upstream end, (C3) is a cross-sectional view of the twisted flow path at a position of 300 [mm] from the upstream end, and (C4) is a cross-sectional view of the twisted flow path at a position of 450 [mm] from the upstream end. A cross-sectional view of the twisted flow path at the position of [mm], (C5) is a cross-sectional view of the twisted flow path at a position 600 [mm] from the upstream end, and (C6) is a cross-sectional view of the twisted flow path at a position of 750 [mm] from the upstream end. , (C7) is a cross-sectional view of a twisted flow path at the downstream end (position 900 [mm] from the upstream end). 中心捻れ搬送管における基準中心捻れ搬送路を構成する基準中心捻れ搬送路構成体を示し、(A)は上流側から見た正面図、(B)は右側面図、(C)は平面図である。The reference center twist transport path construct constituting the reference center twist transport path in the center twist transport pipe is shown, (A) is a front view seen from the upstream side, (B) is a right side view, and (C) is a plan view. be. (A)は広い紙幣通過領域を形成した中心捻れ搬送管における基準中心捻れ搬送路を構成する基準中心捻れ搬送路構成体の概略説明図である。(B)は捻れ角を大きくした中心捻れ搬送管における基準中心捻れ搬送路を構成する基準中心捻れ搬送路構成体の概略説明図である。(A) is a schematic explanatory view of a reference central twist transport path configuration constituting a reference central twist transfer path in a central twist transfer tube forming a wide bill passing area. (B) is a schematic explanatory view of a reference central twist transfer path configuration constituting a reference central twist transfer path in a central twist transfer tube having a large twist angle. (A)は図10(A)に示す基準中心捻れ搬送路にガイドリブを設けた基準中心捻れ搬送路構成体の概略説明図である。(B)は図11(B)に示す基準中心捻れ搬送路にガイドリブを設けた基準中心捻れ搬送路構成体の概略説明図である。(A) is a schematic explanatory view of a reference center twist transport path structure in which a guide rib is provided in the reference center twist transport path shown in FIG. 10 (A). (B) is a schematic explanatory view of a reference center twist transport path structure in which a guide rib is provided in the reference center twist transport path shown in FIG. 11 (B). 偏心軸回りに紙幣の紙面を90〔°〕回転させる捻れ搬送管の構造説明図である。It is a structural explanatory drawing of the twist transfer tube which rotates the paper surface of a banknote by 90 [°] about the eccentric axis. 捻れ搬送管における捻れ搬送路を示し、(A)は上流から見た捻れ搬送路の正面図、(B)は捻れ搬送路の右側面図、(C1)は上流端における捻れ流路断面図、(C2)は上流端から160〔mm〕の位置における捻れ流路断面図、(C3)は上流端から320〔mm〕の位置における捻れ流路断面図、(C4)は下流端(上流端から480〔mm〕の位置)における捻れ流路断面図である。The twist transfer path in the twist transfer tube is shown, (A) is a front view of the twist transfer path seen from the upstream, (B) is a right side view of the twist transfer path, and (C1) is a cross-sectional view of the twist flow path at the upstream end. (C2) is a cross-sectional view of the twisted flow path at a position 160 [mm] from the upstream end, (C3) is a cross-sectional view of the twisted flow path at a position 320 [mm] from the upstream end, and (C4) is a cross-sectional view of the twisted flow path at a position 320 [mm] from the upstream end. It is a cross-sectional view of a twisted flow path at the position (position of 480 [mm]). 図14に示した捻れ搬送路における基準捻れ搬送路を示し、(A1)は上流側から見た基準捻れ搬送路の正面図、(A2)は基準捻れ搬送路を正面側から通過指標軸と平行な視点で見た正面図、(B)は基準捻れ搬送路の右側面図、(C)は基準捻れ搬送路の平面図である。The reference twist transport path in the twist transport path shown in FIG. 14 is shown, (A1) is a front view of the reference twist transport path seen from the upstream side, and (A2) is the reference twist transport path parallel to the passage index axis from the front side. (B) is a right side view of the reference twist transport path, and (C) is a plan view of the reference twist transport path. 開口中心から8〔mm〕ずらした位置に偏心捻れ軸を設定した第1偏心捻れ搬送路を示し、(A)は上流側から見た第1偏心捻れ搬送路の正面図、(B)は捻れ角度を180〔°〕にした第1偏心捻れ搬送路の概略正面図、(C1)はゼロ寸状態となる第1基準捻れ搬送路の正面図、(C2)は図16(C1)の第1基準捻れ搬送路を正面側から通過指標軸と平行な視点で見た正面図、(D1)はゼロ寸状態の捻れ角を越えて捻った第1基準捻れ搬送路の正面図、(D2)は図16(D1)の第1基準捻れ搬送路を正面側から通過指標軸と平行な視点で見た正面図である。The first eccentric twist transport path in which the eccentric twist axis is set at a position shifted by 8 [mm] from the center of the opening is shown, (A) is a front view of the first eccentric twist transport path seen from the upstream side, and (B) is a twist. A schematic front view of the first eccentric twist transfer path having an angle of 180 [°], (C1) is a front view of the first reference twist transfer path in a zero dimension state, and (C2) is the first in FIG. 16 (C1). The front view of the reference twist transport path from the front side as seen from the viewpoint parallel to the passage index axis, (D1) is the front view of the first reference twist transport path twisted beyond the twist angle in the zero dimension state, and (D2) is. 16 is a front view of the first reference twisted transport path of FIG. 16 (D1) as viewed from the front side from a viewpoint parallel to the passage index axis. 開口中心から16〔mm〕ずらした位置に偏心捻れ軸を設定した第2偏心捻れ搬送路を示し、(A)は上流側から見た第2偏心捻れ搬送路の正面図、(B)は捻れ角度を180〔°〕にした第2偏心捻れ搬送路の概略正面図、(C1)はゼロ寸状態となる第2基準捻れ搬送路の正面図、(C2)は図17(C1)の第2基準捻れ搬送路を正面側から通過指標軸と平行な視点で見た正面図、(D1)はゼロ寸状態の捻れ角を越えて捻った第2基準捻れ搬送路の正面図、(D2)は図17(D1)の第2基準捻れ搬送路を正面側から通過指標軸と平行な視点で見た正面図である。The second eccentric twist transport path in which the eccentric twist axis is set at a position shifted by 16 [mm] from the center of the opening is shown, (A) is a front view of the second eccentric twist transport path seen from the upstream side, and (B) is twist. A schematic front view of the second eccentric twist transport path with an angle of 180 [°], (C1) is a front view of the second reference twist transport path in the zero dimension state, and (C2) is the second of FIG. 17 (C1). The front view of the reference twist transport path from the front side as seen from the viewpoint parallel to the passage index axis, (D1) is the front view of the second reference twist transport path twisted beyond the twist angle in the zero dimension state, and (D2) is. FIG. 17 is a front view of the second reference twisted transport path of FIG. 17 (D1) as viewed from the front side from a viewpoint parallel to the passage index axis. 開口中心から24〔mm〕ずらした位置に偏心捻れ軸を設定した第3偏心捻れ搬送路を示し、(A)は上流側から見た第3偏心捻れ搬送路の正面図、(B)は捻れ角度を180〔°〕にした第3偏心捻れ搬送路の概略正面図、(C1)はゼロ寸状態となる第3基準捻れ搬送路の正面図、(C2)は図18(C1)の第3基準捻れ搬送路を正面側から通過指標軸と平行な視点で見た正面図、(D1)はゼロ寸状態の捻れ角を越えて捻った第3基準捻れ搬送路の正面図、(D2)は図18(D1)の第3基準捻れ搬送路を正面側から通過指標軸と平行な視点で見た正面図である。The third eccentric twist transport path in which the eccentric twist axis is set at a position shifted by 24 [mm] from the center of the opening is shown. A schematic front view of the third eccentric twist transport path with an angle of 180 [°], (C1) is a front view of the third reference twist transport path in the zero dimension state, and (C2) is the third of FIG. 18 (C1). The front view of the reference twist transport path from the front side as seen from the viewpoint parallel to the passage index axis, (D1) is the front view of the third reference twist transport path twisted beyond the twist angle in the zero dimension state, and (D2) is. FIG. 18 is a front view of the third reference twisted transport path of FIG. 18 (D1) as viewed from the front side from a viewpoint parallel to the passage index axis. 開口中心から30〔mm〕ずらした位置に偏心捻れ軸を設定した捻れ搬送路を示し、(A)は上流側から見た捻れ搬送路の正面図、(B)は捻れ角度を180〔°〕にした捻れ搬送路の概略正面図、(C1)はゼロ寸状態となる基準捻れ搬送路の正面図、(C2)は図19(C1)の基準捻れ搬送路を正面側から通過指標軸と平行な視点で見た正面図、(D1)はゼロ寸状態の捻れ角を越えて捻った基準捻れ搬送路の正面図、(D2)は図19(D1)の基準捻れ搬送路を正面側から通過指標軸と平行な視点で見た正面図である。An eccentric twist axis is set at a position shifted by 30 [mm] from the center of the opening. (A) is a front view of the twist transport path seen from the upstream side, and (B) has a twist angle of 180 [°]. The schematic front view of the twisted transport path is set to (C1), the front view of the reference twisted transport path in the zero dimension state, and (C2) is the reference twisted transport path of FIG. 19 (C1) parallel to the passage index axis from the front side. (D1) is a front view of the reference twist transport path twisted beyond the twist angle in the zero dimension state, (D2) is a front view of the reference twist transport path of FIG. 19 (D1) from the front side. It is a front view seen from the viewpoint parallel to the index axis. (A)は直線搬送路と中心捻れ搬送路を並設した場合の概略イメージ図、(B)は直線搬送路と第1偏心捻れ搬送路を並設した場合の概略イメージ図、(C)は直線搬送路と第2偏心捻れ搬送路を並設した場合の概略イメージ図、(D)は直線搬送路と第3偏心捻れ搬送路を並設した場合の概略イメージ図、(E)は直線搬送路と図14に示した捻れ搬送路を並設した場合の概略イメージ図である。(A) is a schematic image diagram when a straight transport path and a central twist transport path are juxtaposed, (B) is a schematic image diagram when a straight transport path and a first eccentric twist transport path are juxtaposed, and (C) is a linear transport. Schematic image diagram when the road and the second eccentric twist transport path are arranged side by side, (D) is a schematic image diagram when the straight transport path and the third eccentric twist transport path are arranged side by side, and FIG. It is a schematic image diagram in the case where the twist transport paths shown in are arranged side by side.

次に、添付図面に基づいて、本発明に係る紙葉類搬送装置の実施形態につき説明する。なお、搬送対象である紙葉類とは、紙幣や書面といった保形性のある紙類(ティッシュペーパーのように、搬送流に対して保形性を有しないものを除く)、樹脂製のフィルム(プラスティック紙幣を含む)や薄いカード類などが適用できる。本実施形態の紙葉類搬送装置においては、紙製の紙幣(一対の長辺と一対の短辺からなる矩形状の紙幣)を搬送対象とした紙幣搬送装置として説明する。また、搬送用流体としては、気体に限らず液体を用いることも可能であるが、本実施形態の紙幣搬送装置においては、空気(エア)を搬送用流体として用いた。また、本実施形態では、紙幣を重力方向に立てた状態で搬送するので、便宜上、紙幣の紙面(対向する二面)が臨む方向を左右または側方、これに直交する重力方向を上下という。 Next, an embodiment of the paper leaf transport device according to the present invention will be described with reference to the accompanying drawings. The paper leaves to be transported are papers with shape-retaining properties such as banknotes and documents (excluding those that do not have shape-retaining properties with respect to the transport flow, such as tissue paper), and resin films. (Including plastic banknotes) and thin cards can be applied. The paper leaf transport device of the present embodiment will be described as a banknote transport device for transporting paper banknotes (rectangular banknotes composed of a pair of long sides and a pair of short sides). Further, as the transport fluid, it is possible to use not only a gas but also a liquid, but in the banknote transport device of the present embodiment, air is used as the transport fluid. Further, in the present embodiment, since the banknotes are transported in a state of standing upright in the direction of gravity, for convenience, the direction in which the paper surfaces (two facing surfaces) of the banknotes face is referred to as left and right or sideways, and the direction of gravity orthogonal to this is referred to as up and down.

図1に示す紙幣搬送装置1は、例えば遊技店に設置され、遊技媒体貸出装置やカード販売装置等へ投入された紙幣PMを回収して一箇所へ集めるような使い方が可能である。直線搬送管2、捻れ搬送管3、湾曲搬送管4等の内部に形成された搬送路内を通過させて搬送する搬送対象の紙幣PMは、適所に設けた紙幣導入部5から長辺方向が搬送方向となるように直線搬送管2内へ導入される。直線搬送管2内における紙幣PMは、紙面が搬送方向と平行になる縦向きで、例えば、搬送方向と平行な第1搬送平行辺PM1aが上辺、搬送方向と平行な第2搬送平行辺PM1bが下辺、搬送方向と直交する第1搬送直交辺PM2aが前辺、搬送方向と直交する第2搬送直交辺PM2bが後辺となる。直線搬送管2の直線搬送路内を紙幣PMが通過するとき、紙幣PMの紙面は縦向きのままで変化しない。 The banknote transfer device 1 shown in FIG. 1 can be installed in, for example, a game store, and can be used to collect banknotes PM inserted into a game medium lending device, a card sales device, or the like and collect them in one place. The banknote PM to be transported by passing through the transport path formed inside the straight transport pipe 2, the twist transport pipe 3, the curved transport pipe 4, etc. has a long side direction from the bill introduction portion 5 provided in a suitable place. It is introduced into the straight transfer pipe 2 so as to be in the transfer direction. The bill PM in the straight transport pipe 2 is in a vertical direction in which the paper surface is parallel to the transport direction. For example, the first transport parallel side PM1a parallel to the transport direction is the upper side, and the second transport parallel side PM1b parallel to the transport direction is. The lower side, the first transport orthogonal side PM2a orthogonal to the transport direction is the front side, and the second transport orthogonal side PM2b orthogonal to the transport direction is the rear side. When the bill PM passes through the straight transport path of the straight transport pipe 2, the paper surface of the bill PM remains in the vertical orientation and does not change.

直線搬送管2の下流側に連結した捻れ搬送管3は、搬送路内を紙幣PMが通過する間に紙幣PMの紙面を略90〔°〕回転させる捻れ搬送路を備える。よって、捻れ搬送管3に入る紙幣PMの第1,第2搬送直交辺PM2a,PM2bは略鉛直方向であるが、捻れ搬送管3から出てくる紙幣PMの第1,第2搬送直交辺PM2a,PM2bは略水平方向となる。なお、捻れ搬送管3に入る紙幣PMの第1,第2搬送平行辺PM1a,PM1bは上辺と下辺であるが、捻れ搬送管3から出てくる紙幣PMの第1,第2搬送平行辺PM1a,PM1bは右辺と左辺になる。 The twist transport pipe 3 connected to the downstream side of the straight transport pipe 2 is provided with a twist transport path that rotates the paper surface of the bill PM by approximately 90 [°] while the bill PM passes through the transport path. Therefore, although the first and second transport orthogonal sides PM2a and PM2b of the bill PM entering the twist transport pipe 3 are in the substantially vertical direction, the first and second transport orthogonal sides PM2a of the bill PM coming out of the twist transport pipe 3 , PM2b is in the substantially horizontal direction. The first and second transport parallel sides PM1a and PM1b of the bill PM entering the twist transport pipe 3 are the upper side and the lower side, but the first and second transport parallel sides PM1a of the bill PM coming out of the twist transport pipe 3 , PM1b are on the right side and the left side.

また、捻れ搬送管3を通過して出てくる紙幣PMの位置は、直線搬送管2の上下中間位置ではなく、下方あるいは上方に片寄った位置となる。これは、捻れ搬送管3の捻れ構造によるもので、その詳細については後述する。 Further, the position of the bill PM that comes out through the twisted transport pipe 3 is not the upper and lower intermediate positions of the straight transport pipe 2, but a position that is offset downward or upward. This is due to the twisted structure of the twisted transport pipe 3, and the details thereof will be described later.

捻れ搬送管3の下流側に連結した湾曲搬送管4は、紙幣PMの紙面に直交する上向き(或いは下向き)に曲げる湾曲搬送路を備える。湾曲搬送管4を紙幣PMが通過する間に、紙幣PMの搬送方向は横方向から縦方向へ変更されるので、湾曲搬送管4の下流に接続された直線搬送管2によって、紙幣PMを更に上方へ(或いは下方へ)搬送することが可能となる。このように、種々の搬送管(直線搬送管2、捻れ搬送管3、湾曲搬送管4などを特に区別しない場合、以下では、単に「搬送管」という)を組み合わせて接続すれば、自由度の高い搬送路を形成できる。 The curved transport pipe 4 connected to the downstream side of the twist transport pipe 3 is provided with a curved transport path that bends upward (or downward) orthogonal to the paper surface of the banknote PM. Since the transport direction of the bill PM is changed from the horizontal direction to the vertical direction while the bill PM passes through the curved transport pipe 4, the straight transport pipe 2 connected to the downstream of the curved transport pipe 4 further transfers the bill PM. It can be transported upward (or downward). In this way, if various transport pipes (straight line transport pipe 2, twist transport pipe 3, curved transport pipe 4, etc. are not particularly distinguished, hereinafter, simply referred to as “conveyor pipe”) are combined and connected, the degree of freedom is increased. A high transport path can be formed.

搬送路の最上流端(例えば、最上流に配置された直線搬送管2の上流側端)には送風機6を設け、搬送路の最下流端(例えば、最下流に配置された直線搬送管2の下流側端)には紙幣回収部7を設ける。すなわち、送風機6を設けた上流から紙幣回収部7を設けた下流に向けて、搬送用流体としての空気が搬送路内を流れるのである。なお、下流である紙幣回収部7側に吸引機を設けることで、搬送用流体としての空気が搬送路内を上流から下流へ流れるようにすることもできる。 A blower 6 is provided at the most upstream end of the transport path (for example, the upstream end of the straight transport pipe 2 arranged in the most upstream), and the most downstream end of the transport path (for example, the straight transport pipe 2 arranged in the most downstream) is provided. A bill collection unit 7 is provided at the downstream end). That is, air as a transport fluid flows in the transport path from the upstream where the blower 6 is provided to the downstream where the bill collection unit 7 is provided. By providing a suction machine on the downstream side of the bill collection unit 7, it is possible to allow air as a transport fluid to flow from the upstream to the downstream in the transport path.

直線搬送管2は、所要長さまで連結して、設置場所や状況に応じた流路に調整できる。直線搬送管2は、紙幣PMの2面に対向するよう内面側が配置された第1直線搬送壁211および第2直線搬送壁212と、第1,第2直線搬送壁211,212の上下両側に上部外方カバー221と下部外方カバー222をそれぞれ設けた構成である。これら、第1,第2直線搬送壁211,212と上,下部外方カバー221,222により、圧縮空気を送り出せる流体通過直線空間23が内部に形成される。この流体通過直線空間23のうち、第1直線搬送壁211の内壁面211bと第2直線搬送壁212の内壁面212bとで挟まれた空間が直線搬送路231となり、この直線搬送路231を通って紙幣PMが下流へ直線状に搬送されるのである。 The straight transfer pipe 2 can be connected to a required length and adjusted to a flow path according to the installation location and the situation. The straight transport pipes 2 are provided on the upper and lower sides of the first straight transport wall 211 and the second straight transport wall 212 whose inner surfaces are arranged so as to face the two surfaces of the bill PM, and the first and second straight transport walls 211 and 212. The upper outer cover 221 and the lower outer cover 222 are provided respectively. The first and second straight transport walls 211 and 212 and the upper and lower outer covers 221,222 form a fluid passage linear space 23 inside which compressed air can be sent out. Of the fluid passage straight space 23, the space sandwiched between the inner wall surface 211b of the first straight transport wall 211 and the inner wall surface 212b of the second straight transport wall 212 becomes the straight transport path 231 and passes through the straight transport path 231. The bill PM is linearly transported downstream.

直線搬送管2においては、搬送方向(送風方向WDと一致する方向)に向かって左側に第1直線搬送壁211を配置し、搬送方向に向かって右側に第2直線搬送壁212を配置しているので、以下の説明において、第1方向とは搬送方向に向かって左側を指し、第2方向とは搬送方向に向かって右側を指す。第1直線搬送壁211と第2直線搬送壁212は、平板な板状体であり、横方向に等距離を隔てて平行に配置される。また、第1直線搬送壁211と第2直線搬送壁212は、どちらも縦方向の高さ(上下幅)が一定で、第1直線搬送壁211の第1端縁である上端縁211cおよび第2端縁である下端縁211dと、第2直線搬送壁212の第1端縁である上端縁212cおよび第2端縁である下端縁212dは、搬送方向と略平行である。従って、第1,第2直線搬送壁211,212により形成される直線搬送路231を搬送方向に直交するように縦断した流路断面は、縦方向の壁長幅と横方向の壁間幅が常に一定となる。 In the straight transport pipe 2, the first straight transport wall 211 is arranged on the left side in the transport direction (direction corresponding to the ventilation direction WD), and the second straight transport wall 212 is arranged on the right side in the transport direction. Therefore, in the following description, the first direction refers to the left side in the transport direction, and the second direction refers to the right side in the transport direction. The first straight transport wall 211 and the second straight transport wall 212 are flat plate-like bodies, and are arranged in parallel at equal distances in the lateral direction. Further, both the first straight transport wall 211 and the second straight transport wall 212 have a constant height (vertical width) in the vertical direction, and the upper end edge 211c and the first end edge of the first straight transport wall 211 are constant. The lower end edge 211d which is the two end edge, the upper end edge 212c which is the first end edge of the second straight line transport wall 212, and the lower end edge 212d which is the second end edge are substantially parallel to the transport direction. Therefore, the cross section of the flow path longitudinally crossing the straight transport path 231 formed by the first and second straight transport walls 211 and 212 so as to be orthogonal to the transport direction has a wall length width in the vertical direction and a wall width in the horizontal direction. It is always constant.

上部外方カバー221は、第1直線搬送壁211の上端縁211cおよび第2直線搬送壁212の上端縁212cの上方空間と、第1直線搬送壁211の外壁面211aの一部(上側部分)および第2直線搬送壁212の外壁面212aの一部(上側部分)を覆う。一方、下部外方カバー222は、第1直線搬送壁211の下端縁211dおよび第2直線搬送壁212の下端縁212dの下方空間と、第1直線搬送壁211の外壁面211aの一部(下側部分)および第2直線搬送壁212の外壁面212aの一部(下側部分)を覆う。なお、上部外方カバー221と下部外方カバー222に分けて設けず、一つの外方カバーで第1直線搬送壁211と第2直線搬送壁212の外方全体を覆うような構造としても構わない。 The upper outer cover 221 has an upper space of the upper end edge 211c of the first straight transport wall 211 and the upper end edge 212c of the second straight transport wall 212, and a part (upper portion) of the outer wall surface 211a of the first straight transport wall 211. And a part (upper part) of the outer wall surface 212a of the second straight transfer wall 212 is covered. On the other hand, the lower outer cover 222 includes a space below the lower end edge 211d of the first straight transport wall 211 and the lower end edge 212d of the second straight transport wall 212, and a part (lower) of the outer wall surface 211a of the first straight transport wall 211. It covers a part (lower part) of the outer wall surface 212a of the second straight line transport wall 212 (side part). It should be noted that the upper outer cover 221 and the lower outer cover 222 may not be provided separately, and one outer cover may be used to cover the entire outer side of the first straight transport wall 211 and the second straight transport wall 212. not.

なお、これら第1,第2直線搬送壁211,212と上,下部外方カバー221,222は、個別のパーツとして形成し、組み立てても良いし、射出成形や押出成形といった樹脂加工技術により複合パーツを形成して組み立てるようにしても良い。また、樹脂加工に限らず、厚さ1~2〔mm〕程度の板材を加工して、第1,第2直線搬送壁211,212と上,下部外方カバー221,222を作っても良い。 The first and second straight transfer walls 211 and 212 and the upper and lower outer covers 221,222 may be formed as individual parts and assembled, or may be combined by resin processing techniques such as injection molding and extrusion molding. Parts may be formed and assembled. Further, the present invention is not limited to resin processing, and a plate material having a thickness of about 1 to 2 [mm] may be processed to form the first and second straight transfer walls 211 and 212 and the upper and lower outer covers 221,222. ..

また、第1,第2直線搬送壁211,212には、外壁面211a,212aから内壁面211b,212bに搬送用エアが通過し得るエア帰還孔24を所要間隔で設ける。本構成の直線搬送管2においては、上部外方カバー221で覆われている第1,第2直線搬送壁211,212の上部と、下部外方カバー222で覆われている第1,第2直線搬送壁211,212の下部とに、それぞれ搬送方向に向かって等間隔で一列状にエア帰還孔24を設けた(例えば、図2(B)を参照)。なお、本構成例の直線搬送管2におけるエア帰還孔24は略四角形状としたが、その開口形状や開口面積、配置間隔等は、特に限定されるものではなく、後述するように、必要十分な帰還流を得ることができれば良い。日本の紙幣PMを搬送する場合、第1,第2直線搬送壁211,212の高さ(壁長幅)を78〔mm〕程度、対向間隔(壁間幅)を10~15〔mm〕程度とすると、上下2箇所に配列状に設ける各エア帰還孔24の上下方向の幅(搬送直交幅)は20~30〔mm〕が適当である。なお、エア帰還孔24の搬送方向の幅(搬送平行幅)は、エア帰還孔24の配設間隔に応じて、適宜な風量や風速が得られるように定めれば良い。 Further, the first and second straight transport walls 211 and 212 are provided with air return holes 24 through which transport air can pass from the outer wall surfaces 211a and 212a to the inner wall surfaces 211b and 212b at required intervals. In the linear transport pipe 2 having this configuration, the upper portions of the first and second straight transport walls 211 and 212 covered with the upper outer cover 221 and the first and second straight transport pipes 2 covered with the lower outer cover 222. Air return holes 24 are provided in a row at equal intervals in the transport direction at the lower portions of the linear transport walls 211 and 212 (see, for example, FIG. 2B). The air return hole 24 in the linear transport pipe 2 of this configuration example has a substantially square shape, but the opening shape, opening area, arrangement interval, etc. are not particularly limited, and are necessary and sufficient as described later. It would be good if we could get a good return flow. When transporting Japanese banknote PM, the height (wall length width) of the first and second straight transport walls 211 and 212 is about 78 [mm], and the facing distance (width between walls) is about 10 to 15 [mm]. Then, it is appropriate that the width (conveyance orthogonal width) in the vertical direction of each of the air return holes 24 provided in the upper and lower two places in an arrangement is 20 to 30 [mm]. The width of the air return hole 24 in the transport direction (conveyor parallel width) may be set so that an appropriate air volume and speed can be obtained according to the arrangement interval of the air return holes 24.

また、第1直線搬送壁211に設ける全てのエア帰還孔24と、第2直線搬送壁212に設ける全てのエア帰還孔24とが、直線搬送路231を挟んで対向するように、各エア帰還孔24の開設位置を設定することが望ましい。しかしながら、第1直線搬送壁211側のエア帰還孔24と第2直線搬送壁212側のエア帰還孔24が、紙幣PMの搬送方向あるいは上下方向に多少ずれていても、極端に偏った帰還流が紙幣PMの二面へ両側から作用しなければ、紙幣PMの安定搬送を実現できる。 Further, all the air return holes 24 provided in the first straight line transfer wall 211 and all the air return holes 24 provided in the second straight line transfer wall 212 face each other with the straight line transfer path 231 interposed therebetween. It is desirable to set the opening position of the hole 24. However, even if the air return hole 24 on the first straight line transfer wall 211 side and the air return hole 24 on the second straight line transfer wall 212 side are slightly displaced in the transfer direction or the vertical direction of the banknote PM, the feedback flow is extremely biased. If does not act on the two sides of the banknote PM from both sides, stable transportation of the banknote PM can be realized.

上部外方カバー221は、第1,第2直線搬送壁211,212の各内壁面211b,212b側から各外壁面211a,212a側へ搬送用エアをそれぞれ誘導する流体誘導空部を生じさせる分岐誘導部を備える。本構成の上部外方カバー221においては、第1直線搬送壁211に対応させて設けた第1分岐誘導部221a1と、第2直線搬送壁212に対応させて設けた第2分岐誘導部221b1を左右対称の構造とし、搬送方向に連続する中央連結部221cにて第1分岐誘導部221a1と第2分岐誘導部221b1を一体に連結した。 The upper outer cover 221 is a branch that creates a fluid induction space for guiding transport air from the inner wall surfaces 211b and 212b sides of the first and second straight transport walls 211 and 212 to the outer wall surfaces 211a and 212a, respectively. It is equipped with a guide unit. In the upper outer cover 221 of this configuration, the first branch guide portion 221a1 provided corresponding to the first straight transport wall 211 and the second branch guide portion 221b1 provided corresponding to the second straight transport wall 212 are provided. The structure is symmetrical, and the first branch guide portion 221a1 and the second branch guide portion 221b1 are integrally connected by the central connecting portion 221c that is continuous in the transport direction.

上部外方カバー221における第1分岐誘導部221a1の内面は、第1直線搬送壁211と第2直線搬送壁212との間である壁間幅の中間位置より徐々に直線搬送路231から遠ざかるように左上向きに突出し、第1直線搬送壁211を超えると徐々に左下向きに変化する滑らかな凹曲面である。したがって、第1分岐誘導部221a1は、第1直線搬送壁211の上端縁211cの上方空間に、第1直線搬送壁211の内壁面211b側から外壁面211a側へ搬送用エアを誘導する第1分岐誘導空部232aを形成できる。同様に、上部外方カバー221における第2分岐誘導部221b1の内面は、第1直線搬送壁211と第2直線搬送壁212との間である壁間幅の中間位置より徐々に直線搬送路231から遠ざかるように右上向きに突出し、第2直線搬送壁212を超えると徐々に右下向きに変化する滑らかな凹曲面である。したがって、第2分岐誘導部221b1は、第2直線搬送壁212の上端縁212cの上方空間に、第2直線搬送壁212の内壁面212b側から外壁面212a側へ搬送用エアを誘導する第2分岐誘導空部232bを形成できる。紙幣PMを搬送対象とする場合、第1,第2分岐誘導部221a1,221b1の左右幅はそれぞれ15〔mm〕程度、凹曲面最奥部までの距離は5〔mm〕程度である。 The inner surface of the first branch guide portion 221a1 in the upper outer cover 221 is gradually moved away from the straight transport path 231 from the intermediate position of the wall-to-wall width between the first straight transport wall 211 and the second straight transport wall 212. It is a smooth concave curved surface that protrudes toward the upper left and gradually changes toward the lower left when it exceeds the first straight line conveying wall 211. Therefore, the first branch guiding portion 221a1 guides the transport air from the inner wall surface 211b side of the first straight line transport wall 211 to the outer wall surface 211a side in the space above the upper end edge 211c of the first straight line transport wall 211. The branch guide empty portion 232a can be formed. Similarly, the inner surface of the second branch guide portion 221b1 in the upper outer cover 221 gradually becomes a straight transport path 231 from the intermediate position of the wall-to-wall width between the first straight transport wall 211 and the second straight transport wall 212. It is a smooth concave curved surface that protrudes toward the upper right so as to move away from the surface and gradually changes toward the lower right when it exceeds the second straight transfer wall 212. Therefore, the second branch guiding portion 221b1 guides the transport air from the inner wall surface 212b side of the second straight line transport wall 212 to the outer wall surface 212a side in the space above the upper end edge 212c of the second straight line transport wall 212. The branch guide empty portion 232b can be formed. When the bill PM is to be conveyed, the left-right widths of the first and second branch guide portions 221a1,221b1 are about 15 [mm], and the distance to the innermost part of the concave curved surface is about 5 [mm].

上部外方カバー221の第1分岐誘導部221a1の外側(左側)に連なる第1外方誘導部221a2は、第1分岐誘導空部232aを介して第1直線搬送壁211の外壁面211a側へ誘導された搬送用エアをエア帰還孔24へ誘導可能な第1外方誘導空部233aを生じさせる。同様に、上部外方カバー221の第2分岐誘導部221b1の外側(右側)に連なる第2外方誘導部221b2は、第2分岐誘導空部232bを介して第2直線搬送壁212の外壁面212a側へ誘導された搬送用エアをエア帰還孔24へ誘導可能な第2外方誘導空部233bを生じさせる。なお、第1外方誘導部221a2の下端は、滑らかに湾曲させて第1直線搬送壁211の外壁面211aに密着する終端屈曲部221a2-eとし、エア帰還孔24の若干下方位置にて第1外方誘導空部233aが閉塞されるようにしておく。同様に、第2外方誘導部221b2の下端は、滑らかに湾曲させて第2直線搬送壁212の外壁面212aに密着する終端屈曲部221b2-eとし、エア帰還孔24の若干下方位置にて第2外方誘導空部233bが閉塞されるようにしておく。紙幣PMを搬送対象とする場合、第1,第2外方誘導部221a2,221b2の上下高さは30~35〔mm〕程度である。 The first outer guide portion 221a2 connected to the outside (left side) of the first branch guide portion 221a1 of the upper outer cover 221 is directed to the outer wall surface 211a side of the first straight line transport wall 211 via the first branch guide empty portion 232a. A first outwardly guided air portion 233a capable of guiding the guided transport air to the air return hole 24 is generated. Similarly, the second outer guide portion 221b2 connected to the outside (right side) of the second branch guide portion 221b1 of the upper outer cover 221 is the outer wall surface of the second straight line transport wall 212 via the second branch guide empty portion 232b. A second outward guided air portion 233b capable of guiding the transport air guided to the 212a side to the air return hole 24 is generated. The lower end of the first outer guide portion 221a2 is smoothly curved to form a terminal bent portion 221a2-e that is in close contact with the outer wall surface 211a of the first straight line conveying wall 211, and is located slightly below the air return hole 24. 1 Make sure that the outer guidance space 233a is closed. Similarly, the lower end of the second outer guide portion 221b2 is smoothly curved to form a terminal bent portion 221b2-e that is in close contact with the outer wall surface 212a of the second straight line conveying wall 212, and is slightly below the air return hole 24. The second outer guidance space 233b is closed. When the bill PM is to be transported, the vertical height of the first and second outer guide portions 221a2 and 221b2 is about 30 to 35 [mm].

下部外方カバー222も上部外方カバー221と同様に、第1,第2直線搬送壁211,212の各内壁面211b,212b側から各外壁面211a,212a側へ空気をそれぞれ誘導する流体誘導空部を生じさせる分岐誘導部を備える。本構成の下部外方カバー222においても、第1直線搬送壁211に対応させて設けた第1分岐誘導部222a1と、第2直線搬送壁212に対応させて設けた第2分岐誘導部222b1を左右対称の構造とし、搬送方向に連続する中央連結部222cにて第1分岐誘導部222a1と第2分岐誘導部222b1を一体に連結した。 Similar to the upper outer cover 221, the lower outer cover 222 is also a fluid guide that guides air from the inner wall surfaces 211b and 212b sides of the first and second linear transport walls 211 and 212 to the outer wall surfaces 211a and 212a, respectively. It is provided with a branch guide that creates an empty space. Also in the lower outer cover 222 of this configuration, the first branch guide portion 222a1 provided corresponding to the first straight transport wall 211 and the second branch guide portion 222b1 provided corresponding to the second straight transport wall 212 are provided. The structure is symmetrical, and the first branch guide portion 222a1 and the second branch guide portion 222b1 are integrally connected by the central connecting portion 222c continuous in the transport direction.

下部外方カバー222における第1分岐誘導部222a1の内面は、第1直線搬送壁211と第2直線搬送壁212との間である壁間幅の中間位置より徐々に直線搬送路231から遠ざかるように左下向きに突出し、第1直線搬送壁211を超えると徐々に左上向きに変化する滑らかな凹曲面である。したがって、第1分岐誘導部222a1は、第1直線搬送壁211の下端縁211dの下方空間に、第1直線搬送壁211の内壁面211b側から外壁面211a側へ搬送用エアを誘導する第1分岐誘導空部232aを形成できる。同様に、下部外方カバー222における第2分岐誘導部222b1の内面は、第1直線搬送壁211と第2直線搬送壁212との間である壁間幅の中間位置より徐々に直線搬送路231から遠ざかるように右下向きに突出し、第2直線搬送壁212を超えると徐々に右上向きに変化する滑らかな凹曲面である。したがって、第2分岐誘導部222b1は、第2直線搬送壁212の下端縁212dの下方空間に、第2直線搬送壁212の内壁面212b側から外壁面212a側へ搬送用エアを誘導する第2分岐誘導空部232bを形成できる。紙幣PMを搬送対象とする場合、第1,第2分岐誘導部222a1,222b1の左右幅はそれぞれ15〔mm〕程度、凹曲面最奥部までの距離は5〔mm〕程度である。 The inner surface of the first branch guide portion 222a1 in the lower outer cover 222 is gradually moved away from the straight transport path 231 from the intermediate position of the wall-to-wall width between the first straight transport wall 211 and the second straight transport wall 212. It is a smooth concave curved surface that projects downward to the left and gradually changes to the upper left when it exceeds the first straight transfer wall 211. Therefore, the first branch guiding portion 222a1 guides the transport air from the inner wall surface 211b side of the first straight line transport wall 211 to the outer wall surface 211a side in the space below the lower end edge 211d of the first straight line transport wall 211. The branch guide empty portion 232a can be formed. Similarly, the inner surface of the second branch guide portion 222b1 in the lower outer cover 222 gradually reaches the straight transport path 231 from the intermediate position of the wall-to-wall width between the first straight transport wall 211 and the second straight transport wall 212. It is a smooth concave curved surface that projects downward to the right so as to move away from the surface and gradually changes to the upper right when it exceeds the second straight transfer wall 212. Therefore, the second branch guiding portion 222b1 guides the transport air from the inner wall surface 212b side of the second straight line transport wall 212 to the outer wall surface 212a side in the space below the lower end edge 212d of the second straight line transport wall 212. The branch guide empty portion 232b can be formed. When the bill PM is to be conveyed, the left-right widths of the first and second branch guide portions 222a1,222b1 are about 15 [mm], and the distance to the innermost part of the concave curved surface is about 5 [mm].

下部外方カバー222の第1分岐誘導部222a1の外側(左側)に連なる第1外方誘導部222a2は、第1分岐誘導空部232aを介して第1直線搬送壁211の外壁面211a側へ誘導された搬送用エアをエア帰還孔24へ誘導可能な第1外方誘導空部233aを生じさせる。同様に、下部外方カバー222の第2分岐誘導部222b1の外側(右側)に連なる第2外方誘導部222b2は、第2分岐誘導空部232bを介して第2直線搬送壁212の外壁面212a側へ誘導された搬送用エアをエア帰還孔24へ誘導可能な第2外方誘導空部233bを生じさせる。なお、第1外方誘導部222a2の上端は、滑らかに湾曲させて第1直線搬送壁211の外壁面211aに密着する終端屈曲部222a2-eとし、エア帰還孔24の若干上方位置にて第1外方誘導空部233aが閉塞されるようにしておく。同様に、第2外方誘導部222b2の上端は、滑らかに湾曲させて第2直線搬送壁212の外壁面212aに密着する終端屈曲部222b2-eとし、エア帰還孔24の若干上方位置にて第2外方誘導空部233bが閉塞されるようにしておく。紙幣PMを搬送対象とする場合、第1,第2外方誘導部222a2,222b2の上下高さは30~35〔mm〕程度である。 The first outer guide portion 222a2 connected to the outside (left side) of the first branch guide portion 222a1 of the lower outer cover 222 is directed to the outer wall surface 211a side of the first straight line transport wall 211 via the first branch guide empty portion 232a. A first outwardly guided air portion 233a capable of guiding the guided transport air to the air return hole 24 is generated. Similarly, the second outer guide portion 222b2 connected to the outside (right side) of the second branch guide portion 222b1 of the lower outer cover 222 is the outer wall surface of the second straight line transport wall 212 via the second branch guide empty portion 232b. A second outward guided air portion 233b capable of guiding the transport air guided to the 212a side to the air return hole 24 is generated. The upper end of the first outer guide portion 222a2 is smoothly curved to form a terminal bent portion 222a2-e that is in close contact with the outer wall surface 211a of the first straight line conveying wall 211, and is located slightly above the air return hole 24. 1 Make sure that the outer guidance space 233a is closed. Similarly, the upper end of the second outer guide portion 222b2 is smoothly curved to form a terminal bent portion 222b2-e that is in close contact with the outer wall surface 212a of the second straight line conveying wall 212, and is located slightly above the air return hole 24. The second outer guidance space 233b is closed. When the bill PM is to be transported, the vertical height of the first and second outer guide portions 222a2 and 222b2 is about 30 to 35 [mm].

上述したように、上部外方カバー221には第1,第2分岐誘導部221a1,221b1を設け、下部外方カバー222には第1,第2分岐誘導部222a1,222b1を設ければ、直線搬送路231の上方左右および下方左右へ均等に搬送用エアを誘導できる。なお、外方カバーとして、上部外方カバー221と下部外方カバー222の両方を設けず、一方端のみに外方カバーを設けておき、第1,第2直線搬送壁211,212にエア帰還孔24をそれぞれ一列だけ設けてもよい。かくする場合、外方カバーを設けない他方端では、第1直線搬送壁211と第2直線搬送壁212の間を遮蔽壁等で塞ぐことにより、搬送用エアが漏れない密閉状の流体通過直線空間23を形成すれば良い。 As described above, if the upper outer cover 221 is provided with the first and second branch guiding portions 221a1,221b1 and the lower outer cover 222 is provided with the first and second branch guiding portions 222a1,222b1, a straight line is provided. The transport air can be evenly guided to the upper left and right and the lower left and right of the transport path 231. As the outer cover, both the upper outer cover 221 and the lower outer cover 222 are not provided, but the outer cover is provided only on one end, and air is returned to the first and second straight transfer walls 211 and 212. Only one row of holes 24 may be provided. In this case, at the other end where the outer cover is not provided, the space between the first straight line transport wall 211 and the second straight line transport wall 212 is closed with a shielding wall or the like so that the transport air does not leak. The space 23 may be formed.

エア帰還孔24を設けた第1,第2直線搬送壁211,212の外壁面211a,212a側には、上,下部外方カバー221,222の第1,第2外方誘導部221a2,221b2にて誘導された搬送用エアをエア帰還孔24へ導く帰還ガイド部25を設ける。帰還ガイド部25は、少なくともエア帰還孔24の上流側開口縁にエア導入開口25aが位置し、エア帰還孔24の下流側開口縁に向かって狭まる突出体で、その横断面は略三角形状とした(図2(C)を参照)。また、帰還ガイド部25の上流側の上下部は、乱流を生じやすい角部とせず、滑らかな曲面部で構成した。この上下2箇所の曲面部が、エア帰還孔24の下流側開口縁の上端部または下端部へ向かって徐々に収束することで、帰還ガイド部25の内面上部には上方誘導湾曲面が形成され、内面下部には下方誘導湾曲面が形成される。すなわち、エア導入開口25aから帰還ガイド部25内へ導かれ、上方誘導湾曲面に誘導された搬送用エアは、エア帰還孔24を抜けると上向きに広がり易い帰還流となり、下方誘導湾曲面に誘導された搬送用エアは、エア帰還孔24を抜けると下向きに広がり易い帰還流となる。なお、エア帰還孔24と帰還ガイド部25は、樹脂加工により第1,第2直線搬送壁211,212を形成するとき、同時に形成できる。無論、別体として形成した構造体をエア帰還孔24の縁部に沿って取り付けることにより、帰還ガイド部25を形成するようにしても良い。 On the outer wall surfaces 211a and 212a sides of the first and second straight transport walls 211 and 212 provided with the air return holes 24, the first and second outer guide portions 221a2 and 221b2 of the upper and lower outer covers 211 and 222 are provided. A return guide unit 25 is provided to guide the transport air guided by the above to the air return hole 24. The return guide portion 25 is a projecting body in which the air introduction opening 25a is located at least on the upstream opening edge of the air return hole 24 and narrows toward the downstream opening edge of the air return hole 24, and its cross section has a substantially triangular shape. (See FIG. 2 (C)). Further, the upper and lower portions on the upstream side of the return guide portion 25 are not formed as corner portions where turbulent flow is likely to occur, but are formed of smooth curved surfaces. The upper and lower curved surfaces gradually converge toward the upper end or the lower end of the downstream opening edge of the air return hole 24, so that an upward guide curved surface is formed on the upper part of the inner surface of the return guide portion 25. , A downwardly guided curved surface is formed on the lower part of the inner surface. That is, the transport air guided from the air introduction opening 25a into the return guide portion 25 and guided to the upward guidance curved surface becomes a return flow that easily spreads upward when passing through the air return hole 24, and is guided to the downward guidance curved surface. When the conveyed transport air passes through the air return hole 24, it becomes a return flow that tends to spread downward. The air return hole 24 and the return guide portion 25 can be formed at the same time when the first and second straight transfer walls 211 and 212 are formed by resin processing. Of course, the return guide portion 25 may be formed by attaching the structure formed as a separate body along the edge portion of the air return hole 24.

紙幣PMを搬送対象とし、上,下部外方カバー221,222に各々対応させて二列状にエア帰還孔24を設ける場合、帰還ガイド部25の上下幅はエア帰還孔24の搬送直交幅と一致し、帰還ガイド部25の横方向の幅はエア帰還孔24の搬送平行幅と一致する。前述したエア帰還孔24のサイズに対応させて、帰還ガイド部25の搬送直交幅を20~30〔mm〕程度、搬送平行幅を5~23〔mm〕程度にすると、帰還ガイド部25の突出量(エア導入開口25aの開口幅)は3~6〔mm〕程度が望ましい。エア帰還孔24から直線搬送路231へ流入する帰還流の流入角度(帰還流の流入方向と搬送方向とが成す鋭角)を15~30〔°〕の範囲で調整できるからである。帰還流が強い場合には、帰還流の流入角度を小さくして、帰還流が直線搬送路231の中央付近を流れる紙幣PMに到達するまでの距離を長くする。かくすれば、強すぎる帰還流の流下勢は紙幣PMへ到達するまでに減衰してゆき、程良い流下勢となった帰還流が紙幣PMに作用する。一方、帰還流が弱い場合には、帰還流の流入角度を大きくして、帰還流が直線搬送路231の中央付近を流れる紙幣PMに到達するまでの距離を短くする。かくすれば、帰還流の勢いが弱まる前に紙幣PMへ到達させることができ、紙幣PMを下流へ搬送する力を帰還流から与えることができる。 When the bill PM is to be transported and the air return holes 24 are provided in two rows corresponding to the upper and lower outer covers 221 and 222, the vertical width of the return guide portion 25 is the transport orthogonal width of the air return holes 24. They match, and the lateral width of the feedback guide section 25 matches the transport parallel width of the air feedback hole 24. Corresponding to the size of the air return hole 24 described above, when the transfer orthogonal width of the return guide unit 25 is set to about 20 to 30 [mm] and the transfer parallel width is set to about 5 to 23 [mm], the return guide unit 25 protrudes. The amount (opening width of the air introduction opening 25a) is preferably about 3 to 6 [mm]. This is because the inflow angle (acute angle formed by the inflow direction of the return flow and the transport direction) of the return flow flowing from the air return hole 24 to the straight transport path 231 can be adjusted in the range of 15 to 30 [°]. When the return flow is strong, the inflow angle of the return flow is reduced to increase the distance until the return flow reaches the banknote PM flowing near the center of the straight transport path 231. In this way, the flow force of the return flow that is too strong is attenuated by the time it reaches the banknote PM, and the return flow that has become a moderate flow force acts on the banknote PM. On the other hand, when the return flow is weak, the inflow angle of the return flow is increased to shorten the distance until the return flow reaches the banknote PM flowing near the center of the straight transport path 231. In this way, the banknote PM can be reached before the momentum of the return flow weakens, and the force for transporting the banknote PM downstream can be given from the return flow.

更に、本構成の直線搬送管2では、上,下部外方カバー221,222にそれぞれ設ける第1分岐誘導部221a1,222a1には、少なくとも第1分岐誘導空部232a内に第1方向誘導プレートとしての左誘導プレート26Lが突出する。一方、上,下部外方カバー221,222にそれぞれ設ける第2分岐誘導部221b1,222b1には、少なくとも第2分岐誘導空部232b内に第2方向誘導プレートとしての右誘導プレート26Rが突出する。左,右誘導プレート26L,26Rは、半円弧状の板材を弦方向に引き延ばした外観の板状体であり、一方の第1面261が上流側に、他方の第2面262が下流側に向くよう、第1,第2直線搬送壁211,212の上,下端縁211c,212c,211d,212dへ斜めに隙間無く当接させる。このため、左,右誘導プレート26L,26Rにおける弧状の曲縁部263は、第1,第2分岐誘導部221a1,221b1,222a1,222b1の凹状内面と密に接するような曲率に設定してある。そして、第1,第2分岐誘導部221a1,221b1,222a1,222b1に取り付けた左,右誘導プレート26L,26Rの平坦縁部264は、搬送用エアの送風方向WDとほぼ平行となり、直線搬送路231と第1,第2分岐誘導空部232a,232bの境界近傍に位置する。 Further, in the linear transport pipe 2 having this configuration, the first branch guide portions 221a1,222a1 provided on the upper and lower outer covers 221,222, respectively, are used as first-direction guide plates in at least the first branch guide empty portion 232a. The left guide plate 26L of the above protrudes. On the other hand, the right guide plate 26R as the second direction guide plate projects into at least the second branch guide empty portion 232b in the second branch guide portions 221b1,222b1 provided on the upper and lower outer covers 221 and 222, respectively. The left and right guide plates 26L and 26R are plate-like bodies having a semicircular arc-shaped plate stretched in the chord direction, with one first surface 261 on the upstream side and the other second surface 262 on the downstream side. The upper and lower end edges 211c, 212c, 211d, and 212d are diagonally and tightly contacted with the first and second straight transport walls 211 and 212 so as to face each other. Therefore, the arcuate curved edge portion 263 of the left and right guide plates 26L and 26R is set to have a curvature so as to be in close contact with the concave inner surface of the first and second branch guide portions 221a1,221b1,222a1,222b1. .. The flat edge portions 264 of the left and right guide plates 26L and 26R attached to the first and second branch guide portions 221a1,221b1,222a1,222b1 are substantially parallel to the blowing direction WD of the transport air, and are linear transport paths. It is located near the boundary between 231 and the first and second branch guidance empty portions 232a and 232b.

また、上部外方カバー221において、第1分岐誘導部221a1に設ける左誘導プレート26Lの上流側端部26aと、第2分岐誘導部221b1に設ける右誘導プレート26Rの上流側端部26aは、第1分岐誘導部221a1と第2分岐誘導部221b1との連結部にて当接、或いは近接させる。第1分岐誘導部221a1と第2分岐誘導部221b1との連結部は、第1,第2直線搬送壁211,212との間の壁間幅の中間位置となるので、左,右誘導プレート26L,26Rは、直線搬送路231から上方へ圧入しつつ下流へ向かう搬送用エアを二等分するV字状の楔として機能する。下部外方カバー222においても同様に、左,右誘導プレート26L,26Rは、第1分岐誘導部222a1と第2分岐誘導部222b1との連結部にて当接、或いは近接させる。 Further, in the upper outer cover 221, the upstream end portion 26a of the left guide plate 26L provided on the first branch guide portion 221a1 and the upstream end portion 26a of the right guide plate 26R provided on the second branch guide portion 221b1 are the first. The first branch guide portion 221a1 and the second branch guide portion 221b1 are brought into contact with each other or brought into close contact with each other at the connecting portion. The connecting portion between the first branch guiding portion 221a1 and the second branch guiding portion 221b1 is located at an intermediate position of the width between the walls between the first and second linear transport walls 211 and 212, so that the left and right guiding plates 26L , 26R functions as a V-shaped wedge that bisects the transport air heading downstream while being press-fitted upward from the straight transport path 231. Similarly, in the lower outer cover 222, the left and right guide plates 26L and 26R are brought into contact with each other or brought close to each other at the connecting portion between the first branch guide portion 222a1 and the second branch guide portion 222b1.

上部外方カバー221において、左誘導プレート26Lの下流側端部26bは、第1分岐誘導部221a1と第1外方誘導部221a2との連結部近傍に位置させる。同様に、右誘導プレート26Rの下流側端部26bは、第2分岐誘導部221b1と第2外方誘導部221b2との連結部近傍に位置させる。一方、下部外方カバー222において、左誘導プレート26Lの下流側端部26bは、第1分岐誘導部222a1と第1外方誘導部222a2との連結部近傍に位置させる。同様に、右誘導プレート26Rの下流側端部26bは、第2分岐誘導部222b1と第2外方誘導部222b2との連結部近傍に位置させる。かくすれば、第1,第2分岐誘導部221a1,221b1,222a1,222b1に各々設けた左,右誘導プレート26L,26Rにより、第1,第2分岐誘導空部232a,232bから第1,第2外方誘導空部233a,233bへ円滑に搬送流を誘導できる。 In the upper outer cover 221, the downstream end portion 26b of the left guide plate 26L is located near the connecting portion between the first branch guide portion 221a1 and the first outer guide portion 221a2. Similarly, the downstream end portion 26b of the right guide plate 26R is located near the connecting portion between the second branch guide portion 221b1 and the second outer guide portion 221b2. On the other hand, in the lower outer cover 222, the downstream end portion 26b of the left guide plate 26L is located near the connecting portion between the first branch guide portion 222a1 and the first outer guide portion 222a2. Similarly, the downstream end portion 26b of the right guide plate 26R is located near the connecting portion between the second branch guide portion 222b1 and the second outer guide portion 222b2. Thus, the left and right guide plates 26L and 26R provided in the first and second branch guide portions 221a1,221b1, 222a1,222b1 respectively, from the first and second branch guide empty portions 232a and 232b to the first and first. 2 Outward guidance The transport flow can be smoothly guided to the vacant portions 233a and 233b.

また、左,右誘導プレート26L,26Rは第1,第2直線搬送壁211,212と一体成形したり、接着、融着等の固定手法を用いて一体化したりすることで、第1,第2直線搬送壁211,212に対する左,右誘導プレート26L,26Rの配設位置を一定に保つことができる。加えて、左,右誘導プレート26L,26Rを第1,第2分岐誘導部221a1,221b1,222a1,222b1の第1,第2分岐誘導空部232a,232b内の適正位置へ入れると、第1,第2直線搬送壁211,212と上,下部外方カバー221,222も適正位置に保たれる。よって、第1,第2直線搬送壁211,212を所要位置に保持するステー等の保持構造を直線搬送路231内に設ける必要が無く、保持構造によって搬送用エアの流下勢を減衰させて、紙幣PMの搬送を不安定にするような不具合を効果的に回避できる。また、左誘導プレート26Lと右誘導プレート26Rを別体とせずに、一体のV形誘導プレートとしても良い。 In addition, the left and right guide plates 26L and 26R are integrally molded with the first and second straight transfer walls 211 and 212, or integrated by using fixing methods such as adhesion and fusion, so that the first and first plates are integrated. The arrangement positions of the left and right guide plates 26L and 26R with respect to the two straight transfer walls 211 and 212 can be kept constant. In addition, when the left and right guide plates 26L and 26R are placed in the proper positions in the first and second branch guide empty portions 232a and 232b of the first and second branch guide portions 221a1,221b1,222a1,222b1, the first , The second straight transfer wall 211,212 and the upper and lower outer covers 221,222 are also kept in proper positions. Therefore, it is not necessary to provide a holding structure such as a stay for holding the first and second straight transport walls 211 and 212 at the required positions in the straight transport path 231, and the holding structure attenuates the flow force of the transport air. It is possible to effectively avoid problems that make the transportation of banknotes PM unstable. Further, the left guide plate 26L and the right guide plate 26R may not be separated and may be integrated into a V-shaped guide plate.

第1,第2分岐誘導空部232a,232b内の適正位置に配置された左,右誘導プレート26L,26Rは、搬送用エアの流下勢の向きを左右へ分岐するように誘導して、第1,第2外方誘導空部233a,233bへ流入させる。これにより、第1,第2外方誘導空部233a,233bは直線搬送路231内より高圧となり、第1直線搬送壁211の外壁面211aと内壁面211bと間および第2直線搬送壁212の外壁面212aと内壁面212bと間に十分な圧力差が生ずる。この圧力差により、第1,第2直線搬送壁211,212に設けた各エア帰還孔24から直線搬送路231へ搬送用エアが戻る帰還流が生じ、第1直線搬送壁211側と第2直線搬送壁212側から均等に帰還流を受ける紙幣PMは直線搬送路231内を下流へ安定搬送されるようになる。 The left and right guide plates 26L and 26R arranged at appropriate positions in the first and second branch guidance voids 232a and 232b guide the direction of the flow of the transport air to the left and right to branch to the left and right, and the first and second branch guidance plates 26L and 26R. 1, Inflow into the second outer guidance space 233a, 233b. As a result, the pressure of the first and second outer guidance empty portions 233a and 233b becomes higher than that in the straight transport path 231, and the pressure is increased between the outer wall surface 211a and the inner wall surface 211b of the first straight transport wall 211 and the second straight transport wall 212. A sufficient pressure difference is generated between the outer wall surface 212a and the inner wall surface 212b. Due to this pressure difference, a return flow is generated in which the transfer air returns from the air return holes 24 provided in the first and second straight transfer walls 211 and 212 to the straight transfer path 231, and the transfer air returns to the first straight transfer wall 211 side and the second. The banknote PM that receives the return flow evenly from the straight transport wall 212 side will be stably transported downstream in the straight transport path 231.

以上のように構成した本実施形態の紙幣搬送装置1では、左,右誘導プレート26L,26Rを設けることによって強い帰還流を生じさせ、直線搬送管2内で紙幣PMの安定した搬送を行うことができる。左,右誘導プレート26L,26Rを備えた直線搬送管2における帰還流の発生原理を図3(A),(B)に示す。なお、図3(B)は、上、下部外方カバー221,222の第2分岐誘導空部232bおよび第2外方誘導空部233bを透かして、第2直線搬送壁212の外壁面212a側を見た状態を示す。 In the bill transport device 1 of the present embodiment configured as described above, a strong feedback flow is generated by providing the left and right guide plates 26L and 26R, and the bill PM is stably transported in the straight transport pipe 2. Can be done. FIGS. 3 (A) and 3 (B) show the principle of generation of the feedback flow in the linear transport pipe 2 provided with the left and right guide plates 26L and 26R. In addition, FIG. 3B shows the outer wall surface 212a side of the second straight line transport wall 212 through the second branch guide vacant portion 232b and the second outer guide vacant portion 233b of the upper and lower outer covers 221,222. Shows the state of seeing.

このように左,右誘導プレート26L,26Rを配置すると、直線搬送路231から上,下部外方カバー221,222へ圧入された搬送用エアは、左,右誘導プレート26L,26Rの第1面261に沿って、滑らかに第1,第2直線搬送壁211,212の外壁面211a,212a側へ誘導される。 When the left and right guide plates 26L and 26R are arranged in this way, the transport air pressed into the upper and lower outer covers 221,222 from the straight transport path 231 is the first surface of the left and right guide plates 26L and 26R. Along 261 it is smoothly guided to the outer wall surfaces 211a and 212a of the first and second straight line transport walls 211 and 212.

また、左,右誘導プレート26L,26Rは、第1,第2直線搬送壁211,212へ対向状に設けた各エア帰還孔24にそれぞれ対応した配置となるように、左,右誘導プレート26L,26Rの配設間隔はエア帰還孔24の配設間隔と同じにした。例えば、左,右誘導プレート26L,26Rの上流側端部26aは、エア帰還孔24よりも適宜上流側(エア帰還孔24の上流側縁部から水平距離10~20〔mm〕程度)に位置させる。また、左,右誘導プレート26L,26Rの下流側端部26bは、エア帰還孔24よりも適宜下流側(エア帰還孔24の下流側縁部から水平距離15~25〔mm〕程度)に位置させる。このように、各エア帰還孔24に対応させて左,右誘導プレート26L,26Rを適正位置に設けると、左,右誘導プレート26L,26Rにより誘導された搬送用エアが各帰還ガイド部25のエア導入開口25aへ導入される状態はほぼ等しくなり、各エア帰還孔24から直線搬送路231へ戻される帰還流の状態もほぼ等しくなる。 Further, the left and right guide plates 26L and 26R are arranged so as to correspond to the air return holes 24 provided so as to face the first and second straight transfer walls 211 and 212, respectively, so that the left and right guide plates 26L and 26R are arranged. , 26R were arranged at the same intervals as the air return holes 24. For example, the upstream end portions 26a of the left and right guide plates 26L and 26R are appropriately located upstream of the air return hole 24 (horizontal distance of about 10 to 20 [mm] from the upstream side edge of the air return hole 24). Let me. Further, the downstream end portions 26b of the left and right guide plates 26L and 26R are appropriately located on the downstream side of the air return hole 24 (horizontal distance of about 15 to 25 [mm] from the downstream side edge portion of the air return hole 24). Let me. In this way, when the left and right guide plates 26L and 26R are provided at appropriate positions corresponding to the air return holes 24, the transport air guided by the left and right guide plates 26L and 26R is supplied to each return guide unit 25. The state of being introduced into the air introduction opening 25a is almost the same, and the state of the return flow returned from each air return hole 24 to the straight transfer path 231 is also almost the same.

例えば、日本の紙幣PMを搬送するために、30~60〔mm〕間隔でエア帰還孔24を設けた場合、左,右誘導プレート26L,26Rも同じ間隔(30~60〔mm〕間隔)で設ければ、左,右誘導プレート26L,26Rにより誘導された搬送用エアが各帰還ガイド部25のエア導入開口25aへ導入される状態はほぼ等しくなる。よって、各エア帰還孔24から直線搬送路231へ偏りのない帰還流を導入することができ、紙幣PMの搬送状態を安定化するのに好適である。また、左,右誘導プレート26L,26Rの下流側端部26bは、対応するエア帰還孔24の下流側縁部よりも下流側に位置するので、下流側端部26bよりも下流に位置する最先のエア帰還孔24へ搬送用エアが導入されると、帰還流の効率(エア帰還孔24から直線搬送路231へ戻される搬送用エアの風量や風速など)を上げ易い。すなわち、左,右誘導プレート26L,26Rに導かれて第1,第2直線搬送壁211,212の外壁面211a,212a側へ回り込んだ搬送用エアが高確率で通過する流路範囲にエア導入開口25aを位置させることが望ましい。このため、左,右誘導プレート26L,26Rの下流側端部26bから下流に位置する最先のエア導入開口25aまでの水平距離は、10〔mm〕程度離しておくことが望ましい。 For example, when air return holes 24 are provided at intervals of 30 to 60 [mm] in order to convey Japanese banknote PM, the left and right guide plates 26L and 26R are also provided at the same interval (30 to 60 [mm] intervals). If provided, the states in which the transport air guided by the left and right guide plates 26L and 26R are introduced into the air introduction opening 25a of each return guide portion 25 are substantially equal. Therefore, an unbiased feedback flow can be introduced from each air feedback hole 24 to the straight transfer path 231, which is suitable for stabilizing the transfer state of the banknote PM. Further, since the downstream end portions 26b of the left and right guide plates 26L and 26R are located on the downstream side of the downstream side edge portion of the corresponding air return hole 24, the most downstream end portion 26b is located on the downstream side end portion 26b. When the transfer air is introduced into the air return hole 24, it is easy to increase the efficiency of the return flow (the air volume and speed of the transfer air returned from the air return hole 24 to the straight transfer path 231). That is, the air is in the flow path range in which the transport air guided by the left and right guide plates 26L and 26R and wraps around to the outer wall surfaces 211a and 212a of the first and second straight transport walls 211 and 212 passes with high probability. It is desirable to position the introduction opening 25a. Therefore, it is desirable that the horizontal distance from the downstream end portions 26b of the left and right guide plates 26L and 26R to the earliest air introduction opening 25a located downstream is about 10 [mm].

上述したように、直線搬送管2へ供給される搬送用エアの圧力によって流体通過直線空間23の上部および下部で上流から下流へ流れる搬送用エアを、左,右誘導プレート26L,26Rによって第1,第2分岐誘導空部232a,232bから第1,第2外方誘導空部233a,233bへ滑らかに誘導できる。第1,第2分岐誘導空部232a,232bから流入する搬送用エアにより、第1,第2外方誘導空部233a,233bは直線搬送路231より高圧となるので、エア帰還孔24を通って直線搬送路231へ戻る搬送用エアの流れが帰還流となる。すなわち、左,右誘導プレート26L,26Rを設けた直線搬送管2では、搬送方向へ流れつつ互いに向かい合う強い帰還流を直線搬送路231内に生じさせることができる。直線搬送路231内での帰還流は徐々に弱まるが、直線搬送路231内の幅方向中央付近を通過する紙幣PMまで届き、紙幣PMを下流へ移送する力を紙幣PMの両面から効率良く与えることができる。 As described above, the transport air flowing from upstream to downstream at the upper and lower parts of the fluid passage linear space 23 due to the pressure of the transport air supplied to the straight transport pipe 2 is first fed by the left and right guide plates 26L and 26R. , The second branch guidance vacant portion 232a, 232b can be smoothly guided to the first and second outer guidance vacant portions 233a, 233b. Due to the transport air flowing in from the first and second branch guidance vacant portions 232a and 232b, the first and second outer guidance vacant portions 233a and 233b have a higher pressure than the linear transport path 231 and therefore pass through the air return hole 24. The flow of the transport air returning to the straight transport path 231 becomes the return flow. That is, in the straight transfer pipe 2 provided with the left and right guide plates 26L and 26R, strong feedback flows facing each other while flowing in the transfer direction can be generated in the straight transfer path 231. The return flow in the straight line transport path 231 gradually weakens, but reaches the banknote PM passing near the center in the width direction in the straight line transfer path 231 and efficiently gives the force to transfer the banknote PM downstream from both sides of the banknote PM. be able to.

ここで、各エア帰還孔24から直線搬送路231へ流入した帰還流の挙動を図4に基づいて説明する。なお、図4(A)~(C)は、直線搬送管2の上部外方カバー221を搬送方向へ略水平に切り欠いて、直線搬送路231と第1,第2外方誘導空部233a,233bを上方から見た状態を示す。図4(A)~(C)において、第1,第2分岐誘導空部232a,232bから第1,第2外方誘導空部233a,233bへ導かれた循環流Fgが帰還ガイド部25のエア導入開口25aから導入されて帰還流となる。また、エア導入開口25aへ導入されずに帰還ガイド部25の下流側へ至った搬送用エアの一部は、更に下流のエア帰還孔24から直線搬送路231へ導入される帰還流となる可能性がある。 Here, the behavior of the feedback flow flowing from each air feedback hole 24 into the straight transfer path 231 will be described with reference to FIG. In addition, in FIGS. , 233b is shown as viewed from above. In FIGS. 4A to 4C, the circulating flow Fg guided from the first and second branch guidance vacant portions 232a and 232b to the first and second outer guidance vacant portions 233a and 233b is the return guide portion 25. It is introduced from the air introduction opening 25a and becomes a feedback flow. Further, a part of the transport air that has reached the downstream side of the return guide unit 25 without being introduced into the air introduction opening 25a can be a return flow introduced from the air return hole 24 further downstream to the straight transfer path 231. There is sex.

図4(A)に示すのは、理想的な設計の直線搬送管2であり、第1,第2直線搬送壁211,212の各エア帰還孔24からの帰還流によって、内壁面211b,212bに沿った側方流Fr,Frが形成され、これらに挟まれて搬送方向へ直進する中央流Fcが形成される。直線搬送管2においては、搬送用エアが各エア帰還孔24の開口面へ上流から流れ込んで、帰還流と干渉して乱流を生ずることはないので、帰還ガイド部25の角度調整により制御できる流入角度で帰還流を中央流Fc内へ到達させることができる。したがって、直線搬送管2では、紙幣PMの両側面近傍まで帰還流を到達させることで、紙幣PMが中央流Fc内を左右に大きく蛇行することを抑制し、略中央へ安定的に保持できる。更に、直線搬送管2では、紙幣PMの両側面近傍まで到達する帰還流により、紙幣PMを搬送方向(下流)へ向かわせる力を与えられるので、紙幣PMは効率良く搬送されることとなる。 FIG. 4A shows an ideally designed straight line transfer tube 2, and the inner wall surfaces 211b and 212b are provided by the return flow from the air return holes 24 of the first and second straight line transfer walls 211 and 212. Lateral flows Fr and Fr are formed along the above, and a central flow Fc that is sandwiched between them and travels straight in the transport direction is formed. In the straight transfer pipe 2, the transfer air does not flow into the opening surface of each air return hole 24 from the upstream and interfere with the return flow to generate turbulent flow, so that the control can be performed by adjusting the angle of the return guide unit 25. The return flow can reach the central flow Fc at the inflow angle. Therefore, in the straight line transport pipe 2, by allowing the return flow to reach the vicinity of both side surfaces of the banknote PM, it is possible to prevent the banknote PM from meandering largely to the left and right in the central flow Fc, and to stably hold the banknote PM substantially in the center. Further, in the straight line transfer pipe 2, the return flow reaching near both side surfaces of the banknote PM gives a force to direct the banknote PM in the transport direction (downstream), so that the banknote PM is efficiently transported.

ただし、紙幣PMの紙面へ両側から到達する帰還流の流速は、強過ぎたり、弱過ぎたりしない、程良い流速が望ましい。図4(B)に示すのは、十分な帰還流が得られない設計となった直線搬送管2′であり、内壁面211b,212bに沿った両サイドの側方流Fr,Frが弱いために、中央流Fcが左右に広がってしまった状態である。直線搬送管2′においては、搬送用エアが各エア帰還孔24の開口面へ上流から流れ込んでも、帰還流と干渉して有害な乱流を生じる心配はない反面、帰還流を中央流Fc内中心付近の紙幣PMまで到達させることは困難である。直線搬送管2′のように、中央流Fc内中心付近の紙幣PMの両側面へ帰還流を到達させることができないと、上述した直線搬送管2のような高い搬送効率は得難い。 However, it is desirable that the flow velocity of the return flow reaching the paper surface of the banknote PM from both sides is not too strong or too weak, and is moderate. FIG. 4B shows a linear transport pipe 2'designed so that a sufficient feedback flow cannot be obtained, and the side currents Fr and Fr on both sides along the inner wall surfaces 211b and 212b are weak. In addition, the central flow Fc has spread to the left and right. In the straight transfer pipe 2', even if the transfer air flows into the opening surface of each air return hole 24 from the upstream, there is no concern that it interferes with the return flow and causes a harmful turbulent flow, but the return flow is inside the central flow Fc. It is difficult to reach the banknote PM near the center. If the return flow cannot reach both sides of the banknote PM near the center of the central flow Fc as in the straight line transfer tube 2', it is difficult to obtain the high transfer efficiency as in the straight line transfer tube 2 described above.

また、直線搬送管2′においては、帰還流が弱いために内壁面211b,212b付近にしか影響を与えられないので、紙幣PMは左右に広がった中央流Fc内を左右に大きく蛇行しながら流れてゆく可能性が高く、紙幣PMは不安定な状態となってしまう。さらに、なんらかの理由で紙幣PMが内壁面211b,212bに接触してエア帰還孔24を塞いでしまうと、帰還流が発生しなくなり、そのまま内壁面211b,212bに紙幣PMが張り付いてしまう危険性がある。そうなると、外部から力を加えない限り、紙幣PMは内壁面211b,212bから外れないため、搬送されなくなってしまう。 Further, in the straight line transfer pipe 2', since the return flow is weak, it can affect only the vicinity of the inner wall surfaces 211b and 212b, so that the banknote PM flows while meandering largely to the left and right in the central flow Fc spreading to the left and right. There is a high possibility that the banknote PM will be in an unstable state. Further, if the banknote PM comes into contact with the inner wall surfaces 211b and 212b and blocks the air return hole 24 for some reason, the return flow does not occur and there is a risk that the banknote PM will stick to the inner wall surfaces 211b and 212b as it is. There is. In that case, the banknote PM will not come off from the inner wall surfaces 211b and 212b unless a force is applied from the outside, so that the banknote PM will not be transported.

一方、図4(C)に示すのは、強すぎる帰還流がエア帰還孔24より直線搬送路231内へ流入する設計となった直線搬送管2″であり、搬送用エアが各エア帰還孔24の開口面へ上流から流れ込んで、強い帰還流と干渉して渦状の乱流を生じてしまった状態である。この乱流の影響で、直線搬送路231の中央付近を流れる紙幣PMには細かな振動が繰り返し生じるため、効率的な搬送は実現できない。 On the other hand, FIG. 4C shows a linear transfer pipe 2 ″ designed so that a too strong feedback flow flows into the linear transfer path 231 from the air return hole 24, and the transfer air is provided in each air return hole. It is in a state where it has flowed into the opening surface of 24 from the upstream and interferes with a strong feedback flow to generate a vortex-like turbulent flow. Efficient transport cannot be achieved because small vibrations occur repeatedly.

エア帰還孔24から直線搬送路231へ流入する帰還流が強い場合には、帰還流が直線搬送路231の中央付近を流れる紙幣PMに到達するまでの距離を長くすれば、紙幣PMに到達する帰還流の流速を抑制できる。また、エア帰還孔24から直線搬送路231へ流入する帰還流が弱い場合には、帰還流の流入角度を大きくして、帰還流が直線搬送路231の中央付近を流れる紙幣PMに到達するまでの距離を短くすれば、紙幣PMに到達する帰還流の流速を高めることができる。 When the return flow flowing from the air return hole 24 into the straight line transport path 231 is strong, the bank note PM can be reached by increasing the distance until the return flow reaches the bank note PM flowing near the center of the straight line transfer path 231. The flow velocity of the return flow can be suppressed. If the return flow flowing from the air return hole 24 into the straight line transfer path 231 is weak, increase the inflow angle of the return flow until the return flow reaches the banknote PM flowing near the center of the straight line transfer path 231. If the distance between the two is shortened, the flow velocity of the return flow reaching the banknote PM can be increased.

ただし、帰還流を直線搬送路231の中央付近へ届かせるために流入角度を大きくする(90〔°〕に近づける)と、搬送方向へ向かわせる力が弱くなり、本来の搬送機能が損なわれる可能性がある。そこで、極端に帰還流の流速が弱い場合には、上述した左,右誘導プレート26L,26Rを用いるなど、別の手法で帰還流の効率を高めるようにすることが望ましい。例えば、帰還流の効率を向上させるために、第1,第2外方誘導空部233a,233bの左右幅を狭めて、帰還ガイド部25との隙間を小さくし、その隙間から下流側へ通り抜ける搬送用エアの量を低減させてもよい。具体的には、第1,第2外方誘導部221a2,221b2の内面と各帰還ガイド部25との間、および第1,第2外方誘導部222a2,222b2の内面と各帰還ガイド部25との間に生ずる空隙を狭くすると、より多くの搬送用エアを帰還ガイド部25のエア導入開口25aへ導くことができる。 However, if the inflow angle is increased (approached to 90 [°]) in order to allow the return flow to reach near the center of the straight transport path 231, the force directed in the transport direction is weakened, and the original transport function may be impaired. There is sex. Therefore, when the flow velocity of the feedback flow is extremely weak, it is desirable to improve the efficiency of the feedback flow by another method such as using the left and right guide plates 26L and 26R described above. For example, in order to improve the efficiency of the return flow, the left and right widths of the first and second outer guidance empty portions 233a and 233b are narrowed to reduce the gap with the feedback guide portion 25, and the gap is passed through the gap to the downstream side. The amount of transport air may be reduced. Specifically, between the inner surface of the first and second outer guide portions 221a2 and 221b2 and each feedback guide portion 25, and the inner surface of the first and second outer guide portions 222a2 and 222b2 and each feedback guide portion 25. By narrowing the gap generated between the and, more transport air can be guided to the air introduction opening 25a of the return guide portion 25.

更には、第1,第2外方誘導部221a2,221b2および第1,第2外方誘導部222a2,222b2を各帰還ガイド部25と一体化させて作成すれば、第1,第2外方誘導空部233a,233bとエア導入開口25aの左右方向開口幅を一致させた構造とすることもできる。かくすれば、第1,第2外方誘導部221a2,221b2および第1,第2外方誘導部222a2,222b2の内面に沿って下流側へ流れる搬送用エアが、段差無く帰還ガイド部25のエア導入開口25aへ導入されるので、帰還流の効率を一層高められる。 Further, if the first and second outer guiding portions 221a2 and 221b2 and the first and second outer guiding portions 222a2 and 222b2 are integrated with the respective return guide portions 25, the first and second outer guiding portions are formed. It is also possible to have a structure in which the widths of the guided air openings 233a and 233b and the air introduction opening 25a in the left-right direction are matched. In this way, the transport air flowing downstream along the inner surfaces of the first and second outer guide portions 221a2 and 221b2 and the first and second outer guide portions 222a2 and 222b2 flows to the return guide portion 25 without steps. Since it is introduced into the air introduction opening 25a, the efficiency of the return flow can be further improved.

また、上部外方カバー221の第1,第2外方誘導部221a2,221b2を各帰還ガイド部25と一体化させて作成するときに、各帰還ガイド部25の下部と終端屈曲部221a2-e,221b2-eとを一致させておけば、各帰還ガイド部25の下側に隙間が無くなる。すなわち、帰還ガイド部25の下側の隙間から下流側へ通り抜ける搬送用エアをなくすことで、エア導入開口25aに導入される搬送用エアの量を増やし、帰還流の効率を一層高めることが可能になる。同様に、下部外方カバー222の第1,第2外方誘導部222a2,222b2を各帰還ガイド部25と一体化させて作成するときに、各帰還ガイド部25の上部と終端屈曲部222a2-e,222b2-eとを一致させておけば、各帰還ガイド部25の上側に隙間が無くなる。すなわち、帰還ガイド部25の上側の隙間からから下流側へ通り抜ける搬送用エアをなくすことで、エア導入開口25aに導入される搬送用エアの量を増やし、帰還流の効率を一層高めることが可能になる。 Further, when the first and second outer guide portions 221a2 and 221b2 of the upper outer cover 221 are integrally formed with the respective return guide portions 25, the lower portion of each return guide portion 25 and the end bending portion 221a2-e are created. If, 221b2-e and 221b2-e are matched, there will be no gap on the lower side of each return guide portion 25. That is, by eliminating the transport air passing through the gap on the lower side of the feedback guide portion 25 to the downstream side, it is possible to increase the amount of transport air introduced into the air introduction opening 25a and further improve the efficiency of the return flow. become. Similarly, when the first and second outer guide portions 222a2 and 222b2 of the lower outer cover 222 are integrally formed with the respective return guide portions 25, the upper portion and the end bending portion 222a2- of each return guide portion 25 are formed. If e and 222b2-e are matched, there will be no gap on the upper side of each return guide unit 25. That is, by eliminating the transport air that passes from the gap on the upper side of the feedback guide portion 25 to the downstream side, it is possible to increase the amount of transport air introduced into the air introduction opening 25a and further improve the efficiency of the return flow. become.

このように、上述した構造の直線搬送管2を用いれば、搬送対象の紙幣PMは、相対向する帰還流によって直線搬送路231内の略中央にホールドされ、左右にぶれることなく搬送方向へ移送されてゆくので、紙幣PMの状態(癖、皺、よれ、こし等)に影響されることなく、安定搬送が可能となる。更に、左,右誘導プレート26L,26Rを設けることで得られた強い帰還流を、小さい流入角度で直線搬送路231へ流入させることにより、搬送速度を上げて、紙幣PMの搬送効率を高められるという利点もある。また、帰還流としてエア帰還孔24より戻った搬送用エアは、直線搬送路231内を下流へ流されつつ、上部または下部の第1,第2分岐誘導空部232a,232bへ誘導され、第1,第2外方誘導空部233a,233bからエア帰還孔24を経て再び帰還流となる螺旋状の流れ(以下、「螺旋流」という。)が途切れることなく続く。このように、直線搬送管2の上下左右4か所には、螺旋流が連続的に発生するので、紙幣PMの安定搬送に一層の効果がある。 As described above, if the linear transport pipe 2 having the above-mentioned structure is used, the banknote PM to be transported is held substantially in the center of the straight transport path 231 by the opposing return flows, and is transferred in the transport direction without shaking from side to side. Therefore, stable transportation is possible without being affected by the state of the banknote PM (habit, wrinkles, twists, strains, etc.). Further, by allowing the strong feedback flow obtained by providing the left and right guide plates 26L and 26R to flow into the straight transfer path 231 at a small inflow angle, the transfer speed can be increased and the transfer efficiency of the banknote PM can be improved. There is also an advantage. Further, the transport air returned from the air return hole 24 as a feedback flow is guided downstream in the straight transport path 231 and guided to the first and second branch guide vacant portions 232a and 232b at the upper or lower part, and is the first. 1. A spiral flow (hereinafter referred to as “spiral flow”) that becomes a return flow again from the second outer guidance voids 233a and 233b through the air return hole 24 continues without interruption. As described above, since the spiral flow is continuously generated at the four places on the upper, lower, left, and right sides of the straight transfer pipe 2, it is more effective for the stable transfer of the banknote PM.

しかしながら、上述した直線搬送管2で紙幣PMを搬送する場合、搬送中の紙幣PMが何らかの要因によって上下に振動した際に、上,下部外方カバー221,222、或いは左,右誘導プレート26L,26Rに接触してしまう危険性がある。接触により紙幣PMが傷んだり裂けたりすると、帰還流による安定搬送が難しくなる可能性がある。そこで、図6及び図7に示す第2構成例の直線搬送管2Bにおいては、上,下部外方カバー221,222や左,右誘導プレート26L,26Rに紙幣PMが接触することを防止する搬送ガイド27を設けた。 However, when the banknote PM is transported by the above-mentioned straight line transport tube 2, when the banknote PM being transported vibrates up and down for some reason, the upper and lower outer covers 221 and 222, or the left and right guide plates 26L, There is a risk of contact with 26R. If the banknote PM is damaged or torn due to contact, stable transportation by the return flow may be difficult. Therefore, in the linear transport pipe 2B of the second configuration example shown in FIGS. 6 and 7, the transport that prevents the banknote PM from coming into contact with the upper and lower outer covers 221,222 and the left and right guide plates 26L and 26R. A guide 27 was provided.

搬送ガイド27は、少なくとも、左,右誘導プレート26L,26Rよりも直線搬送路231側に設ける。本構成例では、第1直線搬送壁211および第2直線搬送壁212の上端縁211c,212cと左,右誘導プレート26L,26Rとの間、第1直線搬送壁211および第2直線搬送壁212の下端縁211d,212dと左,右誘導プレート26L,26Rとの間に設けた。これらの位置に配した搬送ガイド27は、紙幣PMが第1,第2分岐誘導部221a1,221b1,222a1,222b1側へ入り込むことを防ぐと共に、搬送用エアが第1,第2分岐誘導部221a1,221b1,222a1,222b1へ流入することを許容する。 The transport guide 27 is provided at least on the straight transport path 231 side of the left and right guide plates 26L and 26R. In this configuration example, between the upper end edges 211c and 212c of the first straight transport wall 211 and the second straight transport wall 212 and the left and right guide plates 26L and 26R, the first straight transport wall 211 and the second straight transport wall 212. It was provided between the lower end edges 211d and 212d of the above and the left and right guide plates 26L and 26R. The transport guides 27 arranged at these positions prevent the bill PM from entering the first and second branch guide portions 221a1,221b1, 222a1,222b1 and the transport air from the first and second branch guide portions 221a1. , 221b1,222a1,222b1 is allowed to flow into.

搬送ガイド27は、長尺で平行な第1支持材271と第2支持材272の間に、所要間隔(紙幣PMの搬送方向長さよりも十分に短い間隔)で薄板状の遮蔽体273を架け渡した梯子状の外観である。遮蔽体273は、紙幣PMにおける第1,第2搬送平行辺PM1a,PM1bの長さ(長辺の長さ)よりも短い間隔で搬送方向に複数設ければ、紙幣PMが第1,第2分岐誘導部221a1,221b1,222a1,222b1側へ入り込むことを防ぐ遮蔽部として機能する。そして、隣接する遮蔽体273の間に形成される空間は、搬送用エアが第1,第2分岐誘導部221a1,221b1,222a1,222b1へ流入することを許容する通空部27aとして機能する。 The transport guide 27 has a thin plate-shaped shield 273 laid between the long and parallel first support member 271 and the second support member 272 at a required interval (a interval sufficiently shorter than the length in the transport direction of the banknote PM). It is the appearance of the ladder that was handed over. If a plurality of shields 273 are provided in the transport direction at intervals shorter than the lengths (lengths of the long sides) of the first and second transport parallel sides PM1a and PM1b in the bill PM, the bill PMs are the first and second. It functions as a shielding portion for preventing entry into the branch guiding portion 221a1,221b1,222a1,222b1 side. The space formed between the adjacent shields 273 functions as an air passage portion 27a that allows transport air to flow into the first and second branch guide portions 221a1,221b1,222a1,222b1.

搬送ガイド27の作成手法は特に限定されず、1〔mm〕厚程度の金属製板材を加工することで、十分な強度を持たせつつ簡易に作成してもよい。また、メッシュ構造の金網なども、紙幣PMに対する遮蔽機能と、搬送用エアに対する透過機能を同時に実現できるので、搬送ガイド27として利用できる。なお、第1,第2直線搬送壁211,212あるいは左,右誘導プレート26L,26Rと搬送ガイド27を樹脂等で一体成形することも可能である。第1,第2直線搬送壁211,212の上端縁211c,212c側に跨がるように複数の遮蔽体273を一体成形すれば、遮蔽体273が第1,第2直線搬送壁211,212の対向間隔を適正に保持するスペーサとして機能し、直線搬送管2Bの強度を高める上でも効果的である。さらに、第1,第2直線搬送壁211,212と搬送ガイド27に加えて、左,右誘導プレート26L,26Rも樹脂等で一体成形すれば、第1,第2直線搬送壁211,212と左,右誘導プレート26L,26Rとの取り付け作業が不要で、生産効率を高められる。しかも、左,右誘導プレート26L,26Rは、第1,第2直線搬送壁211,212の上,下端縁211c,212c,211d,212dに加えて、搬送ガイド27とも一体化するので、左,右誘導プレート26L,26Rによる第1,第2直線搬送壁211,212の保持強度も高められる。 The method for creating the transport guide 27 is not particularly limited, and a metal plate material having a thickness of about 1 [mm] may be easily created while having sufficient strength. Further, a wire mesh having a mesh structure or the like can be used as a transport guide 27 because it can simultaneously realize a shielding function for bill PM and a permeation function for transport air. It is also possible to integrally mold the first and second straight transfer walls 211 and 212 or the left and right guide plates 26L and 26R and the transfer guide 27 with resin or the like. If a plurality of shields 273 are integrally molded so as to straddle the upper end edges 211c and 212c of the first and second straight transport walls 211 and 212, the shield 273 becomes the first and second straight transport walls 211 and 212. It functions as a spacer that appropriately holds the facing distance between the two, and is also effective in increasing the strength of the linear transfer pipe 2B. Further, if the left and right guide plates 26L and 26R are integrally molded with resin or the like in addition to the first and second straight transport walls 211 and 212 and the transport guide 27, the first and second straight transport walls 211 and 212 can be obtained. There is no need to attach the left and right guide plates 26L and 26R, and production efficiency can be improved. Moreover, the left and right guide plates 26L and 26R are integrated with the transport guide 27 in addition to the upper and lower edge edges 211c, 212c, 211d and 212d of the first and second straight transport walls 211 and 212, so that the left and right guide plates 26L and 26R are integrated with the transport guide 27. The holding strength of the first and second straight transfer walls 211 and 212 by the right guide plates 26L and 26R is also enhanced.

上述した搬送ガイド27を第1,第2直線搬送壁211,212の上端縁211c,212c側および下端縁211d,212d側に各々設けることで、紙幣PMが、上,下部外方カバー221,222、或いは左,右誘導プレート26L,26Rに接触してしまう危険性を確実に排除できる。しかしながら、搬送ガイド27の遮蔽体273は、搬送用エアが直線搬送路231から第1,第2分岐誘導空部232a,232bへ流入することを阻害し、帰還流の効率を下げてしまう可能性がある。そこで、直線搬送管2Bに設ける遮蔽体273は、断面が略四角形状の単純な板材とせずに、搬送用エアの勢いをなるべく削がないような形状とした。 By providing the above-mentioned transport guides 27 on the upper end edges 211c and 212c sides and the lower end edges 211d and 212d of the first and second straight transport walls 211 and 212, respectively, the banknote PM can be covered on the upper and lower outer covers 221,222. Alternatively, the risk of contact with the left and right guide plates 26L and 26R can be reliably eliminated. However, the shielding body 273 of the transport guide 27 may prevent the transport air from flowing from the straight transport path 231 into the first and second branch guide vacant portions 232a and 232b, thereby reducing the efficiency of the return flow. There is. Therefore, the shield 273 provided on the straight transfer pipe 2B is not a simple plate material having a substantially square cross section, but has a shape so that the force of the transfer air is not reduced as much as possible.

遮蔽体273の具体的な板構造を、図6に示す。遮蔽体273は、直線搬送路231に臨む内面部2731と、その対向面である外面部2732と、上流側で内面部2731と外面部2732に連なる上流側面部2733と、下流側で内面部2731と外面部2732に連なる下流側面部2734を備える。そして、上流側面部2733と下流側面部2734は、内面部2731及び外面部2732に直交せず、上流から下流に向かって傾斜する誘導傾斜面とする。すなわち、上流側面部2733は、直線搬送路231側の内側縁部2733aよりも第1,第2分岐誘導部221a1,221b1,222a1,222b1側の外側縁部2733bが下流に位置する。同様に、下流側面部2734は、直線搬送路231側の内側縁部2734aよりも第1,第2分岐誘導部221a1,221b1,222a1,222b1側の外側縁部2734bが下流に位置する。 The specific plate structure of the shield 273 is shown in FIG. The shield 273 includes an inner surface portion 2731 facing the straight transport path 231, an outer surface portion 2732 facing the inner surface portion 2732, an upstream side surface portion 2733 connected to the inner surface portion 2731 and the outer surface portion 2732 on the upstream side, and an inner surface portion 2731 on the downstream side. A downstream side surface portion 2734 connected to the outer surface portion 2732 is provided. The upstream side surface portion 2733 and the downstream side surface portion 2734 are guided inclined surfaces that are not orthogonal to the inner surface portion 2731 and the outer surface portion 2732 and are inclined from the upstream to the downstream. That is, in the upstream side surface portion 2733, the outer edge portion 2733b on the first and second branch guide portions 221a1,221b1,222a1,222b1 side is located downstream of the inner edge portion 2733a on the straight line transport path 231 side. Similarly, in the downstream side surface portion 2734, the outer edge portion 2734b on the first and second branch guide portions 221a1,221b1,222a1,222b1 side is located downstream of the inner edge portion 2734a on the straight transport path 231 side.

このように、上流側面部2733および下流側面部2734を誘導傾斜面とすれば、隣り合う2つの遮蔽体273の間に形成される通空部27aは、直線搬送路231から搬送用エアを適宜な流入角度(誘導傾斜面の傾斜角度)で通過させることが可能となる。よって、第1,第2分岐誘導部221a1,221b1,222a1,222b1へ誘導された搬送用エアは、搬送方向の流下勢が著しく削がれることなく通空部27aを通過できるので、帰還流の効率が低下することを効果的に抑制できる。 As described above, if the upstream side surface portion 2733 and the downstream side surface portion 2734 are used as induction inclined surfaces, the air passage portion 27a formed between the two adjacent shields 273 appropriately draws air for transportation from the straight transportation path 231. It is possible to pass through at an appropriate inflow angle (inclination angle of the induction inclined surface). Therefore, the transport air guided to the first and second branch guide portions 221a1,221b1,222a1,222b1 can pass through the air passage portion 27a without significantly reducing the flow force in the transport direction, so that the return flow can be flown. It is possible to effectively suppress the decrease in efficiency.

なお、本構成例の直線搬送管2Bで用いた搬送ガイド27は、上部外方カバー221側と下部外方カバー222側で共有できる。例えば、第1直線搬送壁211の下端縁211dに第1支持材271を、第2直線搬送壁212の下端縁212dに第2支持材272をそれぞれ配置すれば、遮蔽体273の上,下流側面部2733,2734が下向きの誘導傾斜面となるように、下部外方カバー222側へ搬送ガイド27を取り付けられる。その逆に、第1直線搬送壁211の上端縁211cに第2支持材272を、第2直線搬送壁212の上端縁212cに第1支持材271をそれぞれ配置すれば、遮蔽体273の上,下流側面部2733,2734が上向きの誘導傾斜面となるように、上部外方カバー221側へ搬送ガイド27を取り付けられる。 The transport guide 27 used in the linear transport pipe 2B of this configuration example can be shared by the upper outer cover 221 side and the lower outer cover 222 side. For example, if the first support member 271 is arranged on the lower end edge 211d of the first straight line transfer wall 211 and the second support member 272 is arranged on the lower end edge 212d of the second straight line transfer wall 212, the upper and downstream side surfaces of the shield 273 are arranged. The transport guide 27 is attached to the lower outer cover 222 side so that the portions 2733 and 2734 have a downward induction inclined surface. On the contrary, if the second support member 272 is arranged on the upper end edge 211c of the first straight line transfer wall 211 and the first support member 271 is arranged on the upper end edge 212c of the second straight line transfer wall 212, the first support member 271 is arranged on the shield 273. The transport guide 27 is attached to the upper outer cover 221 side so that the downstream side surface portions 2733 and 2734 serve as an upward guiding inclined surface.

上述した搬送ガイド27の設計寸法として、通空部27aは、紙幣PMの長手方向寸法(150~160〔mm〕)の1/10程度(例えば、10〔mm〕以上、20〔mm〕以下)であることが望ましい。10〔mm〕未満では遮蔽体273の配設間隔が短すぎて、左,右誘導プレート26L,26Rに加わる流圧が減少してしまう不具合が懸念される。20〔mm〕超過では遮蔽体273の配設間隔が広すぎて、紙幣PMが遮蔽体273に接触してしまう障害が発生する危険性がある。また、遮蔽体273の搬送方向長さと通空部27aの搬送方向長さの比率は3:7としたが、これよりも通空部27aの比率を低くしても、十分な帰還流の効率を得られる場合がある。ただし、通空部27aが50%以上であることが望ましい。また、誘導傾斜面である上流側面部2733および下流側面部2734の傾斜角度は、約30〔°〕とした。なお、遮蔽体273の配置間隔(通空部27aの開口間隔)は、エア帰還孔24の配置間隔に対して自然数倍(図5においては、4)に設定しておけば、搬送ガイド27、左,右誘導プレート26L,26R及びエア帰還孔24の配置が揃った効率的なレイアウトに調整できる。このようなレイアウトの構造にすれば、直線搬送管2Bの上下左右4か所で連続的に発生する螺旋流を妨げることがないので、紙幣PMを障害なく搬送することが可能となる。 As the design dimension of the transport guide 27 described above, the air passage portion 27a is about 1/10 of the longitudinal dimension (150 to 160 [mm]) of the banknote PM (for example, 10 [mm] or more and 20 [mm] or less). Is desirable. If it is less than 10 [mm], the spacing between the shields 273 is too short, and there is a concern that the flow pressure applied to the left and right guide plates 26L and 26R will decrease. If it exceeds 20 [mm], the spacing between the shields 273 is too wide, and there is a risk that the bill PM may come into contact with the shield 273. Further, the ratio of the length in the transport direction of the shield 273 to the length in the transport direction of the air passage portion 27a was set to 3: 7, but even if the ratio of the air passage portion 27a is lower than this, sufficient efficiency of the return flow is sufficient. May be obtained. However, it is desirable that the air passage portion 27a is 50% or more. Further, the inclination angles of the upstream side surface portion 2733 and the downstream side surface portion 2734, which are the induction inclined surfaces, were set to about 30 [°]. If the arrangement interval of the shield 273 (opening interval of the air passage portion 27a) is set to a natural number multiple (4 in FIG. 5) with respect to the arrangement interval of the air return hole 24, the transport guide 27 The layout of the left and right guide plates 26L and 26R and the air return holes 24 can be adjusted to an efficient layout. With such a layout structure, it is possible to transport the banknote PM without any obstacle because it does not interfere with the spiral flow that is continuously generated at the four places on the top, bottom, left, and right of the linear transport pipe 2B.

搬送ガイド27の遮蔽体273では、直線搬送路231に臨む内面部2731が搬送方向にほぼ平行な平坦面であることから、第1,第2分岐誘導部221a1,221b1,222a1,222b1へ誘導された搬送用エアを阻むこととなる。しかも、通空部27aを通過しようとしている搬送用エアを巻き込んだ乱流を発生させ、第1,第2分岐誘導部221a1,221b1,222a1,222b1への通過流量を低減させてしまう可能性がある。そこで、図7(A)に示す第2構成例の搬送ガイド27′では、乱流の発生を効果的に抑えられる遮蔽体274を用いる構成とした。 In the shielding body 273 of the transport guide 27, since the inner surface portion 2731 facing the straight transport path 231 is a flat surface substantially parallel to the transport direction, it is guided to the first and second branch guide portions 221a1,221b1,222a1,222b1. It will block the transport air. Moreover, there is a possibility that a turbulent flow involving the transport air that is about to pass through the air passage portion 27a will be generated, and the passing flow rate to the first and second branch guide portions 221a1,221b1, 222a1,222b1 will be reduced. be. Therefore, in the transport guide 27'of the second configuration example shown in FIG. 7A, a shield 274 that can effectively suppress the generation of turbulence is used.

遮蔽体274は、直線搬送路231に臨む内面部2741と、その対向面である外面部2742と、上流側で内面部2741と外面部2742に連なる上流側面部2743と、下流側で内面部2741と外面部2742に連なる下流側面部2744を備える。そして、上流側面部2743は、直線搬送路231側の内側縁部2743aよりも第1,第2分岐誘導部221a1,221b1,222a1,222b1側の外側縁部2743bが下流に位置し、上流から下流に向かって傾斜する誘導傾斜面とする。同様に、下流側面部2744は、直線搬送路231側の内側縁部2744aよりも第1,第2分岐誘導部221a1,221b1,222a1,222b1側の外側縁部2744bが下流に位置し、上流から下流に向かって傾斜する誘導傾斜面とする。 The shield 274 includes an inner surface portion 2741 facing the straight transport path 231, an outer surface portion 2742 which is an facing surface thereof, an upstream side surface portion 2743 connected to the inner surface portion 2741 and the outer surface portion 2742 on the upstream side, and an inner surface portion 2741 on the downstream side. A downstream side surface portion 2744 connected to the outer surface portion 2742 is provided. In the upstream side surface portion 2743, the outer edge portion 2743b on the first and second branch guide portions 221a1,221b1,222a1,222b1 side is located downstream of the inner edge portion 2743a on the straight transport path 231 side, and is located downstream from the upstream to the downstream. It is an inductively inclined surface that inclines toward. Similarly, in the downstream side surface portion 2744, the outer edge portion 2744b on the first and second branch guide portions 221a1,221b1,222a1,222b1 side is located downstream of the inner edge portion 2744a on the straight transport path 231 side, and is located from the upstream. It is an induction slope that inclines toward the downstream.

ここで、内面部2741は、直線搬送路231側に膨出する凸面形状で、下流側面部2744と滑らかに連なる誘引流動面とした。すなわち、内面部2741を下流側面部2744に連なる誘引流動面としておけば、コアンダ効果により、搬送用エアは、内面部2741の凸曲面に沿って下流側面部2744の誘導傾斜面へ至るので、通空部27aを通過し易くなる。よって、搬送ガイド27′を用いれば、帰還流の効率低下を一層抑制することができる。 Here, the inner surface portion 2741 has a convex shape that bulges toward the straight transport path 231 side, and is an attracting flow surface that is smoothly connected to the downstream side surface portion 2744. That is, if the inner surface portion 2741 is set as an attracting flow surface connected to the downstream side surface portion 2744, the transport air reaches the induced inclined surface of the downstream side surface portion 2744 along the convex curved surface of the inner surface portion 2741 due to the Coanda effect. It becomes easier to pass through the empty portion 27a. Therefore, if the transport guide 27'is used, it is possible to further suppress a decrease in the efficiency of the feedback flow.

上記のように、誘引流動面である内面部2741を備えた搬送ガイド27′を用いることで、帰還流の効率低下を抑制できると、逆に帰還流が強すぎて紙幣PMの搬送を不安定にしてしまう可能性がある。そのような場合には、図7(B)に示す第3構成例の搬送ガイド27″のように、搬送方向に大きい遮蔽体275を用いて、通空部27aの比率を低くし、帰還流の効率を適宜な範囲に調整するようにしても良い。 As described above, if the transfer guide 27'provided with the inner surface portion 2741 which is the attracting flow surface can be used to suppress the decrease in the efficiency of the return flow, on the contrary, the return flow is too strong and the transfer of the banknote PM is unstable. There is a possibility that it will be. In such a case, as in the transport guide 27 ″ of the third configuration example shown in FIG. 7 (B), a shield 275 that is large in the transport direction is used to reduce the ratio of the air passage portion 27a and return flow. The efficiency of the above may be adjusted to an appropriate range.

遮蔽体275は、直線搬送路231に臨む内面部2751と、その対向面である外面部2752と、上流側で内面部2751と外面部2752に連なる上流側面部2753と、下流側で内面部2751と外面部2752に連なる下流側面部2754を備える。そして、上流側面部2753は、直線搬送路231側の内側縁部2753aよりも第1,第2分岐誘導部221a1,221b1,222a1,222b1側の外側縁部2753bが下流に位置し、上流から下流に向かって傾斜する誘導傾斜面とする。同様に、下流側面部2754は、直線搬送路231側の内側縁部2754aよりも第1,第2分岐誘導部221a1,221b1,222a1,222b1側の外側縁部2754bが下流に位置し、上流から下流に向かって傾斜する誘導傾斜面とする。 The shield 275 has an inner surface portion 2751 facing the straight transport path 231, an outer surface portion 2752 facing the inner surface portion 2752, an upstream side surface portion 2753 connected to the inner surface portion 2751 and the outer surface portion 2752 on the upstream side, and an inner surface portion 2751 on the downstream side. A downstream side surface portion 2754 connected to the outer surface portion 2752 is provided. In the upstream side surface portion 2753, the outer edge portion 2753b on the first and second branch guide portions 221a1,221b1,222a1,222b1 side is located downstream of the inner edge portion 2753a on the straight transport path 231 side, and is located downstream from the upstream to the downstream. It is an inductively inclined surface that inclines toward. Similarly, in the downstream side surface portion 2754, the outer edge portion 2754b on the first and second branch guide portions 221a1,221b1,222a1,222b1 side is located downstream of the inner edge portion 2754a on the straight transport path 231 side, and is located from the upstream. It is an induction slope that inclines toward the downstream.

内面部2751は、直線搬送路231側に膨出する滑らかな凸面形状で、下流側面部2754と滑らかに連なる誘引流動面である。このように、内面部2751を下流側面部2754に連なる誘引流動面としておけば、コアンダ効果により、搬送用エアは、内面部2751の凸曲面に沿って下流側面部2754の誘導傾斜面へ至るので、通空部27aを通過し易くなり、帰還流の効率低下を抑制する。しかも、遮蔽体275と通空部27aの搬送方向長さの比率は、遮蔽体275が大きくなるように設定してあるので、帰還流の効率を適宜な範囲に調整できる。 The inner surface portion 2751 has a smooth convex surface shape that bulges toward the straight transport path 231 side, and is an attracting flow surface that is smoothly connected to the downstream side surface portion 2754. In this way, if the inner surface portion 2751 is set as an attracting flow surface connected to the downstream side surface portion 2754, the transport air reaches the induction inclined surface of the downstream side surface portion 2754 along the convex curved surface of the inner surface portion 2751 due to the Coanda effect. , It becomes easier to pass through the air passage portion 27a, and the decrease in efficiency of the return flow is suppressed. Moreover, since the ratio of the length of the shield 275 to the length of the air passage portion 27a in the transport direction is set so that the shield 275 becomes large, the efficiency of the return flow can be adjusted to an appropriate range.

上述した直線搬送管2,2Bは、直線状の直線搬送路231によって紙幣PMを真っ直ぐに搬送するための機能を備えるものであり、直線搬送管2,2B単独で搬送方向を変えることはできない。紙幣PMの搬送方向を変えるためには、湾曲搬送管4等を用いる必要がある。しかしながら、紙幣PMの紙面が鉛直方向となるように設置された直線搬送管2,2Bの下流側に湾曲搬送管4を接続しても、紙幣PMの紙面に直交する左側あるいは右側へ搬送方向を変更することしかできない。紙幣PMの搬送方向を上方或いは下方へ変更するためには、紙幣PMの紙面が水平方向となる状態に変換して湾曲搬送管4へ送り出す必要がある。このような場合に捻れ搬送管3を用いれば、紙幣PMを搬送しながら縦向きの紙面を横向きに回転させることが可能となり、上方或いは下方に向けて湾曲する湾曲搬送管4と連結することができる。 The straight transport pipes 2 and 2B described above have a function for straightly transporting the bill PM by the straight straight transport path 231, and the transport direction cannot be changed by the straight transport pipes 2 and 2B alone. In order to change the transport direction of the bill PM, it is necessary to use a curved transport pipe 4 or the like. However, even if the curved transport pipe 4 is connected to the downstream side of the straight transport pipes 2 and 2B installed so that the paper surface of the bill PM is in the vertical direction, the transport direction is changed to the left side or the right side orthogonal to the paper surface of the bill PM. You can only change it. In order to change the transport direction of the bill PM upward or downward, it is necessary to convert the paper surface of the bill PM into a horizontal direction and send it to the curved transport pipe 4. In such a case, if the twisted transport pipe 3 is used, it is possible to rotate the vertically oriented paper surface horizontally while transporting the banknote PM, and it is possible to connect to the curved transport pipe 4 that curves upward or downward. can.

捻れ搬送管3の詳細構造を説明するに際し、先ずは搬送方向へ紙幣PMを送り出しながら紙面の向きを変える基本原理について、図8~図12に示す中心捻れ搬送管3-Oに基づき説明する。 In explaining the detailed structure of the twist transfer pipe 3, first, the basic principle of changing the direction of the paper surface while sending out the bill PM in the transport direction will be described based on the central twist transfer pipe 3-O shown in FIGS. 8 to 12.

直線搬送管2,2B等と連結するために、中心捻れ搬送管3-Oの上流端および下流端の少なくとも一方の形状は、直線搬送管2の流体通過直線空間23の流路断面と同形状にしておくことが望ましい。そこで、図8に示すように、本構成例の中心捻れ搬送管3-Oは、上流端および下流端のどちらも直線搬送管2,2Bと連結可能なように、第1直線搬送壁211と第1捻れ搬送壁311、第2直線搬送壁212と第2捻れ搬送壁312、上部外方カバー221と第1捻れ外方カバー321、下部外方カバー222と第2捻れ外方カバー322を対応させた。すなわち、紙幣PMの2面に対向するよう内面側が配置された第1捻れ搬送壁311および第2捻れ搬送壁312と、第1,第2捻れ搬送壁311,312の最上流端において上下となる両部位に第1捻れ外方カバー321と第2捻れ外方カバー322をそれぞれ設けた構成である。これら、第1,第2捻れ搬送壁311,312と第1,第2捻れ外方カバー321,322により、圧縮空気を送り出せる流体通過捻れ空間33が内部に形成される。 In order to connect to the straight transfer pipes 2, 2B, etc., the shape of at least one of the upstream end and the downstream end of the central twist transfer pipe 3-O has the same shape as the flow path cross section of the fluid passage linear space 23 of the straight line transfer pipe 2. It is desirable to keep it. Therefore, as shown in FIG. 8, the central twist transfer pipe 3-O of the present configuration example is connected to the first straight transfer wall 211 so that both the upstream end and the downstream end can be connected to the straight transfer pipes 2 and 2B. Corresponds to the first twist transport wall 311 and the second straight transport wall 212 and the second twist transport wall 312, the upper outer cover 221 and the first twist outer cover 321 and the lower outer cover 222 and the second twist outer cover 322. I let you. That is, the first twist transfer wall 311 and the second twist transfer wall 312 whose inner surface side is arranged so as to face the two surfaces of the banknote PM, and the upper and lower ends of the first and second twist transfer walls 311, 312 are up and down. The first twist outer cover 321 and the second twist outer cover 322 are provided on both portions, respectively. The first and second twist transport walls 311, 312 and the first and second twist outer covers 321 and 322 form a fluid passage twist space 33 inside which compressed air can be sent out.

この流体通過捻れ空間33のうち、第1捻れ搬送壁311の内壁面311bと第2捻れ搬送壁312の内壁面312bとで挟まれた空間が中心捻れ搬送路331-Oとなり、紙幣PMはこの中心捻れ搬送路331-O内を搬送されながら時計回りに略90〔°〕回転するのである。なお、中心捻れ搬送路331-Oは、上流端開口の中心から下流端開口の中心へ至る直線状の中心軸CA-O回りに、上流より搬送された紙幣PMの紙面を回転(例えば、搬送方向に向かって時計回りに回転)させて、紙幣PMの第1,第2搬送直交辺PM2a,PM2bの向きを鉛直方向から水平方向へ変える流路である。上流より搬送された紙幣PMの紙面を時計回りに回転させて、紙幣PMの第1,第2搬送直交辺PM2a,PM2bの向きを鉛直方向から水平方向へ変える捻れ搬送路を構成することも可能である。また、上流より水平方向に搬送されてきた紙幣PMを時計回り(あるいは反時計回り)に回転させて鉛直方向へ変える捻れ搬送路を構成することも可能である。 Of the fluid passage twisting space 33, the space sandwiched between the inner wall surface 311b of the first twisting transport wall 311 and the inner wall surface 312b of the second twisting transport wall 312 becomes the central twisting transport path 331-O, and the banknote PM is this. It rotates approximately 90 [°] clockwise while being transported in the central twist transport path 331-O. The central twist transport path 331-O rotates the paper surface of the bill PM transported from the upstream around the linear central axis CA-O from the center of the upstream end opening to the center of the downstream end opening (for example, transport). It is a flow path that changes the directions of the first and second transport orthogonal sides PM2a and PM2b of the bill PM from the vertical direction to the horizontal direction by rotating the bill PM clockwise). It is also possible to construct a twisted transport path that changes the direction of the first and second transport orthogonal sides PM2a and PM2b of the bill PM from the vertical direction to the horizontal direction by rotating the paper surface of the bill PM transported from the upstream clockwise. Is. It is also possible to construct a twisted transport path in which the banknote PM transported horizontally from the upstream is rotated clockwise (or counterclockwise) to change it in the vertical direction.

中心捻れ搬送管3-Oの最上流端においては、搬送方向(送風方向WDと一致する方向)に向かって左側に第1捻れ搬送壁311を配置し、搬送方向に向かって右側に第2捻れ搬送壁312を配置する。しかしながら、中心捻れ搬送管3-Oの最下流端においては、上側に第1捻れ搬送壁311が位置し、下側に第2捻れ搬送壁312が位置する。このような中心捻れ搬送路331-Oを形成する第1捻れ搬送壁311と第2捻れ搬送壁312は、同一の湾曲板材で構成できる。また、第1捻れ搬送壁311の内壁面311bと第2捻れ搬送壁312の内壁面312bとの間である壁間幅が一定となるように、等距離を隔てて第1捻れ搬送壁311と第2捻れ搬送壁312を平行に配置する。 At the uppermost flow end of the central twist transfer pipe 3-O, the first twist transfer wall 311 is arranged on the left side in the transfer direction (direction corresponding to the ventilation direction WD), and the second twist is placed on the right side in the transfer direction. The transport wall 312 is arranged. However, at the most downstream end of the central twist transfer pipe 3-O, the first twist transfer wall 311 is located on the upper side and the second twist transfer wall 312 is located on the lower side. The first twist transport wall 311 and the second twist transport wall 312 forming such a central twist transport path 331-O can be made of the same curved plate material. Further, the first twist transport wall 311 and the first twist transport wall 311 are spaced apart from each other so that the width between the walls between the inner wall surface 311b of the first twist transport wall 311 and the inner wall surface 312b of the second twist transport wall 312 is constant. The second twist transport wall 312 is arranged in parallel.

第1捻れ搬送壁311は、搬送方向の下流に向かって、第1端縁311c(中心捻れ搬送管3-Oの最上流端では上端縁)が第2捻れ搬送壁312へ近づく方向に傾くと共に第2端縁311d(中心捻れ搬送管3-Oの最上流端では下端縁)が第2捻れ搬送壁312から遠ざかる方向に傾く。一方、第2捻れ搬送壁312は、搬送方向の下流に向かって、第1端縁312c(中心捻れ搬送管3-Oの最上流端では上端縁)が第1捻れ搬送壁311から遠ざかる方向に傾くと共に第2端縁312d(中心捻れ搬送管3-Oの最上流端では下端縁)が第1捻れ搬送壁311へ近づく方向に傾く。 The first twist transport wall 311 is tilted toward the downstream side in the transport direction so that the first end edge 311c (the upper end edge at the uppermost flow end of the central twist transport pipe 3-O) approaches the second twist transport wall 312. The second end edge 311d (the lower end edge at the uppermost flow end of the central twist transfer tube 3-O) is tilted in a direction away from the second twist transfer wall 312. On the other hand, in the second twist transport wall 312, the first end edge 312c (the upper end edge at the uppermost flow end of the central twist transport pipe 3-O) moves away from the first twist transport wall 311 toward the downstream in the transport direction. As it tilts, the second end edge 312d (the lower end edge at the uppermost flow end of the central twist transfer pipe 3-O) tilts toward the first twist transfer wall 311.

中心捻れ搬送管3-Oにおいては、搬送方向(送風方向WDと一致する方向)に向かって時計回り(或いは反時計回り)に紙幣PMを略90〔°〕回転させる捻れ構造であるため、最上流端における上下方向が最下流端において左右方向に変わることとなる。以下の説明においては、第1,第2捻れ搬送壁311,312の第2端縁311d、312dから第1端縁311c,312cに向かう方向を第1方向、第1端縁311c,312cから第2端縁311d、312dに向かう方向を第2方向とよぶ。すなわち、最上流端においては第1方向と第2方向が鉛直方向と一致するが、最下流端においては第1方向と第2方向が水平方向に変わることとなる。また、中心捻れ搬送路331-O内で紙幣PMが傾く方向を回転方向、紙幣PMが遠ざかる方向を反回転方向とよぶ。紙幣PMの紙面が鉛直方向に近い中心捻れ搬送路331-Oの上流においては、紙幣PMの上半分は右側へ傾くから右側が回転方向で左側が反回転方向、紙幣PMの下半分は左側へ傾くから左側が回転方向で右側が反回転方向となる。紙幣PMの紙面が水平方向に近づいた中心捻れ搬送路331-Oの下流においては、紙幣PMの右半分は下側へ傾くから下側が回転方向で上側が反回転方向、紙幣PMの左半分は上側へ傾くから上側が回転方向で下側が反回転方向となる。以下、中心捻れ搬送路331-Oの捻れ構造について説明する。 The central twist transfer tube 3-O has a twist structure in which the bill PM is rotated by approximately 90 [°] clockwise (or counterclockwise) in the transfer direction (direction corresponding to the ventilation direction WD). The vertical direction at the upstream end changes to the left-right direction at the most downstream end. In the following description, the direction from the second end edges 311d, 312d to the first end edges 311c, 312c of the first and second twist transport walls 311, 312 is the first direction, and the first end edges 311c, 312c are the first. The direction toward the two edge edges 311d and 312d is called the second direction. That is, at the most upstream end, the first direction and the second direction coincide with the vertical direction, but at the most downstream end, the first direction and the second direction change in the horizontal direction. Further, the direction in which the bill PM is tilted in the central twist transport path 331-O is called the rotation direction, and the direction in which the bill PM is away is called the counter-rotation direction. In the upstream of the central twist transport path 331-O where the paper surface of the banknote PM is close to the vertical direction, the upper half of the banknote PM tilts to the right, so the right side is the rotation direction, the left side is the counter-rotation direction, and the lower half of the banknote PM is to the left side. Since it is tilted, the left side is the rotation direction and the right side is the counter-rotation direction. Downstream of the central twist transport path 331-O where the paper surface of the bill PM approaches the horizontal direction, the right half of the bill PM tilts downward, so the lower side is in the rotational direction, the upper side is in the counter-rotation direction, and the left half of the bill PM is. Since it tilts upward, the upper side is in the rotation direction and the lower side is in the counter-rotation direction. Hereinafter, the twisting structure of the central twisting transport path 331-O will be described.

中心捻れ搬送路331-Oのみを単純化して図9に示す。図9(A)は、中心捻れ搬送路331-Oを上流から下流に向かって見た正面図で、中心軸CA-Oの周囲には上流から下流まで見通せる空部がある。図9(B)は、中心捻れ搬送路331-Oの右側面図で、最上流側における上面が最下流側で右側面となり、最上流側における底面が最下流側で左側面となるように捻れていく様子(図9(B)中、破線で示す)が分かる。 Only the central twist transport path 331-O is shown in FIG. 9 in a simplified manner. FIG. 9A is a front view of the central twist transport path 331-O viewed from upstream to downstream, and there is an empty space around the central axis CA-O that can be seen from upstream to downstream. FIG. 9B is a right side view of the central twisted transport path 331-O so that the upper surface on the most upstream side is the right side on the most downstream side and the bottom surface on the most downstream side is the left side on the most downstream side. You can see how it twists (indicated by a broken line in FIG. 9B).

例えば、紙幣PMとして日本紙幣の一万円札を用いる場合、長手方向(第1,第2搬送平行辺PM1a,PM1b)の寸法は160〔mm〕、短手方向(第1,第2搬送直交辺PM2a,PM2b)の寸法は76〔mm〕、厚さは約0.1〔mm〕である。したがって、中心捻れ搬送路331-Oにおける流路断面の壁間幅(上流側においては横幅で、下流側においては縦幅)を12〔mm〕、壁長幅(上流側においては縦幅で、下流側においては横幅)を78〔mm〕とすれば、日本紙幣の一万円札を紙幣PMとして搬送できる。 For example, when a 10,000-yen banknote of Japanese banknotes is used as the banknote PM, the dimensions in the longitudinal direction (first and second transport parallel sides PM1a, PM1b) are 160 [mm], and the dimensions in the lateral direction (first and second transport orthogonal sides) are orthogonal. The dimensions of the sides PM2a and PM2b) are 76 [mm], and the thickness is about 0.1 [mm]. Therefore, the inter-wall width (horizontal width on the upstream side, vertical width on the downstream side) of the flow path cross section in the central twist transport path 331-O is 12 [mm], and the wall length width (vertical width on the upstream side). If the width) on the downstream side is 78 [mm], a 10,000-yen banknote of Japanese banknotes can be transported as a banknote PM.

そして、中心捻れ搬送路331-Oは、上流から下流に向かう一定距離に対して一定角度(例えば、150〔mm〕に対して15〔°〕)で連続的に変化させる。中心捻れ搬送路331-Oにおける最上流である開口端の第1捻れ流路断面331OS1は、図9(C1)に示すように、縦長の長方形である。中心捻れ搬送路331-Oの開口端から150〔mm〕だけ下流に離れた位置における第2捻れ流路断面331OS2は、図9(C2)に示すように、第1捻れ流路断面331OS1と同一形状であるが、中心軸CA-Oを中心とした時計回りに第1捻れ流路断面331OS1よりも15〔°〕傾いた状態となる。中心捻れ搬送路331-Oの開口端から300〔mm〕だけ下流に離れた位置における第3捻れ流路断面331OS3は、図9(C3)に示すように、第1,第2捻れ流路断面331OS1,331OS2と同一形状であるが、中心軸CA-Oを中心とした時計回りに第1捻れ流路断面331OS1よりも30〔°〕傾いた状態となる。中心捻れ搬送路331-Oの開口端から450〔mm〕だけ下流に離れた位置における第4捻れ流路断面331OS4は、図9(C4)に示すように、第1~第3捻れ流路断面331OS1~331OS3と同一形状であるが、中心軸CA-Oを中心とした時計回りに第1捻れ流路断面331OS1よりも45〔°〕傾いた状態となる。中心捻れ搬送路331-Oの開口端から600〔mm〕だけ下流に離れた位置における第5捻れ流路断面331OS5は、図9(C5)に示すように、第1~第4捻れ流路断面331OS1~331OS4と同一形状であるが、中心軸CA-Oを中心とした時計回りに第1捻れ流路断面331OS1よりも60〔°〕傾いた状態となる。中心捻れ搬送路331-Oの開口端から750〔mm〕だけ下流に離れた位置における第6捻れ流路断面331OS6は、図9(C6)に示すように、第1~第5捻れ流路断面331OS1~331OS5と同一形状であるが、中心軸CA-Oを中心とした時計回りに第1捻れ流路断面331OS1よりも75〔°〕傾いた状態となる。中心捻れ搬送路331-Oの開口端から900〔mm〕だけ下流に離れた位置における第7捻れ流路断面331OS7は、図9(C7)に示すように、第1~第6捻れ流路断面331OS1~331OS6と同一形状であるが、中心軸CA-Oを中心とした時計回りに第1捻れ流路断面331OS1よりも90〔°〕傾いた状態となる。すなわち、中心捻れ搬送路331-Oの開口端から900〔mm〕下流である第7捻れ流路断面331OS7の位置を、中心捻れ搬送路331-Oにおける最下流の開口端とすれば、ちょうど紙幣PMを90〔°〕回転させる流路形状となる。 Then, the central twist transport path 331-O is continuously changed at a constant angle (for example, 15 [°] with respect to 150 [mm]) with respect to a constant distance from the upstream to the downstream. As shown in FIG. 9 (C1), the first twist flow path cross section 331OS1 at the open end, which is the most upstream in the central twist transfer path 331-O, is a vertically long rectangle. The second twist flow path cross section 331OS2 at a position 150 [mm] downstream from the opening end of the central twist transfer path 331-O is the same as the first twist flow path cross section 331OS1 as shown in FIG. 9 (C2). Although it has a shape, it is tilted clockwise by 15 [°] from the first twisted flow path cross section 331OS1 about the central axis CA-O. The third twisted flow path cross section 331OS3 at a position 300 [mm] downstream from the opening end of the central twisted transport path 331-O is the first and second twisted flow path cross sections as shown in FIG. 9 (C3). It has the same shape as 331OS1 and 331OS2, but is tilted 30 [°] from the first twisted flow path cross section 331OS1 in a clockwise direction about the central axis CA-O. As shown in FIG. 9 (C4), the cross section of the fourth twisted flow path 331OS4 at a position 450 [mm] downstream from the opening end of the central twisted transport path 331-O is the cross section of the first to third twisted flow paths. It has the same shape as 331OS1 to 331OS3, but is tilted 45 [°] from the first twisted flow path cross section 331OS1 in a clockwise direction about the central axis CA-O. The fifth twisted flow path cross section 331OS5 at a position 600 [mm] downstream from the opening end of the central twisted transport path 331-O is a cross section of the first to fourth twisted flow paths as shown in FIG. 9 (C5). It has the same shape as 331OS1 to 331OS4, but is tilted clockwise by 60 [°] from the first twisted flow path cross section 331OS1 about the central axis CA-O. The sixth twisted flow path cross section 331OS6 at a position 750 [mm] downstream from the opening end of the central twisted transport path 331-O is a cross section of the first to fifth twisted flow paths as shown in FIG. 9 (C6). It has the same shape as 331OS1 to 331OS5, but is tilted 75 [°] from the first twisted flow path cross section 331OS1 in a clockwise direction about the central axis CA-O. The seventh twisted flow path cross section 331OS7 at a position 900 [mm] downstream from the opening end of the central twisted transport path 331-O is a cross section of the first to sixth twisted flow paths as shown in FIG. 9 (C7). It has the same shape as 331OS1 to 331OS6, but is tilted 90 [°] from the first twisted flow path cross section 331OS1 in a clockwise direction about the central axis CA-O. That is, if the position of the seventh twisted flow path cross section 331OS7, which is 900 [mm] downstream from the opening end of the central twisted transport path 331-O, is the most downstream open end of the central twisted transport path 331-O, it is just a banknote. The flow path shape is such that the PM is rotated by 90 [°].

しかしながら、搬送対象である紙幣PMは耐久性の高い特別な紙で作られているため、平板状を維持し易く、紙幣PMの下流側は真っ直ぐのまま、上流側上部だけを右に曲げ、上流側下部だけを左に曲げて、中心捻れ搬送路331-Oを通過させることは困難である。このため、紙幣PM自体は平板状を維持したまま中心捻れ搬送路331-O内を下流へ搬送されて行き、第1捻れ搬送壁311の内壁面311bや第2捻れ搬送壁312の内壁面312bに押し当たり、強い摩擦で進めなくなり、紙幣PMが搬送路331内に滞留してしまう危険性がある。そこで、中心捻れ搬送路331-Oは、紙幣PMが平板状のまま通過できる流路形状にしておく必要がある。この流路形状を満たすには、任意箇所における上流側捻れ流路断面から紙幣PMの第1,第2搬送平行辺PM1a,PM1bに相当する距離だけ離れた位置における下流側捻れ流路断面に至る基準中心捻れ搬送路に、紙幣PMが折れ曲がることなく平板状のまま通過できる紙葉類通過領域が形成されるようにする。 However, since the banknote PM to be transported is made of special paper with high durability, it is easy to maintain a flat plate shape, and while the downstream side of the banknote PM remains straight, only the upper part of the upstream side is bent to the right and upstream. It is difficult to bend only the lower side to the left and pass through the central twist transport path 331-O. Therefore, the banknote PM itself is transported downstream in the central twist transport path 331-O while maintaining the flat plate shape, and the inner wall surface 311b of the first twist transport wall 311 and the inner wall surface 312b of the second twist transport wall 312b. There is a risk that the banknote PM will stay in the transport path 331 because it will not be able to proceed due to strong friction. Therefore, the central twist transport path 331-O needs to have a flow path shape that allows the bill PM to pass through in a flat plate shape. In order to satisfy this flow path shape, the cross section of the upstream twisted flow path at an arbitrary position reaches the cross section of the downstream twisted flow path at a position separated by a distance corresponding to the first and second transport parallel sides PM1a and PM1b of the banknote PM. A paper leaf passage region is formed in the reference center twist transport path so that the bill PM can pass through in a flat plate shape without bending.

図10は、基準中心捻れ搬送路構成体8-Oを示し、紙幣PMの第1,第2搬送平行辺PM1a,PM1bに相当する長さ(1万円札の場合、160〔mm〕)である基準搬送路長の基準中心捻れ搬送路83を形成する壁体である。図10(A)は基準中心捻れ搬送路構成体8-Oを上流側から見た正面図、図10(B)は基準中心捻れ搬送路構成体8-Oの右側面図、図10(C)は基準中心捻れ搬送路構成体8-Oの平面図である。捻れ左側壁81aと捻れ右側壁81bと捻れ上壁81cと捻れ下壁81dとで囲まれて形成される基準中心捻れ搬送路83は、上流側捻れ流路断面82aから下流側捻れ流路断面82bまで、中心軸CA-Oを中心とした時計回りに17〔°〕傾いた流路である。上流側捻れ流路断面82aと下流側捻れ流路断面82bは同一の長四角形状で、前述した中心捻れ搬送路331-Oと同様、壁間幅は12〔mm〕、壁長幅は78〔mm〕とし、日本紙幣の一万円札を紙幣PMとして搬送できるようにした。 FIG. 10 shows the reference center twist transport path structure 8-O, which has a length corresponding to the first and second transport parallel sides PM1a and PM1b of the bill PM (160 [mm] in the case of a 10,000 yen bill). It is a wall body forming a reference center twist transport path 83 having a reference transport path length. 10 (A) is a front view of the reference center twist transport path structure 8-O seen from the upstream side, and FIG. 10 (B) is a right side view of the reference center twist transport path structure 8-O, FIG. 10 (C). ) Is a plan view of the reference center twist transport path structure 8-O. The reference center twist transport path 83 formed by being surrounded by the twist left side wall 81a, the twist right side wall 81b, the twist upper wall 81c, and the twist lower wall 81d is from the upstream side twist flow path cross section 82a to the downstream side twist flow path cross section 82b. Up to, the flow path is tilted by 17 [°] clockwise around the central axis CA-O. The upstream side torsional flow path cross section 82a and the downstream side torsional flow path cross section 82b have the same elongated square shape, and the wall-to-wall width is 12 [mm] and the wall length width is 78 [similar to the above-mentioned central twist transfer path 331-O]. mm] so that 10,000 yen bills of Japanese banknotes can be transported as banknotes PM.

この基準中心捻れ搬送路構成体8-Oにおいては、基準中心捻れ搬送路83の中央位置(上流側捻れ流路断面82aからの距離と下流側捻れ流路断面82bからの距離が等しく80〔mm〕となる位置)における中央捻れ流路断面82cが鉛直方向の長辺と水平方向の短辺となる配置である。従って、基準中心捻れ搬送路83の1/2だけ上流側に位置する上流側捻れ流路断面82aは、中央捻れ流路断面82cよりも中心軸CA-Oに対して反時計回りに17〔°〕/2=8.5〔°〕だけ傾いている。同様に、中央捻れ流路断面82cから基準中心捻れ搬送路83の1/2だけ下流側に位置する下流側捻れ流路断面82bは、中央捻れ流路断面82cよりも中心軸CA-Oに対して時計回りに17〔°〕/2=8.5〔°〕だけ傾いている。 In this reference center twist transport path structure 8-O, the center position of the reference center twist transport path 83 (distance from the upstream twist flow path cross section 82a and the distance from the downstream twist channel cross section 82b are equal to 80 [mm]. ], The central twisted flow path cross section 82c is arranged so that the long side in the vertical direction and the short side in the horizontal direction are formed. Therefore, the upstream torsional flow path cross section 82a located on the upstream side by 1/2 of the reference central torsional transport path 83 is 17 [°] counterclockwise with respect to the central axis CA—O with respect to the central torsional flow path cross section 82c. ] / 2 = 8.5 [°] tilted. Similarly, the downstream twisted flow path cross section 82b located on the downstream side by 1/2 of the reference center twisted transport path 83 from the central twisted flow path cross section 82c is relative to the central axis CA-O with respect to the central twisted flow path cross section 82c. It is tilted clockwise by 17 [°] / 2 = 8.5 [°].

ここで、上流側捻れ流路断面82aから下流側捻れ流路断面82bまで紙幣PMが折れ曲がることなく平板状のまま通過できるための条件を考える。 Here, consider a condition for the banknote PM to pass from the upstream side twisted flow path cross section 82a to the downstream side twisted flow path cross section 82b in a flat plate shape without bending.

上流側捻れ流路断面82aを通過して基準中心捻れ搬送路83内を紙幣PMが進むと、中心軸CA-Oよりも上側(捻れ上壁81cに近い側)は捻れ左側壁81aの内壁面に当たり、中心軸CA-Oよりも下側(捻れ下壁81dに近い側)は捻れ右側壁81bの内壁面に当たる。よって、紙幣PMを捻れ左側壁81aおよび捻れ右側壁81bの内壁面に当たらないように下流へ進ませるためには、紙幣PMを時計回りに傾けて行けば良い。しかしながら、紙幣PMを時計回りに傾けすぎると、中心軸CA-Oよりも上側(捻れ上壁81cに近い側)は捻れ右側壁81bの内壁面に当たり、中心軸CA-Oよりも下側(捻れ下壁81dに近い側)は捻れ左側壁81aの内壁面に当たってしまう。 When the banknote PM advances in the reference center twist transfer path 83 after passing through the upstream side twist flow path cross section 82a, the upper side (the side closer to the twist upper wall 81c) of the central axis CA-O is the inner wall surface of the twist left wall 81a. The lower side of the central axis CA-O (the side closer to the twisted lower wall 81d) hits the inner wall surface of the twisted right side wall 81b. Therefore, in order to move the banknote PM downstream so as not to hit the inner wall surface of the twisted left side wall 81a and the twisted right side wall 81b, the banknote PM may be tilted clockwise. However, if the banknote PM is tilted too clockwise, the upper side (the side closer to the twisted upper wall 81c) of the central axis CA-O hits the inner wall surface of the twisted right side wall 81b, and the lower side (twisted) of the central axis CA-O. The side closer to the lower wall 81d) hits the inner wall surface of the twisted left side wall 81a.

捻れ左側壁81aおよび捻れ右側壁81bの内壁面に当たらないように、紙幣PMが基準中心捻れ搬送路83を通過して下流側捻れ流路断面82bに至るためには、上流から下流まで見通せる空部が形成されていれば良い。基準中心捻れ搬送路構成体8-Oにおいては、上流側捻れ流路断面82aの右上角部が下流側捻れ流路断面82bの左上角部を越えず、上流側捻れ流路断面82aの左下角部が下流側捻れ流路断面82bの右下角部を越えない範囲の角度で捻れた基準中心捻れ搬送路83とした。すなわち、上流側捻れ流路断面82aの右上角部から左下角部へ至る対角線を含む微小エリアから、下流側捻れ流路断面82bの左上角部から右下角部へ至る対角線を含む微小エリアまで連続する紙幣通過領域PAが基準中心捻れ搬送路83内に形成される。紙葉類が折れ曲がることなく平板状のまま通過できる紙葉類通過領域としての紙幣通過領域PAは、紙幣PMの紙厚以上の横幅で紙幣PMの短辺以上の縦幅である長方形の領域断面の略中央に中心軸CA-Oが位置し、基準中心捻れ搬送路83の上流端から下流端まで連続する直方体となる。 In order for the banknote PM to pass through the reference center twist transport path 83 and reach the downstream twist flow path cross section 82b so as not to hit the inner wall surface of the twist left wall 81a and the twist right wall 81b, the sky can be seen from upstream to downstream. It suffices if the part is formed. In the reference center twisted transport path structure 8-O, the upper right corner of the upstream twisted flow path cross section 82a does not exceed the upper left corner of the downstream twisted flow path cross section 82b, and the lower left angle of the upstream twisted flow path cross section 82a. The reference center twist transport path 83 was set so that the portion was twisted at an angle within a range not exceeding the lower right corner portion of the downstream side twist flow path cross section 82b. That is, it is continuous from the minute area including the diagonal line from the upper right corner to the lower left corner of the upstream twisted flow path cross section 82a to the minute area including the diagonal line from the upper left corner to the lower right corner of the downstream twisted flow path cross section 82b. The bill passing region PA to be used is formed in the reference center twist transport path 83. The banknote passage area PA as a banknote passage area that allows paper sheets to pass through without bending in a flat plate shape is a rectangular area cross section having a width equal to or greater than the paper thickness of the banknote PM and a vertical width equal to or greater than the short side of the banknote PM. The central axis CA-O is located substantially in the center of the center, and is a rectangular parallelepiped continuous from the upstream end to the downstream end of the reference center twist transport path 83.

基準中心捻れ搬送路構成体8-Oで構成する基準中心捻れ搬送路83のように、壁間幅を12〔mm〕、壁長幅を78〔mm〕に設定した場合、上流側捻れ流路断面82aから下流側捻れ流路断面82bまでの捻れ角を17〔°〕とすれば、一万円札の紙幣PMに対応した紙幣通過領域PAを形成できることを説明する。 When the wall-to-wall width is set to 12 [mm] and the wall length width is set to 78 [mm] as in the reference center twist transport path 83 configured by the reference center twist transport path configuration 8-O, the upstream twist flow path. It will be described that if the twist angle from the cross section 82a to the downstream side twist flow path cross section 82b is 17 [°], the bill passage region PA corresponding to the bill PM of the 10,000 yen bill can be formed.

搬送方向に向かって、上流側捻れ流路断面82aの右上角部が下流側捻れ流路断面82bの左上角部と一致し、上流側捻れ流路断面82aの左下角部が下流側捻れ流路断面82bの右下角部と一致するとき、紙幣通過領域PAの横幅がほぼ零になって、実質的に最も狭小な紙幣通過領域PAとなる。なお、紙幣PMの厚さは零ではないので、紙幣通過領域PAの横幅が零では紙幣PMを通過させられないが、紙幣PMの短辺は上流側捻れ流路断面82aおよび下流側捻れ流路断面82bの対角線より若干短いので、0.1〔mm〕厚の一万円札に対しては有効な紙幣通過領域PAと看做せる。そこで、搬送方向に向かって、上流側捻れ流路断面82aの右上角部が下流側捻れ流路断面82bの左上角部と一致し、上流側捻れ流路断面82aの左下角部が下流側捻れ流路断面82bの右下角部と一致するときの紙幣通過領域PAを、通過限界と仮定する。 In the transport direction, the upper right corner of the upstream twisted flow path cross section 82a coincides with the upper left corner of the downstream twisted flow path cross section 82b, and the lower left corner of the upstream twisted flow path cross section 82a coincides with the downstream twisted flow path. When it coincides with the lower right corner portion of the cross section 82b, the width of the bill passing region PA becomes almost zero, and the bill passing region PA becomes substantially the narrowest. Since the thickness of the bill PM is not zero, the bill PM cannot be passed if the width of the bill passage region PA is zero, but the short side of the bill PM is the upstream side twisted flow path cross section 82a and the downstream side twisted flow path. Since it is slightly shorter than the diagonal line of the cross section 82b, it can be regarded as an effective bill passage area PA for a 10,000 yen bill with a thickness of 0.1 [mm]. Therefore, in the transport direction, the upper right corner of the upstream twisted flow path cross section 82a coincides with the upper left corner of the downstream twisted flow path cross section 82b, and the lower left corner of the upstream twisted flow path cross section 82a is the downstream twist. The bill passing region PA when it coincides with the lower right corner of the flow path cross section 82b is assumed to be the passing limit.

上流側捻れ流路断面82aが中央捻れ流路断面82cと一致するよう時計回りに回転させる角度をθとすると、中央捻れ流路断面82cが下流側捻れ流路断面82bと一致するよう時計回りに回転させる角度もθである。紙幣通過領域PAが通過限界となるときの捻れ角を2θとすると、「捻れ角≦2θ」の条件を満たしていれば、基準中心捻れ搬送路83内に紙幣通過領域PAを形成できる。そして、図10(A)に示す基準中心捻れ搬送路構成体8-Oの正面図から、幾何的にθを求めることができる。 Assuming that the angle at which the upstream twisted flow path cross section 82a is rotated clockwise to coincide with the central twisted flow path cross section 82c is θ, the central twisted flow path cross section 82c is rotated clockwise so as to coincide with the downstream twisted flow path cross section 82b. The angle of rotation is also θ. Assuming that the twist angle when the bill passing region PA reaches the passing limit is 2θ, the bill passing region PA can be formed in the reference center twist transport path 83 as long as the condition of “twist angle ≦ 2θ” is satisfied. Then, θ can be geometrically obtained from the front view of the reference center twist transport path structure 8-O shown in FIG. 10 (A).

上流側捻れ流路断面82aが中央捻れ流路断面82cと一致するよう時計回りに回転させる角度はθであるから、「tanθ=12/78」より「θ≒8.75〔°〕」が成立する。中央捻れ流路断面82cが下流側捻れ流路断面82bと一致するよう時計回りに回転させる角度もθであるから、同じく「tanθ=12/78」より「θ≒8.75〔°〕」が成立する。したがって、上流側捻れ流路断面82aが下流側捻れ流路断面82bと一致するよう時計回りに回転させる角度(捻れ角)は「2θ≒17.5〔°〕」となる。この捻れ角17.5〔°〕は、通過限界となる紙幣通過領域PAを形成するときの値であるから、17.5〔°〕以下の捻れ角であれば、有効な紙幣通過領域PAが基準中心捻れ搬送路83内に形成される。すなわち、基準中心捻れ搬送路構成体8-Oにおいて、上流側捻れ流路断面82aから下流側捻れ流路断面82bまでの捻れ角を17〔°〕とすれば、有効な紙幣通過領域PAを形成できるのである。 Since the angle at which the upstream twisted flow path cross section 82a is rotated clockwise so as to coincide with the central twisted flow path cross section 82c is θ, “θ≈8.75 [°]” is established from “tan θ = 12/78”. do. Since the angle at which the central twisted flow path cross section 82c is rotated clockwise so as to coincide with the downstream twisted flow path cross section 82b is also θ, “θ ≈ 8.75 [°]” is also obtained from “tan θ = 12/78”. To establish. Therefore, the angle (twist angle) for rotating the upstream twisted flow path cross section 82a clockwise so as to coincide with the downstream twisted flow path cross section 82b is “2θ≈17.5 [°]”. Since this twist angle 17.5 [°] is a value at the time of forming the bill passing region PA which is the passing limit, if the twist angle is 17.5 [°] or less, the effective bill passing region PA is. It is formed in the reference center twist transport path 83. That is, if the twist angle from the upstream side twist flow path cross section 82a to the downstream side twist flow path cross section 82b is 17 [°] in the reference center twist transfer path structure 8-O, an effective banknote passage region PA is formed. You can.

図9に示す中心捻れ搬送路331-Oは、基準中心捻れ搬送路構成体8-Oで構成する基準中心捻れ搬送路83と同様に、壁間幅が12〔mm〕で壁長幅が78〔mm〕である。そして、中心捻れ搬送路331-Oは、搬送路長900〔mm〕で紙幣PMを90〔°〕回転させるのであるから、基準搬送路長160〔mm〕の基準中心捻れ搬送路83に換算した捻れ角は16〔°〕となり、通過限界となる紙幣通過領域PAを形成するときの17.5〔°〕以下である。したがって、中心捻れ搬送路331-Oの全範囲に対して、有効な紙幣通過領域PAが形成されており、紙幣PMが進んだ箇所における紙幣通過領域PAに収まるよう傾けば、紙幣PMは折れ曲がることなく平板状のまま第1捻れ流路断面331OS1から第7捻れ流路断面331OS7まで通過できる。 The central twist transport path 331-O shown in FIG. 9 has a wall-to-wall width of 12 [mm] and a wall length width of 78, similarly to the reference central twist transport path 83 configured by the reference central twist transport path components 8-O. [Mm]. Since the central twist transport path 331-O rotates the banknote PM by 90 [°] with a transport path length of 900 [mm], it is converted into a reference center twist transport path 83 having a standard transport path length of 160 [mm]. The twist angle is 16 [°], which is 17.5 [°] or less when the bill passing region PA, which is the passing limit, is formed. Therefore, an effective bill passage region PA is formed for the entire range of the central twist transport path 331-O, and if the bill PM is tilted so as to fit in the bill passage region PA at the position where the bill PM has advanced, the bill PM will bend. It can pass from the first twisted flow path cross section 331OS1 to the seventh twisted flow path cross section 331OS7 in the form of a flat plate.

また、基準中心捻れ搬送路83を上流から下流に向かって流れる搬送流は、中心軸CA-Oを含む中央付近では直進できるものの、中心から第1端縁側(捻れ上壁81c側)および第2端縁側(捻れ下壁81d側)へ離れるに従って、搬送方向へ直進できなくなる。基準中心捻れ搬送路83の上流から下流に向かうに従って、捻れ左側壁81aの第1端縁側(上側)および捻れ右側壁81bの第2端縁側(下側)は搬送用エアの直進を阻むように基準中心捻れ搬送路83内に迫り出してくるので、搬送用エアは捻れ左,右側壁81a,81bの内壁に当たって曲げられるのである。捻れ左側壁81aにおける中間位置よりも第1端縁側(捻れ上壁81c側)は反回転側であり、捻れ右側壁81bにおける中間位置よりも第2端縁側(捻れ下壁81d側)も反回転側であるから、反回転側の内壁面に当たった搬送用エアが回転方向に曲げられると、回転補助流として機能する。この回転補助流は、搬送方向へ流れつつ、反回転方向から回転方向へ曲がり続ける流れであるから、回転補助流を紙面に受けた紙幣PMは、下流へ移動する力に加えて、時計回りに回転する力を受けることとなる。したがって、上流端から下流端までの全域に紙幣通過領域PAが形成された中心捻れ搬送路331-Oを備える中心捻れ搬送管3-Oであれば、前述した直線搬送管2,2Bのような帰還流を紙幣PMに作用させなくても、紙幣PMを回転させながら下流へ搬送できる。 Further, although the transport flow flowing from the upstream to the downstream through the reference center twist transport path 83 can travel straight near the center including the central axis CA-O, the first end edge side (twist upper wall 81c side) and the second from the center. As the distance from the edge side (twisted lower wall 81d side) increases, it becomes impossible to go straight in the transport direction. The reference center The first end edge side (upper side) of the twisted left side wall 81a and the second end edge side (lower side) of the twisted right side wall 81b are reference so as to prevent the transport air from going straight from the upstream side to the downstream side of the twisted right side wall 83. Since the air is pushed out into the central twist transport path 83, the transport air hits the inner walls of the twisted left and right walls 81a and 81b and is bent. The first end edge side (twisted upper wall 81c side) of the twisted left side wall 81a is the counter-rotating side, and the second end edge side (twisted lower wall 81d side) of the twisted right side wall 81b is also counter-rotating. Since it is on the side, when the transport air that hits the inner wall surface on the opposite rotation side is bent in the rotation direction, it functions as a rotation auxiliary flow. Since this rotation auxiliary flow is a flow that continues to bend from the counter-rotation direction to the rotation direction while flowing in the transport direction, the banknote PM that receives the rotation auxiliary flow on the paper surface is clockwise in addition to the force that moves downstream. It will receive a rotating force. Therefore, if the central twist transfer tube 3-O is provided with the central twist transfer path 331-O in which the bill passing region PA is formed in the entire area from the upstream end to the downstream end, the linear transfer tube 2 and 2B described above are used. Even if the return flow does not act on the bill PM, the bill PM can be conveyed downstream while rotating.

なお、上流側捻れ流路断面82aから下流側捻れ流路断面82bまでの捻れ角は、17〔°〕よりも小さくしても構わない。上流側捻れ流路断面82aから下流側捻れ流路断面82bまでの捻れ角を小さくすると、それだけ上流端から下流端まで見通せる領域が広くなって、幅広な紙幣通過領域PAを形成できる。しかしながら、上流側捻れ流路断面82aから下流側捻れ流路断面82bまでの捻れ角を小さくすると、それだけ紙幣PMを所定角度まで回転させるのに必要な流路長が長くなってしまう。例えば、壁間幅12〔mm〕で捻れ角17〔°〕とした基準中心捻れ搬送路83の設計条件で、紙幣PMを90〔°〕回転させる場合、「160〔mm〕×(90/17)≒847〔mm〕」であるから、中心捻れ搬送管3-Oの管長は約850〔mm〕で済む。しかし、壁間幅12〔mm〕で捻れ角15〔°〕である基準中心捻れ搬送路83の設計条件で、紙幣PMを90〔°〕回転させる場合、「160〔mm〕×(90/15)=960〔mm〕」となり、中心捻れ搬送管3-Oの管長は960〔mm〕まで長くしなければならない。よって、中心捻れ搬送管3-Oの管長を短く抑えるためには、通過限界に近い紙幣通過領域PAとなる捻れ角を採用することが望ましい。 The twist angle from the upstream side torsional flow path cross section 82a to the downstream side torsional flow path cross section 82b may be smaller than 17 [°]. By reducing the twist angle from the upstream side twisted flow path cross section 82a to the downstream side twisted flow path cross section 82b, the area that can be seen from the upstream end to the downstream end becomes wider, and a wide bill passing area PA can be formed. However, if the twist angle from the upstream side twisted flow path cross section 82a to the downstream side twisted flow path cross section 82b is reduced, the flow path length required to rotate the banknote PM to a predetermined angle becomes longer accordingly. For example, in the case of rotating the banknote PM by 90 [°] under the design condition of the reference center twist transport path 83 with a wall width of 12 [mm] and a twist angle of 17 [°], "160 [mm] x (90/17). ) ≈ 847 [mm] ”, so that the pipe length of the central twist transfer pipe 3-O can be about 850 [mm]. However, under the design conditions of the reference center twist transfer path 83 having a width between walls of 12 [mm] and a twist angle of 15 [°], when the banknote PM is rotated by 90 [°], "160 [mm] x (90/15). ) = 960 [mm] ”, and the length of the central twist transfer pipe 3-O must be increased to 960 [mm]. Therefore, in order to keep the length of the central twist transfer pipe 3-O short, it is desirable to adopt a twist angle that is a bill passing region PA close to the passing limit.

また、上流側捻れ流路断面82aから下流側捻れ流路断面82bまでの捻れ角を変えずに、基準中心捻れ搬送路83の壁間幅を大きくしても、上流端から下流端まで見通せる領域が広くなって、幅広な紙幣通過領域PAを形成できる。例えば、図11(A)に示す基準中心捻れ搬送路構成体8-O′は、壁間幅15〔mm〕、壁長幅を78〔mm〕、捻れ角17〔°〕の設計条件に基づく基準中心捻れ搬送路83′であり、横幅の広い紙幣通過領域PA′を形成できる。しかも、捻れ角は17〔°〕であるから、中心捻れ搬送管3-Oの管長は約850〔mm〕で済む。 Further, even if the width between the walls of the reference center twist transfer path 83 is increased without changing the twist angle from the upstream side torsional flow path cross section 82a to the downstream side torsional flow path cross section 82b, a region that can be seen from the upstream end to the downstream end. Can form a wide bill passage area PA. For example, the reference center twist transport path structure 8-O'shown in FIG. 11A is based on the design conditions of a wall-to-wall width of 15 [mm], a wall length width of 78 [mm], and a twist angle of 17 [°]. It is a reference center twist transport path 83', and can form a wide bill passage region PA'. Moreover, since the twist angle is 17 [°], the pipe length of the central twist transfer pipe 3-O can be about 850 [mm].

逆に、基準中心捻れ搬送路83の壁間幅を大きくして、紙幣通過領域PAを通過限界に近づければ、上流側捻れ流路断面82aから下流側捻れ流路断面82bまでの捻れ角をより大きくできる。例えば、図11(B)に示す基準中心捻れ搬送路構成体8-O″は、壁間幅15〔mm〕、壁長幅を78〔mm〕、捻れ角21〔°〕の設計条件に基づく基準中心捻れ搬送路83″であり、通過限界に近い紙幣通過領域PA″を形成できる。この基準中心捻れ搬送路83″では、捻れ角が21〔°〕であるから、「160〔mm〕×(90/21)≒686〔mm〕」となり、中心捻れ搬送管3-Oの管長は約690〔mm〕まで抑えられる。 On the contrary, if the width between the walls of the reference center twist transfer path 83 is increased and the bill passing region PA is brought closer to the passing limit, the twist angle from the upstream side twist flow path cross section 82a to the downstream side twist flow path cross section 82b can be obtained. Can be bigger. For example, the reference center twist transport path structure 8-O ″ shown in FIG. 11B is based on the design conditions of a wall-to-wall width of 15 [mm], a wall length width of 78 [mm], and a twist angle of 21 [°]. It is a reference center twist transport path 83 ″ and can form a bill passing region PA ″ close to the passing limit. In this reference center twist transport path 83 ″, the twist angle is 21 [°], so “160 [mm] × (90/21) ≈ 686 [mm] ”, and the pipe length of the central twist transfer pipe 3-O can be suppressed to about 690 [mm].

上述した基準中心捻れ搬送路構成体8-Oの基準中心捻れ搬送路83や基準中心捻れ搬送路構成体8-O″の基準中心捻れ搬送路83″のように、通過限界に近い紙幣通過領域PA,PA″を形成した場合、紙幣PMの搬送位置が内壁面に接触する可能性がある。例えば、紙幣PMを搬送方向に対して時計回りに回転させる場合、紙幣PMに対して反時計回り側にある壁面が紙幣PMの直進を妨げるように湾曲しているので、紙幣PMが進行方向の反時計回り側にある壁面と接触し易いのである。紙幣PMが内壁面に接触すると、紙面と壁面との面接触による強い摩擦で紙幣PMが流路内に滞留してしまう危険性が生じる。このような障害を回避するため、図12(A),(B)に示すようなリブ構造を設けても良い。 A bill passing region close to the passing limit, such as the reference center twist transport path 83 of the reference center twist transport path configuration 8-O and the reference center twist transport path 83 ″ of the reference center twist transport path configuration 8-O ″ described above. When PA, PA ″ is formed, the transport position of the bill PM may come into contact with the inner wall surface. For example, when the bill PM is rotated clockwise with respect to the transport direction, it is counterclockwise with respect to the bill PM. Since the wall surface on the side is curved so as to prevent the banknote PM from going straight, the banknote PM tends to come into contact with the wall surface on the counterclockwise side in the traveling direction. There is a risk that the banknote PM will stay in the flow path due to strong friction due to surface contact with the wall surface. In order to avoid such obstacles, rib structures as shown in FIGS. 12A and 12B are used. It may be provided.

図12(A)は、基準中心捻れ搬送路構成体8-Oの基準中心捻れ搬送路83の捻れ左側壁81aの第1端縁側と捻れ右側壁81bの第2端縁側にそれぞれガイドリブ38を設けた例を示す。第1捻れ搬送壁部としての捻れ左側壁81aの内壁面に設けるガイドリブ38および第2捻れ搬送壁部としての捻れ右側壁81bの内壁面に設けるガイドリブ38は、どちらも断面が略三角形状で、捻れ搬送方向に連続して突出する帯状の突出体である。 In FIG. 12A, guide ribs 38 are provided on the first end edge side of the twist left side wall 81a and the second end edge side of the twist right side wall 81b of the reference center twist transfer path 83 of the reference center twist transfer path structure 8-O, respectively. Here is an example. The guide rib 38 provided on the inner wall surface of the twisted left side wall 81a as the first twist transport wall portion and the guide rib 38 provided on the inner wall surface of the twist right side wall 81b as the second twist transport wall portion both have a substantially triangular cross section. It is a strip-shaped projecting body that continuously projects in the twisting and transporting direction.

このように、ガイドリブ38を設けておけば、紙幣PMの紙面は捻れ左側壁81aあるいは捻れ右側壁81bの内壁面に面接触せず、ガイドリブ38の突出端と点接触あるいは線接触する。したがって、紙幣PMがガイドリブ38と接触しても、生じる摩擦は軽減されるので、紙幣PMが流路内に滞留してしまう危険性を効果的に抑制できる。しかも、ガイドリブ38は捻れ搬送方向に連続しているので、紙幣PMの第1端縁側紙面が接触し得るガイドリブ38と、紙幣PMの第2端縁側紙面が接触し得るガイドリブ38は、紙幣PMに対する搬送ガイドとしても機能する。 In this way, if the guide rib 38 is provided, the paper surface of the banknote PM does not come into surface contact with the inner wall surface of the twisted left side wall 81a or the twisted right side wall 81b, but makes point contact or line contact with the protruding end of the guide rib 38. Therefore, even if the bill PM comes into contact with the guide rib 38, the friction generated is reduced, so that the risk of the bill PM staying in the flow path can be effectively suppressed. Moreover, since the guide ribs 38 are continuous in the twisting and transporting direction, the guide ribs 38 that the first end edge side paper surface of the bill PM can come into contact with and the guide ribs 38 that the second end edge side paper surface of the bill PM can come into contact with each other with respect to the bill PM. It also functions as a transport guide.

ガイドリブ38の取付位置や突出量は特に限定されるものではない。しかし、搬送中に回転する紙幣PMは、中心軸CA-Oから離れた部位(第1搬送平行辺PM1aおよび第2搬送平行辺PM1bに近い部位)の変位量が大きいことから、ガイドリブ38は中心軸CA-Oから離れた部位に設けて、紙幣PMの両端側をガイドする構造が望ましい。とはいえ、ガイドリブ38の取付位置を第1端縁側へ寄せ過ぎたり、ガイドリブ38の取付位置を第2端縁側へ寄せ過ぎたりすると、ガイドリブ38が紙幣通過領域PAに入り込んで、紙幣PMの通過を阻害することになる。また、ガイドリブ38の突出量が少なすぎると、紙幣PMの壁面接触防止機能を発揮できないし、逆にガイドリブ38の突出量が大き過ぎると、搬送用エアの流れを阻害してしまう危険性もある。 The mounting position and the amount of protrusion of the guide rib 38 are not particularly limited. However, since the banknote PM that rotates during transportation has a large displacement at a portion away from the central axis CA-O (a portion near the first transport parallel side PM1a and the second transport parallel side PM1b), the guide rib 38 is centered. It is desirable to have a structure that guides both ends of the banknote PM by providing it at a portion away from the shaft CA-O. However, if the mounting position of the guide rib 38 is moved too close to the first end edge side or the mounting position of the guide rib 38 is moved too close to the second end edge side, the guide rib 38 enters the bill passing region PA and the bill PM passes through. Will be hindered. Further, if the protrusion amount of the guide rib 38 is too small, the wall surface contact prevention function of the bill PM cannot be exhibited, and conversely, if the protrusion amount of the guide rib 38 is too large, there is a risk of obstructing the flow of the transport air. ..

そこで、図12(A)に示す基準中心捻れ搬送路構成体8-Oの捻れ左側壁81aに設けるガイドリブ38は、捻れ左側壁81aの中間位置から捻れ上壁81c側(第1端縁側)に約30〔mm〕の位置にて、壁面から約2〔mm〕突出する形状とした。同様に、図12(A)に示す基準中心捻れ搬送路構成体8-Oの捻れ右側壁81bに設けるガイドリブ38は、捻れ右側壁81bの中間位置から捻れ下壁81d側(第2端縁側)に約30〔mm〕の位置にて、壁面から約2〔mm〕突出する形状とした。このようにガイドリブ38を設ければ、おおむね紙幣通過領域PAの辺縁にリブ突端が近接する状態となり、紙幣PMの壁面接触防止機能と紙幣PMの搬送ガイド機能を好適に実現できる。 Therefore, the guide rib 38 provided on the twisted left side wall 81a of the reference center twisted transport path structure 8-O shown in FIG. 12A is moved from the intermediate position of the twisted left side wall 81a to the twisted upper wall 81c side (first end edge side). The shape is such that it protrudes from the wall surface by about 2 [mm] at a position of about 30 [mm]. Similarly, the guide rib 38 provided on the twisted right side wall 81b of the reference center twisted transport path structure 8-O shown in FIG. 12A is from the intermediate position of the twisted right side wall 81b to the twisted lower wall 81d side (second end edge side). The shape is such that it protrudes from the wall surface by about 2 [mm] at a position of about 30 [mm]. When the guide rib 38 is provided in this way, the rib tip is generally close to the edge of the bill passing region PA, and the wall contact prevention function of the bill PM and the transport guide function of the bill PM can be suitably realized.

なお、捻れ左側壁81aの中間位置から捻れ上壁81c側に約30〔mm〕の位置は、捻れ左側壁81aの中間位置から捻れ上壁81cまでの約3/4の位置である。同じく、捻れ右側壁81bの中間位置から捻れ下壁81d側に約30〔mm〕の位置は、捻れ右側壁81bの中間位置から捻れ下壁81dまでの約3/4の位置である。ガイドリブの形成位置として、側壁の中間位置から3/4の位置とすることは、一つの指標として有用である。また、ガイドリブ38を設ける部位は、反回転側となる捻れ左側壁81aおよび捻れ右側壁81bに限らず、回転側となる捻れ左側壁81aおよび捻れ右側壁81bに設けてもよい。 The position of about 30 [mm] from the intermediate position of the twisted left side wall 81a to the twisted upper wall 81c side is about 3/4 of the position from the intermediate position of the twisted left side wall 81a to the twisted upper wall 81c. Similarly, the position of about 30 [mm] from the intermediate position of the twisted right side wall 81b to the twisted lower wall 81d side is about 3/4 of the position from the intermediate position of the twisted right side wall 81b to the twisted lower wall 81d. It is useful as an index to set the position of forming the guide rib to 3/4 from the intermediate position of the side wall. Further, the portion where the guide rib 38 is provided is not limited to the twisted left side wall 81a and the twisted right side wall 81b on the counter-rotating side, but may be provided on the twisted left side wall 81a and the twisted right side wall 81b on the rotating side.

図12(B)は、基準中心捻れ搬送路構成体8-O″の基準中心捻れ搬送路83″の捻れ左側壁81aと捻れ右側壁81bにガイドリブ38を設けた例を示す。基準中心捻れ搬送路構成体8-O″における一方のガイドリブ38は、捻れ左側壁81aの中間位置から捻れ上壁81c側(第1端縁側)に約30〔mm〕の位置にて、壁面から約2〔mm〕突出する。同様に、基準中心捻れ搬送路構成体8-O″における他方のガイドリブ38は、捻れ右側壁81bの中間位置から捻れ下壁81d側(第2端縁側)に約30〔mm〕の位置にて、壁面から約2〔mm〕突出する。これは、図12(A)で示した基準中心捻れ搬送路構成体8-Oのガイドリブ38と同じであるが、図12(B)では、紙幣通過領域PAの辺縁にリブ突端が近接する状態とならず、紙幣通過領域PAから若干離れている。これは、基準中心捻れ搬送路構成体8-O″における基準中心捻れ搬送路83″の壁間幅が広く、捻れ角も大きいからである。このような場合、ガイドリブ38をより第1端縁側へ近づけると共にガイドリブ38をより第2端縁側へ近づけるように位置調整しても良いし、ガイドリブ38の突出量を大きくしても良い。 FIG. 12B shows an example in which the guide ribs 38 are provided on the twist left side wall 81a and the twist right side wall 81b of the reference center twist transport path 83 ″ of the reference center twist transport path configuration 8-O ″. One of the guide ribs 38 in the reference center twist transport path structure 8-O ″ is located at a position of about 30 [mm] from the intermediate position of the twist left wall 81a to the twist upper wall 81c side (first end edge side) from the wall surface. Similarly, the other guide rib 38 in the reference center twist transport path structure 8-O ″ protrudes about 2 [mm] from the intermediate position of the twist right side wall 81b to the twist lower wall 81d side (second end edge side). At the position of 30 [mm], it protrudes from the wall surface by about 2 [mm]. This is the same as the guide rib 38 of the reference center twist transport path structure 8-O shown in FIG. 12 (A), but in FIG. 12 (B), the rib tip is close to the edge of the bill passing region PA. It is not in a state and is slightly away from the bill passing area PA. This is because the width between the walls of the reference center twist transfer path 83 "in the reference center twist transfer path structure 8-O" is wide and the twist angle is also large. In such a case, the position of the guide rib 38 may be adjusted so as to be closer to the first end edge side and the guide rib 38 may be closer to the second end edge side, or the protrusion amount of the guide rib 38 may be increased.

上述したように、紙幣PMが折れ曲がることなく平板状のまま通過できる紙幣通過領域PAが形成される第1捻れ搬送壁311と第2捻れ搬送壁312の第1端縁側(最上流においては上部で、最下流においては右側部)には、図8に示すように、第1捻れ外方カバー321を設ける。一方、第1捻れ搬送壁311と第2捻れ搬送壁312の第2端縁側(最上流においては下部で、最下流においては左側部)には、第2捻れ外方カバー322を設ける。なお、中心捻れ搬送管3-Oは直線搬送管2と連結可能とするため、少なくとも、最上流部における第1捻れ外方カバー321は直線搬送管2の上部外方カバー221と、最上流部における第2捻れ外方カバー322は直線搬送管2の下部外方カバー222と同一形状としておくことが望ましい。 As described above, the first end edge side (at the upper part in the uppermost stream) of the first twist transport wall 311 and the second twist transport wall 312 in which the bill passage region PA through which the bill PM can pass in a flat plate shape without bending is formed. A first twist outer cover 321 is provided on the rightmost side) as shown in FIG. On the other hand, a second twist outer cover 322 is provided on the second end edge side (lower part in the uppermost stream and left side in the most downstream part) of the first twist transfer wall 311 and the second twist transfer wall 312. Since the central twist transfer pipe 3-O can be connected to the straight transfer pipe 2, at least the first twist outer cover 321 in the uppermost stream portion is the upper outer cover 221 of the straight line transfer pipe 2 and the uppermost flow portion. It is desirable that the second twist outer cover 322 in the above has the same shape as the lower outer cover 222 of the straight line transfer pipe 2.

第1捻れ外方カバー321は、第1捻れ搬送壁311の第1端縁311cおよび第2捻れ搬送壁312の第1端縁312cの第1方向側空間(最上流においては上方空間、最下流においては右側空間)を覆う。また、第1捻れ外方カバー321は、第1捻れ搬送壁311の外壁面311aにおける第1端側の一部(最上流においては上部、最下流においては右側部)を覆う。さらに、第1捻れ外方カバー321は、第2捻れ搬送壁312の外壁面312aにおける第1端側の一部(最上流においては上部、最下流においては右側部)を覆う。 The first twist outer cover 321 is a space on the first direction side of the first end edge 311c of the first twist transfer wall 311 and the first end edge 312c of the second twist transfer wall 312 (upper space in the uppermost stream, most downstream space). Covers the space on the right side). Further, the first twist outer cover 321 covers a part of the outer wall surface 311a of the first twist transfer wall 311 on the first end side (upper part in the uppermost stream, right side part in the most downstream part). Further, the first twist outer cover 321 covers a part of the outer wall surface 312a of the second twist transfer wall 312 on the first end side (upper part in the uppermost stream, right side part in the most downstream part).

一方、第2捻れ外方カバー322は、第1捻れ搬送壁311の第2端縁311dおよび第2捻れ搬送壁312の第2端縁312dの第2方向側空間(最上流においては下方空間、最下流においては左側空間)を覆う。また、第2捻れ外方カバー322は、第1捻れ搬送壁311の外壁面311aにおける第2端側の一部(最上流においては下部、最下流においては左側部)を覆う。さらに、第2捻れ外方カバー322は、第2捻れ搬送壁312の外壁面312aにおける第2端側の一部(最上流においては下部、最下流においては左側部)を覆う。なお、第1捻れ外方カバー321と第2捻れ外方カバー322に分けて設けず、一つの外方カバーで第1捻れ搬送壁311と第2捻れ搬送壁312の外方全体を覆うような構造としても構わない。 On the other hand, the second twist outer cover 322 is a space on the second direction side of the second end edge 311d of the first twist transfer wall 311 and the second end edge 312d of the second twist transfer wall 312 (lower space in the uppermost stream). It covers the space on the left side at the most downstream. Further, the second twist outer cover 322 covers a part of the outer wall surface 311a of the first twist transfer wall 311 on the second end side (lower part in the uppermost stream and left side in the most downstream part). Further, the second twist outer cover 322 covers a part of the outer wall surface 312a of the second twist transport wall 312 on the second end side (lower part in the uppermost stream, left side in the most downstream part). It should be noted that the first twist outer cover 321 and the second twist outer cover 322 are not provided separately, and one outer cover covers the entire outer side of the first twist transfer wall 311 and the second twist transfer wall 312. It does not matter as a structure.

なお、これら第1,第2捻れ搬送壁311,312と第1,第2捻れ外方カバー321,322は、個別のパーツとして形成し、組み立てても良いし、射出成形や押出成形といった樹脂加工技術により複合パーツを形成して組み立てるようにしても良い。また、樹脂加工に限らず、厚さ1~2〔mm〕程度の板材を加工して、第1,第2捻れ搬送壁311,312と第1,第2捻れ外方カバー321,322を作っても良い。 The first and second twist transport walls 311, 312 and the first and second twist outer covers 321 and 322 may be formed as individual parts and assembled, or may be processed by resin such as injection molding or extrusion molding. The composite parts may be formed and assembled by a technique. Further, not limited to resin processing, plate materials having a thickness of about 1 to 2 [mm] are processed to make first and second twist transport walls 311, 312 and first and second twist outer covers 321 and 322. May be.

また、第1捻れ搬送壁311の中間位置よりも第1端縁311c側には、外壁面311a側から内壁面311b側に搬送用エアが通過し得る流体帰還孔としての第1反回転側エア帰還孔3411を設ける。同じく、第1捻れ搬送壁311の中間位置よりも第2端縁311d側には、外壁面311a側から内壁面311b側に搬送用エアが通過し得る流体帰還孔としての第1回転側エア帰還孔3412を設ける。一方、第2捻れ搬送壁312の中間位置よりも第1端縁312c側には、外壁面312a側から内壁面312b側に搬送用エアが通過し得る流体帰還孔としての第2回転側エア帰還孔3421を設ける。同じく、第2捻れ搬送壁312の中間位置よりも第2端縁312d側には、外壁面312a側から内壁面312b側に搬送用エアが通過し得る流体帰還孔としての第2反回転側エア帰還孔3422を設ける。そして、第1反回転側エア帰還孔3411と第2回転側エア帰還孔3421は、第1捻れ外方カバー321で覆われ、第1回転側エア帰還孔3412と第2反回転側エア帰還孔3422は、第2捻れ外方カバー322で覆われる。 Further, on the first end edge 311c side of the intermediate position of the first twisting transport wall 311, the first counter-rotating side air as a fluid return hole through which the transport air can pass from the outer wall surface 311a side to the inner wall surface 311b side. A return hole 3411 is provided. Similarly, on the second end edge 311d side of the intermediate position of the first twisting transport wall 311, the first rotation side air feedback as a fluid return hole through which the transport air can pass from the outer wall surface 311a side to the inner wall surface 311b side. A hole 3412 is provided. On the other hand, on the first end edge 312c side of the intermediate position of the second twisted transport wall 312, the second rotation side air feedback as a fluid return hole through which the transport air can pass from the outer wall surface 312a side to the inner wall surface 312b side. A hole 3421 is provided. Similarly, on the second end edge 312d side of the intermediate position of the second twisted transport wall 312, the second counter-rotating side air as a fluid return hole through which the transport air can pass from the outer wall surface 312a side to the inner wall surface 312b side. A return hole 3422 is provided. The first counter-rotating side air return hole 3411 and the second rotation side air return hole 3421 are covered with the first twist outer cover 321 and the first rotation side air return hole 3412 and the second counter-rotation side air return hole. The 3422 is covered with a second twist outer cover 322.

第1反回転側エア帰還孔3411、第1回転側エア帰還孔3412、第2回転側エア帰還孔3421、第2反回転側エア帰還孔3422は、それぞれ搬送方向に向かって等間隔で一列状に設ける。なお、第1反回転側エア帰還孔3411、第1回転側エア帰還孔3412、第2回転側エア帰還孔3421、第2反回転側エア帰還孔3422(以後、特に呼び分ける必要がない場合、エア帰還孔34と総称する。)から中心捻れ搬送路331-O内に帰還流が戻されるのは、直線搬送管2と同じである。また、本構成例の中心捻れ搬送管3-Oにおけるエア帰還孔34は略四角形状としたが、その開口形状や開口面積、配置間隔等は、特に限定されるものではなく、必要十分な帰還流を得ることができれば良い。よって、エア帰還孔34の搬送直交幅L1や搬送平行幅L2は、適宜な風量や風速が得られるように定める。 The first counter-rotating side air return hole 3411, the first rotation side air return hole 3412, the second rotation side air return hole 3421, and the second counter-rotation side air return hole 3422 are arranged in a row at equal intervals in the transport direction. Provided in. The first counter-rotating side air return hole 3411, the first rotation side air return hole 3412, the second rotation side air return hole 3421, and the second counter-rotation side air return hole 3422 (hereinafter, when it is not necessary to distinguish them). The return flow is returned from the air return hole 34) into the central twist transfer path 331-O in the same manner as in the straight transfer tube 2. Further, although the air return hole 34 in the central twist transfer pipe 3-O of this configuration example has a substantially square shape, the opening shape, opening area, arrangement interval, etc. are not particularly limited, and necessary and sufficient feedback is required. It is good if you can get the flow. Therefore, the transport orthogonal width L1 and the transport parallel width L2 of the air return hole 34 are determined so that an appropriate air volume and speed can be obtained.

第1捻れ搬送壁311に設ける第1反回転側エア帰還孔3411と、第2捻れ搬送壁312に設ける第2回転側エア帰還孔3421とは、中心捻れ搬送路331-Oを挟んで対向するように、搬送方向の開設位置を合わせる。同様に、第1捻れ搬送壁311に設ける第1回転側エア帰還孔3412と、第2捻れ搬送壁312に設ける第2反回転側エア帰還孔3422とは、中心捻れ搬送路331-Oを挟んで対向するように、搬送方向の開設位置を合わせる。 The first counter-rotating side air return hole 3411 provided in the first twist transfer wall 311 and the second rotation side air return hole 3421 provided in the second twist transfer wall 312 face each other with the central twist transfer path 331-O interposed therebetween. As such, the opening position in the transport direction is adjusted. Similarly, the first rotation side air return hole 3412 provided in the first twist transfer wall 311 and the second counter-rotation side air return hole 3422 provided in the second twist transfer wall 312 sandwich the central twist transfer path 331-O. Align the opening position in the transport direction so that they face each other.

上述した第1反回転側エア帰還孔3411と第2回転側エア帰還孔3421を覆う第1捻れ外方カバー321は、第1,第2捻れ搬送壁311,312の各内壁面311b,312b側から各外壁面311a,312a側へ搬送用エアをそれぞれ誘導する流体誘導空部を生じさせる構造を備える。本構成の第1捻れ外方カバー321においては、第1捻れ搬送壁311に対応させて設けた第1捻れ分岐誘導部321a1と、第2捻れ搬送壁312に対応させて設けた第2捻れ分岐誘導部321b1は、中央連結部321cに対して略対称の構造である。なお、第1捻れ外方カバー321の中央連結部321cは、第1捻れ搬送壁311の第1端縁311cと第2捻れ搬送壁312の第1端縁312cの中間位置に沿って、搬送方向へ時計回りに略90〔°〕回転する部位である。 The first twist outer cover 321 that covers the first counter-rotating side air return hole 3411 and the second rotation side air return hole 3421 is on the inner wall surface 311b, 312b side of the first and second twist transport walls 311, 312. It is provided with a structure for generating a fluid-guided empty space for guiding transport air from the outer wall surface to the 311a and 312a sides, respectively. In the first twist outer cover 321 of the present configuration, the first twist branch guide portion 321a1 provided corresponding to the first twist transfer wall 311 and the second twist branch provided corresponding to the second twist transfer wall 312 are provided. The guide portion 321b1 has a structure substantially symmetrical with respect to the central connecting portion 321c. The central connecting portion 321c of the first twist outer cover 321 is provided in the transport direction along the intermediate position between the first end edge 311c of the first twist transfer wall 311 and the first end edge 312c of the second twist transfer wall 312. It is a part that rotates approximately 90 [°] clockwise.

第1捻れ外方カバー321における第1捻れ分岐誘導部321a1の内面は、第1捻れ搬送壁311と第2捻れ搬送壁312との間である中央連結部321cより徐々に中心捻れ搬送路331-Oから第1方向へ遠ざかるように突出し、第1捻れ搬送壁311を超えると徐々に第2方向に変化する滑らかな凹曲面である。したがって、第1捻れ分岐誘導部321a1は、第1捻れ搬送壁311の第1端縁311cの第1方向側空間に、第1捻れ搬送壁311の内壁面311b側から外壁面311a側へ搬送用エアを誘導する第1捻れ分岐誘導空部332aを形成できる。同様に、第1捻れ外方カバー321における第2捻れ分岐誘導部321b1の内面は、第1捻れ搬送壁311と第2捻れ搬送壁312との間である中央連結部321cより徐々に中心捻れ搬送路331-Oから第1方向へ遠ざかるように突出し、第2捻れ搬送壁312を超えると徐々に第2方向に変化する滑らかな凹曲面である。したがって、第2捻れ分岐誘導部321b1は、第2捻れ搬送壁312の第1端縁312cの第1方向側空間に、第2捻れ搬送壁312の内壁面312b側から外壁面312a側へ搬送用エアを誘導する第2捻れ分岐誘導空部332bを形成できる。 The inner surface of the first twist branch guide portion 321a1 in the first twist outer cover 321 is gradually centered from the central connection portion 321c between the first twist transport wall 311 and the second twist transport wall 312. It is a smooth concave curved surface that protrudes from O so as to move away from the first direction and gradually changes in the second direction when the first twist transport wall 311 is exceeded. Therefore, the first twist branch guide portion 321a1 is used for transporting the first twist transport wall 311 from the inner wall surface 311b side to the outer wall surface 311a side in the space on the first direction side of the first end edge 311c of the first twist transport wall 311. The first twist branch induction empty portion 332a for inducing air can be formed. Similarly, the inner surface of the second twist branch guide portion 321b1 in the first twist outer cover 321 is gradually center-twisted and conveyed from the central connecting portion 321c between the first twist transport wall 311 and the second twist transport wall 312. It is a smooth concave curved surface that protrudes from the road 331-O so as to move away from the first direction and gradually changes in the second direction when the second twist transport wall 312 is exceeded. Therefore, the second twist branch guide portion 321b1 is used for transporting the second twist transport wall 312 from the inner wall surface 312b side to the outer wall surface 312a side in the first direction side space of the first end edge 312c of the second twist transport wall 312. The second twist branch induction empty portion 332b that induces air can be formed.

第1捻れ外方カバー321の第1捻れ分岐誘導部321a1の外側(最上流においては左側、最下流においては上側)には、第1捻れ外方誘導部321a2が連なる。この第1捻れ外方誘導部321a2は、第1捻れ分岐誘導空部332aを介して第1捻れ搬送壁311の外壁面311a側へ誘導された搬送用エアを第1反回転側エア帰還孔3411へ誘導可能な第1捻れ外方誘導空部333aを生じさせる。同様に、第1捻れ外方カバー321の第2捻れ分岐誘導部321b1の外側(最上流においては右側、最下流においては下側)には、第2捻れ外方誘導部321b2が連なる。この第2捻れ外方誘導部321b2は、第2捻れ分岐誘導空部332bを介して第2捻れ搬送壁312の外壁面312a側へ誘導された搬送用エアを第2回転側エア帰還孔3421へ誘導可能な第2捻れ外方誘導空部333bを生じさせる。なお、第1捻れ外方誘導部321a2の第2方向端は、滑らかに湾曲させて第1捻れ搬送壁311の外壁面311aに密着する終端屈曲部321a2-eとし、第1反回転側エア帰還孔3411の第2方向側にて第1捻れ外方誘導空部333aが閉塞されるようにしておく。同様に、第2捻れ外方誘導部321b2の第2方向端は、滑らかに湾曲させて第2捻れ搬送壁312の外壁面312aに密着する終端屈曲部321b2-eとし、第2回転側エア帰還孔3421の若干第2方向側にて第2捻れ外方誘導空部333bが閉塞されるようにしておく。 A first twist outer guide portion 321a2 is connected to the outside of the first twist branch guide portion 321a1 of the first twist outer cover 321 (on the left side in the uppermost stream and upper side in the most downstream direction). The first twist outer guide portion 321a2 transfers the transport air guided to the outer wall surface 311a side of the first twist transport wall 311 via the first twist branch guide empty portion 332a to the first counter-rotating side air return hole 3411. It gives rise to a first twist outward guiding space 333a that can be guided to. Similarly, a second twist outer guide portion 321b2 is connected to the outside of the second twist branch guide portion 321b1 of the first twist outer cover 321 (on the right side in the uppermost stream and lower side in the most downstream direction). The second twist outer guide portion 321b2 transfers the transport air guided to the outer wall surface 312a side of the second twist transport wall 312 to the second rotation side air return hole 3421 via the second twist branch guide empty portion 332b. It gives rise to an inducible second twist outwardly guided empty space 333b. The second-direction end of the first twist outer guide portion 321a2 is smoothly curved to form a terminal bending portion 321a2-e that is in close contact with the outer wall surface 311a of the first twist transport wall 311. The first twist outward guide empty portion 333a is closed on the second direction side of the hole 3411. Similarly, the second direction end of the second twist outer guide portion 321b2 is a terminal bent portion 321b2-e that is smoothly curved and is in close contact with the outer wall surface 312a of the second twist transport wall 312, and is used as a second rotation side air feedback. The second twist outward guide vacant portion 333b is closed slightly on the second direction side of the hole 3421.

第2捻れ外方カバー322も第1捻れ外方カバー321と同様に、第1,第2捻れ搬送壁311,312の各内壁面311b,312b側から各外壁面311a,312a側へ搬送用エアをそれぞれ誘導する流体誘導空部を生じさせる構造を備える。本構成の第2捻れ外方カバー322においては、第1捻れ搬送壁311に対応させて設けた第1捻れ分岐誘導部322b1と、第2捻れ搬送壁312に対応させて設けた第2捻れ分岐誘導部322a1は、中央連結部322cに対して略対称の構造である。なお、第2捻れ外方カバー322の中央連結部322cは、第1捻れ搬送壁311の第2端縁311dと第2捻れ搬送壁312の第2端縁312dの中間位置に沿って、搬送方向へ時計回りに略90〔°〕回転する部位である。 The second twist outer cover 322 is also the same as the first twist outer cover 321. It is provided with a structure that creates a fluid-guided empty space that guides each of the above. In the second twist outer cover 322 of this configuration, the first twist branch guide portion 322b1 provided corresponding to the first twist transfer wall 311 and the second twist branch provided corresponding to the second twist transfer wall 312. The guide portion 322a1 has a structure substantially symmetrical with respect to the central connecting portion 322c. The central connecting portion 322c of the second twist outer cover 322 is provided in the transport direction along the intermediate position between the second end edge 311d of the first twist transfer wall 311 and the second end edge 312d of the second twist transfer wall 312. It is a part that rotates approximately 90 [°] clockwise.

第2捻れ外方カバー322における第1捻れ分岐誘導部322b1の内面は、第1捻れ搬送壁311と第2捻れ搬送壁312との間である中央連結部322cより徐々に中心捻れ搬送路331-Oから第2方向へ遠ざかるように突出し、第1捻れ搬送壁311を超えると徐々に第1方向に変化する滑らかな凹曲面である。したがって、第1捻れ分岐誘導部322b1は、第1捻れ搬送壁311の第2端縁311dの第2方向側空間に、第1捻れ搬送壁311の内壁面311b側から外壁面311a側へ搬送用エアを誘導する第2捻れ分岐誘導空部332bを形成できる。同様に、第2捻れ外方カバー322における第2捻れ分岐誘導部322a1の内面は、第1捻れ搬送壁311と第2捻れ搬送壁312との間である中央連結部322cより徐々に中心捻れ搬送路331-Oから第2方向へ遠ざかるように突出し、第2捻れ搬送壁312を超えると徐々に第1方向に変化する滑らかな凹曲面である。したがって、第2捻れ分岐誘導部322a1は、第2捻れ搬送壁312の第2端縁312dの第2方向側空間に、第2捻れ搬送壁312の内壁面312b側から外壁面312a側へ搬送用エアを誘導する第1捻れ分岐誘導空部332aを形成できる。 The inner surface of the first twist branch guide portion 322b1 in the second twist outer cover 322 is gradually centered from the central connection portion 322c between the first twist transport wall 311 and the second twist transport wall 312. It is a smooth concave curved surface that protrudes away from O in the second direction and gradually changes in the first direction when it exceeds the first twist transfer wall 311. Therefore, the first twist branch guide portion 322b1 is used for transporting the first twist transport wall 311 from the inner wall surface 311b side to the outer wall surface 311a side in the second direction side space of the second end edge 311d of the first twist transport wall 311. The second twist branch induction empty portion 332b for inducing air can be formed. Similarly, the inner surface of the second twist branch guide portion 322a1 in the second twist outer cover 322 is gradually center-twisted and conveyed from the central connecting portion 322c between the first twist transport wall 311 and the second twist transport wall 312. It is a smooth concave curved surface that protrudes from the road 331-O so as to move away from the second direction and gradually changes in the first direction when the second twist transport wall 312 is exceeded. Therefore, the second twist branch guide portion 322a1 is used for transporting the second twist transport wall 312 from the inner wall surface 312b side to the outer wall surface 312a side of the second twist transport wall 312 in the second direction side space of the second end edge 312d. The first twist branch induction empty portion 332a for inducing air can be formed.

第2捻れ外方カバー322の第1捻れ分岐誘導部322b1の外側(最上流においては左側、最下流においては上側)には、第1捻れ外方誘導部322b2が連なる。この第1捻れ外方誘導部322b2は、第2捻れ分岐誘導空部332bを介して第1捻れ搬送壁311の外壁面311a側へ誘導された搬送用エアを第1回転側エア帰還孔3412へ誘導可能な第2捻れ外方誘導空部333bを生じさせる。同様に、第2捻れ外方カバー322の第2捻れ分岐誘導部322a1の外側(最上流においては右側、最下流においては下側)に連なる第2捻れ外方誘導部322a2は、第1捻れ分岐誘導空部332aを介して第2捻れ搬送壁312の外壁面312a側へ誘導された搬送用エアを第2反回転側エア帰還孔3422へ誘導可能な第1捻れ外方誘導空部333aを生じさせる。なお、第1捻れ外方誘導部322b2の第1方向端は、滑らかに湾曲させて第1捻れ搬送壁311の外壁面311aに密着する終端屈曲部322b2-eとし、第1回転側エア帰還孔3412の第1方向側にて第2捻れ外方誘導空部333bが閉塞されるようにしておく。同様に、第2捻れ外方誘導部322a2の第1方向端は、滑らかに湾曲させて第2捻れ搬送壁312の外壁面312aに密着する終端屈曲部322a2-eとし、第2反回転側エア帰還孔3422の第1方向側にて第1捻れ外方誘導空部333aが閉塞されるようにしておく。 A first twist outer guide portion 322b2 is connected to the outside of the first twist branch guide portion 322b1 of the second twist outer cover 322 (on the left side in the uppermost stream and upper side in the most downstream direction). The first twist outer guide portion 322b2 transfers the transport air guided to the outer wall surface 311a side of the first twist transport wall 311 to the first rotation side air return hole 3412 via the second twist branch guide empty portion 332b. It gives rise to an inducible second twist outwardly guided empty space 333b. Similarly, the second twist outer guide portion 322a2 connected to the outside of the second twist branch guide portion 322a1 of the second twist outer cover 322 (the right side in the uppermost stream and the lower side in the most downstream) is the first twist branch. A first twist outward guide vacant portion 333a capable of guiding the transport air guided to the outer wall surface 312a side of the second twist transport wall 312 to the second counter-rotating side air return hole 3422 via the guide vacant portion 332a is generated. Let me. The first direction end of the first twist outer guide portion 322b2 is a terminal bent portion 322b2-e that is smoothly curved and is in close contact with the outer wall surface 311a of the first twist transport wall 311. The second twist outward guidance empty portion 333b is closed on the first direction side of the 3412. Similarly, the first direction end of the second twist outward guide portion 322a2 is a terminal bent portion 322a2-e that is smoothly curved and is in close contact with the outer wall surface 312a of the second twist transport wall 312, and is the second counter-rotating side air. The first twist outward guidance empty portion 333a is closed on the first direction side of the return hole 3422.

なお、第1捻れ外方カバー321と第2捻れ外方カバー322は、中心軸CA-Oに対して軸対象となるので、例えば、第1捻れ外方カバー321として成形した外方カバー体を第2捻れ外方カバー322として用いることができる。すなわち、第1捻れ搬送壁311の第1端縁311c側に配される第1捻れ外方カバー321の第1捻れ分岐誘導部321a1および第1捻れ外方誘導部321a2は、第2捻れ搬送壁312の第2端縁312d側に配される第2捻れ外方カバー322の第2捻れ分岐誘導部322a1および第2捻れ外方誘導部322a2に対応する。また、第2捻れ搬送壁312の第1端縁311c側に配される第1捻れ外方カバー321の第2捻れ分岐誘導部321b1および第2捻れ外方誘導部321b2は、第1捻れ搬送壁311の第2端縁311d側に配される第2捻れ外方カバー322の第1捻れ分岐誘導部322b1および第1捻れ外方誘導部322b2に対応する。 Since the first twist outer cover 321 and the second twist outer cover 322 are axisymmetric with respect to the central axis CA-O, for example, an outer cover body formed as the first twist outer cover 321 can be used. It can be used as the second twist outer cover 322. That is, the first twist branch guide portion 321a1 and the first twist outer guide portion 321a2 of the first twist outer cover 321 arranged on the first end edge 311c side of the first twist transport wall 311 are the second twist transport wall. It corresponds to the second twist branch guide portion 322a1 and the second twist outer guide portion 322a2 of the second twist outer cover 322 arranged on the second end edge 312d side of 312. Further, the second twist branch guide portion 321b1 and the second twist outer guide portion 321b2 of the first twist outer cover 321 arranged on the first end edge 311c side of the second twist transport wall 312 are the first twist transport wall. It corresponds to the first twist branch guide portion 322b1 and the first twist outer guide portion 322b2 of the second twist outer cover 322 arranged on the second end edge 311d side of 311.

第1捻れ搬送壁311の外壁面311a側には、第1反回転側エア帰還孔3411に対応させた第1反回転側帰還ガイド部3511と、第1回転側エア帰還孔3412に対応させた第1回転側帰還ガイド部3512を設ける。第2捻れ搬送壁312の外壁面312a側には、第2回転側エア帰還孔3421に対応させた第2回転側帰還ガイド部3521と、第2反回転側エア帰還孔3422に対応させた第2反回転側帰還ガイド部3522を設ける。第1反回転側帰還ガイド部3511、第1回転側帰還ガイド部3512、第2回転側帰還ガイド部3521、第2反回転側帰還ガイド部3522(以後、特に呼び分ける必要がない場合、帰還ガイド部35と総称する。)は、第1捻れ外方誘導空部333aおよび第2捻れ外方誘導空部333bに誘導された搬送用エアを各エア帰還孔34へ導く。 On the outer wall surface 311a side of the first twist transfer wall 311, the first counter-rotation side return guide portion 3511 corresponding to the first counter-rotation side air return hole 3411 and the first rotation side air return hole 3412 are supported. The first rotation side return guide portion 3512 is provided. On the outer wall surface 312a side of the second twist transfer wall 312, a second rotation side return guide portion 3521 corresponding to the second rotation side air return hole 3421 and a second rotation side air return hole 3422 corresponding to the second rotation side air return hole 3422. 2 The counter-rotating side feedback guide portion 3522 is provided. 1st counter-rotation side feedback guide unit 3511, 1st rotation side feedback guide unit 3512, 2nd rotation side feedback guide unit 3521, 2nd anti-rotation side feedback guide unit 3522 Section 35) guides the transport air guided to the first twist outward guide air portion 333a and the second twist outward guide air portion 333b to each air return hole 34.

帰還ガイド部35は、少なくともエア帰還孔34の上流側開口縁に連なるエア導入開口35aが上流側に位置し、エア帰還孔34の下流側開口縁に向かって狭まる突出体で、その断面(上流端では横断面、下流端では縦断面)は略三角形状とした。また、エア導入開口35aの開口幅L3(例えば、第1,第2捻れ搬送壁311,312の外壁面311a,312aからの突出量)は、第1捻れ外方誘導空部333aおよび第2捻れ外方誘導空部333bの範囲内で任意に調整できる。例えば、エア導入開口35aの開口幅L3を大きくすると、エア帰還孔34へ誘導できるエア量を増やして帰還流を強くでき、エア導入開口35aの開口幅L3を小さくすると、エア帰還孔34へ誘導できるエア量を減らして帰還流を抑制できる。なお、エア帰還孔34と帰還ガイド部35は、樹脂加工により第1,第2捻れ搬送壁311,312を形成するとき、同時に形成できる。無論、別体として形成した構造体をエア帰還孔34の縁部に沿って取り付けることにより、帰還ガイド部35を形成するようにしても良い。 The return guide portion 35 is a projecting body in which at least the air introduction opening 35a connected to the upstream opening edge of the air return hole 34 is located on the upstream side and narrows toward the downstream opening edge of the air return hole 34, and its cross section (upstream). The cross section at the end and the vertical cross section at the downstream end) were substantially triangular. Further, the opening width L3 of the air introduction opening 35a (for example, the amount of protrusion from the outer wall surfaces 311a and 312a of the first and second twist transport walls 311 and 312) is the first twist outer guide empty portion 333a and the second twist. It can be arbitrarily adjusted within the range of the outward guidance air portion 333b. For example, if the opening width L3 of the air introduction opening 35a is increased, the amount of air that can be guided to the air return hole 34 can be increased to strengthen the feedback flow, and if the opening width L3 of the air introduction opening 35a is decreased, the air is guided to the air return hole 34. The amount of air that can be produced can be reduced to suppress the feedback flow. The air return hole 34 and the return guide portion 35 can be formed at the same time when the first and second twist transfer walls 311, 312 are formed by resin processing. Of course, the return guide portion 35 may be formed by attaching the structure formed as a separate body along the edge portion of the air return hole 34.

更に、本構成の中心捻れ搬送管3-Oでは、第1捻れ外方カバー321の第1捻れ分岐誘導部321a1に反回転側誘導プレート36Aを、第2捻れ分岐誘導部321b1に回転側誘導プレート36Rをそれぞれ設ける。同様に、第2捻れ外方カバー322の第2捻れ分岐誘導部322a1には反回転側誘導プレート36Aを設け、第1捻れ分岐誘導部322b1には回転側誘導プレート36Rを設ける。反回転側誘導プレート36Aは、第1捻れ分岐誘導空部332a内に突出する半円弧状の板状体であり、回転側誘導プレート36Rは、第2捻れ分岐誘導空部332b内に突出する半円弧状の板状体である。反回転側誘導プレート36Aと回転側誘導プレート36Rは、直線搬送管2における左,右誘導プレート26L,26Rと同様の機能を発揮するものである。ただし、第1捻れ分岐誘導部321a1,322a1と第2捻れ分岐誘導部321b1,322b1は非対称であるため、反回転側誘導プレート36Aと回転側誘導プレート36Rも非対称となる。 Further, in the central twist transfer pipe 3-O of the present configuration, the counter-rotating side guide plate 36A is attached to the first twist branch guide portion 321a1 of the first twist outer cover 321 and the rotation side guide plate is attached to the second twist branch guide portion 321b1. 36R is provided respectively. Similarly, the second twist branch guide portion 322a1 of the second twist outer cover 322 is provided with a counter-rotating side guide plate 36A, and the first twist branch guide portion 322b1 is provided with a rotation side guide plate 36R. The counter-rotating side guide plate 36A is a semicircular plate-like body protruding into the first twisting branch guiding empty portion 332a, and the rotating side guiding plate 36R is a semicircle protruding into the second twisting branch guiding empty portion 332b. It is an arc-shaped plate-shaped body. The counter-rotating side guiding plate 36A and the rotating side guiding plate 36R exhibit the same functions as the left and right guiding plates 26L and 26R in the linear transfer pipe 2. However, since the first twist branch guide portion 321a1, 322a1 and the second twist branch guide portion 321b1, 322b1 are asymmetric, the counter-rotating side guide plate 36A and the rotation side guide plate 36R are also asymmetric.

なお、前述した直線搬送管2Bにおいて、上,下部外方カバー221,222や左,右誘導プレート26L,26Rに紙幣PMが接触することを防止するために設けた搬送ガイド27と同様の構造を中心捻れ搬送管3-Oに設けるようにしてもよい。かくする場合には、第1,第2捻れ搬送壁311,312に沿って湾曲する搬送ガイドを形成して第1,第2捻れ搬送壁311,312の第1端縁311c、312c側および第2端縁311d,312d側に取り付ければ良い。あるいは、第1,第2捻れ搬送壁311,312の内壁面311b,312bの第1端縁311c,312c側および第2端縁311d,312d側に、搬送方向へ所要間隔で架設材を設け、搬送ガイドとしても良い。 In the linear transport pipe 2B described above, the same structure as the transport guide 27 provided to prevent the bill PM from coming into contact with the upper and lower outer covers 221,222 and the left and right guide plates 26L and 26R is provided. It may be provided in the central twist transfer pipe 3-O. In this case, a transport guide curved along the first and second twist transport walls 311, 312 is formed so that the first end edges 311c and 312c sides of the first and second twist transport walls 311, 312 and the first It may be attached to the two end edges 311d and 312d. Alternatively, erection materials are provided at the required intervals in the transport direction on the first end edges 311c, 312c side and the second end edges 311d, 312d side of the inner wall surfaces 311b, 312b of the first and second twist transport walls 311, 312. It may be used as a transport guide.

上記のように構成した中心捻れ搬送管3-Oにおいては、中心軸CA-O回りに回転する捻れ搬送路311-Oを備えるので、第1捻れ外方カバー321が搬送方向右側へ捻れて突出する量と、第2捻れ外方カバー322が搬送方向左側へ捻れて突出する量がほぼ等しくなる。これに対して、本構成例の捻れ搬送管3は、第2端縁側(図13においては、第2捻れ外方カバー322の側)に片寄るように設定した偏心捻れ軸TA回りに回転する捻れ搬送路331を備えることで、左右への突出量が不均衡となる。このように、搬送方向左側への突出量と搬送方向右側への突出量を異ならせるようにした捻れ搬送管3の利点については後述する。 Since the central twist transfer pipe 3-O configured as described above is provided with the twist transfer path 311-O that rotates around the central axis CA-O, the first twist outer cover 321 is twisted to the right in the transfer direction and protrudes. The amount to be twisted and the amount of the second twist outer cover 322 twisted to the left in the transport direction and protrude are substantially equal to each other. On the other hand, the twist transfer pipe 3 of this configuration example is twisted to rotate around the eccentric twist shaft TA set to be offset to the second end edge side (the side of the second twist outer cover 322 in FIG. 13). By providing the transport path 331, the amount of protrusion to the left and right becomes unbalanced. As described above, the advantages of the twisted transport pipe 3 in which the amount of protrusion to the left side in the transport direction and the amount of protrusion to the right side in the transport direction are different will be described later.

図13は、本構成例の捻れ搬送管3を示し、前述した中心捻れ搬送管3-Oと同様に、上流端および下流端のどちらも直線搬送管2,2Bと連結可能な構造である。すなわち、第1直線搬送壁211と第1捻れ搬送壁311、第2直線搬送壁212と第2捻れ搬送壁312、上部外方カバー221と第1捻れ外方カバー321、下部外方カバー222と第2捻れ外方カバー322がそれぞれ対応する。なお、図13において、前述した中心捻れ搬送管3-Oと同一あるいは対応する構成には、同一符号を付して説明を省略する。また、捻れ搬送管3には、直線搬送管2の搬送ガイド27に相当する搬送ガイド37と、第1捻れ搬送壁311における内壁面311bおよび第2捻れ搬送壁312における内壁面312bから突出するガイドリブ38が設けられる。 FIG. 13 shows the twist transfer pipe 3 of this configuration example, and has a structure in which both the upstream end and the downstream end can be connected to the straight transfer pipes 2 and 2B in the same manner as the central twist transfer pipe 3-O described above. That is, the first straight transport wall 211 and the first twist transport wall 311, the second straight transport wall 212 and the second twist transport wall 312, the upper outer cover 221 and the first twist outer cover 321 and the lower outer cover 222. The second twist outer cover 322 corresponds to each. In FIG. 13, the same reference numerals are given to the configurations that are the same as or corresponding to those of the above-mentioned central twist transfer tube 3-O, and the description thereof will be omitted. Further, the twisted transport pipe 3 includes a transport guide 37 corresponding to the transport guide 27 of the linear transport pipe 2, and a guide rib protruding from the inner wall surface 311b of the first twist transport wall 311 and the inner wall surface 312b of the second twist transport wall 312. 38 is provided.

ここで、捻れ搬送管3に形成される捻れ搬送路331の詳細について説明する。流体通過捻れ空間33のうち、第1捻れ搬送壁311の内壁面311bと第2捻れ搬送壁312の内壁面312bとで挟まれた空間が捻れ搬送路331となり、紙幣PMはこの捻れ搬送路331内を搬送されながら時計回りに略90〔°〕回転するのである。なお、捻れ搬送路331の第1端縁側は、概ね第1,第2捻れ搬送壁311,312の第1端縁311c,312cの境界近傍であり、反回転側誘導プレート36A、回転側誘導プレート36R、搬送ガイド37は捻れ搬送路331の外側に設ける。捻れ搬送路331の第2端縁側も同様に、概ね第1,第2捻れ搬送壁311,312の第2端縁311d,312dの境界近傍であり、反回転側誘導プレート36A、回転側誘導プレート36R、搬送ガイド37は捻れ搬送路331の外側に設ける。 Here, the details of the twist transfer path 331 formed in the twist transfer pipe 3 will be described. Of the fluid-passing twisted space 33, the space sandwiched between the inner wall surface 311b of the first twisted transport wall 311 and the inner wall surface 312b of the second twisted transport wall 312 becomes the twisted transport path 331, and the banknote PM is the twisted transport path 331. It rotates about 90 [°] clockwise while being transported inside. The first end edge side of the twist transfer path 331 is generally near the boundary between the first end edges 311c and 312c of the first and second twist transfer walls 311, 312, and the counter-rotating side guide plate 36A and the rotation side guide plate. The 36R and the transport guide 37 are provided on the outside of the twisted transport path 331. Similarly, the second end edge side of the twist transfer path 331 is also approximately near the boundary between the second end edges 311d and 312d of the first and second twist transfer walls 311, 312, and the counter-rotating side guide plate 36A and the rotation side guide plate. The 36R and the transport guide 37 are provided on the outside of the twisted transport path 331.

なお、捻れ搬送路331は、上流端開口の中心から下流端開口の中心へ至る直線状の偏心捻れ軸TA回りに捻れた流路形状で、上流より搬送された紙幣PMの紙面を回転(例えば、搬送方向に向かって時計回りに回転)させて、紙幣PMの第1,第2搬送直交辺PM2a,PM2bの向きを鉛直方向から水平方向へ変える流路である。無論、上流より搬送された紙幣PMの紙面を反時計回りに回転させて、紙幣PMの第1,第2搬送直交辺PM2a,PM2bの向きを鉛直方向から水平方向へ変える捻れ搬送路を構成することも可能である。また、紙面が水平方向の状態で上流より搬送されてきた紙幣PMを時計回り(あるいは反時計回り)に回転させて鉛直方向へ変える捻れ搬送路を構成することも可能である。 The twist transport path 331 has a flow path shape twisted around a linear eccentric twist axis TA from the center of the upstream end opening to the center of the downstream end opening, and rotates the paper surface of the bill PM transported from the upstream (for example). , Rotating clockwise toward the transport direction) to change the directions of the first and second transport orthogonal sides PM2a and PM2b of the bill PM from the vertical direction to the horizontal direction. Of course, the paper surface of the banknote PM transported from the upstream is rotated counterclockwise to form a twisted transport path that changes the directions of the first and second transport orthogonal sides PM2a and PM2b of the bill PM from the vertical direction to the horizontal direction. It is also possible. It is also possible to construct a twisted transport path in which the banknote PM transported from the upstream with the paper surface in the horizontal direction is rotated clockwise (or counterclockwise) to change it in the vertical direction.

捻れ搬送路331のみを単純化して図14に示す。図14(A)は、捻れ搬送路331を上流から下流に向かって見た正面図で、偏心捻れ軸TAの周囲には上流から下流まで見通せる空部がある。以下、捻れ搬送路331において、上流より受け入れる紙葉類としての紙幣PMの紙面に臨む部位を第1長側部331L1(第1捻れ搬送壁311に対応する部位)および第2長側部331L2(第2捻れ搬送壁312に対応する部位)とする。また、捻れ搬送路331において、紙幣PMの第1搬送平行辺PM1aに臨む部位を第1短側部331S1、紙幣PMの第2搬送平行辺PM1bに臨む部位をおよび第2短側部331S2とする。図14(B)は、捻れ搬送路331の右側面図で、最上流側の上面から最下流側の右側面となるように第1短側部331S1が捻れてゆき、最上流側の底面が最下流側の左側面となるように第2短側部331S2が捻れてゆく様子が分かる。 Only the twist transfer path 331 is shown in FIG. 14 in a simplified manner. FIG. 14A is a front view of the twist transport path 331 viewed from upstream to downstream, and there is an empty space around the eccentric twist axis TA that can be seen from upstream to downstream. Hereinafter, in the twist transport path 331, the portions facing the paper surface of the banknote PM as paper notes received from the upstream are the first long side portion 331L1 (the portion corresponding to the first twist transport wall 311) and the second long side portion 331L2 (the portion corresponding to the first twist transport wall 311). The part corresponding to the second twist transport wall 312). Further, in the twisted transport path 331, the portion of the bill PM facing the first transport parallel side PM1a is referred to as the first short side portion 331S1, the portion of the bill PM facing the second transport parallel side PM1b is referred to as the second short side portion 331S2. .. FIG. 14B is a right side view of the twist transport path 331, in which the first short side portion 331S1 is twisted so as to be from the upper surface on the most upstream side to the right surface on the most downstream side, and the bottom surface on the most upstream side is formed. It can be seen that the second short side portion 331S2 is twisted so as to be on the left side surface on the most downstream side.

紙幣PMとして日本紙幣の一万円券を用いる場合、長手方向(第1,第2搬送平行辺PM1a,PM1b)の寸法は160〔mm〕、短手方向(第1,第2搬送直交辺PM2a,PM2b)の寸法は76〔mm〕、厚さは約0.1〔mm〕である。例えば、捻れ搬送路331における流路断面の壁間幅(第1長側部331L1と第2長側部331L2との離隔距離W)を18〔mm〕、第1,第2長側部331L1,331L2の長さを82〔mm〕とする。また、偏心捻れ軸TAは、上流端開口において選定した偏心捻れ点TPを搬送方向(捻れ搬送管3が接続される上流側の直線搬送管2と同じ搬送方向)へ延ばして下流端開口へ至る直線状の軸である。偏心捻れ点TPは、第1長側部331L1と第2長側部331L2から等距離で、第2短側部331S2から第1短側部331S1側へ9〔mm〕(第1長側部331L1と第2長側部331L2との離隔距離Wの1/2である半路幅)ずらした位置に設定した。 When a 10,000-yen Japanese banknote is used as the banknote PM, the dimensions in the longitudinal direction (first and second transport parallel sides PM1a, PM1b) are 160 [mm], and the dimensions in the lateral direction (first and second transport orthogonal sides PM2a). , PM2b) has a dimension of 76 [mm] and a thickness of about 0.1 [mm]. For example, the width between the walls of the cross section of the flow path in the twisted transport path 331 (separation distance W between the first long side portion 331L1 and the second long side portion 331L2) is 18 [mm], and the first and second long side portions 331L1. The length of 331L2 is 82 [mm]. Further, the eccentric twist shaft TA extends the eccentric twist point TP selected at the upstream end opening in the transport direction (the same transport direction as the linear transport pipe 2 on the upstream side to which the twist transport pipe 3 is connected) to reach the downstream end opening. It is a linear axis. The eccentric twist point TP is 9 [mm] (first long side portion 331L1) from the second short side portion 331S2 to the first short side portion 331S1 side at an equidistant distance from the first long side portion 331L1 and the second long side portion 331L2. And the second long side portion 331L2 are set to a position shifted (halfway width which is 1/2 of the separation distance W).

そして、捻れ搬送路331は、上流から下流に向かう一定距離に対して一定角度(例えば、160〔mm〕に対して30〔°〕)で連続的に変化させる。捻れ搬送路331における上流端開口である第1捻れ流路断面331TS1は、図14(C1)に示すように、縦長の長方形である。捻れ搬送路331の開口端から160〔mm〕だけ下流に離れた位置における第2捻れ流路断面331TS2は、図14(C2)に示すように、第1捻れ流路断面331TS1と同一形状であるが、偏心捻れ軸TAを中心とした時計回りに第1捻れ流路断面331TS1よりも30〔°〕傾いた状態となる。捻れ搬送路331の開口端から320〔mm〕だけ下流に離れた位置における第3捻れ流路断面331TS3は、図14(C3)に示すように、第1,第2捻れ流路断面331TS1,331TS2と同一形状であるが、偏心捻れ軸TAを中心とした時計回りに第1捻れ流路断面331TS1よりも60〔°〕傾いた状態となる。捻れ搬送路331の最下流端(開口端から480〔mm〕下流に離れた位置)における下流端開口である第4捻れ流路断面331TS4は、図14(C4)に示すように、第1~第3捻れ流路断面331TS1~331TS3と同一形状であるが、偏心捻れ軸TAを中心とした時計回りに第1捻れ流路断面331TS1よりも90〔°〕傾いた状態となる。 Then, the twist transport path 331 is continuously changed at a constant angle (for example, 30 [°] with respect to 160 [mm]) with respect to a constant distance from the upstream to the downstream. As shown in FIG. 14 (C1), the first twist flow path cross section 331TS1 which is the upstream end opening in the twist transfer path 331 is a vertically long rectangle. As shown in FIG. 14 (C2), the second twist flow path cross section 331TS2 at a position 160 [mm] downstream from the opening end of the twist transfer path 331 has the same shape as the first twist flow path cross section 331TS1. However, the eccentric twist axis TA is tilted clockwise by 30 [°] from the first twist flow path cross section 331TS1. As shown in FIG. 14 (C3), the third twist flow path cross section 331TS3 at a position 320 [mm] downstream from the opening end of the twist transfer path 331 is the first and second twist flow path cross sections 331TS1,331TS2. Although it has the same shape as the above, it is in a state of being tilted by 60 [°] from the first twist flow path cross section 331TS1 in a clockwise direction about the eccentric twist axis TA. As shown in FIG. 14 (C4), the fourth twist flow path cross section 331TS4, which is the downstream end opening at the most downstream end of the twist transfer path 331 (position 480 mm downstream from the opening end), is the first to the first. It has the same shape as the third twisted flow path cross sections 331TS1 to 331TS3, but is tilted 90 [°] from the first twisted flow path cross section 331TS1 in a clockwise direction about the eccentric twist axis TA.

すなわち、上流端開口である第1捻れ流路断面331TS1を、搬送方向と平行な偏心捻れ軸TA回りに一定角度で連続的に回転させながら、下流端開口である第4捻れ流路断面331TS4へ至ることで、捻れ搬送路331が形成される。なお、下流端開口である第4捻れ流路断面331TS4の形状は、上流端開口である第1捻れ流路断面331TS1と同一形状であるが、第1,第2長側部331L1,331L2および第1,第2短側部331S1,331S2の角度が異なる。また、偏心捻れ軸TAに直交する任意箇所の断面である捻れ流路断面(例えば、第2,第3捻れ流路断面331TS2,331TS3)の形状は、上流端開口および下流端開口である第1,第4捻れ流路断面331TS1,331TS4の形状と同じになる。 That is, the first twisted flow path cross section 331TS1 which is the upstream end opening is continuously rotated at a constant angle around the eccentric twisting axis TA parallel to the transport direction, and the fourth twisted flow path cross section 331TS4 which is the downstream end opening is reached. By reaching, the twist transfer path 331 is formed. The shape of the fourth twisted flow path cross section 331TS4 which is the downstream end opening is the same as the shape of the first twisted flow path cross section 331TS1 which is the upstream end opening, but the first and second long side portions 331L1, 331L2 and the first 1, The angles of the second short side portions 331S1 and 331S2 are different. Further, the shape of the twisted flow path cross section (for example, the second and third twisted flow path cross sections 331TS2, 331TS3) which is a cross section at an arbitrary position orthogonal to the eccentric twisting axis TA is a first opening which is an upstream end opening and a downstream end opening. , The shape of the fourth twisted flow path cross section is the same as that of 331TS1 and 331TS4.

ここで、捻れ搬送路331の上流端開口から480〔mm〕下流である第4捻れ流路断面331TS4の位置を、捻れ搬送路331における最下流の開口端とすれば、ちょうど紙幣PMを90〔°〕回転させる流路形状となる。この捻れ搬送路331を用いれば、紙幣PMの第1,第2搬送直交辺PM2a,PM2bが臨む向きを、第1捻れ流路断面331TS1に対応した縦向きから第4捻れ流路断面331TS4に対応した横向きへ変えるように紙面を回転させながら、下流へ搬送できる。 Here, if the position of the fourth twisted flow path cross section 331TS4, which is 480 mm downstream from the upstream end opening of the twisted transport path 331, is set to the most downstream opening end of the twisted transport path 331, the banknote PM is exactly 90 [. °] The shape of the flow path is rotated. By using this twist transport path 331, the direction in which the first and second transport orthogonal sides PM2a and PM2b of the banknote PM face can be changed from the vertical direction corresponding to the first twist flow path cross section 331TS1 to the fourth twist flow path cross section 331TS4. It can be transported downstream while rotating the paper surface so that it turns sideways.

上述したような捻れ搬送路331を形成できる偏心捻れ軸TAは、上流端開口である第1捻れ流路断面331TS1における偏心捻れ点設定可能範囲(後に詳述)から任意に設定した偏心捻れ点TPを搬送方向へ延ばして、下流端開口である第4捻れ流路断面331TS4へ至る直線状の軸である。偏心捻れ点設定可能範囲は、上流端開口である第1捻れ流路断面331TS1における開口中心点CPを通って第1,第2短側部331S1,331S2に直交する仮想中心線VCL(図14(C1)を参照)上の範囲に設定される。また、図14の捻れ搬送路331は、第2短側部331S2側に寄せて捻れ基準点TPを選定して、偏心捻れ軸TAを設定したが、逆に、第1短側部331S1側に寄せて捻れ基準点TP′を選定して、偏心捻れ軸TA′を設定しても良い。 The eccentric twist shaft TA capable of forming the twist transport path 331 as described above is an eccentric twist point TP arbitrarily set from an eccentric twist point settable range (detailed later) in the first twist flow path cross section 331TS1 which is an upstream end opening. Is a linear axis leading to the fourth twisted flow path cross section 331TS4, which is the opening at the downstream end. The eccentric twist point settable range is the virtual center line VCL orthogonal to the first and second short side portions 331S1 and 331S2 through the opening center point CP in the first twist flow path cross section 331TS1 which is the upstream end opening (FIG. 14 (FIG. 14). See C1)) Set to the above range. Further, in the twist transport path 331 of FIG. 14, the twist reference point TP was selected by moving toward the second short side portion 331S2 side, and the eccentric twist shaft TA was set, but conversely, on the first short side portion 331S1 side. The eccentric twist axis TA'may be set by selecting the twist reference point TP'.

図14に示した捻れ搬送路331は、紙幣PMの第1,第2搬送平行辺PM1a,PM1bの長さ毎にちょうど三等分でき、それぞれが基準捻れ搬送路に相当する。そこで、捻れ搬送路331を三等分したうちの一つ(例えば、第1捻れ流路断面331TS1から第2捻れ流路断面331TS2までの流路)を基準捻れ搬送路331Uとして、図15に示す。図15(A1)は、基準捻れ搬送路331Uを上流側から見た正面図である。図15(B)は、基準捻れ搬送路331Uの右側面図(第2長側部331L2側から見た図)である。図15(C)は、基準捻れ搬送路331Uの平面図(第1短側部331S1側から見た図)である。 The twist transport path 331 shown in FIG. 14 can be divided into exactly three equal parts for each length of the first and second transport parallel sides PM1a and PM1b of the banknote PM, and each corresponds to a reference twist transport path. Therefore, one of the three equal parts of the twisted transport path 331 (for example, the flow path from the first twisted flow path cross section 331TS1 to the second twisted flow path cross section 331TS2) is shown in FIG. 15 as the reference twisted transport path 331U. .. FIG. 15 (A1) is a front view of the reference twist transport path 331U as viewed from the upstream side. FIG. 15B is a right side view of the reference twist transport path 331U (viewed from the second long side portion 331L2 side). FIG. 15C is a plan view of the reference twist transport path 331U (viewed from the first short side portion 331S1 side).

基準捻れ搬送と331Uの偏心捻れ軸TAは、上流端開口331SUに設定した上流側偏心捻れ点TPUから、下流端開口331SDに設定した下流側偏心捻れ点TPDに至る直線状の軸である。下流端開口331SDは、偏心捻れ軸TA回りに第2長側部331L2側へ概ね30〔°〕回転させた位置にあり、上流端開口331SUから下流端開口331SDまで見通せる領域が有る。しかしながら、第1,第2搬送直交辺PM2a,PM2bが76〔mm〕である紙幣PMが上流端開口331SUから下流端開口331SDまで通過できる空間は、基準捻れ搬送路331U内に形成されていないように見える。 The reference twist transfer and the eccentric twist axis TA of the 331U are linear axes from the upstream eccentric twist point TPU set in the upstream end opening 331SU to the downstream eccentric twist point TPD set in the downstream end opening 331SD. The downstream end opening 331SD is located at a position rotated approximately 30 [°] toward the second long side portion 331L2 side around the eccentric twist axis TA, and has a region that can be seen from the upstream end opening 331SU to the downstream end opening 331SD. However, it seems that the space through which the banknote PM having the first and second transport orthogonal sides PM2a and PM2b of 76 [mm] can pass from the upstream end opening 331SU to the downstream end opening 331SD is not formed in the reference twist transport path 331U. Looks like.

一方、図15(A2)に示すのも基準捻れ搬送路331Uであるが、正面側から通過指標軸IAと平行な視点で上流端開口331SUから下流端開口331SDを見た図である。通過指標軸IAとは、上流端開口331SUの開口中心点である上流側中心点CPUと、下流端開口331SDの開口中心点である下流側中心点CPDとを結んだ、仮想的な直線である。基準捻れ搬送路331Uを、上流側中心点CPUと下流側中心点CPDとが一点に重なるような視点で見ると、上流端開口331SUから下流端開口331SDまで見通せる略菱形の貫通空間が形成されていることがわかる。そして、貫通空間の最長対角線は、紙幣PMの第1,第2搬送直交辺PM2a,PM2bよりも若干長く、紙幣PMが平板状のまま通過できる。 On the other hand, FIG. 15 (A2) also shows the reference twist transport path 331U, which is a view of the upstream end opening 331SU and the downstream end opening 331SD viewed from the front side in parallel with the passage index axis IA. The passage index axis IA is a virtual straight line connecting the upstream center point CPU, which is the opening center point of the upstream end opening 331SU, and the downstream center point CPD, which is the opening center point of the downstream end opening 331SD. .. Looking at the reference twist transport path 331U from the viewpoint that the upstream center point CPU and the downstream center point CPD overlap at one point, a substantially diamond-shaped through space that can be seen from the upstream end opening 331SU to the downstream end opening 331SD is formed. You can see that there is. The longest diagonal line of the penetrating space is slightly longer than the first and second transport orthogonal sides PM2a and PM2b of the banknote PM, and the banknote PM can pass through in a flat plate shape.

すなわち、基準捻れ搬送路331Uを通過指標軸IAと平行な視点で見ると、上流端開口331SUから下流端開口331SDまで見通せる貫通空間として、紙幣PMが上流端開口331Uから下流端開口331SDまで通過できる紙葉類通過空部としての紙幣通過空部PASが形成されていることが分かる。この紙幣通過空部PASは、同一形状である上流端開口331SUと下流端開口331SDの各中心点CPU,CPDが重なる状態で見える空間であるから、通過指標軸IAに直交する断面の形状は概ね菱形となり、長尺側対角線の向きを指標として紙幣PMが通過できる。 That is, when the reference twist transport path 331U is viewed from a viewpoint parallel to the passage index axis IA, the banknote PM can pass from the upstream end opening 331U to the downstream end opening 331SD as a through space that can see from the upstream end opening 331SU to the downstream end opening 331SD. It can be seen that the banknote passage space PAS is formed as the paper leaf passage space. Since this banknote passing empty space PAS is a space that can be seen in a state where the center points CPU and CPD of the upstream end opening 331SU and the downstream end opening 331SD having the same shape are overlapped, the shape of the cross section orthogonal to the passing index axis IA is approximately. It becomes a rhombus, and the banknote PM can pass through using the direction of the diagonal line on the long side as an index.

このように、本構成例の捻れ搬送管3における捻れ搬送路331では、紙幣通過空部PASが形成された基準捻れ搬送路331U毎の通過指標軸IAに沿って紙幣PMが下流へ移動することにより、紙幣PMは平板状のまま捻れ搬送路331内を下流まで到達できるのである。なお、基準捻れ搬送路331U内に紙幣通過空部PASが形成されるようにするためには、第1,第2長側部331L1,331L2の長さ、第1,第2短側部331S1,331S2の長さ、上流端開口331SUから下流端開口331SDまでの捻れ角度をファクターとして、多様に設定することができる。 As described above, in the twist transfer path 331 in the twist transfer tube 3 of the present configuration example, the banknote PM moves downstream along the passage index axis IA for each reference twist transfer path 331U in which the bill passage empty space PAS is formed. As a result, the banknote PM can reach the downstream in the twisted transport path 331 while remaining flat. In addition, in order to form the bill passing empty portion PAS in the reference twist transport path 331U, the lengths of the first and second long side portions 331L1, 331L2 and the first and second short side portions 331S1 The length of the 331S2 and the twist angle from the upstream end opening 331SU to the downstream end opening 331SD can be variously set as factors.

また、紙幣通過空部PASにおける長尺側対角線の長さは、必ずしも紙幣PMの第1,第2搬送直交辺PM2a,PM2bより長くする必要はなく、紙幣PMの紙面が基準捻れ搬送路331Uの内壁面に若干擦れてしまう程度でもよい。紙幣PMの紙面が基準捻れ搬送路331Uの内壁面に若干擦れてしまう場合でも、擦れによる摩擦力より搬送用エアによる搬送トルクが勝っていれば、紙幣PMは上流端開口331SUから下流端開口331SDまで通過できる。 Further, the length of the long side diagonal line in the bill passing empty space PAS does not necessarily have to be longer than the first and second transport orthogonal sides PM2a and PM2b of the bill PM, and the paper surface of the bill PM is the reference twisted transport path 331U. It may be slightly rubbed against the inner wall surface. Even if the paper surface of the banknote PM slightly rubs against the inner wall surface of the reference twist transport path 331U, if the transport torque by the transport air is superior to the frictional force due to the rubbing, the bill PM will have the upstream end opening 331SU to the downstream end opening 331SD. Can pass up to.

ただし、紙幣PMの第1,第2搬送平行辺PM1a,PM1bが捻れ搬送路331の第1短側部331S1または第2短側部331S2に当たることがないように設定しておく必要がある。搬送用エアによって下流へ送られる紙幣PMの搬送状態は、必ずしも安定していないので、紙幣PMの第1,第2搬送平行辺PM1a,PM1bが第1,第2短側部331S1,331S2に当たると、搬送用エアによる搬送トルクを上回る強い抵抗が生じて、そのまま紙幣PMが管内に滞留してしまう危険性がある。よって、紙幣通過空部PASの両端部から第1,第2短側部331S1,331S2に臨む側には、紙幣PMの搬送状態のブレを考慮した空間的余裕を設けておく必要がある。 However, it is necessary to set so that the first and second transport parallel sides PM1a and PM1b of the bill PM do not hit the first short side portion 331S1 or the second short side portion 331S2 of the twist transport path 331. Since the transport state of the bill PM sent downstream by the transport air is not always stable, when the first and second transport parallel sides PM1a and PM1b of the bill PM hit the first and second short side portions 331S1 and 331S2. There is a risk that the banknote PM will stay in the pipe as it is due to a strong resistance that exceeds the transfer torque due to the transfer air. Therefore, it is necessary to provide a spatial margin on the side facing the first and second short side portions 331S1 and 331S2 from both ends of the bill passage empty portion PAS in consideration of the deviation of the transport state of the bill PM.

例えば、基準捻れ搬送路331Uに形成した紙幣通過空部PASの第1,第2短側部331S1,331S2に臨む側の長さが、紙幣PMの第1,第2搬送直交辺PM2a,PM2bの長さ(76〔mm〕)と同じであれば、紙幣PMの捻れ搬送が可能な捻れ搬送管3となる。しかしながら、前述したように、紙幣PMの第1,第2搬送平行辺PM1a,PM1bが第1,第2短側部331S1,331S2に当たって擦れることは避けなければならない。そこで、紙幣通過空部PASの第1,第2短側部331S1,331S2に臨む側には、紙幣PMの第1,第2搬送平行辺PM1a,PM1bが捻れ搬送管3の内面と接触することを抑制できる余剰空間としての通過猶予部PAMが形成されるようにした。第1短側部331S1側に形成する通過猶予部PAMについて、図15(A2)の部分拡大エリアにて説明する。紙幣PMが捻れ搬送路331内を通過するときの第1搬送平行辺PM1aがあると想定される位置から、基準捻れ搬送路331Uの第1短側部331S1側で最も内側に突出している第1端側最狭部331S1pまでの猶予空間が通過猶予部PAMである。第1,第2搬送直交辺PM2a,PM2bの長さが76〔mm〕である日本の紙幣PMに対しては、1~2〔mm〕程度の通過猶予部PAMを確保することが望ましい。 For example, the length of the side facing the first and second short side portions 331S1 and 331S2 of the bill passing empty portion PAS formed in the reference twisted transport path 331U is the length of the first and second transport orthogonal sides PM2a and PM2b of the bill PM. If the length is the same as (76 [mm]), the twist transport pipe 3 is capable of twist transport of the banknote PM. However, as described above, it must be avoided that the first and second transport parallel sides PM1a and PM1b of the banknote PM hit the first and second short side portions 331S1 and 331S2 and rub against each other. Therefore, the first and second transport parallel sides PM1a and PM1b of the bill PM come into contact with the inner surface of the twisted transport pipe 3 on the side of the bill passing empty portion PAS facing the first and second short side portions 331S1 and 331S2. The passage grace section PAM as a surplus space that can suppress the above is formed. The passage grace portion PAM formed on the first short side portion 331S1 side will be described in the partially enlarged area of FIG. 15 (A2). The first one protruding inward from the position where the first transport parallel side PM1a when the bill PM passes through the twist transport path 331 is assumed to be on the first short side portion 331S1 side of the reference twist transport path 331U. The grace space up to the narrowest portion 331S1p on the end side is the passage grace portion PAM. For Japanese banknotes PM in which the lengths of the first and second transport orthogonal sides PM2a and PM2b are 76 [mm], it is desirable to secure a passage delay portion PAM of about 1 to 2 [mm].

なお、上述した通過猶予部PAMを設けるとき、第1短側部331S1側で最も内側に突出している第1端側最狭部331S1pを考慮するのと同じく、第2短側部331S2側で最も内側に突出している第2端側最狭部も考慮しておく必要がある。そもそも、中心捻れ搬送管3-Oでは、第1,第2短側部331S1,331S2側に生じる最狭部は無視できる程度の突出量に過ぎないが、偏心捻れ軸TAが開口中心から離れるに従って、捻れ構造の歪みが顕在化するため、紙幣PMの安定搬送のために考慮が必要なのである。以下、偏心捻れ軸TAの設定位置に応じた特徴および考慮事項について説明する。 It should be noted that when the above-mentioned passage grace portion PAM is provided, the narrowest portion 331S1p on the first end side that protrudes most inward on the first short side portion 331S1 side is considered, and the most on the second short side portion 331S2 side. It is also necessary to consider the narrowest portion on the second end side that protrudes inward. In the first place, in the central twist transfer pipe 3-O, the narrowest portion generated on the first and second short side portions 331S1, 331S2 side is only a negligible amount of protrusion, but as the eccentric twist shaft TA moves away from the center of the opening. Since the distortion of the twisted structure becomes apparent, it is necessary to consider it for stable transportation of the banknote PM. Hereinafter, features and considerations according to the set position of the eccentric twist axis TA will be described.

図16に示すのは、開口中心点CPから8〔mm〕ほど第2短側部331S2側へずらした偏心捻れ点TPを通るように偏心捻れ軸TAを設定した第1偏心捻れ搬送路331-C1を示す。この第1偏心捻れ搬送路331-C1は、第1,第2長側部331L1,331L2が紙幣PMの第1,第2搬送直交辺PM2a,PM2bの長さとほぼ同じ78〔mm〕とし、第1長側部331L1と第2長側部331L2との離隔距離Wは18〔mm〕とした。第1偏心捻れ搬送路331-C1は、搬送方向(図16(A)においては、紙面に向かって奥側)に対して、第1短側部331S1側および第2短側部331S2側を時計回りに90〔°〕回転させた捻れ構造である。 FIG. 16 shows the first eccentric twist transfer path 331- in which the eccentric twist axis TA is set so as to pass through the eccentric twist point TP shifted to the second short side portion 331S2 side by about 8 [mm] from the opening center point CP. C1 is shown. In the first eccentric twist transport path 331-C1, the first and second long side portions 331L1 and 331L2 are set to 78 [mm], which is substantially the same as the lengths of the first and second transport orthogonal sides PM2a and PM2b of the banknote PM. The separation distance W between the 1st long side portion 331L1 and the 2nd long side portion 331L2 was set to 18 [mm]. The first eccentric twist transport path 331-C1 watches the first short side portion 331S1 side and the second short side portion 331S2 side with respect to the transport direction (in FIG. 16A, the back side toward the paper surface). It is a twisted structure that is rotated 90 [°] around.

第1偏心捻れ搬送路331-C1は、紙幣PMを90〔°〕回転させるものであるから、上流端開口と下流端開口とが直交していれば良いのであるが、上流端開口から下流端開口まで180〔°〕回転させた場合を考える。紙幣PMを180〔°〕回転させる第1偏心捻れ搬送路331-C1rは、図16(B)に示すようになる。すなわち、第1偏心捻れ搬送路331-C1rでは、偏心捻れ軸TAと平行な視点で上流端開口から下流端開口に向けて(あるいは、下流端開口から上流端開口に向けて)見通すことができる貫通空間の断面積が、第1長側部331L1と第2長側部331L2との離隔距離Wを直径とする円の面積となる。すなわち、第1,第2長側部331L1,331L2と平行な中心線上を開口中心点CPから8〔mm〕ずらした位置を偏心捻れ点TPに設定した偏心捻れ軸TAは、偏心捻れ点設定可能範囲にあるので、紙幣通過空部PASを形成できるのである。 Since the first eccentric twist transfer path 331-C1 rotates the bill PM by 90 [°], it is sufficient that the upstream end opening and the downstream end opening are orthogonal to each other, but the upstream end opening to the downstream end Consider the case of rotating 180 [°] to the opening. The first eccentric twist transfer path 331-C1r for rotating the banknote PM by 180 [°] is as shown in FIG. 16 (B). That is, in the first eccentric twist transport path 331-C1r, it is possible to see from the upstream end opening to the downstream end opening (or from the downstream end opening to the upstream end opening) from a viewpoint parallel to the eccentric twist axis TA. The cross-sectional area of the penetrating space is the area of a circle whose diameter is the separation distance W between the first long side portion 331L1 and the second long side portion 331L2. That is, the eccentric twist axis TA in which the position shifted by 8 [mm] from the opening center point CP on the center line parallel to the first and second long side portions 331L1 and 331L2 is set as the eccentric twist point TP can set the eccentric twist point. Since it is in the range, it is possible to form an empty space PAS through which banknotes pass.

図16(C1)に示すのは、第1偏心捻れ搬送路331-C1における第1基準捻れ搬送路331-C1Uで、紙幣PMの第1,第2搬送平行辺PM1a,PM1bの長さと同じ160〔mm〕で約29〔°〕捻った構造である。開口中心点CPから8〔mm〕ずれた位置の偏心捻れ軸TA回りに上流端開口をひねることで形成される第1基準捻れ搬送路331-C1Uでは、第1短側部331S1側の内面よりも第2短側部331S2側の内面の方が流路を狭めるように捻れて行く。第1基準捻れ搬送路331-C1Uを正面側から通過指標軸IAと平行な視点で見ると、図16(C2)のように略菱形の貫通空間が見え、紙幣PMが通過できる紙幣通過空部PASが形成されているのが分かる。なお、紙幣通過空部PASの第1,第2短側部331S1,331S2側では、紙幣PMの紙面が内壁に接触して微量だけ折れ曲がることとなるが、搬送用エアによる搬送トルクに抗するほど強い摩擦を生じるものでなければ、安定搬送の障害となるものではない。前述した中心捻れ搬送路331-Oと同様に、紙幣PMが折れ曲がることなく平板状のまま通過できる紙幣通過領域PAを形成する必要があれば、捻れ角を1~2〔°〕程度抑えれば良い。 FIG. 16 (C1) shows the first reference twist transport path 331-C1U in the first eccentric twist transport path 331-C1, which has the same length as the first and second transport parallel sides PM1a and PM1b of the banknote PM 160. It has a structure twisted by about 29 [°] at [mm]. In the first reference twist transfer path 331-C1U formed by twisting the upstream end opening around the eccentric twist axis TA at a position deviated from the opening center point CP by 8 [mm], from the inner surface on the first short side portion 331S1 side. Also, the inner surface on the second short side portion 331S2 side twists so as to narrow the flow path. When the first reference twisted transport path 331-C1U is viewed from the front side from the viewpoint parallel to the passage index axis IA, a substantially diamond-shaped through space can be seen as shown in FIG. It can be seen that PAS is formed. On the 1st and 2nd short side portions 331S1 and 331S2 side of the bill passing empty space PAS, the paper surface of the bill PM comes into contact with the inner wall and bends only a small amount, but it resists the transport torque due to the transport air. Unless it causes strong friction, it does not hinder stable transportation. Similar to the above-mentioned central twist transport path 331-O, if it is necessary to form a bill passage region PA through which the bill PM can pass in a flat plate shape without bending, the twist angle can be suppressed by about 1 to 2 [°]. good.

ただし、図16(C2)に示す第1基準捻れ搬送路331-C1Uでは、紙幣PMの第1搬送平行辺PM1aが第1端側最狭部331S1pにちょうど接触し、第2搬送平行辺PM1bが第2端側最狭部にちょうど接触している状態(以下、ゼロ寸状態という)となっている。すなわち、開口中心点CPから8〔mm〕ずらした偏心捻れ軸TAにより形成した第1偏心捻れ搬送路331-C1においては、160〔mm〕で約29〔°〕捻ったときにゼロ寸状態となる。前述した中心捻れ搬送路331-Oにおける基準中心捻れ搬送路83では、160〔mm〕で約30〔°〕捻ることでゼロ寸状態にできるので、開口中心点CPから16〔mm〕ずれた位置の偏心捻れ軸TAを設定する場合には、ゼロ寸状態とするための捻れ角をより小さく抑えなければならないことがわかる。 However, in the first reference twisted transport path 331-C1U shown in FIG. 16 (C2), the first transport parallel side PM1a of the bill PM just contacts the narrowest portion 331S1p on the first end side, and the second transport parallel side PM1b It is in a state of being in contact with the narrowest portion on the second end side (hereinafter referred to as a zero dimension state). That is, in the first eccentric twist transport path 331-C1 formed by the eccentric twist axis TA displaced by 8 [mm] from the opening center point CP, when twisted by about 29 [°] at 160 [mm], it becomes a zero dimension state. Become. In the reference center twist transport path 83 in the center twist transport path 331-O described above, the zero dimension state can be obtained by twisting about 30 [°] at 160 [mm], so that the position deviates from the opening center point CP by 16 [mm]. It can be seen that when setting the eccentric twist axis TA, the twist angle for achieving the zero dimension state must be suppressed to a smaller size.

また、ゼロ寸状態の第1基準捻れ搬送路331-C1Uでは、通過猶予部PAMが全く形成されていないため、紙幣PMの安定搬送には適さない。そこで、第1,第2長側部331L1,331L2の長さをゼロ寸基準の78〔mm〕よりも適宜増加させる補正を行えば、紙幣PMの第1搬送平行辺PM1aと第1端側最狭部331S1pの間に通過猶予部PAMを形成できる。例えば、紙幣通過空部PASの第1短側部331S1側および第2短側部331S2側にそれぞれ1〔mm〕以上の通過猶予部PAMを形成できるように、第1,第2長側部331L1,331L2の長さを80〔mm〕以上とすれば、紙幣PMの安定搬送を実現できる。 Further, in the first reference twisted transport path 331-C1U in the zero dimension state, the passage grace portion PAM is not formed at all, so that it is not suitable for stable transport of banknote PM. Therefore, if corrections are made to appropriately increase the lengths of the first and second long side portions 331L1 and 331L2 from the zero dimension reference 78 [mm], the first transport parallel side PM1a and the first end side maximum of the banknote PM are corrected. A passage delay PAM can be formed between the narrow portions 331S1p. For example, the first and second long side portions 331L1 can form a passage grace portion PAM of 1 [mm] or more on the first short side portion 331S1 side and the second short side portion 331S2 side of the bill passing empty portion PAS, respectively. If the length of the, 331L2 is 80 [mm] or more, stable transportation of the banknote PM can be realized.

このように、偏心捻れ軸TAを開口中心点CPから8〔mm〕ずらし、ゼロ寸状態となる限界の角度(約29〔°〕)まで捻った第1基準捻れ搬送路331-C1Uに対して通過猶予部PAMを形成する場合、通過猶予部PAMに必要な長さだけ第1,第2長側部331L1,331L2を長くすればよい。なお、偏心捻れ軸TAを開口中心点CPから8〔mm〕ずらした構造の第1基準捻れ搬送路331-C1Uであっても、捻れ角が29〔°〕未満でゼロ寸状態に達していなければ、第1,第2長側部331L1,331L2の長さを増加させる補正値を2〔mm〕より小さく抑えても、十分な通過猶予部PAMを形成できる。 In this way, with respect to the first reference twist transfer path 331-C1U in which the eccentric twist axis TA is shifted by 8 [mm] from the opening center point CP and twisted to the limit angle (about 29 [°]) at which the zero dimension state is reached. When forming the passage grace portion PAM, the first and second long side portions 331L1 and 331L2 may be lengthened by the length required for the passage grace portion PAM. Even in the first reference twist transfer path 331-C1U having a structure in which the eccentric twist axis TA is shifted by 8 [mm] from the opening center point CP, the twist angle must be less than 29 [°] and reach the zero dimension state. For example, even if the correction value for increasing the length of the first and second long side portions 331L1 and 331L2 is suppressed to be smaller than 2 [mm], a sufficient passage grace portion PAM can be formed.

図16(D1)に示すのは、前述した第1基準捻れ搬送路331-C1Uの捻れ角度を5〔°〕増加させ、160〔mm〕で約34〔°〕まで捻った構造の第1基準捻れ搬送路331-C1U′である。第1基準捻れ搬送路331-C1U′を正面側から通過指標軸IAと平行な視点で見ると、図16(D2)のように略菱形の貫通空間が見えるものの、紙幣PMが通過できる紙幣通過空部PASは形成されていない。紙幣PMの第1搬送平行辺PM1aが第1端側最狭部331S1pよりも壁内へ突出し(図16(D2)の部分拡大エリアを参照)、同様に紙幣PMの第2搬送平行辺PM1bが第2端側最狭部よりも壁内へ突出した状態となっている。実際には、紙幣PMが狭小な第1基準捻れ搬送路331-C1U′内で第1,第2短側部331S1,331S2に押し当たって湾曲した状態となるので、搬送用エアによる搬送トルクが強くても、紙幣PMが第1基準捻れ搬送路331-C1U′を通過することは事実上不可能である。 FIG. 16 (D1) shows the first reference of the structure in which the twist angle of the above-mentioned first reference twist transfer path 331-C1U is increased by 5 [°] and twisted to about 34 [°] at 160 [mm]. Twist transport path 331-C1U'. When the first reference twisted transport path 331-C1U'is viewed from the front side from the viewpoint parallel to the passage index axis IA, a substantially rhombic through space can be seen as shown in FIG. 16 (D2), but the bill PM can pass through. No empty PAS is formed. The first transport parallel side PM1a of the bill PM protrudes into the wall from the narrowest portion 331S1p on the first end side (see the partially enlarged area of FIG. 16D2), and similarly, the second transport parallel side PM1b of the bill PM It is in a state of protruding into the wall from the narrowest part on the second end side. In reality, the banknote PM is in a curved state when it is pressed against the first and second short side portions 331S1 and 331S2 in the narrow first reference twist transport path 331-C1U', so that the transport torque due to the transport air is generated. Even if it is strong, it is virtually impossible for the banknote PM to pass through the first reference twist transport path 331-C1U'.

このように、偏心捻れ軸TAを開口中心点CPから8〔mm〕ずらし、ゼロ寸状態を越える角度(約34〔°〕)まで捻った第1基準捻れ搬送路331-C1U′に対して通過猶予部PAMを形成する場合、紙幣通過空部PASをゼロ寸にする補正量を加味して第1,第2長側部331L1,331L2の長さを増加させるような補正が必要である。なお、第1基準捻れ搬送路331-C1U′のように捻れ角度を大きくした場合、通過猶予部PAMが形成されるように補正しても、紙幣通過空部PASの第1,第2短側部331S1,331S2側では、紙幣PMの紙面が内壁に接触する面積が多くなるので、紙幣PMが第1基準捻れ搬送路331-C1U′を通過する際の接触抵抗が高くなる。しかしながら、ゼロ寸状態となる基準の捻れ角度に対して5〔°〕程度加算しても、搬送用エアによる搬送トルクで安定搬送が可能と見込まれる。 In this way, the eccentric twist axis TA is displaced by 8 [mm] from the opening center point CP and passes through the first reference twist transfer path 331-C1U'twisted to an angle (about 34 [°]) exceeding the zero dimension state. When forming the grace portion PAM, it is necessary to make a correction so as to increase the length of the first and second long side portions 331L1 and 331L2 by adding a correction amount for making the bill passing empty portion PAS zero dimension. When the twist angle is increased as in the first reference twist transport path 331-C1U', even if the correction is made so that the passage grace portion PAM is formed, the first and second short sides of the bill passage empty portion PAS are formed. On the portions 331S1 and 331S2 sides, the area where the paper surface of the banknote PM contacts the inner wall is large, so that the contact resistance when the banknote PM passes through the first reference twisting transport path 331-C1U'is high. However, it is expected that stable transfer is possible with the transfer torque of the transfer air even if about 5 [°] is added to the reference twist angle that is in the zero dimension state.

図17に示すのは、開口中心点CPから16〔mm〕ほど第2短側部331S2側へずらした偏心捻れ点TPを通るように偏心捻れ軸TAを設定した第2偏心捻れ搬送路331-C2を示す。この第2偏心捻れ搬送路331-C2は、第1,第2長側部331L1,331L2が紙幣PMの第1,第2搬送直交辺PM2a,PM2bの長さとほぼ同じ78〔mm〕とし、第1長側部331L1と第2長側部331L2との離隔距離Wは18〔mm〕とした。第2偏心捻れ搬送路331-C2は、搬送方向(図17(A)においては、紙面に向かって奥側)に対して、第1短側部331S1側および第2短側部331S2側を時計回りに90〔°〕回転させた捻れ構造である。なお、第2偏心捻れ搬送路331-C2においては、第1,第2長側部331L1,331L2の内面にガイドリブ38を設けてある。ガイドリブ38の配設位置は、例えば、第1,第2長側部331L1,331L2の中心から第1,第2短側部331S1,331S2側にそれぞれ16〔mm〕の部位である。 FIG. 17 shows the second eccentric twist transfer path 331- in which the eccentric twist axis TA is set so as to pass through the eccentric twist point TP shifted to the second short side portion 331S2 side by about 16 [mm] from the opening center point CP. C2 is shown. In the second eccentric twist transport path 331-C2, the first and second long side portions 331L1 and 331L2 are set to 78 [mm], which is substantially the same as the lengths of the first and second transport orthogonal sides PM2a and PM2b of the banknote PM. The separation distance W between the 1st long side portion 331L1 and the 2nd long side portion 331L2 was set to 18 [mm]. The second eccentric twist transport path 331-C2 watches the first short side portion 331S1 side and the second short side portion 331S2 side with respect to the transport direction (in FIG. 17A, the back side toward the paper surface). It is a twisted structure that is rotated 90 [°] around. In the second eccentric twist transport path 331-C2, guide ribs 38 are provided on the inner surfaces of the first and second long side portions 331L1 and 331L2. The arrangement position of the guide rib 38 is, for example, 16 [mm] from the center of the first and second long side portions 331L1 and 331L2 to the first and second short side portions 331S1 and 331S2, respectively.

第2偏心捻れ搬送路331-C2は、紙幣PMを90〔°〕回転させるものであるから、上流端開口と下流端開口とが直交していれば良いのであるが、上流端開口から下流端開口まで180〔°〕回転させた場合を考える。紙幣PMを180〔°〕回転させる第2偏心捻れ搬送路331-C2rは、図17(B)に示すようになる。すなわち、第2偏心捻れ搬送路331-C2rでは、偏心捻れ軸TAと平行な視点で上流端開口から下流端開口に向けて(あるいは、下流端開口から上流端開口に向けて)見通すことができる貫通空間の断面積が、第1長側部331L1と第2長側部331L2との離隔距離Wを直径とする円の面積となる。しかしながら、第2偏心捻れ搬送路331-C2rには、第1,第2長側部331L1,331L2の内面にガイドリブ38が設けられているために、見通せる貫通空間の断面積は小さくなってしまう。第1長側部331L1と第2長側部331L2との離隔距離Wを18〔mm〕に対して、ガイドリブ38の突出量は1~1.5〔mm〕で十分であるが、ガイドリブ38の突出量を2〔mm〕とした場合を考える。ガイドリブ38により狭められた貫通空間の断面積と、ガイドリブ38が無い場合の貫通空間の断面積との比率は、「49π:81π」となる。よって、第2偏心捻れ搬送路331-C2rにおける貫通空間の断面積は、離隔距離W(18〔mm〕)を直径とする円の面積の1/2以上となる条件を満たしている。すなわち、第1,第2長側部331L1,331L2と平行な中心線上を開口中心点CPから16〔mm〕ずらした位置を偏心捻れ点TPに設定した偏心捻れ軸TAは、偏心捻れ点設定可能範囲にあるので、紙幣通過空部PASを形成できるのである。 Since the second eccentric twist transfer path 331-C2 rotates the bill PM by 90 [°], it is sufficient that the upstream end opening and the downstream end opening are orthogonal to each other, but the upstream end opening to the downstream end Consider the case of rotating 180 [°] to the opening. The second eccentric twist transfer path 331-C2r for rotating the banknote PM by 180 [°] is as shown in FIG. 17 (B). That is, in the second eccentric twist transport path 331-C2r, it is possible to see from the upstream end opening to the downstream end opening (or from the downstream end opening to the upstream end opening) from a viewpoint parallel to the eccentric twist axis TA. The cross-sectional area of the penetrating space is the area of a circle whose diameter is the separation distance W between the first long side portion 331L1 and the second long side portion 331L2. However, since the guide ribs 38 are provided on the inner surfaces of the first and second long side portions 331L1 and 331L2 in the second eccentric twist transport path 331-C2r, the cross-sectional area of the through space that can be seen becomes small. The protrusion amount of the guide rib 38 is 1 to 1.5 [mm] with respect to the separation distance W of the first long side portion 331L1 and the second long side portion 331L2 of 18 [mm], but the guide rib 38 Consider the case where the protrusion amount is 2 [mm]. The ratio of the cross-sectional area of the penetrating space narrowed by the guide rib 38 to the cross-sectional area of the penetrating space without the guide rib 38 is “49π: 81π”. Therefore, the cross-sectional area of the penetrating space in the second eccentric twist transport path 331-C2r satisfies the condition that the cross-sectional area is ½ or more of the area of the circle having the separation distance W (18 [mm]) as the diameter. That is, the eccentric twist axis TA in which the position shifted by 16 [mm] from the opening center point CP on the center line parallel to the first and second long side portions 331L1 and 331L2 is set as the eccentric twist point TP can set the eccentric twist point. Since it is in the range, it is possible to form an empty space PAS through which banknotes pass.

図17(C1)に示すのは、第2偏心捻れ搬送路331-C2における第2基準捻れ搬送路331-C2Uで、紙幣PMの第1,第2搬送平行辺PM1a,PM1bの長さと同じ160〔mm〕で約29〔°〕捻った構造である。なお、第2基準捻れ搬送路331-C2Uの捻れ角29〔°〕は、前述した第1基準捻れ搬送路331-C1Uの捻れ角29〔°〕よりも、小数点以下で小さいものとなっている。また、第2基準捻れ搬送路331-C2Uにおいては、ガイドリブ38を省略してある。開口中心点CPから16〔mm〕ずれた位置の偏心捻れ軸TA回りに上流端開口をひねることで形成される第2基準捻れ搬送路331-C2Uにおいても、第1短側部331S1側の内面よりも第2短側部331S2側の内面の方が流路を狭めるように捻れて行く。前述した第1偏心捻れ搬送路331-C1における第1基準捻れ搬送路331-C1Uよりも、第2基準捻れ搬送路331-C2Uの方がより顕著となる。第2基準捻れ搬送路331-C2Uを正面側から通過指標軸IAと平行な視点で見ると、図17(C2)のように略菱形の貫通空間が見え、紙幣PMが通過できる紙幣通過空部PASが形成されているのが分かる。なお、紙幣通過空部PASの第1,第2短側部331S1,331S2側では、紙幣PMの紙面が内壁に接触して微量だけ折れ曲がることとなるが、搬送用エアによる搬送トルクに抗するほど強い摩擦を生じるものでなければ、安定搬送の障害となるものではない。前述した中心捻れ搬送路331-Oと同様に、紙幣PMが折れ曲がることなく平板状のまま通過できる紙幣通過領域PAを形成する必要があれば、捻れ角を1~2〔°〕程度抑えれば良い。 FIG. 17 (C1) shows the second reference twist transport path 331-C2U in the second eccentric twist transport path 331-C2, which has the same length as the first and second transport parallel sides PM1a and PM1b of the banknote PM 160. It has a structure twisted by about 29 [°] at [mm]. The twist angle 29 [°] of the second reference twist transport path 331-C2U is smaller than the twist angle 29 [°] of the first reference twist transport path 331-C1U described above. .. Further, in the second reference twist transfer path 331-C2U, the guide rib 38 is omitted. Even in the second reference twist transfer path 331-C2U formed by twisting the upstream end opening around the eccentric twist axis TA at a position deviated from the opening center point CP by 16 [mm], the inner surface on the first short side portion 331S1 side. The inner surface on the second short side portion 331S2 side is twisted so as to narrow the flow path. The second reference twist transport path 331-C2U is more prominent than the first reference twist transport path 331-C1U in the first eccentric twist transport path 331-C1 described above. When the second reference twisted transport path 331-C2U is viewed from the front side from the viewpoint parallel to the passage index axis IA, a substantially rhombic through space can be seen as shown in FIG. It can be seen that PAS is formed. On the 1st and 2nd short side portions 331S1 and 331S2 side of the bill passing empty space PAS, the paper surface of the bill PM comes into contact with the inner wall and bends only a small amount, but it resists the transport torque due to the transport air. Unless it causes strong friction, it does not hinder stable transportation. Similar to the above-mentioned central twist transport path 331-O, if it is necessary to form a bill passage region PA through which the bill PM can pass in a flat plate shape without bending, the twist angle can be suppressed by about 1 to 2 [°]. good.

ただし、図17(C2)に示す第2基準捻れ搬送路331-C2Uでは、紙幣PMの第1搬送平行辺PM1aが第1端側最狭部331S1pにちょうど接触するゼロ寸状態となっている。すなわち、開口中心点CPから16〔mm〕ずらした偏心捻れ軸TAにより形成した第2偏心捻れ搬送路331-C2においては、160〔mm〕で約29〔°〕捻ったときにゼロ寸状態となる。前述した中心捻れ搬送路331-Oにおける基準中心捻れ搬送路83では、160〔mm〕で約30〔°〕捻ることでゼロ寸状態にできるので、開口中心点CPから16〔mm〕ずれた位置の偏心捻れ軸TAを設定する場合には、ゼロ寸状態とするための捻れ角をより小さく抑えなければならないことがわかる。 However, in the second reference twisted transport path 331-C2U shown in FIG. 17 (C2), the first transport parallel side PM1a of the bill PM is in a zero dimension state in which it just contacts the narrowest portion 331S1p on the first end side. That is, in the second eccentric twist transport path 331-C2 formed by the eccentric twist axis TA deviated by 16 [mm] from the opening center point CP, when twisted by about 29 [°] at 160 [mm], it becomes a zero dimension state. Become. In the reference center twist transport path 83 in the center twist transport path 331-O described above, the zero dimension state can be obtained by twisting about 30 [°] at 160 [mm], so that the position deviates from the opening center point CP by 16 [mm]. It can be seen that when setting the eccentric twist axis TA, the twist angle for achieving the zero dimension state must be suppressed to a smaller size.

また、ゼロ寸状態の第2基準捻れ搬送路331-C2Uでは、通過猶予部PAMが全く形成されていないため、紙幣PMの安定搬送には適さない。そこで、第1,第2長側部331L1,331L2の長さをゼロ寸基準の78〔mm〕よりも適宜増加させる補正を行えば、紙幣PMの第1搬送平行辺PM1aと第1端側最狭部331S1pの間に通過猶予部PAMを形成できる。例えば、紙幣通過空部PASの第1短側部331S1側および第2短側部331S2側にそれぞれ1〔mm〕以上の通過猶予部PAMを形成できるように、第1,第2長側部331L1,331L2の長さを80〔mm〕以上とすれば、紙幣PMの安定搬送を実現できる。 Further, in the second reference twisted transport path 331-C2U in the zero dimension state, the passage grace portion PAM is not formed at all, so that it is not suitable for stable transport of banknote PM. Therefore, if corrections are made to appropriately increase the lengths of the first and second long side portions 331L1 and 331L2 from the zero dimension reference 78 [mm], the first transport parallel side PM1a and the first end side maximum of the banknote PM are corrected. A passage delay PAM can be formed between the narrow portions 331S1p. For example, the first and second long side portions 331L1 can form a passage grace portion PAM of 1 [mm] or more on the first short side portion 331S1 side and the second short side portion 331S2 side of the bill passing empty portion PAS, respectively. If the length of the, 331L2 is 80 [mm] or more, stable transportation of the banknote PM can be realized.

このように、偏心捻れ軸TAを開口中心点CPから16〔mm〕ずらし、ゼロ寸状態となる限界の角度(約29〔°〕)まで捻った第2基準捻れ搬送路331-C2Uに対して通過猶予部PAMを形成する場合、通過猶予部PAMに必要な長さだけ第1,第2長側部331L1,331L2を長くすればよい。なお、偏心捻れ軸TAを開口中心点CPから16〔mm〕ずらした構造の第2基準捻れ搬送路331-C2Uであっても、捻れ角が29〔°〕未満でゼロ寸状態に達していなければ、第1,第2長側部331L1,331L2の長さを増加させる補正値を2〔mm〕より小さく抑えても、十分な通過猶予部PAMを形成できる。 In this way, with respect to the second reference twist transfer path 331-C2U in which the eccentric twist axis TA is shifted by 16 [mm] from the opening center point CP and twisted to the limit angle (about 29 [°]) at which the zero dimension state is reached. When forming the passage grace portion PAM, the first and second long side portions 331L1 and 331L2 may be lengthened by the length required for the passage grace portion PAM. Even in the second reference twist transfer path 331-C2U having a structure in which the eccentric twist axis TA is shifted by 16 [mm] from the opening center point CP, the twist angle must be less than 29 [°] and reach the zero dimension state. For example, even if the correction value for increasing the length of the first and second long side portions 331L1 and 331L2 is suppressed to be smaller than 2 [mm], a sufficient passage grace portion PAM can be formed.

図17(D1)に示すのは、前述した第2基準捻れ搬送路331-C2Uの捻れ角度を5〔°〕増加させ、160〔mm〕で約34〔°〕まで捻った構造の第2基準捻れ搬送路331-C2U′である。なお、第2基準捻れ搬送路331-C2U′の捻れ角34〔°〕は、前述した第1基準捻れ搬送路331-C1U′の捻れ角34〔°〕よりも、小数点以下で小さいものとなっている。第2基準捻れ搬送路331-C2U′を正面側から通過指標軸IAと平行な視点で見ると、図17(D2)のように略菱形の貫通空間が見えるものの、紙幣PMが通過できる紙幣通過空部PASは形成されていない。紙幣PMの第1搬送平行辺PM1aが第1端側最狭部331S1pよりも壁内へ突出し(図17(D2)の部分拡大エリアを参照)、同様に紙幣PMの第2搬送平行辺PM1bが第2端側最狭部よりも壁内へ突出した状態となっている。実際には、紙幣PMが狭小な第2基準捻れ搬送路331-C2U′内で第1,第2短側部331S1,331S2に押し当たって湾曲した状態となるので、搬送用エアによる搬送トルクが強くても、紙幣PMが第2基準捻れ搬送路331-C2U′を通過することは事実上不可能である。 FIG. 17 (D1) shows the second reference of the structure in which the twist angle of the above-mentioned second reference twist transfer path 331-C2U is increased by 5 [°] and twisted to about 34 [°] at 160 [mm]. Twist transport path 331-C2U'. The twist angle 34 [°] of the second reference twist transport path 331-C2U'is smaller than the twist angle 34 [°] of the first reference twist transport path 331-C1U' described above. ing. When the second reference twisted transport path 331-C2U'is viewed from the front side from the viewpoint parallel to the passage index axis IA, a substantially rhombic through space can be seen as shown in FIG. 17 (D2), but the bill PM can pass through. No empty PAS is formed. The first transport parallel side PM1a of the bill PM protrudes into the wall from the narrowest portion 331S1p on the first end side (see the partially enlarged area of FIG. 17 (D2)), and similarly, the second transport parallel side PM1b of the bill PM It is in a state of protruding into the wall from the narrowest part on the second end side. In reality, the banknote PM is pressed against the first and second short side portions 331S1 and 331S2 in the narrow second reference twisted transport path 331-C2U'and is in a curved state, so that the transport torque due to the transport air is generated. Even if it is strong, it is virtually impossible for the banknote PM to pass through the second reference twist transport path 331-C2U'.

このように、偏心捻れ軸TAを開口中心点CPから16〔mm〕ずらし、ゼロ寸状態を越える角度(約34〔°〕)まで捻った第2基準捻れ搬送路331-C2U′に対して通過猶予部PAMを形成する場合、紙幣通過空部PASをゼロ寸にする補正量を加味して第1,第2長側部331L1,331L2の長さを増加させるような補正が必要である。なお、第2基準捻れ搬送路331-C2U′のように捻れ角度を大きくした場合、通過猶予部PAMが形成されるように補正しても、紙幣通過空部PASの第1,第2短側部331S1,331S2側では、紙幣PMの紙面が内壁に接触する面積が多くなるので、紙幣PMが第2基準捻れ搬送路331-C2U′を通過する際の接触抵抗が高くなる。しかしながら、ゼロ寸状態となる基準の捻れ角度に対して5〔°〕程度加算しても、搬送用エアによる搬送トルクで安定搬送が可能と見込まれる。 In this way, the eccentric twist axis TA is shifted by 16 [mm] from the opening center point CP and passes through the second reference twist transfer path 331-C2U'twisted to an angle (about 34 [°]) exceeding the zero dimension state. When forming the grace portion PAM, it is necessary to make a correction so as to increase the length of the first and second long side portions 331L1 and 331L2 by adding a correction amount for making the bill passing empty portion PAS zero dimension. When the twist angle is increased as in the second reference twist transport path 331-C2U', even if the correction is made so that the passage grace portion PAM is formed, the first and second short sides of the bill passage empty portion PAS are formed. On the portions 331S1 and 331S2 sides, the area where the paper surface of the banknote PM contacts the inner wall is large, so that the contact resistance when the banknote PM passes through the second reference twisting transport path 331-C2U'is high. However, it is expected that stable transfer is possible with the transfer torque of the transfer air even if about 5 [°] is added to the reference twist angle that is in the zero dimension state.

図18に示すのは、開口中心点CPから24〔mm〕ほど第2短側部331S2側へずらした偏心捻れ点TPを通るように偏心捻れ軸TAを設定した第3偏心捻れ搬送路331-C3を示す。この第3偏心捻れ搬送路331-C3は、第1,第2長側部331L1,331L2が紙幣PMの第1,第2搬送直交辺PM2a,PM2bの長さとほぼ同じ78〔mm〕とし、第1長側部331L1と第2長側部331L2との離隔距離Wは18〔mm〕とした。第3偏心捻れ搬送路331-C3は、搬送方向(図18(A)においては、紙面に向かって奥側)に対して、第1短側部331S1側および第2短側部331S2側を時計回りに90〔°〕回転させた捻れ構造である。 FIG. 18 shows the third eccentric twist transfer path 331- in which the eccentric twist axis TA is set so as to pass through the eccentric twist point TP shifted to the second short side portion 331S2 side by 24 [mm] from the opening center point CP. C3 is shown. In the third eccentric twist transport path 331-C3, the first and second long side portions 331L1 and 331L2 are set to 78 [mm], which is substantially the same as the lengths of the first and second transport orthogonal sides PM2a and PM2b of the banknote PM. The separation distance W between the 1st long side portion 331L1 and the 2nd long side portion 331L2 was set to 18 [mm]. The third eccentric twist transport path 331-C3 has a clock on the first short side portion 331S1 side and the second short side portion 331S2 side with respect to the transport direction (in FIG. 18A, the back side toward the paper surface). It is a twisted structure that is rotated 90 [°] around.

第3偏心捻れ搬送路331-C3は、紙幣PMを90〔°〕回転させるものであるから、上流端開口と下流端開口とが直交していれば良いのであるが、上流端開口から下流端開口まで180〔°〕回転させた場合を考える。紙幣PMを180〔°〕回転させる第3偏心捻れ搬送路331-C3rは、図18(B)に示すようになる。すなわち、第3偏心捻れ搬送路331-C3rでは、偏心捻れ軸TAと平行な視点で上流端開口から下流端開口に向けて(あるいは、下流端開口から上流端開口に向けて)見通すことができる貫通空間の断面積が、第1長側部331L1と第2長側部331L2との離隔距離Wを直径とする円の面積となる。すなわち、第1,第2長側部331L1,331L2と平行な中心線上を開口中心点CPから24〔mm〕ずらした位置を偏心捻れ点TPに設定した偏心捻れ軸TAは、偏心捻れ点設定可能範囲にあるので、紙幣通過空部PASを形成できるのである。 Since the third eccentric twist transfer path 331-C3 rotates the banknote PM by 90 [°], it is sufficient that the upstream end opening and the downstream end opening are orthogonal to each other, but the upstream end opening to the downstream end Consider the case of rotating 180 [°] to the opening. The third eccentric twist transfer path 331-C3r for rotating the banknote PM by 180 [°] is as shown in FIG. 18 (B). That is, in the third eccentric twist transport path 331-C3r, it is possible to see from the upstream end opening to the downstream end opening (or from the downstream end opening to the upstream end opening) from a viewpoint parallel to the eccentric twist axis TA. The cross-sectional area of the penetrating space is the area of a circle whose diameter is the separation distance W between the first long side portion 331L1 and the second long side portion 331L2. That is, the eccentric twist axis TA in which the position shifted by 24 [mm] from the opening center point CP on the center line parallel to the first and second long side portions 331L1 and 331L2 is set as the eccentric twist point TP can set the eccentric twist point. Since it is in the range, it is possible to form an empty space PAS through which banknotes pass.

図18(C1)に示すのは、第3偏心捻れ搬送路331-C3における第3基準捻れ搬送路331-C3Uで、紙幣PMの第1,第2搬送平行辺PM1a,PM1bの長さと同じ160〔mm〕で約28〔°〕捻った構造である。開口中心点CPから24〔mm〕ずれた位置の偏心捻れ軸TA回りに上流端開口をひねることで形成される第3基準捻れ搬送路331-C3Uにおいても、第1短側部331S1側の内面よりも第2短側部331S2側の内面の方が流路を狭めるように捻れて行く。前述した第1,第2基準捻れ搬送路331-C1U,331-C2Uよりも、第3基準捻れ搬送路331-C3Uの方がより顕著となる。第3基準捻れ搬送路331-C3Uを正面側から通過指標軸IAと平行な視点で見ると、図18(C2)のように略菱形の貫通空間が見え、紙幣PMが通過できる紙幣通過空部PASが形成されているのが分かる。なお、紙幣通過空部PASの第1,第2短側部331S1,331S2側では、紙幣PMの紙面が内壁に接触して微量だけ折れ曲がることとなるが、搬送用エアによる搬送トルクに抗するほど強い摩擦を生じるものでなければ、安定搬送の障害となるものではない。前述した中心捻れ搬送路331-Oと同様に、紙幣PMが折れ曲がることなく平板状のまま通過できる紙幣通過領域PAを形成する必要があれば、捻れ角を1~2〔°〕程度抑えれば良い。 FIG. 18 (C1) shows the third reference twist transport path 331-C3U in the third eccentric twist transport path 331-C3, which has the same length as the first and second transport parallel sides PM1a and PM1b of the banknote PM 160. It has a structure twisted by about 28 [°] at [mm]. Even in the third reference twist transfer path 331-C3U formed by twisting the upstream end opening around the eccentric twist axis TA at a position deviated from the opening center point CP by 24 [mm], the inner surface on the first short side portion 331S1 side. The inner surface on the second short side portion 331S2 side is twisted so as to narrow the flow path. The third reference twist transport path 331-C3U is more prominent than the first and second reference twist transport paths 331-C1U and 331-C2U described above. When the third reference twisted transport path 331-C3U is viewed from the front side from the viewpoint parallel to the passage index axis IA, a substantially rhombic through space can be seen as shown in FIG. It can be seen that PAS is formed. On the 1st and 2nd short side portions 331S1 and 331S2 side of the bill passing empty space PAS, the paper surface of the bill PM comes into contact with the inner wall and bends only a small amount, but it resists the transport torque due to the transport air. Unless it causes strong friction, it does not hinder stable transportation. Similar to the above-mentioned central twist transport path 331-O, if it is necessary to form a bill passage region PA through which the bill PM can pass in a flat plate shape without bending, the twist angle can be suppressed by about 1 to 2 [°]. good.

ただし、図18(C2)に示す第3基準捻れ搬送路331-C3Uでは、紙幣PMの第1搬送平行辺PM1aが第1端側最狭部331S1pにちょうど接触するゼロ寸状態となっている。すなわち、開口中心点CPから24〔mm〕ずらした偏心捻れ軸TAにより形成した第3偏心捻れ搬送路331-C3においては、160〔mm〕で約28〔°〕捻ったときにゼロ寸状態となる。前述した第1,第2基準捻れ搬送路331-C1U,331-C2Uでは、160〔mm〕で約29〔°〕捻ってゼロ寸状態にできるので、開口中心点CPから24〔mm〕ずれた位置の偏心捻れ軸TAを設定する場合には、ゼロ寸状態とするための捻れ角をより小さく抑えなければならないことがわかる。 However, in the third reference twisted transport path 331-C3U shown in FIG. 18 (C2), the first transport parallel side PM1a of the bill PM is in a zero dimension state in which it just contacts the narrowest portion 331S1p on the first end side. That is, in the third eccentric twist transfer path 331-C3 formed by the eccentric twist axis TA deviated by 24 [mm] from the opening center point CP, when twisted by about 28 [°] at 160 [mm], it becomes a zero dimension state. Become. In the above-mentioned first and second reference twist transfer paths 331-C1U and 331-C2U, a twist of about 29 [°] at 160 [mm] can be made to a zero dimension state, so that the deviation is 24 [mm] from the opening center point CP. It can be seen that when setting the eccentric twist axis TA of the position, the twist angle for achieving the zero dimension state must be suppressed to a smaller size.

また、ゼロ寸状態の第3基準捻れ搬送路331-C3Uでは、通過猶予部PAMが全く形成されていないため、紙幣PMの安定搬送には適さない。そこで、第1,第2長側部331L1,331L2の長さをゼロ寸基準の78〔mm〕よりも適宜増加させる補正を行えば、紙幣PMの第1搬送平行辺PM1aと第1端側最狭部331S1pの間に通過猶予部PAMを形成できる。例えば、紙幣通過空部PASの第1短側部331S1側および第2短側部331S2側にそれぞれ1〔mm〕以上の通過猶予部PAMを形成できるように、第1,第2長側部331L1,331L2の長さを80〔mm〕以上とすれば、紙幣PMの安定搬送を実現できる。 Further, in the third reference twisted transport path 331-C3U in the zero dimension state, the passage grace portion PAM is not formed at all, so that it is not suitable for stable transport of banknote PM. Therefore, if corrections are made to appropriately increase the lengths of the first and second long side portions 331L1 and 331L2 from the zero dimension reference 78 [mm], the first transport parallel side PM1a and the first end side maximum of the banknote PM are corrected. A passage delay PAM can be formed between the narrow portions 331S1p. For example, the first and second long side portions 331L1 can form a passage grace portion PAM of 1 [mm] or more on the first short side portion 331S1 side and the second short side portion 331S2 side of the bill passing empty portion PAS, respectively. If the length of the, 331L2 is 80 [mm] or more, stable transportation of the banknote PM can be realized.

このように、偏心捻れ軸TAを開口中心点CPから24〔mm〕ずらし、ゼロ寸状態となる限界の角度(約28〔°〕)まで捻った第3基準捻れ搬送路331-C3Uに対して通過猶予部PAMを形成する場合、通過猶予部PAMに必要な長さだけ第1,第2長側部331L1,331L2を長く補正すればよい。なお、偏心捻れ軸TAを開口中心点CPから24〔mm〕ずらした構造の第3基準捻れ搬送路331-C3Uであっても、捻れ角が28〔°〕未満でゼロ寸状態に達していなければ、第1,第2長側部331L1,331L2の長さを増加させる補正値を2〔mm〕より小さく抑えても、十分な通過猶予部PAMを形成できる。 In this way, with respect to the third reference twist transfer path 331-C3U in which the eccentric twist axis TA is shifted by 24 [mm] from the opening center point CP and twisted to the limit angle (about 28 [°]) at which the zero dimension state is reached. When forming the passage grace portion PAM, the first and second long side portions 331L1 and 331L2 may be corrected longer by the length required for the passage grace portion PAM. Even in the third reference twist transfer path 331-C3U having a structure in which the eccentric twist axis TA is shifted by 24 [mm] from the opening center point CP, the twist angle must be less than 28 [°] and reach the zero dimension state. For example, even if the correction value for increasing the length of the first and second long side portions 331L1 and 331L2 is suppressed to be smaller than 2 [mm], a sufficient passage grace portion PAM can be formed.

図18(D1)に示すのは、前述した第3基準捻れ搬送路331-C3Uの捻れ角度を5〔°〕増加させ、160〔mm〕で約33〔°〕まで捻った構造の第3基準捻れ搬送路331-C3U′である。第3基準捻れ搬送路331-C3U′を正面側から通過指標軸IAと平行な視点で見ると、図18(D2)のように略菱形の貫通空間が見えるものの、紙幣PMが通過できる紙幣通過空部PASは形成されていない。紙幣PMの第1搬送平行辺PM1aが第1端側最狭部331S1pよりも壁内へ突出し(図18(D2)の部分拡大エリアを参照)、同様に紙幣PMの第2搬送平行辺PM1bが第2端側最狭部よりも壁内へ突出した状態となっている。実際には、紙幣PMが狭小な第3基準捻れ搬送路331-C3U′内で第1,第2短側部331S1,331S2に押し当たって湾曲した状態となるので、搬送用エアによる搬送トルクが強くても、紙幣PMが第3基準捻れ搬送路331-C3U′を通過することは事実上不可能である。 FIG. 18 (D1) shows the third reference of the structure in which the twist angle of the above-mentioned third reference twist transfer path 331-C3U is increased by 5 [°] and twisted to about 33 [°] at 160 [mm]. Twist transport path 331-C3U'. When the third reference twisted transport path 331-C3U'is viewed from the front side from the viewpoint parallel to the passage index axis IA, a substantially rhombic through space can be seen as shown in FIG. 18 (D2), but the bill PM can pass through. No empty PAS is formed. The first transport parallel side PM1a of the bill PM protrudes into the wall from the narrowest portion 331S1p on the first end side (see the partially enlarged area of FIG. 18 (D2)), and similarly, the second transport parallel side PM1b of the bill PM It is in a state of protruding into the wall from the narrowest part on the second end side. In reality, the banknote PM is in a curved state when it is pressed against the first and second short side portions 331S1 and 331S2 in the narrow third reference twist transport path 331-C3U', so that the transport torque due to the transport air is generated. Even if it is strong, it is virtually impossible for the banknote PM to pass through the third reference twist transport path 331-C3U'.

このように、偏心捻れ軸TAを開口中心点CPから24〔mm〕ずらし、ゼロ寸状態を越える角度(約33〔°〕)まで捻った第3基準捻れ搬送路331-C3U′に対して通過猶予部PAMを形成する場合、紙幣通過空部PASをゼロ寸にする補正量を加味して第1,第2長側部331L1,331L2の長さを増加させるような補正が必要である。なお、第3基準捻れ搬送路331-C3U′のように捻れ角度を大きくした場合、通過猶予部PAMが形成されるように補正しても、紙幣通過空部PASの第1,第2短側部331S1,331S2側では、紙幣PMの紙面が内壁に接触する面積が多くなるので、紙幣PMが第3基準捻れ搬送路331-C3U′を通過する際の接触抵抗が高くなる。しかしながら、ゼロ寸状態となる基準の捻れ角度に対して5〔°〕程度加算しても、搬送用エアによる搬送トルクで安定搬送が可能と見込まれる。 In this way, the eccentric twist axis TA is shifted by 24 [mm] from the opening center point CP and passes through the third reference twist transfer path 331-C3U'twisted to an angle (about 33 [°]) exceeding the zero dimension state. When forming the grace portion PAM, it is necessary to make a correction so as to increase the length of the first and second long side portions 331L1 and 331L2 by adding a correction amount for making the bill passing empty portion PAS zero dimension. When the twist angle is increased as in the third reference twist transport path 331-C3U', even if the correction is made so that the passage grace portion PAM is formed, the first and second short sides of the bill passage empty portion PAS are formed. On the portions 331S1 and 331S2 sides, the area where the paper surface of the banknote PM contacts the inner wall is large, so that the contact resistance when the banknote PM passes through the third reference twisting transport path 331-C3U'is high. However, it is expected that stable transfer is possible with the transfer torque of the transfer air even if about 5 [°] is added to the reference twist angle that is in the zero dimension state.

図19に示すのは、開口中心点CPから30〔mm〕ほど第2短側部331S2側へずらした偏心捻れ点TPを通るように偏心捻れ軸TAを設定した捻れ搬送路331を示す。この捻れ搬送路331は、第1,第2長側部331L1,331L2が紙幣PMの第1,第2搬送直交辺PM2a,PM2bの長さとほぼ同じ78〔mm〕とし、第1長側部331L1と第2長側部331L2との離隔距離Wは18〔mm〕とした。捻れ搬送路331は、搬送方向(図19(A)においては、紙面に向かって奥側)に対して、第1短側部331S1側および第2短側部331S2側を時計回りに90〔°〕回転させた捻れ構造である。 FIG. 19 shows a twist transfer path 331 in which the eccentric twist axis TA is set so as to pass through the eccentric twist point TP shifted to the second short side portion 331S2 side by about 30 [mm] from the opening center point CP. In this twist transport path 331, the first and second long side portions 331L1 and 331L2 are set to 78 [mm], which is substantially the same as the lengths of the first and second transport orthogonal sides PM2a and PM2b of the banknote PM, and the first long side portion 331L1. The separation distance W from the second long side portion 331L2 was set to 18 [mm]. The twist transport path 331 is 90 [°] clockwise with respect to the transport direction (in the back side toward the paper surface in FIG. 19A), the first short side portion 331S1 side and the second short side portion 331S2 side. ] It is a rotated twisted structure.

捻れ搬送路331は、紙幣PMを90〔°〕回転させるものであるから、上流端開口と下流端開口とが直交していれば良いのであるが、上流端開口から下流端開口まで180〔°〕回転させた場合を考える。紙幣PMを180〔°〕回転させる捻れ搬送路331rは、図19(B)に示すようになる。すなわち、捻れ搬送路331rでは、偏心捻れ軸TAと平行な視点で上流端開口から下流端開口に向けて(あるいは、下流端開口から上流端開口に向けて)見通すことができる貫通空間の断面積が、第1長側部331L1と第2長側部331L2との離隔距離Wを直径とする円の面積となる。すなわち、第1,第2長側部331L1,331L2と平行な中心線上を開口中心点CPから第2短側部331S2側へ30〔mm〕ずらした位置(第2短側部331S2からW/2だけ中心寄りの位置)を偏心捻れ点TPに設定した偏心捻れ軸TAは、偏心捻れ点設定可能範囲にあるので、紙幣通過空部PASを形成できる。 Since the twist transport path 331 rotates the banknote PM by 90 [°], it is sufficient that the upstream end opening and the downstream end opening are orthogonal to each other, but 180 [°] from the upstream end opening to the downstream end opening. ] Consider the case of rotation. The twist transport path 331r that rotates the bill PM by 180 [°] is as shown in FIG. 19 (B). That is, in the twist transport path 331r, the cross-sectional area of the through space that can be seen from the upstream end opening to the downstream end opening (or from the downstream end opening toward the upstream end opening) from a viewpoint parallel to the eccentric twist axis TA. Is the area of a circle whose diameter is the separation distance W between the first long side portion 331L1 and the second long side portion 331L2. That is, a position shifted by 30 [mm] from the opening center point CP to the second short side portion 331S2 side on the center line parallel to the first and second long side portions 331L1 and 331L2 (W / 2 from the second short side portion 331S2). Since the eccentric twist axis TA whose eccentric twist point TP is set to the eccentric twist point TP (position closer to the center) is within the range in which the eccentric twist point can be set, the bill passage empty space PAS can be formed.

この捻れ搬送路331における偏心捻れ点TPの設定位置は、偏心捻れ点設定可能範囲における第2短側部331S2側の終端である。また、開口中心点CPから第1短側部331S1側に30〔mm〕ずらした位置が、偏心捻れ点設定可能範囲における第1短側部331S1側の終端である。開口中心点CPを通って第1,第2長側部331L1,331L2に平行な仮想直線上で、これら2つの終端から開口中心点CP側に形成された偏心捻れ点設定可能範囲内であれば、どこでも偏心捻れ点TPを設定することができる。ただし、開口中心点CPを通って搬送方向と平行な軸は中心捻れ搬送管3-Oの中心軸CA-Oであるから、開口中心点CPは偏心捻れ点設定可能範囲から除く。 The setting position of the eccentric twist point TP in the twist transport path 331 is the end on the second short side portion 331S2 side in the range in which the eccentric twist point can be set. Further, the position shifted by 30 [mm] from the opening center point CP to the first short side portion 331S1 side is the end on the first short side portion 331S1 side in the range in which the eccentric twist point can be set. On a virtual straight line parallel to the first and second long side portions 331L1 and 331L2 through the opening center point CP, if it is within the eccentric twist point settable range formed on the opening center point CP side from these two ends. , The eccentric twist point TP can be set anywhere. However, since the axis parallel to the transport direction through the opening center point CP is the central axis CA-O of the central twist transfer pipe 3-O, the opening center point CP is excluded from the eccentric twist point settable range.

図19(C1)に示すのは、捻れ搬送路331における基準捻れ搬送路331Uで、紙幣PMの第1,第2搬送平行辺PM1a,PM1bの長さと同じ160〔mm〕で約27〔°〕捻った構造である。開口中心点CPから30〔mm〕ずれた位置の偏心捻れ軸TA回りに上流端開口をひねることで形成される基準捻れ搬送路331Uにおいても、第1短側部331S1側の内面よりも第2短側部331S2側の内面の方が流路を狭めるように捻れて行く。前述した第3基準捻れ搬送路331-C3Uよりも、基準捻れ搬送路331Uの方がより顕著となる。基準捻れ搬送路331Uを正面側から通過指標軸IAと平行な視点で見ると、図19(C2)のように略菱形の貫通空間が見え、紙幣PMが通過できる紙幣通過空部PASが形成されているのが分かる。なお、紙幣通過空部PASの第1,第2短側部331S1,331S2側では、紙幣PMの紙面が内壁に接触して微量だけ折れ曲がることとなるが、搬送用エアによる搬送トルクに抗するほど強い摩擦を生じるものでなければ、安定搬送の障害となるものではない。前述した中心捻れ搬送路331-Oと同様に、紙幣PMが折れ曲がることなく平板状のまま通過できる紙幣通過領域PAを形成する必要があれば、捻れ角を1~2〔°〕程度抑えれば良い。 FIG. 19 (C1) shows a reference twist transport path 331U in the twist transport path 331, which is about 27 [°] at 160 [mm], which is the same length as the first and second transport parallel sides PM1a and PM1b of the banknote PM. It is a twisted structure. Even in the reference twist transfer path 331U formed by twisting the upstream end opening around the eccentric twist axis TA at a position deviated from the opening center point CP by 30 [mm], the second short side portion 331S1 side is second than the inner surface. The inner surface on the short side portion 331S2 side twists so as to narrow the flow path. The reference twist transport path 331U is more prominent than the third reference twist transport path 331-C3U described above. When the reference twist transport path 331U is viewed from the front side from the viewpoint parallel to the passage index axis IA, a substantially rhombic through space can be seen as shown in FIG. 19 (C2), and a bill passage empty space PAS through which the bill PM can pass is formed. You can see that it is. On the 1st and 2nd short side portions 331S1 and 331S2 side of the bill passing empty space PAS, the paper surface of the bill PM comes into contact with the inner wall and bends only a small amount, but it resists the transport torque due to the transport air. Unless it causes strong friction, it does not hinder stable transportation. Similar to the above-mentioned central twist transport path 331-O, if it is necessary to form a bill passage region PA through which the bill PM can pass in a flat plate shape without bending, the twist angle can be suppressed by about 1 to 2 [°]. good.

ただし、図19(C2)に示す基準捻れ搬送路331Uでは、紙幣PMの第1搬送平行辺PM1aが第1端側最狭部331S1pにちょうど接触するゼロ寸状態となっている。すなわち、開口中心点CPから30〔mm〕ずらした偏心捻れ軸TAにより形成した捻れ搬送路331においては、160〔mm〕で約27〔°〕捻ったときにゼロ寸状態となる。前述した第3基準捻れ搬送路331-C3Uでは、160〔mm〕で約28〔°〕捻ってゼロ寸状態にできるので、開口中心点CPから30〔mm〕ずれた位置の偏心捻れ軸TAを設定する場合には、ゼロ寸状態とするための捻れ角をより小さく抑えなければならないことがわかる。 However, in the reference twist transport path 331U shown in FIG. 19 (C2), the first transport parallel side PM1a of the banknote PM is in a zero dimension state in which it just contacts the narrowest portion 331S1p on the first end side. That is, in the twist transfer path 331 formed by the eccentric twist shaft TA deviated by 30 [mm] from the opening center point CP, the zero dimension state is reached when twisted by about 27 [°] at 160 [mm]. In the above-mentioned third reference twist transfer path 331-C3U, the eccentric twist axis TA at a position deviated by 30 [mm] from the opening center point CP can be twisted by about 28 [°] at 160 [mm] to a zero dimension state. When setting, it can be seen that the twist angle for achieving the zero dimension state must be suppressed to a smaller value.

また、ゼロ寸状態の基準捻れ搬送路331Uでは、通過猶予部PAMが全く形成されていないため、紙幣PMの安定搬送には適さない。そこで、第1,第2長側部331L1,331L2の長さをゼロ寸基準の78〔mm〕よりも適宜増加させる補正を行えば、紙幣PMの第1搬送平行辺PM1aと第1端側最狭部331S1pの間に通過猶予部PAMを形成できる。例えば、紙幣通過空部PASの第1短側部331S1側および第2短側部331S2側にそれぞれ1〔mm〕以上の通過猶予部PAMを形成できるように、第1,第2長側部331L1,331L2の長さを80〔mm〕以上とすれば、紙幣PMの安定搬送を実現できる。 Further, in the reference twist transport path 331U in the zero dimension state, the passage grace portion PAM is not formed at all, so that it is not suitable for stable transport of banknote PM. Therefore, if corrections are made to appropriately increase the lengths of the first and second long side portions 331L1 and 331L2 from the zero dimension reference 78 [mm], the first transport parallel side PM1a and the first end side maximum of the banknote PM are corrected. A passage delay PAM can be formed between the narrow portions 331S1p. For example, the first and second long side portions 331L1 can form a passage grace portion PAM of 1 [mm] or more on the first short side portion 331S1 side and the second short side portion 331S2 side of the bill passing empty portion PAS, respectively. If the length of the, 331L2 is 80 [mm] or more, stable transportation of the banknote PM can be realized.

このように、偏心捻れ軸TAを開口中心点CPから30〔mm〕ずらし、ゼロ寸状態となる限界の角度(約27〔°〕)まで捻った基準捻れ搬送路331Uに対して通過猶予部PAMを形成する場合、通過猶予部PAMに必要な長さだけ第1,第2長側部331L1,331L2を長く補正すればよい。なお、偏心捻れ軸TAを開口中心点CPから30〔mm〕ずらした構造の基準捻れ搬送路331Uであっても、捻れ角が27〔°〕未満でゼロ寸状態に達していなければ、第1,第2長側部331L1,331L2の長さを増加させる補正値を2〔mm〕より小さく抑えても、十分な通過猶予部PAMを形成できる。 In this way, the eccentric twist axis TA is shifted by 30 [mm] from the opening center point CP and twisted to the limit angle (about 27 [°]) where the zero dimension state is reached. When forming the above, the first and second long side portions 331L1 and 331L2 may be corrected longer by the length required for the passage grace portion PAM. Even if the reference twist transfer path 331U has a structure in which the eccentric twist axis TA is shifted by 30 [mm] from the opening center point CP, if the twist angle is less than 27 [°] and the twist angle does not reach the zero dimension state, the first , Even if the correction value for increasing the length of the second long side portion 331L1 and 331L2 is suppressed to be smaller than 2 [mm], a sufficient passage grace portion PAM can be formed.

図19(D1)に示すのは、前述した基準捻れ搬送路331Uの捻れ角度を5〔°〕増加させ、160〔mm〕で約32〔°〕まで捻った構造の基準捻れ搬送路331U′である。基準捻れ搬送路331U′を正面側から通過指標軸IAと平行な視点で見ると、図19(D2)のように略菱形の貫通空間が見えるものの、紙幣PMが通過できる紙幣通過空部PASは形成されていない。紙幣PMの第1搬送平行辺PM1aが第1端側最狭部331S1pよりも壁内へ突出し(図19(D2)の部分拡大エリアを参照)、同様に紙幣PMの第2搬送平行辺PM1bが第2端側最狭部よりも壁内へ突出した状態となっている。実際には、紙幣PMが狭小な基準捻れ搬送路331U′内で第1,第2短側部331S1,331S2に押し当たって湾曲した状態となるので、搬送用エアによる搬送トルクが強くても、紙幣PMが基準捻れ搬送路331U′を通過することは事実上不可能である。 FIG. 19 (D1) shows a reference twist transport path 331U ′ having a structure in which the twist angle of the above-mentioned reference twist transport path 331U is increased by 5 [°] and twisted to about 32 [°] at 160 [mm]. be. When the reference twist transport path 331U'is viewed from the front side from the viewpoint parallel to the passage index axis IA, a substantially rhombic through space can be seen as shown in FIG. 19 (D2), but the bill passage space PAS through which the bill PM can pass is Not formed. The first transport parallel side PM1a of the bill PM protrudes into the wall from the narrowest portion 331S1p on the first end side (see the partially enlarged area of FIG. 19 (D2)), and similarly, the second transport parallel side PM1b of the bill PM It is in a state of protruding into the wall from the narrowest part on the second end side. Actually, the banknote PM is in a curved state by being pressed against the first and second short side portions 331S1 and 331S2 in the narrow reference twist transport path 331U', so that even if the transport torque by the transport air is strong, the banknote PM is in a curved state. It is virtually impossible for the banknote PM to pass through the reference twist transport path 331U'.

このように、偏心捻れ軸TAを開口中心点CPから30〔mm〕ずらし、ゼロ寸状態を越える角度(約32〔°〕)まで捻った基準捻れ搬送路331U′に対して通過猶予部PAMを形成する場合、紙幣通過空部PASをゼロ寸にする補正量を加味して第1,第2長側部331L1,331L2の長さを増加させるような補正が必要である。基準捻れ搬送路331U′をゼロ寸状態にするためには、第1短側部331S1側および第2短側部331S2側にそれぞれ0.5〔mm〕の余裕が必要であるから、加味する補正量は約1〔mm〕である。なお、基準捻れ搬送路331U′のように捻れ角度を大きくした場合、通過猶予部PAMが形成されるように補正しても、紙幣通過空部PASの第1,第2短側部331S1,331S2側では、紙幣PMの紙面が内壁に接触する面積が多くなるので、紙幣PMが基準捻れ搬送路331U′を通過する際の接触抵抗が高くなる。しかしながら、ゼロ寸状態となる基準の捻れ角度に対して5〔°〕程度加算しても、搬送用エアによる搬送トルクで安定搬送が可能と見込まれる。 In this way, the eccentric twist axis TA is shifted by 30 [mm] from the opening center point CP, and the passage grace portion PAM is provided for the reference twist transport path 331U'twisted to an angle (about 32 [°]) exceeding the zero dimension state. In the case of forming, it is necessary to make a correction so as to increase the length of the first and second long side portions 331L1 and 331L2 by adding a correction amount for making the bill passing empty portion PAS zero dimension. In order to bring the reference twist transport path 331U'to the zero dimension state, a margin of 0.5 [mm] is required on the first short side portion 331S1 side and the second short side portion 331S2 side, respectively. The amount is about 1 [mm]. When the twist angle is increased as in the reference twist transport path 331U', even if the correction is made so that the passage grace portion PAM is formed, the first and second short side portions 331S1, 331S2 of the bill passage empty portion PAS are formed. On the side, since the area where the paper surface of the banknote PM contacts the inner wall increases, the contact resistance when the banknote PM passes through the reference twist transport path 331U'is increased. However, it is expected that stable transfer is possible with the transfer torque of the transfer air even if about 5 [°] is added to the reference twist angle that is in the zero dimension state.

上述したように、捻れ搬送管3においては、偏心捻れ点TPが開口中心点CPから離隔している距離(第1ずれ量)に応じて、ゼロ寸状態から必要十分な通過猶予部PAMを形成する補正条件(第1補正条件)が異なる。よって、第1補正条件を満たすように第1,第2長側部331L1,331L2の長さを増加させるように補正すれば、紙幣PMを安定搬送させるために必要な通過猶予部PAMを形成できる。 As described above, in the twist transfer pipe 3, the necessary and sufficient passage grace portion PAM is formed from the zero dimension state according to the distance (first deviation amount) at which the eccentric twist point TP is separated from the opening center point CP. The correction conditions (first correction conditions) to be applied are different. Therefore, if the lengths of the first and second long side portions 331L1 and 331L2 are corrected so as to satisfy the first correction condition, the passage grace portion PAM necessary for stably transporting the banknote PM can be formed. ..

また、捻れ搬送管3においては、基準捻れ搬送路331におけるゼロ寸状態の基準捻れ角(27〔°〕)よりも大きく捻る角度(第2ずれ量)に応じて、ゼロ寸状態まで戻す補正量を加味した上で必要十分な通過猶予部PAMを形成する補正条件(第2補正条件)が異なる。よって、第2補正条件を満たすように第1,第2長側部331L1,331L2の長さを増加させるように補正すれば、紙幣PMを安定搬送させるために必要な通過猶予部PAMを形成できる。 Further, in the twist transfer pipe 3, the correction amount for returning to the zero dimension state according to the twist angle (second deviation amount) larger than the reference twist angle (27 [°]) in the zero dimension state in the reference twist transfer path 331. The correction condition (second correction condition) for forming the necessary and sufficient passage grace portion PAM is different. Therefore, if the lengths of the first and second long side portions 331L1 and 331L2 are corrected so as to satisfy the second correction condition, the passage grace portion PAM necessary for stably transporting the banknote PM can be formed. ..

そして、本構成例の捻れ搬送管3の捻れ搬送路331では、偏心捻れ軸TAの設定位置に応じた補正を行うことで、紙幣通過空部PASに通過猶予部PAMを確実に形成できる。よって、紙幣PMが紙幣通過空部PASの第1短側部331S1側あるいは第2短側部331S2側にぶれても、紙幣PMの第1,第2搬送平行辺PM1a,PM1bが第1,第2短側部331S1,331S2に接触することを抑制でき、紙幣PMの安定搬送を実現できるのである。 Then, in the twist transfer path 331 of the twist transfer tube 3 of the present configuration example, the passage grace portion PAM can be surely formed in the bill passage empty portion PAS by performing the correction according to the set position of the eccentric twist shaft TA. Therefore, even if the bill PM is shaken to the first short side portion 331S1 side or the second short side portion 331S2 side of the bill passage empty PAS, the first and second transport parallel sides PM1a and PM1b of the bill PM are the first and first. 2 It is possible to suppress contact with the short side portions 331S1 and 331S2, and it is possible to realize stable transportation of the banknote PM.

また、本構成例の捻れ搬送管3には、偏心捻れ軸TA回りに上流端開口を回転させた形状の捻れ搬送路331が形成されるので、第1長側部331L1側もしくは第2長側部331L2側のどちらか一方の突出量が大きくなり、他方の突出量が小さくなる。したがって、捻れ搬送路における突出量の小さい側が、並設される他の搬送管と相対するように捻れ搬送管3を配設すれば、2列の搬送管の離隔距離を小さく抑えることが可能となる。この利点について、図20に基づき説明する。なお、前述した直線搬送管2や捻れ搬送管3には、上,下部外方カバー221,222や第1,第2捻れ外方カバー321,322が設けられているが、以下では説明を単純化するために、搬送路のみを並設するものとした。 Further, in the twist transfer pipe 3 of this configuration example, a twist transfer path 331 having a shape in which the upstream end opening is rotated around the eccentric twist axis TA is formed, so that the first long side portion 331L1 side or the second long side is formed. The amount of protrusion of either one of the portions 331L2 is large, and the amount of protrusion of the other is small. Therefore, if the twist transport pipe 3 is arranged so that the side having a small protrusion amount in the twist transport path faces the other transport pipes arranged side by side, it is possible to keep the separation distance between the two rows of transport pipes small. Become. This advantage will be described with reference to FIG. The straight transport pipe 2 and the twisted transport pipe 3 described above are provided with upper and lower outer covers 221 and 222 and first and second twisted outer covers 321,322, but the description thereof will be simplified below. In order to make it more convenient, only the transport paths are installed side by side.

図20(A)は、直線搬送路231と中心捻れ搬送路331-Oを並設したところを上流側または下流側から見たイメージ図である。2つの搬送路を並べて2列状に設置する場合、両方の搬送路が接近しすぎないように定めた規制距離SRだけ離しておかなければならない。なお、規制距離SRは、搬送路の1/2以上とすることが望ましい。直線搬送路231を2列にする場合は、規制距離SRを空けて2つの直線搬送路231を配置すれば良い。しかしながら、直線搬送路231と中心捻れ搬送路331-Oを接続する場合には、中心捻れ搬送路331-Oとの間にも規制距離SRが確保されていなければならない。そのため、中心捻れ搬送路331-Oにおける直線搬送路231側の最大突出部が規制距離SRを満たすようにすると、中心捻れ搬送路331の上流端開口と直線搬送路231との離隔距離SDは、規制距離SRに比べて相当大きいものになる。 FIG. 20A is an image diagram of a straight transport path 231 and a central twist transport path 331-O arranged side by side as viewed from the upstream side or the downstream side. When two transport paths are installed side by side in two rows, they must be separated by a specified distance SR so that both transport paths do not come too close to each other. The regulated distance SR is preferably 1/2 or more of the transport path. When the straight transport paths 231 are arranged in two rows, the two straight transport paths 231 may be arranged with a regulation distance SR. However, when connecting the straight transport path 231 and the central twist transport path 331-O, the regulated distance SR must be secured also between the central twist transport path 331-O. Therefore, if the maximum protrusion on the straight transport path 231 side in the central twist transport path 331-O satisfies the regulation distance SR, the separation distance SD between the upstream end opening of the central twist transport path 331 and the straight transport path 231 is set. It will be considerably larger than the regulated distance SR.

図20(B)は、直線搬送路231と第1偏心捻れ搬送路331-C1を並設したところを示す。第1偏心捻れ搬送路331-C1は、開口中心点CPから-8〔mm〕(下方へ8〔mm〕)ずらした偏心捻れ点TPを通るように偏心捻れ軸TAを設定し、偏心捻れ軸TAよりも上側を、並設する直線搬送路231から遠ざかる方向へ捻った構造である。よって、第1偏心捻れ搬送路331-C1においては、直線搬送路231側の最大突出量が少なくなるので、規制距離SRを満たすように直線搬送路231と第1偏心捻れ搬送路331-C1との離隔距離SDは、中心捻れ搬送路331-Oの場合よりも若干短くなる。なお、開口中心点CPから+8〔mm〕(上方へ8〔mm〕)ずらした偏心捻れ点TPを通るように偏心捻れ軸TAを設定し、偏心捻れ軸TAよりも下側を、並設する直線搬送路231から遠ざかる方向へ捻った構造としても、同様に離隔距離SDを短くできる。 FIG. 20B shows a linear transport path 231 and a first eccentric twist transport path 331-C1 arranged side by side. The eccentric twist axis TA is set so that the first eccentric twist transfer path 331-C1 passes through the eccentric twist point TP shifted by -8 [mm] (downward 8 [mm]) from the opening center point CP, and the eccentric twist axis is set. The structure is such that the upper side of the TA is twisted in a direction away from the linear transport path 231 arranged side by side. Therefore, in the first eccentric twist transport path 331-C1, the maximum protrusion amount on the straight transport path 231 side is reduced, so that the straight transport path 231 and the first eccentric twist transport path 331-C1 are used so as to satisfy the regulation distance SR. The separation distance SD is slightly shorter than that in the case of the central twist transport path 331-O. The eccentric twist axis TA is set so as to pass through the eccentric twist point TP shifted by +8 [mm] (upward 8 [mm]) from the opening center point CP, and the lower side of the eccentric twist axis TA is arranged side by side. Similarly, the separation distance SD can be shortened even if the structure is twisted in the direction away from the straight transport path 231.

図20(C)は、直線搬送路231と第2偏心捻れ搬送路331-C2を並設したところを示す。第2偏心捻れ搬送路331-C2は、開口中心点CPから-16〔mm〕(下方へ16〔mm〕)ずらした偏心捻れ点TPを通るように偏心捻れ軸TAを設定し、偏心捻れ軸TAよりも上側を、並設する直線搬送路231から遠ざかる方向へ捻った構造である。よって、第2偏心捻れ搬送路331-C2においては、直線搬送路231側の最大突出量が一層少なくなるので、規制距離SRを満たすように直線搬送路231と第2偏心捻れ搬送路331-C2との離隔距離SDは、第1偏心捻れ搬送路331-C1の場合よりも若干短くなる。なお、開口中心点CPから+16〔mm〕(上方へ16〔mm〕)ずらした偏心捻れ点TPを通るように偏心捻れ軸TAを設定し、偏心捻れ軸TAよりも下側を、並設する直線搬送路231から遠ざかる方向へ捻った構造としても、同様に離隔距離SDを短くできる。 FIG. 20C shows a linear transport path 231 and a second eccentric twist transport path 331-C2 arranged side by side. The eccentric twist axis TA is set so that the second eccentric twist transfer path 331-C2 passes through the eccentric twist point TP deviated by -16 [mm] (downward 16 [mm]) from the opening center point CP, and the eccentric twist axis is set. The structure is such that the upper side of the TA is twisted in a direction away from the linear transport path 231 arranged side by side. Therefore, in the second eccentric twist transport path 331-C2, the maximum protrusion amount on the straight transport path 231 side is further reduced, so that the straight transport path 231 and the second eccentric twist transport path 331-C2 satisfy the regulation distance SR. The separation distance SD from the first eccentric twist transfer path 331-C1 is slightly shorter than that in the case of the first eccentric twist transfer path 331-C1. The eccentric twist axis TA is set so as to pass through the eccentric twist point TP shifted by +16 [mm] (upward 16 [mm]) from the opening center point CP, and the lower side of the eccentric twist axis TA is arranged side by side. Similarly, the separation distance SD can be shortened even if the structure is twisted in the direction away from the straight transport path 231.

図20(D)は、直線搬送路231と第3偏心捻れ搬送路331-C3を並設したところを示す。第3偏心捻れ搬送路331-C3は、開口中心点CPから-24〔mm〕(下方へ24〔mm〕)ずらした偏心捻れ点TPを通るように偏心捻れ軸TAを設定し、偏心捻れ軸TAよりも上側を、並設する直線搬送路231から遠ざかる方向へ捻った構造である。よって、第2偏心捻れ搬送路331-C2においては、直線搬送路231側の最大突出量が一層少なくなるので、規制距離SRを満たすように直線搬送路231と第2偏心捻れ搬送路331-C2との離隔距離SDは、第2偏心捻れ搬送路331-C2の場合よりも若干短くなる。なお、開口中心点CPから+24〔mm〕(上方へ24〔mm〕)ずらした偏心捻れ点TPを通るように偏心捻れ軸TAを設定し、偏心捻れ軸TAよりも下側を、並設する直線搬送路231から遠ざかる方向へ捻った構造としても、同様に離隔距離SDを短くできる。 FIG. 20D shows a linear transport path 231 and a third eccentric twist transport path 331-C3 arranged side by side. The eccentric twist axis TA is set so that the third eccentric twist transfer path 331-C3 passes through the eccentric twist point TP shifted by -24 [mm] (downward 24 [mm]) from the opening center point CP, and the eccentric twist axis is set. The structure is such that the upper side of the TA is twisted in a direction away from the linear transport path 231 arranged side by side. Therefore, in the second eccentric twist transport path 331-C2, the maximum protrusion amount on the straight transport path 231 side is further reduced, so that the straight transport path 231 and the second eccentric twist transport path 331-C2 satisfy the regulation distance SR. The separation distance SD from and is slightly shorter than that in the case of the second eccentric twist transport path 331-C2. The eccentric twist axis TA is set so as to pass through the eccentric twist point TP shifted by +24 [mm] (upward 24 [mm]) from the opening center point CP, and the lower side of the eccentric twist axis TA is arranged side by side. Similarly, the separation distance SD can be shortened even if the structure is twisted in the direction away from the straight transport path 231.

図20(E)は、直線搬送路231と図14の捻れ搬送路331を並設したところを示す。捻れ搬送路331は、開口中心点CPから-32〔mm〕(下方へ32〔mm〕)ずらした偏心捻れ点TP(前述した偏心捻れ点設定可能範囲の第2短側部331S2側端点)にて偏心捻れ軸TAを設定し、偏心捻れ軸TAよりも上側を、並設する直線搬送路231から遠ざかる方向へ捻った構造である。よって、捻れ搬送路331においては、直線搬送路231側の最大突出量が一層少なくなるので、規制距離SRを満たすように直線搬送路231と捻れ搬送路331との離隔距離SDは、第3偏心捻れ搬送路331-C3の場合よりも更に短くなる。なお、開口中心点CPから+32〔mm〕(上方へ32〔mm〕)ずらした偏心捻れ点TP(前述した偏心捻れ点設定可能範囲の第1短側部331S1側端点)にて偏心捻れ軸TAを設定し、偏心捻れ軸TAよりも下側を、並設する直線搬送路231から遠ざかる方向へ捻った構造としても、同様に離隔距離SDを短くできる。 FIG. 20E shows a linear transport path 231 and a twist transport path 331 of FIG. 14 arranged side by side. The twist transfer path 331 is located at the eccentric twist point TP (the second short side portion 331S2 side end point in the above-mentioned eccentric twist point settable range) shifted by −32 [mm] (downward 32 [mm]) from the opening center point CP. The eccentric twisting shaft TA is set, and the structure is such that the upper side of the eccentric twisting shaft TA is twisted in a direction away from the parallel linear transport path 231. Therefore, in the twist transport path 331, the maximum protrusion amount on the straight transport path 231 side is further reduced, so that the separation distance SD between the straight transport path 231 and the twist transport path 331 is set to the third eccentricity so as to satisfy the regulation distance SR. It is even shorter than in the case of the twist transfer path 331-C3. The eccentric twist axis TA at the eccentric twist point TP (the first short side portion 331S1 side end point in the above-mentioned eccentric twist point settable range) deviated by +32 [mm] (upward 32 [mm]) from the opening center point CP. The separation distance SD can be similarly shortened even if the structure is such that the lower side of the eccentric twist axis TA is twisted in a direction away from the parallel linear transport path 231.

上述したように、第1~第3偏心捻れ搬送路331-C1~C3および捻れ搬送路331を直線搬送路231と並設すれば、両者の離隔距離SDを、中心捻れ搬送路331-Oと直線搬送路231との離隔距離SDよりも小さく抑えられる。しかも、上流端開口における偏心捻れ点設定可能範囲の端点を偏心捻れ点TPに選定して偏心捻れ軸TAを設定した捻れ搬送路331では、並設する直線搬送路231との離隔距離SDを最も小さくできるので、遊技島内の狭小スペースに2列に搬送管を設置するのに好適である。上述した離隔距離SDを小さく抑える必要がある場合、スペースの余裕状況に応じて偏心捻れ軸TAの位置を定めれば良いが、概ね、上流端開口の下縁あるいは上縁からW/2〔mm〕(捻れ搬送路331に相当する位置)以上、W〔mm〕(第3偏心捻れ搬送路331-C3に近い位置)以下の範囲に設定するのが実用的である。 As described above, if the first to third eccentric twist transport paths 331-C1 to C3 and the twist transport path 331 are arranged side by side with the straight transport path 231, the separation distance SD between the two is set to the central twist transport path 331-O. The separation distance from the straight transport path 231 can be suppressed to be smaller than the SD. Moreover, in the twist transport path 331 in which the end point in the range in which the eccentric twist point can be set at the upstream end opening is selected as the eccentric twist point TP and the eccentric twist axis TA is set, the separation distance SD from the parallel straight transport path 231 is the most. Since it can be made smaller, it is suitable for installing transport pipes in two rows in a narrow space in the game island. When it is necessary to keep the above-mentioned separation distance SD small, the position of the eccentric twist axis TA may be determined according to the space margin, but generally W / 2 [mm] from the lower edge or the upper edge of the upstream end opening. ] (Position corresponding to the twist transport path 331) or more, and W [mm] (position close to the third eccentric twist transport path 331-C3) or less is practically set.

以上、本発明に係る紙葉類搬送装置を実施形態に基づき説明したが、本発明は、この実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない限りにおいて実現可能な全ての紙葉類搬送装置を権利範囲として包摂するものである。例えば、本実施形態では、搬送用流体が流れる搬送路にて紙葉類としての紙幣を搬送するものとしたが、紙葉類を搬送する主搬送管とは別に搬送用流体が流れる補助搬送管を設け、補助搬送管内を流れる搬送流によって間接的に主搬送管内の紙葉類を搬送する構成でも構わない。より具体的には、補助搬送管内に配したマグネット等の吸着体を搬送流にて移動させ、吸着体に非接触で吸着される金属やマグネット等の被吸着体を主搬送管側に設けておけば、補助搬送管内における吸着体の移動によって主搬送管側の被吸着体を移動させることが可能となる。そして、主搬送管側の被吸着体が紙葉類を上流から下流に向けて押して行く構造等を備えていれば、補助搬送管内の搬送流によって主搬送管側の紙葉類を搬送できる。前述した中心捻れ搬送管3-Oや捻れ搬送管3を主搬送管とし、主搬送管の捻れに沿わせた補助搬送管を別途設ければ、この搬送手法を適用できる。その場合、搬送用流体を流さない主搬送管は非密閉の搬送路として構わない。 Although the paper leaf transport device according to the present invention has been described above based on the embodiment, the present invention is not limited to this embodiment and can be realized as long as the configuration described in the claims is not changed. All paper leaf transport devices are included in the scope of rights. For example, in the present embodiment, the banknotes as paper leaves are transported through the transport path through which the transport fluid flows, but the auxiliary transport pipe through which the transport fluid flows separately from the main transport pipe that transports the paper leaves. It may be configured to indirectly transport the paper sheets in the main transport pipe by the transport flow flowing in the auxiliary transport pipe. More specifically, an adsorbent such as a magnet arranged in the auxiliary transport pipe is moved by a transport flow, and an adsorbed body such as a metal or a magnet that is non-contactly adsorbed to the adsorbent is provided on the main transport pipe side. Then, the adsorbed body on the main transport tube side can be moved by the movement of the adsorbent in the auxiliary transport tube. If the adsorbed body on the main transport pipe side has a structure that pushes the paper leaves from the upstream to the downstream, the paper leaves on the main transport pipe side can be transported by the transport flow in the auxiliary transport pipe. This transfer method can be applied by using the above-mentioned central twist transfer pipe 3-O and the twist transfer pipe 3 as the main transfer pipe and separately providing an auxiliary transfer pipe along the twist of the main transfer pipe. In that case, the main transport pipe that does not allow the transport fluid to flow may be a non-sealed transport path.

1 紙幣搬送装置
3 捻れ搬送管
331 捻れ搬送路
331U 基準捻れ搬送路
331TS1 第1捻れ流路断面(上流端開口)
331TS4 第4捻れ流路断面(下流端開口)
331L1 第1長側部
331L2 第2長側部
331S1 第1短側部
331S2 第2短側部
CP 開口中心点
TA 偏心捻れ軸
TP 偏心捻れ点
PM 紙幣
PM1a 第1搬送平行辺
PM1b 第2搬送平行辺
PM2a 第1搬送直交辺
PM2b 第2搬送直交辺
PAS 紙幣通過空部
1 Banknote transfer device 3 Twist transfer tube 331 Twist transfer path 331U Reference twist transfer path 331TS1 First twist channel cross section (upstream end opening)
331TS4 4th twisted flow path cross section (downstream end opening)
331L1 1st long side part 331L2 2nd long side part 331S1 1st short side part 331S2 2nd short side part CP opening center point TA eccentric twist axis TP eccentric twist point PM bill PM1a 1st transport parallel side PM1b 2nd transport parallel side PM2a 1st transport orthogonal side PM2b 2nd transport orthogonal side PAS Bill passing empty space

前記課題を解決するために、上流から下流に向けて搬送用流体が流れる搬送路が形成された搬送管にて、紙面が搬送方向と平行に配された紙葉類を、上流から下流へ搬送する紙葉類搬送装置であって、前記紙葉類は、前記搬送方向と平行な向きに配される2つの搬送平行辺と前記搬送方向と直交する向きに配される2つの搬送直交辺とを備える矩形状とし、上流より受け入れる前記紙葉類の前記紙面に臨む第1長側部および第2長側部と、前記紙葉類の前記搬送直交辺に臨む第1短側部および第2短側部で形成された矩形状の上流端開口を、前記搬送方向と平行な偏心捻れ軸回りに一定角度で連続的に回転させながら、前記上流端開口と同一形状の下流端開口へ至ることで、前記偏心捻れ軸に直交する任意箇所の断面である捻れ流路断面の形状が前記上流端開口の形状および前記下流端開口の形状と同じになる捻れ搬送路が形成され、前記紙葉類の前記搬送直交辺が臨む向きを前記上流端開口の前記第1,第2短側部から前記下流端開口の前記第1,第2短側部へ変えるように前記紙面を回転させながら、前記紙葉類が前記捻れ搬送路内を前記上流端開口から前記下流端開口まで通過し得る捻れ搬送管を備え、前記偏心捻れ軸は、前記上流端開口の開口内部における偏心捻れ点設定可能範囲から任意に選定した偏心捻れ点を前記搬送方向へ延ばして前記下流端開口の開口内部へ至る直線状の軸とし、前記捻れ搬送路の任意箇所における上流側捻れ流路断面から前記紙葉類の前記搬送平行辺に相当する距離だけ下流に離れた位置における下流側捻れ流路断面に至る基準捻れ搬送路を、前記上流側捻れ流路断面の中心点から前記下流側捻れ流路断面の中心点を結ぶ通過指標軸と平行な視点で見たときに、前記上流側捻れ流路断面から前記下流側捻れ流路断面に向けて見通すことができる貫通空間が生じ、前記紙葉類が前記上流側捻れ流路断面から前記下流側捻れ流路断面まで通過できる紙葉類通過空部が形成されるようにしたことを特徴とする。 In order to solve the above-mentioned problems, paper sheets whose paper surfaces are arranged parallel to the transport direction are transported from upstream to downstream in a transport pipe in which a transport path through which transport fluid flows from upstream to downstream is formed. In the paper leaf transport device, the paper strips have two transport parallel sides arranged in a direction parallel to the transport direction and two transport orthogonal sides arranged in a direction orthogonal to the transport direction. The first long side portion and the second long side portion facing the paper surface of the paper leaf to be received from the upstream, and the first short side portion and the second short side portion facing the transport orthogonal side of the paper leaf. The rectangular upstream end opening formed on the short side is continuously rotated at a constant angle around the eccentric twist axis parallel to the transport direction to reach the downstream end opening having the same shape as the upstream end opening. A twisting transport path is formed in which the shape of the twisted flow path cross section, which is a cross section at an arbitrary position parallel to the eccentric twist axis, is the same as the shape of the upstream end opening and the shape of the downstream end opening. While rotating the paper surface so as to change the direction of the transport orthogonal side from the first and second short side portions of the upstream end opening to the first and second short side portions of the downstream end opening. The eccentric twist axis is provided with a twist transfer tube capable of allowing paper sheets to pass through the twist transfer path from the upstream end opening to the downstream end opening, and the eccentric twist axis is from an eccentric twist point settable range inside the opening of the upstream end opening. The eccentric twist point arbitrarily selected is extended in the transport direction to form a linear axis leading to the inside of the opening of the downstream end opening, and the paper leaf is said to be from the upstream twist flow path cross section at an arbitrary point of the twist transport path. The reference twist transport path leading to the downstream twist flow path cross section at a position downstream by a distance corresponding to the transport parallel side is set from the center point of the upstream twist flow path cross section to the center point of the downstream twist flow path cross section. When viewed from a viewpoint parallel to the connecting passage index axis, a penetrating space is created that can be seen from the upstream twisted flow path cross section toward the downstream twisted flow path cross section, and the paper sheets are twisted on the upstream side. It is characterized in that an empty space through which paper leaves can pass from the cross section of the flow path to the cross section of the twisted flow path on the downstream side is formed.

Claims (5)

上流から下流に向けて搬送用流体が流れる搬送路が形成された搬送管にて、紙面が搬送方向と平行に配された紙葉類を、上流から下流へ搬送する紙葉類搬送装置であって、
前記紙葉類は、前記搬送方向と平行な向きに配される2つの搬送平行辺と前記搬送方向と直交する向きに配される2つの搬送直交辺とを備える矩形状とし、
上流より受け入れる前記紙葉類の前記紙面に臨む第1長側部および第2長側部と、前記紙葉類の前記搬送直交辺に臨む第1短側部および第2短側部で形成された矩形状の上流端開口を、前記搬送方向と平行な偏心捻れ軸回りに一定角度で連続的に回転させながら、前記上流端開口と同一形状の下流端開口へ至ることで、前記偏心捻れ軸に直交する任意箇所の断面である捻れ流路断面の形状が前記上流端開口の形状および前記下流端開口の形状と同じになる捻れ搬送路が形成され、前記紙葉類の前記搬送直交辺が臨む向きを前記上流端開口の前記第1,第2短側部から前記下流端開口の前記第1,第2短側部へ変えるように前記紙面を回転させながら、前記紙葉類が前記捻れ搬送路内を前記上流端開口から前記下流端開口まで通過し得る捻れ搬送管を備え、
前記偏心捻れ軸は、前記上流端開口における偏心捻れ点設定可能範囲から任意に選定した偏心捻れ点を前記搬送方向へ延ばして前記下流端開口へ至る直線状の軸とし、
前記捻れ搬送路の任意箇所における上流側捻れ流路断面から前記紙葉類の前記搬送平行辺に相当する距離だけ下流に離れた位置における下流側捻れ流路断面に至る基準捻れ搬送路を、前記上流側捻れ流路断面の中心点から前記下流側捻れ流路断面の中心点を結ぶ通過指標軸と平行な視点で見たときに、前記上流側捻れ流路断面から前記下流側捻れ流路断面に向けて見通すことができる貫通空間が生じ、前記紙葉類が前記上流側捻れ流路断面から前記下流側捻れ流路断面まで通過できる紙葉類通過空部が形成されるようにしたことを特徴とする紙葉類搬送装置。
It is a paper leaf transport device that transports paper leaves whose paper surface is arranged parallel to the transport direction from upstream to downstream in a transport pipe in which a transport path through which a transport fluid flows from upstream to downstream is formed. hand,
The paper sheets have a rectangular shape having two transport parallel sides arranged in a direction parallel to the transport direction and two transport orthogonal sides arranged in a direction orthogonal to the transport direction.
It is formed by a first long side portion and a second long side portion facing the paper surface of the paper leaf received from the upstream, and a first short side portion and a second short side portion facing the transport orthogonal side of the paper leaf. The eccentric twisting shaft is formed by continuously rotating the rectangular upstream end opening around the eccentric twisting axis parallel to the transport direction at a constant angle to reach the downstream end opening having the same shape as the upstream end opening. A twisted transport path is formed in which the shape of the twisted flow path cross section, which is a cross section at an arbitrary position orthogonal to the above, is the same as the shape of the upstream end opening and the shape of the downstream end opening, and the transport orthogonal side of the paper leaf is formed. The leaves are twisted while rotating the paper surface so as to change the facing direction from the first and second short sides of the upstream end opening to the first and second short sides of the downstream end opening. A twisted transport pipe that can pass through the transport path from the upstream end opening to the downstream end opening is provided.
The eccentric twist axis is a linear axis that extends in the transport direction to reach the downstream end opening by extending the eccentric twist point arbitrarily selected from the eccentric twist point settable range in the upstream end opening.
The reference torsional transport path from the upstream torsional flow path cross section at an arbitrary position of the torsional transport path to the downstream twisted flow path cross section at a position downstream by a distance corresponding to the transport parallel side of the paper sheets is described above. When viewed from a viewpoint parallel to the passage index axis connecting the center point of the upstream twisted flow path cross section to the center point of the downstream twisted flow path cross section, the upstream twisted flow path cross section to the downstream twisted flow path cross section. A penetrating space is created so that the paper leaves can pass through from the cross section of the upstream twisted flow path to the cross section of the downstream twisted flow path. A featured paper leaf transport device.
前記偏心捻れ点設定可能範囲は、前記偏心捻れ軸回りに前記上流端開口を180度回転させて得られる前記捻れ搬送路を、前記偏心捻れ軸と平行な視点で前記上流端開口から前記下流端開口に向けて、あるいは前記下流端開口から前記上流端開口に向けて見通すことができる貫通空間の断面積が、前記第1長側部と前記第2長側部との離隔距離を直径とする円の面積の1/2以上となる条件を満たす範囲に設定したことを特徴とする請求項1に記載の紙葉類搬送装置。 The eccentric twist point settable range is such that the twist transport path obtained by rotating the upstream end opening 180 degrees around the eccentric twist axis is viewed from the upstream end opening to the downstream end at a viewpoint parallel to the eccentric twist axis. The cross-sectional area of the penetrating space that can be seen toward the opening or from the downstream end opening toward the upstream end opening has a diameter of the separation distance between the first long side portion and the second long side portion. The paper leaf transport device according to claim 1, wherein the range is set to a range satisfying a condition of 1/2 or more of the area of a circle. 前記紙葉類通過空部の前記第1,第2短側部に臨む側には、前記捻れ搬送路内を通過する前記紙葉類が前記紙葉類通過空部の前記第1短側部側あるいは前記第2短側部側にぶれても前記搬送平行辺が前記捻れ搬送管の内面と接触することを抑制できる余剰空間としての通過猶予部が形成されるようにしたことを特徴とする請求項1又は請求項2に記載の紙葉類搬送装置。 On the side of the empty space through which the paper sheets pass, facing the first and second short sides, the paper leaves passing through the twisting transport path are the first short side of the empty space through which the paper sheets pass. It is characterized in that a passage grace portion is formed as a surplus space that can prevent the transport parallel side from coming into contact with the inner surface of the twisted transport pipe even if it is shaken to the side or the second short side. The paper leaf transport device according to claim 1 or 2. 前記通過猶予部は、前記偏心捻れ点が前記上流端開口の開口中心から離隔している第1ずれ量に応じて定めた第1補正条件に基づいて、前記偏心捻れ流路における前記上流端開口から前記下流端開口に至るまでの前記第1,第2長側部の長さを増加させるように補正することで形成するようにしたことを特徴とする請求項3に記載の紙葉類搬送装置。 The passage grace portion is the upstream end opening in the eccentric twist flow path based on the first correction condition determined according to the first deviation amount in which the eccentric twist point is separated from the opening center of the upstream end opening. The paper leaf transport according to claim 3, characterized in that it is formed by correcting the length of the first and second long side portions from to the downstream end opening to increase. Device. 前記通過猶予部は、前記基準捻れ搬送路における基準捻れ角よりも大きく捻れている第2ずれ量に応じて定めた第2補正条件に基づいて、前記偏心捻れ流路における前記上流端開口から前記下流端開口に至るまでの前記第1,第2長側部の長さを増加させるように補正することで形成するようにしたことを特徴とする請求項3又は請求項4に記載の紙葉類搬送装置。 The passage grace portion is formed from the upstream end opening in the eccentric twist flow path based on a second correction condition determined according to a second deviation amount twisted larger than the reference twist angle in the reference twist transport path. The paper leaf according to claim 3 or 4, characterized in that it is formed by correcting the length of the first and second long side portions up to the downstream end opening so as to increase. Class transfer device.
JP2020180298A 2020-10-28 2020-10-28 Paper leaf transport device Active JP6833239B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020180298A JP6833239B1 (en) 2020-10-28 2020-10-28 Paper leaf transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020180298A JP6833239B1 (en) 2020-10-28 2020-10-28 Paper leaf transport device

Publications (2)

Publication Number Publication Date
JP6833239B1 JP6833239B1 (en) 2021-02-24
JP2022071380A true JP2022071380A (en) 2022-05-16

Family

ID=74665136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020180298A Active JP6833239B1 (en) 2020-10-28 2020-10-28 Paper leaf transport device

Country Status (1)

Country Link
JP (1) JP6833239B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6983445B1 (en) * 2021-03-29 2021-12-17 日本ゲームカード株式会社 Transport flow amplification device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427687B2 (en) * 1983-07-11 1992-05-12 Nippon Telegraph & Telephone
JPH0427686B2 (en) * 1983-04-05 1992-05-12 Kogyo Gijutsuin
JP2011168383A (en) * 2010-02-22 2011-09-01 Seiko Epson Corp Target carrying device, and fluid injection device
JP2012218821A (en) * 2011-04-04 2012-11-12 Mars Wintec Co Ltd Paper sheet conveying device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427686B2 (en) * 1983-04-05 1992-05-12 Kogyo Gijutsuin
JPH0427687B2 (en) * 1983-07-11 1992-05-12 Nippon Telegraph & Telephone
JP2011168383A (en) * 2010-02-22 2011-09-01 Seiko Epson Corp Target carrying device, and fluid injection device
JP2012218821A (en) * 2011-04-04 2012-11-12 Mars Wintec Co Ltd Paper sheet conveying device

Also Published As

Publication number Publication date
JP6833239B1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
ES2429297T3 (en) Ticket transport unit
JP4700598B2 (en) Paper sheet transport path switching gate and automatic cash transaction equipment
JP6833239B1 (en) Paper leaf transport device
US8695977B2 (en) Apparatus and method for triple-gate diverter
JP4327235B2 (en) Paper sheet transport device
CN100565594C (en) Bill identification and counting machine
JP2008266027A5 (en)
CN103449230B (en) Dielectric object steering gear
JP6727687B1 (en) Paper transport device
JP6727686B1 (en) Paper transport device
JP7142990B1 (en) Paper sheet conveying device
JP2012218821A (en) Paper sheet conveying device
JP2021195234A (en) Paper sheet conveying device
JP6725929B1 (en) Paper transport device
JP2021095230A (en) Paper sheets transport device
JP6709481B1 (en) Paper transport device
EP2151407B1 (en) Right angle turn (rat) module for conveying multi-sheet collations
ITBO20110516A1 (en) EQUIPMENT TO CHANGE THE DIRECTION OF ADVANCEMENT OF PLATES OF INSERTS TO BE PACKED
JP2017014020A (en) Paper sheet take-in device
JP2022088299A (en) Paper sheet transport device
US6647698B1 (en) System and method for conveying sheet-like objects
JP2021011361A (en) Paper sheet conveying device
JP2007035005A (en) Banknote processing apparatus
JP2021024698A (en) Paper sheet conveyance device
JP2018120356A (en) Paper sheet identification device and paper sheet processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201028

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201028

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R150 Certificate of patent or registration of utility model

Ref document number: 6833239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250