JP2021095230A - Paper sheets transport device - Google Patents

Paper sheets transport device Download PDF

Info

Publication number
JP2021095230A
JP2021095230A JP2019226044A JP2019226044A JP2021095230A JP 2021095230 A JP2021095230 A JP 2021095230A JP 2019226044 A JP2019226044 A JP 2019226044A JP 2019226044 A JP2019226044 A JP 2019226044A JP 2021095230 A JP2021095230 A JP 2021095230A
Authority
JP
Japan
Prior art keywords
curved
transport
wall
wall surface
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019226044A
Other languages
Japanese (ja)
Other versions
JP7374473B2 (en
Inventor
野口 哲
Satoru Noguchi
哲 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Game Card Corp
Original Assignee
Nippon Game Card Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Game Card Corp filed Critical Nippon Game Card Corp
Priority to JP2019226044A priority Critical patent/JP7374473B2/en
Publication of JP2021095230A publication Critical patent/JP2021095230A/en
Application granted granted Critical
Publication of JP7374473B2 publication Critical patent/JP7374473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Delivering By Means Of Belts And Rollers (AREA)

Abstract

To provide a paper sheets transport device that enables stable conveyance of paper sheets using fluid for conveyance.SOLUTION: A bank note PM is conveyed stably in a straight main conveyance passage by a return flow obtained by returning air for conveyance guided to the outside of the straight main conveyance passage with an upper cover 221 and a lower cover 222 of a straight conveyance 2 to the straight main conveyance passage from air return holes disposed on a first main conveyance wall 211 and a second main conveyance wall 212. Also, the bank note PM is guided to make a turn so as not to hit and push on an internal surface of an outside curve wall 311 with Goertler vortices generated at an arbitrary location with paper sheets curve guiding means disposed on the outside curve wall 311 of a curve conveyance tube 3, enabling stable conveyance of the bank note PM in a curve main conveyance passage.SELECTED DRAWING: Figure 1

Description

本発明は、上流から下流に向けて搬送用流体が流れる搬送管にて、紙葉類を上流から下流へ搬送する紙葉類搬送装置に関する。 The present invention relates to a paper leaf transport device that transports paper sheets from upstream to downstream in a transport pipe through which a transport fluid flows from upstream to downstream.

従来、薄いプラスチック製あるいは紙製のカードや紙幣といった紙葉類を搬送するとき、ベルトやローラを用いて紙葉類を挟み込んで送り出す紙葉類搬送装置が知られており、市場にも普及している。例えば、パチンコやスロットマシン等の遊技機が設置された遊技場においては、遊技機に隣接させて遊技媒体貸出装置等が設けられており、この遊技媒体貸出装置内で紙幣をストックせずに、紙幣金庫部等へ搬送して管理する場合、紙葉類搬送装置が用いられる。遊技場の紙葉類搬送装置では、遊技媒体貸出装置等の紙幣識別部により判別された紙幣を取り込み、ベルトやローラから成る搬送機構によって、遊技機を設置した遊技島の島端に取り付けられた紙幣金庫部まで搬送するのである。 Conventionally, when transporting paper leaves such as thin plastic or paper cards and banknotes, a paper leaf transport device that uses a belt or roller to sandwich and send the paper leaves has been known and has become widespread in the market. ing. For example, in a game hall where a game machine such as a pachinko machine or a slot machine is installed, a game medium lending device or the like is provided adjacent to the game machine, and the banknotes are not stocked in the game medium lending device. When transporting to a banknote safe or the like for management, a paper leaf transport device is used. The paper leaf transport device in the game hall takes in the bills identified by the bill identification unit of the game medium lending device, etc., and is attached to the island edge of the game island where the game machine is installed by a transport mechanism consisting of belts and rollers. It is transported to the banknote safe.

このような紙葉類搬送装置では、ベルトやローラで紙幣を挟み込む機構を使って搬送している為に、ベルトやローラの継ぎ渡し部分にて紙幣詰まりがしばしば発生するという問題があった。紙幣詰まりを解消するためには、遊技機で遊技中の遊技客に遊技を中断してもらい、遊技島内の不具合箇所を特定し、詰まった紙幣を取り除かなければならず、来店客に迷惑をかけると共に、遊技店員にとっての負担も少なくなかった。 In such a paper leaf transport device, since the banknotes are transported by using a mechanism for sandwiching the banknotes with a belt or a roller, there is a problem that the banknotes are often jammed at the connecting portion of the belt or the roller. In order to clear the banknote jam, it is necessary to have the player who is playing with the gaming machine interrupt the game, identify the defective part in the game island, and remove the jammed banknote, which causes inconvenience to the customers. At the same time, the burden on the game clerk was not small.

近年においては、搬送管内に搬送用の空気流を発生させ、空気流に乗せて紙幣を搬送する紙葉類搬送装置が提案されている。空気流により紙幣を搬送するなら、ベルトやローラといった機構を使わないので、機構部分で紙幣が詰まるというリスクがない。空気搬送の紙葉類搬送装置として、紙幣の後端部を変形させ、変形部に搬送用の空気流の風圧を作用させることにより、紙幣の搬送をスムーズにしたものが提案されている(例えば、特許文献1を参照)。また、軽量の搬送補助体を紙幣の後方に配置し、搬送補助体を空気流で搬送方向へ送り出すことにより、搬送補助体が紙幣を後方から搬送方向へ押し動かし、間接的に紙幣の搬送を実現した紙葉類搬送装置も提案されている(例えば、特許文献2を参照)。 In recent years, a paper leaf transport device has been proposed in which an air flow for transport is generated in a transport pipe and the banknotes are transported on the air flow. If the banknotes are transported by air flow, there is no risk of the banknotes being clogged at the mechanism because no mechanism such as a belt or roller is used. As a paper leaf transport device for air transport, a device has been proposed in which the rear end portion of a banknote is deformed and the wind pressure of the air stream for transport is applied to the deformed portion to smooth the transport of the bill (for example). , Patent Document 1). Further, by arranging a lightweight transport auxiliary body behind the bill and sending the transport auxiliary body in the transport direction by an air flow, the transport auxiliary pushes the bill from the rear in the transport direction and indirectly transports the bill. A realized paper leaf transport device has also been proposed (see, for example, Patent Document 2).

また、紙葉類を直接空気流で搬送しようとすると、搬送方向に空気流を受けることが出来ず、搬送管の内壁面に紙幣が吸着されて搬送されなくなるという問題がある。このような紙葉類の吸着が生じる基本原理を、図22(A)を参照しつつ説明する。紙葉類搬送路として機能する搬送管102は、四側壁(左側壁1021、右側壁1022、上壁1023、下壁1024)に囲まれた流路であり、上流側から下流側へ向かう送風方向WDの搬送流が流れ続ける。直線状の搬送管102と湾曲搬送管103(図22(A)中、二点鎖線で示す)を連結すると、紙葉類の搬送方向を左あるいは右へ変更することができる。 Further, when paper sheets are directly transported by an air flow, there is a problem that the air flow cannot be received in the transport direction and the banknotes are adsorbed on the inner wall surface of the transport pipe and cannot be transported. The basic principle of such adsorption of paper leaves will be described with reference to FIG. 22 (A). The transport pipe 102 that functions as a paper leaf transport path is a flow path surrounded by four side walls (left side wall 1021, right side wall 1022, upper wall 1023, lower wall 1024), and the direction of ventilation from the upstream side to the downstream side. The WD transport flow continues to flow. By connecting the linear transport pipe 102 and the curved transport pipe 103 (indicated by the alternate long and short dash line in FIG. 22 (A)), the transport direction of paper sheets can be changed to the left or right.

搬送管102内を搬送流が流れると、送風方向WDに直交する向きに圧力が生じる。左側壁1021の内壁面には圧力Plが、右側壁1022の内壁面には圧力Prが、上壁1023の内壁面には圧力Ptが、下壁1024の内壁面には圧力Pbがそれぞれ作用し、その力は、搬送流の速度の二乗に比例して高くなる。紙葉類は、その薄さゆえに後縁から搬送流を受け難く、また、上下方向の圧力Pt,Pbの力を上縁と下縁が受けることは無いに等しい。しかしながら、紙葉類の二面は、対向する左側面1021と右側面1022に向かう圧力Pl,Prの影響を大きく受けてしまう。 When the transport flow flows through the transport pipe 102, pressure is generated in a direction orthogonal to the blow direction WD. Pressure Pl acts on the inner wall surface of the left side wall 1021, pressure Pr acts on the inner wall surface of the right side wall 1022, pressure Pt acts on the inner wall surface of the upper wall 1023, and pressure Pb acts on the inner wall surface of the lower wall 1024. , The force increases in proportion to the square of the speed of the transport flow. Due to its thinness, paper sheets are less likely to receive a carrier flow from the trailing edge, and the upper and lower edges are almost never subjected to the forces of pressures Pt and Pb in the vertical direction. However, the two surfaces of the paper leaves are greatly affected by the pressures Pl and Pr toward the left side surface 1021 and the right side surface 1022 that face each other.

従って、圧力Pl,Prにより、紙葉類が左右側壁1021,1022の内壁面に張り付くという現象が発生してしまうのである。なお、薄い紙葉類の両面に沿って流れる搬送流が均衡している場合は、紙葉類が左右側壁1021,1022へ引きつけられることは無いが、搬送流に僅かな差が生じると、紙葉類の側面にかかる圧力に差が生じ、弱圧力の側へ引き寄せられて内壁面に接触してしまう。接触した紙葉類は左右側壁1021,1022との摩擦力が搬送流の力を上回るため、内壁面に吸着されたまま停滞し、下流へ搬送されなくなるのである。 Therefore, due to the pressures Pl and Pr, a phenomenon occurs in which the paper leaves stick to the inner wall surfaces of the left and right side walls 1021 and 1022. If the transport flow flowing along both sides of the thin paper leaves is balanced, the paper leaves will not be attracted to the left and right side walls 1021 and 1022, but if there is a slight difference in the transport flow, the paper There is a difference in the pressure applied to the side surface of the leaves, and they are attracted to the weak pressure side and come into contact with the inner wall surface. Since the frictional force between the left and right side walls 1021 and 1022 exceeds the force of the transport flow, the paper sheets that come into contact with each other stagnant while being adsorbed on the inner wall surface and are not transported downstream.

このような搬送管構造に由来する原因によって紙幣が内壁面へ吸着されることを防ぐために、壁面に沿った壁流を生じさせて、紙幣が壁面に吸着されないように工夫した紙葉類搬送装置も提案されている(例えば、特許文献3を参照)。 In order to prevent the bills from being adsorbed on the inner wall surface due to the cause derived from such a transport pipe structure, a paper leaf transport device devised to prevent the bills from being adsorbed on the wall surface by creating a wall flow along the wall surface. Has also been proposed (see, for example, Patent Document 3).

特許第4130697号公報Japanese Patent No. 4130697 特許第5563883号公報Japanese Patent No. 5563883 特許第6339732号公報Japanese Patent No. 6339732

しかしながら、上記特許文献1〜特許文献3に記載された発明には、以下のような問題がある。 However, the inventions described in Patent Documents 1 to 3 have the following problems.

特許文献1に記載の発明においては、搬送対象である紙幣が有する癖、皺、よれ具合、コシの強さ等が紙幣毎に異なっているために、搬送中に維持するべき変形形状が一定とならず、搬送管内での詰まりの要因となっていた。更に、搬送のために変形させた紙幣を搬送後に伸長させる必要があるため、紙幣の変形と伸長を繰り返すことで、紙幣の劣化が加速するという問題もある。更に、経年の使用にて紙質が劣化し柔らかくなった紙幣では、前記変形形状を作ることができず、致命的な搬送詰まりを起こしていた。 In the invention described in Patent Document 1, since the habit, wrinkles, wrinkles, firmness, etc. of the banknote to be transported are different for each banknote, the deformed shape to be maintained during transportation is constant. However, it was a cause of clogging in the transport pipe. Further, since it is necessary to stretch the banknotes deformed for transportation after the banknotes are transported, there is a problem that the deterioration of the banknotes is accelerated by repeating the deformation and stretching of the banknotes. Further, in the case of banknotes whose paper quality has deteriorated and become soft due to long-term use, the deformed shape cannot be formed, causing a fatal transport clogging.

特許文献2に記載の発明においては、押し込みユニットを用いて紙幣を強制的に押し出すため、紙幣が内壁面に強力に吸着した場合には紙幣が圧縮変形し、搬送管内での詰まりの要因になると共に、紙幣に致命的なダメージが加わるといった問題がある。また、特許文献2に記載の発明が採用している押し込みユニット方式は、風量の影響を受けやすく、湾曲部の搬送や長距離搬送には不向きである。更に、特許文献2に記載の発明では、搬送補助体の強度不足も問題となり、紙幣回収部にて搬送補助体が衝突する等の要因で変形・破損し、流路上を動かなくなって停止することがあるため、定期的な交換を必要とする。 In the invention described in Patent Document 2, since the banknote is forcibly pushed out by using the pushing unit, when the banknote is strongly adsorbed on the inner wall surface, the banknote is compressed and deformed, which causes clogging in the transport pipe. At the same time, there is a problem that fatal damage is added to the banknotes. Further, the push-in unit method adopted by the invention described in Patent Document 2 is easily affected by the air volume and is not suitable for transporting a curved portion or long-distance transport. Further, in the invention described in Patent Document 2, insufficient strength of the transport assisting body is also a problem, and the transporting assisting body is deformed or damaged due to a collision or the like at the bill collecting portion, and the transport assisting body stops moving on the flow path. Because of this, it requires regular replacement.

このように、特許文献1や特許文献2に記載された発明は、搬送流による紙葉類の安定搬送が期待できないという問題が大きい。これらの発明に対して、特許文献3に記載の発明は、壁面に沿った壁流を生ぜしめることで紙幣が側壁に張り付いて滞留することを防ぎ、紙幣の安定搬送を行えるものとして開示されている。特許文献3に記載の発明の概略構造につき、図22(B)を参照して説明する。紙葉類の一例である紙幣PMを搬送する搬送管102内に一対の対向板104,104を設け、対向板104と対向板104の間に搬送路105を形成し、各対向板104と管壁との間に気流路106,106を形成する。対向板104には、壁流発生部となる貫通孔104aを千鳥格子状に配置し、気流路106から搬送路105へ流入した気流が壁面に沿って流れる壁流Fsが生じるというのである。いわば、紙幣PMを搬送するための主たる気流である搬送流Fmの両側(紙幣PMの両側面側)に、それぞれ壁流Fmを生じさせ、紙幣PMが対向板104に近づいて吸着されることを防止しようという技術である。 As described above, the inventions described in Patent Document 1 and Patent Document 2 have a big problem that stable transport of paper sheets by the transport flow cannot be expected. With respect to these inventions, the invention described in Patent Document 3 is disclosed as being capable of stably transporting banknotes by creating a wall flow along the wall surface to prevent the banknotes from sticking to the side wall and staying there. ing. The schematic structure of the invention described in Patent Document 3 will be described with reference to FIG. 22 (B). A pair of facing plates 104 and 104 are provided in a transport pipe 102 for transporting banknotes PM, which is an example of paper sheets, and a transport path 105 is formed between the facing plates 104 and the facing plates 104. Air flow paths 106, 106 are formed between the wall and the air flow path 106. Through holes 104a, which are wall flow generating portions, are arranged in a houndstooth pattern on the facing plate 104, and wall flow Fs is generated in which the airflow flowing from the air flow path 106 into the transport path 105 flows along the wall surface. So to speak, wall flow Fm is generated on both sides of the transport flow Fm (both sides of the bill PM), which is the main airflow for transporting the bill PM, and the bill PM approaches the facing plate 104 and is adsorbed. It is a technology to prevent it.

しかしながら、引用文献3に記載の発明では、搬送路105と気流路106とに顕著な圧力差が無いため、気流路106から貫通孔104aを抜けて搬送路105へ流入する強い気流は期待できず、必ずしも有効な壁流Fsを得ることができない。このため、対向壁104に近づいた紙幣PMが、弱い壁流Fsに阻まれること無く対向壁104に張り付いてしまうことが起こり得る(図22(C)を参照)。このようにして、紙幣PMが対向壁104に張り付いてしまうと、その上流側で発生した弱い壁流Fsが紙幣PMを覆うように流れ、紙幣PMを一層強く対向壁104へ押しつけてしまう現象が発生する。こうなると、紙幣PMが塞いだ貫通孔104aに気流路106側から作用する圧力よりも、紙幣PMを覆うように流れる壁流Fsの方が強いため、紙幣PMは対向壁104から剥離せず、張り付いたままとなってしまう。したがって、特許文献3に記載された発明においても、搬送流による紙葉類の安定搬送を期待できないのである。 However, in the invention described in Cited Document 3, since there is no significant pressure difference between the transport path 105 and the air flow path 106, a strong air flow that flows from the air flow path 106 through the through hole 104a and into the transport path 105 cannot be expected. , It is not always possible to obtain effective wall flow Fs. Therefore, the bill PM approaching the facing wall 104 may stick to the facing wall 104 without being blocked by the weak wall flow Fs (see FIG. 22C). In this way, when the bill PM sticks to the facing wall 104, the weak wall flow Fs generated on the upstream side of the bill PM flows so as to cover the bill PM, and the bill PM is pressed against the facing wall 104 more strongly. Occurs. In this case, the wall flow Fs flowing so as to cover the banknote PM is stronger than the pressure acting on the through hole 104a blocked by the banknote PM from the air flow path 106 side, so that the banknote PM does not peel off from the facing wall 104. It stays stuck. Therefore, even in the invention described in Patent Document 3, stable transport of paper sheets by the transport flow cannot be expected.

加えて、紙葉類の搬送路は直線状の搬送管102だけではなく、湾曲搬送管103における紙葉類の安定搬送も考慮する必要がある。例えば、図23(A)〜(C)に示すように、直線状の搬送管102と湾曲搬送管103を接続する場合、一方の対向壁104を外側湾曲壁107aと接続し、他方の対向壁104を内側湾曲壁107bと接続する。外側湾曲壁107aと内側湾曲壁107bとの間に形成される湾曲搬送路108の上流側に、搬送管102からの気流が導入され、外側湾曲壁107aの内壁面に押しあたる。搬送流が外側湾曲壁107aの内壁面に達することにより、曲がり角10°付近からゲルトラー渦が発生する(図23(A)を参照)。 In addition, it is necessary to consider not only the linear transport pipe 102 but also the stable transport of the paper leaves in the curved transport pipe 103. For example, as shown in FIGS. 23 (A) to 23 (C), when connecting the linear transport pipe 102 and the curved transport pipe 103, one facing wall 104 is connected to the outer curved wall 107a and the other facing wall. The 104 is connected to the inner curved wall 107b. The air flow from the transport pipe 102 is introduced into the upstream side of the curved transport path 108 formed between the outer curved wall 107a and the inner curved wall 107b, and presses against the inner wall surface of the outer curved wall 107a. When the transport flow reaches the inner wall surface of the outer curved wall 107a, a Geltler vortex is generated from a corner angle of about 10 ° (see FIG. 23 (A)).

ゲルトラー渦とは、凹面に沿って角速度が与えられる流体流動の遠心力作用によって形成される壁面近傍の渦構造であり、凹面である外側湾曲壁107aの内壁面に紙幣PMが張り付くことを阻止して、紙幣PMが湾曲搬送路108内を下流側へ移送しやすくする(図23(B)を参照)。しかしながら、ゲルトラー渦が形成される凹面の範囲は限定的で、例えば、曲がり角が25°付近よりゲルトラー渦の発生力が弱まり、曲がり角が45°付近にてゲルトラー渦が発生しなくなる。このため、紙幣PMの後端がゲルトラー渦発生領域(概ね湾曲角度が90°)を超えてしまうと、もはや紙幣PMが外側湾曲壁107aの内壁面に張り付くことを阻止する力が作用せず、紙幣PMは外側湾曲壁107aの内壁面に張り付いてしまう(図23(C)を参照)。このように、直線状の搬送管102と単純に連結した湾曲搬送管103内の湾曲搬送路108では、紙幣PMを気流に乗せて下流へ安定的に搬送することが困難である。 The Gerthler vortex is a vortex structure near the wall surface formed by the centrifugal force action of the fluid flow that gives an angular velocity along the concave surface, and prevents the banknote PM from sticking to the inner wall surface of the concave outer curved wall 107a. Therefore, the bill PM can be easily transferred to the downstream side in the curved transport path 108 (see FIG. 23 (B)). However, the range of the concave surface on which the Geltler vortex is formed is limited. For example, the force of generating the Geltler vortex is weaker than the bending angle of about 25 °, and the Geltler vortex is not generated when the bending angle is around 45 °. Therefore, when the rear end of the banknote PM exceeds the Gertler vortex generation region (generally the bending angle is 90 °), the force for preventing the banknote PM from sticking to the inner wall surface of the outer curved wall 107a no longer acts. The bill PM sticks to the inner wall surface of the outer curved wall 107a (see FIG. 23C). As described above, in the curved transport path 108 in the curved transport pipe 103 simply connected to the linear transport pipe 102, it is difficult to carry the banknote PM on the air flow and stably transport it downstream.

そこで、本発明は、搬送用流体による紙葉類の安定搬送を可能にする紙葉類搬送装置の提供を目的とする。 Therefore, an object of the present invention is to provide a paper leaf transport device that enables stable transport of paper leaves by a transport fluid.

前記課題を解決するための紙葉類搬送装置は、上流から下流に向けて搬送用流体が流れる搬送管にて、紙葉類を上流から下流へ搬送する紙葉類搬送装置であって、前記搬送管は、前記紙葉類を直線状に搬送する直線主搬送路を含む流体直線搬送空間が内部に形成される直線搬送管と、該直線搬送管と連結されて前記紙葉類を湾曲状に搬送する湾曲主搬送路を含む流体湾曲搬送空間が内部に形成される湾曲搬送管と、を含み、前記直線搬送管は、前記紙葉類の主たる2面に対向するよう内壁面側が配置された一対の主搬送壁部と、前記一対の主搬送壁部における前記紙葉類の搬送方向に直交する二方向の少なくとも一方端側に設けられ、前記主搬送壁部の外壁面側の一部を覆う端部カバーと、前記一対の主搬送壁部における前記端部カバー配設側に前記搬送方向へ所要間隔で形成され、前記外壁面側から前記内壁面側に前記搬送用流体が通過し得る流体帰還孔と、前記一対の主搬送壁部と前記端部カバーとの間に形成され、前記一対の主搬送壁部の前記内壁面側から前記外壁面側を経て前記流体帰還孔へ前記搬送用流体を誘導可能な搬送用流体誘導空部と、を備え、前記湾曲搬送管は、前記主搬送壁部の一方と連結され、内壁面側が凹状となる外側湾曲壁部と、前記主搬送壁部の他方と連結され、内壁面側が凸状となる内側湾曲壁部と、前記端部カバーと連結され、少なくとも、前記外側湾曲壁部の前記外壁面側の一部を覆う端部湾曲カバーと、前記外側湾曲壁部に設けられ、前記直線搬送管の前記直線主搬送路から前記湾曲主搬送路に搬送された前記紙葉類が前記外側湾曲壁部の前記内壁面に押し当たることを阻止するゲルトラー渦を任意箇所で発生させる紙葉類湾曲誘導手段と、を備えることを特徴とする。 The paper leaf transport device for solving the above-mentioned problems is a paper leaf transport device for transporting paper leaves from upstream to downstream through a transport pipe in which a transport fluid flows from upstream to downstream. The transport pipe is a straight transport pipe in which a fluid linear transport space including a straight main transport path for transporting the paper sheets in a straight line is formed, and a linear transport pipe connected to the straight transport pipe to bend the paper leaves. The linear transport pipe includes a curved transport pipe in which a fluid curved transport space including a curved main transport path is formed, and the linear transport pipe is arranged on the inner wall surface side so as to face the two main surfaces of the paper sheets. A part of the pair of main transport wall portions and the outer wall surface side of the main transport wall portion provided on at least one end side of the pair of main transport wall portions in two directions orthogonal to the transport direction of the paper sheets. The end cover is formed on the end cover arrangement side of the pair of main transport wall portions at a required interval in the transport direction, and the transport fluid passes from the outer wall surface side to the inner wall surface side. The fluid return hole is formed between the pair of main transport wall portions and the end cover, and is formed from the inner wall surface side of the pair of main transport wall portions to the fluid return hole via the outer wall surface side. The curved transport pipe is connected to one of the main transport wall portions, and has an outer curved wall portion having a concave inner wall surface side and the main transport. An inner curved wall portion that is connected to the other side of the wall portion and has a convex inner wall surface side, and an end curved wall portion that is connected to the end cover and covers at least a part of the outer curved wall portion on the outer wall surface side. The paper sheets provided on the outer curved wall portion and transported from the straight main transport path of the straight transport pipe to the curved main transport path are pressed against the inner wall surface of the outer curved wall portion. It is characterized by comprising a paper leaf bending guiding means for generating a geltler vortex to be blocked at an arbitrary position.

また、上記構成において、前記紙葉類湾曲誘導手段は、前記外側湾曲壁部における前記端部湾曲カバー配設側に形成され、前記外壁面側から前記内壁面側に前記搬送用流体が通過し得る外側湾曲流体帰還孔と、前記外側湾曲壁部と前記端部湾曲カバーとの間に形成された外側湾曲誘導空部と、前記外側湾曲誘導空部から前記外側湾曲流体帰還孔を経て前記湾曲主搬送路へ前記搬送用流体が戻ることで生ずる外側湾曲帰還流が、前記外側湾曲壁部の前記内壁面における前記外側湾曲流体帰還孔の下流側開口縁にて、当該内壁面の接線方向となる向きに流入するよう誘導する外側湾曲帰還ガイド部と、を備えるものでもよい。 Further, in the above configuration, the paper leaf bending guiding means is formed on the end curved cover arrangement side of the outer curved wall portion, and the transport fluid passes from the outer wall surface side to the inner wall surface side. The outer curved fluid return hole to be obtained, the outer curved guided vacant portion formed between the outer curved wall portion and the end curved cover, and the curved outer curved guide vacant portion through the outer curved fluid return hole. The outer curved return flow generated by the return of the transport fluid to the main transport path is tangential to the inner wall surface at the downstream opening edge of the outer curved fluid return hole in the inner wall surface of the outer curved wall portion. It may be provided with an outer curved return guide portion that guides the fluid to flow in a certain direction.

また、上記構成において、前記紙葉類湾曲誘導手段は、上流から下流へ向かうにしたがって前記外側湾曲壁部における前記内壁面からの突出量が徐々に増すゲルトラー渦増幅面を備えたゲルトラー渦増幅プレートを、前記外側湾曲流体帰還孔の上流側に設けたものでもよい。 Further, in the above configuration, the paper leaf bending guiding means is a Geltler vortex amplification plate provided with a Geltler vortex amplification surface in which the amount of protrusion from the inner wall surface of the outer curved wall portion gradually increases from upstream to downstream. May be provided on the upstream side of the outer curved fluid return hole.

また、上記構成において、前記紙葉類湾曲誘導手段は、前記内側湾曲壁部における前記端部湾曲カバー配設側に形成され、前記外壁面側から前記内壁面側に前記搬送用流体が通過し得る内側湾曲流体帰還孔と、前記内側湾曲壁部と前記端部湾曲カバーとの間に形成された内側湾曲誘導空部と、前記内側湾曲誘導空部から前記内側湾曲流体帰還孔を経て前記湾曲主搬送路へ前記搬送用流体が戻ることで生ずる内側湾曲帰還流が、ゲルトラー渦を生じさせ得る角度で前記外側湾曲壁部の前記内壁面側へ押し当たるように誘導する内側湾曲帰還ガイド部と、を備えるものでもよい。 Further, in the above configuration, the paper leaf bending guiding means is formed on the end curved cover arrangement side of the inner curved wall portion, and the transport fluid passes from the outer wall surface side to the inner wall surface side. The inner curved fluid return hole to be obtained, the inner curved guided vacant portion formed between the inner curved wall portion and the end curved cover, and the curved inner curved fluid return hole from the inner curved guided vacant portion. With the inner curved return guide portion that guides the inner curved return flow generated by the return of the transport fluid to the main transport path so as to press against the inner wall surface side of the outer curved wall portion at an angle that can generate a Gerthler vortex. , May be provided.

また、上記構成において、前記外側湾曲壁部の前記内壁面側に設けられ、前記紙葉類が前記外側湾曲壁部の前記内壁面に密着することを防止する凸状の外側湾曲リブを備えるものでもよい。 Further, in the above configuration, a convex outer curved rib provided on the inner wall surface side of the outer curved wall portion and preventing the paper sheets from coming into close contact with the inner wall surface of the outer curved wall portion is provided. But it may be.

また、上記構成において、前記内側湾曲壁部の前記内壁面側に設けられ、前記紙葉類の後端部が前記内側湾曲壁部の前記内壁面に接触することを防止する凸状の内側湾曲リブを備えるものでもよい。 Further, in the above configuration, a convex inward curve provided on the inner wall surface side of the inner curved wall portion to prevent the rear end portion of the paper sheets from coming into contact with the inner wall surface of the inner curved wall portion. It may be provided with ribs.

本発明によれば、直線搬送管の流体帰還孔から直線主搬送路へ戻した帰還流によって、直線主搬送路内で紙葉類を安定搬送する。また、湾曲搬送管の外側湾曲壁部に設けられた紙葉類湾曲誘導手段により任意箇所に発生させたゲルトラー渦で、紙葉類が外側湾曲壁部の内壁面に押し当たらないように搬送方向へ曲げて誘導し、湾曲主搬送路内で紙葉類を安定搬送する。 According to the present invention, paper sheets are stably transported in the straight main transport path by the return flow returned from the fluid return hole of the straight transport tube to the straight main transport path. In addition, the transport direction is such that the paper leaves do not hit the inner wall surface of the outer curved wall portion by the Gertler vortex generated at an arbitrary position by the paper leaf bending guiding means provided on the outer curved wall portion of the curved transport pipe. It bends to guide and stably transports paper leaves in the curved main transport path.

(A)は本発明の実施形態に係る紙葉類搬送装置の概略構成を示す側面図である。(B)は本発明の実施形態に係る紙葉類搬送装置の概略構成を示す平面図である。(A) is a side view which shows the schematic structure of the paper leaf transfer apparatus which concerns on embodiment of this invention. (B) is a plan view which shows the schematic structure of the paper leaf transfer apparatus which concerns on embodiment of this invention. 図1(A)における直線搬送管(Fig.2で示す部分)の一部を切り欠いた拡大斜視図である。It is an enlarged perspective view which cut out a part of the linear transport pipe (the part shown by Fig. 2) in FIG. 1 (A). (A)は直線搬送管を搬送方向へ直交する縦方向に割った概略縦断面図である。(B)は図3(A)におけるIIIB−IIIB線の矢視断面図である。(C)は図3(A)におけるIIIC−IIIC線の矢視断面図である。(A) is a schematic vertical cross-sectional view of a straight transport pipe divided in a vertical direction orthogonal to the transport direction. (B) is a cross-sectional view taken along the line IIIB-IIIB in FIG. 3 (A). (C) is a cross-sectional view taken along the line IIIC-IIIC in FIG. 3 (A). 直線搬送管における帰還流の概略説明図である。It is the schematic explanatory drawing of the return flow in a straight line transfer pipe. (A)は直線主搬送路における理想的な帰還流の挙動を示す直線搬送管の概略説明図である。(B)は直線主搬送路における弱い帰還流の挙動を示す直線搬送管の概略説明図である。(C)は直線主搬送路における強い帰還流の挙動を示す直線搬送管の概略説明図である。(A) is a schematic explanatory view of a straight transport pipe showing an ideal return flow behavior in a straight main transport path. (B) is a schematic explanatory view of a straight transport pipe showing the behavior of a weak feedback flow in a straight main transport path. (C) is a schematic explanatory view of a straight transport pipe showing the behavior of a strong feedback flow in a straight main transport path. (A)は第1構成例の湾曲搬送管の概略正面図である。(B)は第1構成例の湾曲搬送管における外側湾曲壁部と内側湾曲壁部の透し斜視図である。(A) is a schematic front view of the curved transport pipe of the first configuration example. (B) is a see-through perspective view of an outer curved wall portion and an inner curved wall portion in the curved transport pipe of the first configuration example. 図6(A)におけるVII−VII線の概略矢視断面図である。6 is a schematic cross-sectional view taken along the line VII-VII in FIG. 6 (A). 第1構成例の湾曲搬送管における湾曲主搬送路内で紙幣を安定搬送するための機能説明図である。It is a functional explanatory view for stable transporting the bill in the curved main transport path in the curved transport pipe of the 1st configuration example. (A)は第2構成例の湾曲搬送管の概略正面図である。(B)は第2構成例の湾曲搬送管における外側湾曲壁部と内側湾曲壁部の透し斜視図である。(A) is a schematic front view of the curved transport pipe of the second configuration example. (B) is a see-through perspective view of the outer curved wall portion and the inner curved wall portion in the curved transport pipe of the second configuration example. 図9(A)におけるX−X線の概略矢視断面図である。9 is a schematic cross-sectional view taken along the line XX in FIG. 9A. 第2構成例の湾曲搬送管における湾曲主搬送路内で紙幣を安定搬送するための機能説明図である。It is a function explanatory drawing for stable transport | movement of the banknote in the curved main transport path in the curved transport pipe of the 2nd configuration example. (A)は第3構成例の湾曲搬送管の概略正面図である。(B)は第3構成例の湾曲搬送管における外側湾曲壁部と内側湾曲壁部の透し斜視図である。(A) is a schematic front view of the curved transport pipe of the third configuration example. (B) is a see-through perspective view of an outer curved wall portion and an inner curved wall portion in the curved transport pipe of the third configuration example. 図12(A)におけるXIII−XIII線の概略矢視断面図である。12 (A) is a schematic cross-sectional view taken along the line XIII-XIII. 第3構成例の湾曲搬送管における湾曲主搬送路内で紙幣を安定搬送するための機能説明図である。It is a function explanatory drawing for stable transport | movement of the banknote in the curved main transport path in the curved transport pipe of the 3rd configuration example. (A)は第4構成例の湾曲搬送管の概略正面図である。(B)は第4構成例の湾曲搬送管における外側湾曲壁部と内側湾曲壁部の透し斜視図である。(A) is a schematic front view of the curved transport pipe of the fourth configuration example. (B) is a see-through perspective view of an outer curved wall portion and an inner curved wall portion in the curved transport pipe of the fourth configuration example. 図15(A)におけるXVI−XVI線の概略矢視断面図である。FIG. 15 (A) is a schematic cross-sectional view taken along the line XVI-XVI in FIG. 15 (A). 第4構成例の湾曲搬送管における湾曲主搬送路内で紙幣を安定搬送するための機能説明図である。It is a function explanatory drawing for stable transport | movement of the banknote in the curved main transport path in the curved transport pipe of the 4th configuration example. (A)は第4構成例の湾曲搬送管と同等の機能を有する右湾曲搬送ユニットの概略正面図である。(B)は図18(A)におけるXVIIIB−XVIIIB線の概略矢視断面図である。(A) is a schematic front view of a right curved transport unit having the same function as the curved transport pipe of the fourth configuration example. (B) is a schematic cross-sectional view taken along the line XVIIIB-XVIIIB in FIG. 18 (A). (A)は第4構成例の湾曲搬送管と同等の機能を有する左湾曲搬送ユニットの概略正面図である。(B)は図19(A)におけるXIXB−XIXB線の概略矢視断面図である。(A) is a schematic front view of a left curved transport unit having the same function as the curved transport pipe of the fourth configuration example. (B) is a schematic cross-sectional view taken along the line XIXB-XIXB in FIG. 19 (A). (A)は右湾曲搬送ユニットと左湾曲搬送ユニットを連結して構成した第5構成例の湾曲搬送管の概略横断面図である。(B)は右湾曲搬送ユニットと左湾曲搬送ユニットと短尺な直線搬送管とを連結して構成した第6構成例の湾曲搬送管の概略横断面図である。(C)は右湾曲搬送ユニットと左湾曲搬送ユニットを連結して構成した第7構成例の湾曲搬送管の概略横断面図である。(A) is a schematic cross-sectional view of a curved transport pipe of a fifth configuration example configured by connecting a right curved transport unit and a left curved transport unit. (B) is a schematic cross-sectional view of a curved transport pipe of a sixth configuration example configured by connecting a right curved transport unit, a left curved transport unit, and a short straight transport pipe. (C) is a schematic cross-sectional view of a curved transport pipe of a seventh configuration example configured by connecting a right curved transport unit and a left curved transport unit. 右湾曲搬送ユニットと左湾曲搬送ユニットを連結して構成した第8構成例の湾曲搬送管の概略横断面図である。It is a schematic cross-sectional view of the curved transport pipe of the 8th configuration example which was configured by connecting the right curved transport unit and the left curved transport unit. (A)は従来構造の直線搬送管による搬送の基本構造説明図である。(B)、(C)は内部に対向壁を設けた従来の直線搬送管における流体搬送の概略説明図である。(A) is an explanatory view of the basic structure of transport by a straight transport pipe having a conventional structure. (B) and (C) are schematic explanatory views of fluid transport in a conventional linear transport pipe provided with a facing wall inside. (A)〜(C)は内部に対向壁を設けた従来の直線搬送管と接続可能な湾曲搬送管における流体搬送の概略説明図である。(A) to (C) are schematic explanatory views of fluid transport in a curved transport pipe that can be connected to a conventional straight transport pipe provided with an opposing wall inside.

次に、添付図面に基づいて、本発明に係る紙葉類搬送装置の実施形態につき説明する。なお、搬送対象である紙葉類とは、紙幣や書面といった保形性のある紙類(ティッシュペーパーのように、搬送流に対して保形性を有しないものを除く)、樹脂製のフィルム(プラスティック紙幣を含む)や薄いカード類などが適用できる。本実施形態の紙葉類搬送装置においては、紙製の紙幣を搬送対象とした紙幣搬送装置として説明する。また、搬送用流体としては、気体に限らず液体を用いることも可能であるが、本実施形態の紙幣搬送装置においては、空気(エア)を搬送用流体として用いた。また、本実施形態では、紙幣を重力方向に立てた状態で搬送するので、便宜上、紙幣の二面が臨む方向を左右または側方、これに直交する重力方向を上下という。 Next, an embodiment of the paper leaf transport device according to the present invention will be described with reference to the accompanying drawings. The paper leaves to be transported are papers with shape-retaining properties such as banknotes and documents (excluding those that do not have shape-retaining properties with respect to the transport flow, such as tissue paper), and resin films. (Including plastic banknotes) and thin cards can be applied. In the paper leaf transport device of the present embodiment, a bill transport device for transporting paper bills will be described. Further, as the transport fluid, not only gas but also liquid can be used, but in the banknote transport device of the present embodiment, air is used as the transport fluid. Further, in the present embodiment, since the banknotes are transported in a state of standing upright in the direction of gravity, for convenience, the direction in which the two sides of the banknotes face is referred to as left and right or sideways, and the direction of gravity orthogonal to this is referred to as up and down.

図1に示す紙幣搬送装置1は、例えば遊技店に設置され、遊技媒体貸出装置やカード販売装置等へ投入された紙幣を回収して一箇所へ集めるような使い方が可能である。直線搬送管2内を通過させて搬送する搬送対象の紙幣PMは、適所に設けた紙幣導入部4から直線搬送管2内へ導入される。直線搬送管2の最上流側には送風機5を設ける。また、直線搬送管2は途中で湾曲搬送管3と連結され、搬送方向が180゜まげられた状態で、送風機5の配設側へ直線搬送管2を延設する。直線搬送管2の最下流端には紙幣回収部6を設ける。すなわち、送風機5を設けた上流から紙幣回収部6を設けた下流に向けて、搬送用流体としての空気が直線搬送管2および湾曲搬送管3内を流れるのである。なお、下流である紙幣回収部6側に吸引機を設けることで、搬送用流体としての空気が直線搬送管2および湾曲搬送管3内を上流から下流へ流れるようにすることもできる。 The banknote transfer device 1 shown in FIG. 1 can be installed in, for example, a game store, and can be used to collect banknotes inserted into a game medium lending device, a card sales device, or the like and collect them in one place. The bill PM to be transported, which is passed through the straight transport pipe 2 and transported, is introduced into the straight transport pipe 2 from the bill introduction unit 4 provided at an appropriate position. A blower 5 is provided on the most upstream side of the linear transport pipe 2. Further, the straight transport pipe 2 is connected to the curved transport pipe 3 on the way, and the straight transport pipe 2 is extended to the arrangement side of the blower 5 in a state where the transport direction is bent by 180 °. A bill collection unit 6 is provided at the most downstream end of the straight transfer pipe 2. That is, air as a transport fluid flows in the straight transport pipe 2 and the curved transport pipe 3 from the upstream where the blower 5 is provided to the downstream where the bill collection unit 6 is provided. By providing a suction machine on the downstream side of the bill collecting unit 6, air as a transport fluid can be made to flow from the upstream to the downstream in the straight transport pipe 2 and the curved transport pipe 3.

直線搬送管2は、一対の主搬送壁部である第1主搬送壁211および第2主搬送壁212、第1,第2主搬送壁211,212の上部および下部をそれぞれ覆う端部カバー体としての上部カバー体221および下部カバー体222を備える。この直線搬送管2に接続される左カーブの湾曲搬送管3は、主搬送壁部の一方(例えば、第1主搬送壁211)と接続される内側湾曲壁312と、主搬送壁部の他方(例えば、第1主搬送壁211)と接続される外側湾曲壁311を備える。なお、右カーブの湾曲搬送管3を接続する場合は、第1主搬送壁211と外側湾曲壁311を接続し、第1主搬送壁211と内側湾曲壁312を接続する構造となる。また、直線搬送管2に接続される湾曲搬送管3は、上部カバー体221と接続される上部湾曲カバー体321と、下部カバー体222と接続される下部湾曲カバー体322を備える。 The linear transport pipe 2 is an end cover body that covers the upper and lower portions of the first main transport wall 211, the second main transport wall 212, and the first and second main transport walls 211 and 212, which are a pair of main transport wall portions, respectively. The upper cover body 221 and the lower cover body 222 are provided as the above. The left-curved curved transport pipe 3 connected to the straight transport pipe 2 has an inner curved wall 312 connected to one of the main transport walls (for example, the first main transport wall 211) and the other of the main transport walls. (For example, the outer curved wall 311 connected to the first main transport wall 211) is provided. When connecting the curved transport pipe 3 having a right curve, the structure is such that the first main transport wall 211 and the outer curved wall 311 are connected, and the first main transport wall 211 and the inner curved wall 312 are connected. Further, the curved transport pipe 3 connected to the straight transport pipe 2 includes an upper curved cover body 321 connected to the upper cover body 221 and a lower curved cover body 322 connected to the lower cover body 222.

先ず、図2〜図5を参照して、直線搬送管2の構造および機能について詳述する。 First, the structure and function of the linear transfer pipe 2 will be described in detail with reference to FIGS. 2 to 5.

直線搬送管2は、所要長さまで連結して、設置場所や状況に応じた流路に調整できる。直線搬送管2は、紙幣PMの2面に対向するよう内面側が配置された一対の主搬送壁部である第1主搬送壁211および第2主搬送壁212と、第1,第2主搬送壁211,212の上下両端部に設ける端部カバーとしての上部カバー体221と下部カバー体222をそれぞれ設けた構成である。これら、第1,第2主搬送壁211,212と上部,下部カバー体221,222により、圧縮空気を送り出せるエア直線通過空間23が内部に形成される。このエア直線通過空間23のうち、第1主搬送壁211の内壁面211bと第2主搬送壁212の内壁面212bとで挟まれた空間が直線主搬送路231となり、この直線主搬送路231を通って紙幣PMが搬送されるのである。なお、これら第1,第2主搬送壁211,212と上部,下部カバー体221,222は、個別のパーツとして形成し、組み立てても良いし、射出成形や押出成形といった樹脂加工技術により複合パーツを形成して組み立てるようにしても良い。また、樹脂加工に限らず、厚さ1〜2〔mm〕程度の板材を加工して、第1,第2主搬送壁211,212と上部,下部カバー体221,222を作っても良い。 The straight transfer pipe 2 can be connected to a required length and adjusted to a flow path according to the installation location and the situation. The linear transport pipe 2 includes a first main transport wall 211 and a second main transport wall 212, which are a pair of main transport wall portions whose inner surfaces are arranged so as to face two surfaces of the bill PM, and first and second main transports. The upper cover body 221 and the lower cover body 222 as end covers provided at the upper and lower ends of the walls 211 and 122 are provided, respectively. The first and second main transport walls 211 and 212 and the upper and lower cover bodies 221 and 222 form an air linear passage space 23 inside which compressed air can be sent out. Of the air straight passage space 23, the space sandwiched between the inner wall surface 211b of the first main transport wall 211 and the inner wall surface 212b of the second main transport wall 212 becomes the straight main transport path 231 and the straight main transport path 231. The banknote PM is transported through the banknote PM. The first and second main transport walls 211 and 212 and the upper and lower cover bodies 221,222 may be formed as individual parts and assembled, or may be assembled by resin processing technology such as injection molding or extrusion molding. May be formed and assembled. Further, the present invention is not limited to resin processing, and a plate material having a thickness of about 1 to 2 [mm] may be processed to form the first and second main transport walls 211 and 212 and the upper and lower cover bodies 221,222.

また、第1,第2主搬送壁211,212には、外壁面211a,212aから内壁面211b,212bに搬送用エアが通過し得る流体帰還孔としてのエア帰還孔24を搬送方向へ所要間隔で設ける。本構成の直線搬送管2においては、上部カバー体221に対応させた第1,第2主搬送壁211,212の上部と、下部カバー体222に対応させた第1,第2主搬送壁211,212の下部とに、それぞれ等間隔で一列状に設けた(例えば、図3(B)を参照)。 Further, in the first and second main transport walls 211 and 212, air return holes 24 as fluid return holes through which transport air can pass from the outer wall surfaces 211a and 212a to the inner wall surfaces 211b and 212b are provided at required intervals in the transport direction. Provided with. In the linear transport pipe 2 having this configuration, the upper portions of the first and second main transport walls 211 and 122 corresponding to the upper cover body 221 and the first and second main transport walls 211 corresponding to the lower cover body 222 , 212 are provided in a line at equal intervals at the bottom of each (see, for example, FIG. 3B).

各エア帰還孔24は、上流側開口縁241と下流側開口縁242と端部側開口縁243と中央側開口縁244とで囲まれた略四角形状である。なお、本構成例の直線搬送管2におけるエア帰還孔24は略四角形状としたが、その開口形状や開口面積、配置間隔等は、特に限定されるものではなく、後述するように、必要十分な帰還流を得ることができれば良い。日本の紙幣PMを搬送する場合、第1,第2主搬送壁211,212の高さを80〔mm〕程度、対向間隔を10〜15〔mm〕程度とすると、上下2箇所に配列状に設ける各エア帰還孔24の上下方向高さは20〜30〔mm〕が適当である。なお、エア帰還孔24の搬送方向幅は、エア帰還孔24の配設間隔に応じて、適宜な風量や風速が得られるように定めれば良い。 Each air return hole 24 has a substantially quadrangular shape surrounded by an upstream side opening edge 241, a downstream side opening edge 242, an end side opening edge 243, and a central side opening edge 244. The air return hole 24 in the linear transport pipe 2 of this configuration example has a substantially quadrangular shape, but the opening shape, opening area, arrangement interval, etc. are not particularly limited, and as will be described later, it is necessary and sufficient. It would be good if we could obtain a good return flow. When transporting Japanese banknotes PM, if the height of the first and second main transport walls 211 and 212 is about 80 [mm] and the facing interval is about 10 to 15 [mm], they are arranged in two places above and below. The vertical height of each air return hole 24 to be provided is appropriately 20 to 30 [mm]. The width of the air return hole 24 in the transport direction may be set so that an appropriate air volume and speed can be obtained according to the arrangement interval of the air return hole 24.

また、第1主搬送壁211に設ける全てのエア帰還孔24と、第2主搬送壁212に設ける全てのエア帰還孔24とが、直線主搬送路231を挟んで正対するように、各エア帰還孔24の開設位置を設定することが望ましい。しかしながら、第1主搬送壁211側のエア帰還孔24と第2主搬送壁212側のエア帰還孔24が、紙幣PMの搬送方向あるいは上下方向に多少ずれていても、極端に偏った帰還流が紙幣PMの二面へ両側から作用しなければ、紙幣PMの安定搬送を実現できる。 Further, all the air return holes 24 provided in the first main transport wall 211 and all the air return holes 24 provided in the second main transport wall 212 face each other with the straight main transport path 231 in between. It is desirable to set the opening position of the return hole 24. However, even if the air return hole 24 on the first main transport wall 211 side and the air return hole 24 on the second main transport wall 212 side are slightly deviated in the transport direction or the vertical direction of the banknote PM, the feedback flow is extremely biased. If does not act on the two sides of the banknote PM from both sides, stable transportation of the banknote PM can be realized.

上部カバー体221は、第1,第2主搬送壁211,212の各内壁面211b,212b側から各外壁面211a,212a側を経て何れかのエア帰還孔24へ搬送用エアをそれぞれ誘導可能な搬送用流体誘導空部を生じさせる。本構成の上部カバー体221においては、第1主搬送壁211の内壁面211b側から外壁面211a側誘導するための第1分岐誘導部221a1と、第2主搬送壁212の内壁面212b側から外壁面212a側へ空気を誘導する第2分岐誘導部221b1を設けた。すなわち、本構成の上部カバー体221は、第1主搬送壁211の上端縁の上方空間に第1分岐誘導空部232aを生じさせる滑らかな凹曲面状の第1分岐誘導部221a1と、第2主搬送壁212の上端縁の上方空間に第2分岐誘導空部232bを生じさせる第2分岐誘導部221b1を備える。紙幣PMを搬送対象とする場合、第1,第2分岐誘導部221a1,221b1の左右幅はそれぞれ15〔mm〕程度、凹曲面最奥部までの距離は5〔mm〕程度である。 The upper cover body 221 can guide transport air from the inner wall surfaces 211b and 212b of the first and second main transport walls 211 and 212 to any of the air return holes 24 via the outer wall surfaces 211a and 212a, respectively. Produces a fluid-guided empty space for transport. In the upper cover body 221 of the present configuration, from the first branch guiding portion 221a1 for guiding from the inner wall surface 211b side of the first main transport wall 211 to the outer wall surface 211a side, and from the inner wall surface 212b side of the second main transport wall 212. A second branch guide portion 221b1 for guiding air to the outer wall surface 212a side is provided. That is, the upper cover body 221 of the present configuration has a smooth concave curved first branch guide portion 221a1 and a second branch guide portion 221a1 that generate a first branch guide empty portion 232a in the space above the upper end edge of the first main transport wall 211. A second branch guide portion 221b1 that creates a second branch guide empty portion 232b is provided in the space above the upper end edge of the main transport wall 212. When the bill PM is to be transported, the left-right widths of the first and second branch guide portions 221a1,221b1 are about 15 [mm], and the distance to the innermost part of the concave curved surface is about 5 [mm].

上部カバー体221の第1分岐誘導部221a1に連なる第1外方誘導部221a2は、第1分岐誘導空部232aを介して第1主搬送壁211の外壁面211a側へ誘導された搬送用エアをエア帰還孔24へ誘導可能な第1帰還誘導空部233aを生じさせる。同様に、上部カバー体221の第2分岐誘導部221b1に連なる第2外方誘導部221b2は、第2分岐誘導空部232bを介して第2主搬送壁212の外壁面212a側へ誘導された搬送用エアをエア帰還孔24へ誘導可能な第2帰還誘導空部233bを生じさせる。なお、第1外方誘導部221a2の下端は、滑らかに湾曲させて第1主搬送壁211の外壁面211aに密着する終端屈曲部221a2−eとし、エア帰還孔24の若干下方位置にて第1帰還誘導空部233aが閉塞されるようにしておく。同様に、第2外方誘導部221b2の下端は、滑らかに湾曲させて第2主搬送壁212の外壁面212aに密着する終端屈曲部221b2−eとし、エア帰還孔24の若干下方位置にて第2帰還誘導空部233bが閉塞されるようにしておく。なお、第1,第2外方誘導部221a2,221b2の上下高さは搬送物の高さに対して4/10程度が望ましく、縦寸が76〔mm〕である日本の紙幣PMを搬送対象とする場合、第1,第2外方誘導部221a2,221b2の上下高さは30〔mm〕程度である。 The first outer guiding portion 221a2 connected to the first branch guiding portion 221a1 of the upper cover body 221 is guided to the outer wall surface 211a side of the first main transport wall 211 via the first branch guiding empty portion 232a. Generates a first return induction empty portion 233a capable of guiding the air to the air return hole 24. Similarly, the second outer guiding portion 221b2 connected to the second branch guiding portion 221b1 of the upper cover body 221 was guided to the outer wall surface 212a side of the second main transport wall 212 via the second branch guiding empty portion 232b. A second return induction empty portion 233b capable of guiding the transport air to the air return hole 24 is generated. The lower end of the first outer guide portion 221a2 is smoothly curved to form a terminal bent portion 221a2-e that is in close contact with the outer wall surface 211a of the first main transport wall 211, and is located slightly below the air return hole 24. 1 The return guidance empty space 233a is closed. Similarly, the lower end of the second outer guide portion 221b2 is smoothly curved to form a terminal bent portion 221b2-e that is in close contact with the outer wall surface 212a of the second main transport wall 212, at a position slightly below the air return hole 24. The second return guidance empty space 233b is closed. The vertical height of the first and second outer guide portions 221a2 and 221b2 is preferably about 4/10 of the height of the transported object, and a Japanese banknote PM having a vertical dimension of 76 [mm] is to be transported. In this case, the vertical height of the first and second outer guide portions 221a2 and 221b2 is about 30 [mm].

下部カバー体222も上部カバー体221と同様に、第1,第2主搬送壁211,212の各内壁面211b,212b側から各外壁面211a,212a側へ空気をそれぞれ誘導する流体誘導空部を生じさせる。本構成の下部カバー体222においては、第1主搬送壁211の内壁面211b側から外壁面211a側へ空気を誘導するための第1分岐誘導部222a1と、第2主搬送壁212の内壁面212b側から外壁面212a側へ空気を誘導する第2分岐誘導部222b1を設けた。すなわち、本構成の下部カバー体222は、第1主搬送壁211の下端縁の下方空間に第1分岐誘導空部232aを生じさせる滑らかな凹曲面状の第1分岐誘導部222a1と、第2主搬送壁212の下端縁の下方空間に第2分岐誘導空部232bを生じさせる第2分岐誘導部222b1を備える。紙幣PMを搬送対象とする場合、第1,第2分岐誘導部222a1,222b1の左右幅はそれぞれ15〔mm〕程度、凹曲面最奥部までの距離は5〔mm〕程度である。 Similar to the upper cover body 221 of the lower cover body 222, a fluid induction empty portion that guides air from the inner wall surfaces 211b and 212b sides of the first and second main transport walls 211 and 212 to the outer wall surfaces 211a and 212a, respectively. Causes. In the lower cover body 222 of this configuration, the first branch guide portion 222a1 for guiding air from the inner wall surface 211b side of the first main transport wall 211 to the outer wall surface 211a side, and the inner wall surface of the second main transport wall 212. A second branch guide portion 222b1 for guiding air from the 212b side to the outer wall surface 212a side is provided. That is, the lower cover body 222 of the present configuration has a smooth concave curved first branch guide portion 222a1 and a second branch guide portion 222a1 that generate a first branch guide empty portion 232a in the space below the lower end edge of the first main transport wall 211. A second branch guide portion 222b1 that creates a second branch guide empty portion 232b is provided in the space below the lower end edge of the main transport wall 212. When the bill PM is to be transported, the left-right widths of the first and second branch guide portions 222a1, 222b1 are about 15 [mm], and the distance to the innermost part of the concave curved surface is about 5 [mm].

下部カバー体222の第1分岐誘導部222a1に連なる第1外方誘導部222a2は、第1分岐誘導空部232aを介して第1主搬送壁211の外壁面211a側へ誘導された搬送用エアをエア帰還孔24へ誘導可能な第1帰還誘導空部233aを生じさせる。同様に、下部カバー体222の第2分岐誘導部222b1に連なる第2外方誘導部222b2は、第2分岐誘導空部232bを介して第2主搬送壁212の外壁面212a側へ誘導された搬送用エアをエア帰還孔24へ誘導可能な第2帰還誘導空部233bを生じさせる。なお、第1外方誘導部222a2の上端は、滑らかに湾曲させて第1主搬送壁211の外壁面211aに密着する終端屈曲部222a2−eとし、エア帰還孔24の若干上方位置にて第1帰還誘導空部233aが閉塞されるようにしておく。同様に、第2外方誘導部222b2の上端は、滑らかに湾曲させて第2主搬送壁212の外壁面212aに密着する終端屈曲部222b2−eとし、エア帰還孔24の若干上方位置にて第2帰還誘導空部233bが閉塞されるようにしておく。第1,第2外方誘導部222a2,222b2の上下高さも搬送物の高さに対して4/10程度が望ましく、日本の紙幣PMを搬送対象とする場合、第1,第2外方誘導部222a2,222b2の上下高さは30〔mm〕程度である。 The first outer guiding portion 222a2 connected to the first branch guiding portion 222a1 of the lower cover body 222 is guided to the outer wall surface 211a side of the first main transport wall 211 via the first branch guiding empty portion 232a. Generates a first return induction empty portion 233a capable of guiding the air to the air return hole 24. Similarly, the second outer guiding portion 222b2 connected to the second branch guiding portion 222b1 of the lower cover body 222 was guided to the outer wall surface 212a side of the second main transport wall 212 via the second branch guiding empty portion 232b. A second return induction empty portion 233b capable of guiding the transport air to the air return hole 24 is generated. The upper end of the first outer guide portion 222a2 is smoothly curved to form a terminal bent portion 222a2-e that is in close contact with the outer wall surface 211a of the first main transport wall 211, and is located slightly above the air return hole 24. 1 The return guidance empty space 233a is closed. Similarly, the upper end of the second outer guide portion 222b2 is smoothly curved to form a terminal bent portion 222b2-e that is in close contact with the outer wall surface 212a of the second main transport wall 212, at a position slightly above the air return hole 24. The second return guidance empty space 233b is closed. The vertical height of the first and second outer guidance portions 222a2 and 222b2 is also preferably about 4/10 of the height of the transported object, and when Japanese banknote PM is to be transported, the first and second outer guidance The vertical height of the portions 222a2 and 222b2 is about 30 [mm].

上述したように、上部カバー体221には第1,第2分岐誘導部221a1,221b1を設け、下部カバー体222には第1,第2分岐誘導部222a1,222b1を設ければ、直線主搬送路231の上方左右および下方左右へ均等に搬送用エアを誘導できる。なお、上部,下部カバー体221,222に設ける分岐誘導部は左右一対の構造に限定されない。例えば、第1外方誘導部221a2と第2外方誘導部221b2、或いは第1外方誘導部222a2と第2外方誘導部222b2を滑らかな曲面で連結する一つの分岐誘導部を用いて、上部カバー体221或いは下部カバー体222を構成しても良い。また、端部カバー体として、上部カバー体221と下部カバー体222の両方を設けず、一方端のみに端部カバー体を設けておき、第1,第2主搬送壁211,212にエア帰還孔24をそれぞれ一列だけ設けてもよい。かくする場合、端部カバー体を設けない他方端では、第1主搬送壁211と第2主搬送壁212の間を遮蔽壁等で塞ぐことにより、搬送用エアが漏れない密閉状のエア直線通過空間23を形成すれば良い。 As described above, if the upper cover body 221 is provided with the first and second branch guiding portions 221a1,221b1 and the lower cover body 222 is provided with the first and second branch guiding portions 222a1,222b1, the linear main transport is provided. The transport air can be evenly guided to the upper left and right and the lower left and right of the road 231. The branch guide portions provided on the upper and lower cover bodies 221 and 222 are not limited to a pair of left and right structures. For example, using one branch guide that connects the first outer guide 221a2 and the second outer guide 221b2, or the first outer guide 222a2 and the second outer guide 222b2 with a smooth curved surface, The upper cover body 221 or the lower cover body 222 may be configured. Further, as the end cover body, both the upper cover body 221 and the lower cover body 222 are not provided, and the end cover body is provided only at one end, and air is returned to the first and second main transport walls 211 and 212. Only one row of holes 24 may be provided. In this case, at the other end where the end cover body is not provided, the space between the first main transport wall 211 and the second main transport wall 212 is closed with a shielding wall or the like so that the transport air does not leak. The passage space 23 may be formed.

エア帰還孔24を設けた第1,第2主搬送壁211,212の外壁面211a,212a側には、上部,下部カバー体221,222の第1,第2外方誘導部221a2,221b2にて誘導された搬送用エアをエア帰還孔24へ導く帰還ガイド部25を設ける。帰還ガイド部25は、少なくともエア帰還孔24の上流側開口縁241にエア導入開口25aが位置し、エア帰還孔24の下流側開口縁242に向かって狭まる突出体で、その横断面は略三角形状とした(例えば、図3(C)を参照)。また、帰還ガイド部25の上流側の上下部は、乱流を生じやすい角部とせず、滑らかな曲面部で構成した。この上下2箇所の曲面部が、エア帰還孔24の下流側開口縁242の上端部または下端部へ向かって徐々に収束することで、帰還ガイド部25の内面上部には上方誘導湾曲面が形成され、内面下部には下方誘導湾曲面が形成される。すなわち、エア導入開口25aから帰還ガイド部25内へ導かれ、上方誘導湾曲面に誘導された搬送用エアは、エア帰還孔24を抜けると上向きに広がり易い帰還流となり、下方誘導湾曲面に誘導された搬送用エアは、エア帰還孔24を抜けると下向きに広がり易い帰還流となる。なお、エア帰還孔24と帰還ガイド部25は、樹脂加工により第1,第2主搬送壁211,212を形成するとき、同時に形成できる。無論、別体として形成した構造体をエア帰還孔24の縁部に沿って取り付けることにより、帰還ガイド部25を形成するようにしても良い。 On the outer wall surfaces 211a and 212a of the first and second main transport walls 211 and 212 provided with the air return holes 24, the first and second outer guide portions 221a2 and 221b2 of the upper and lower cover bodies 221,222 A return guide portion 25 is provided to guide the guided transport air to the air return hole 24. The return guide portion 25 is a projecting body in which the air introduction opening 25a is located at least at the upstream opening edge 241 of the air return hole 24 and narrows toward the downstream opening edge 242 of the air return hole 24, and its cross section is substantially triangular. Shaped (see, for example, FIG. 3C). Further, the upper and lower portions on the upstream side of the return guide portion 25 are not formed as corner portions where turbulent flow is likely to occur, but are formed of smooth curved surfaces. The upper and lower curved surfaces gradually converge toward the upper end or the lower end of the downstream opening edge 242 of the air return hole 24, so that an upward induction curved surface is formed on the upper inner surface of the return guide portion 25. A downwardly guided curved surface is formed on the lower part of the inner surface. That is, the transport air guided from the air introduction opening 25a into the return guide portion 25 and guided to the upward guiding curved surface becomes a return flow that easily spreads upward when passing through the air return hole 24, and is guided to the downward guiding curved surface. When the conveyed transport air passes through the air return hole 24, it becomes a return flow that easily spreads downward. The air return hole 24 and the return guide portion 25 can be formed at the same time when the first and second main transport walls 211 and 212 are formed by resin processing. Of course, the return guide portion 25 may be formed by attaching the structure formed as a separate body along the edge portion of the air return hole 24.

紙幣PMを搬送対象とし、上,下カバー体221,222に各々対応させて二列状にエア帰還孔24を設ける場合、帰還ガイド部25の上下高さを20〜30〔mm〕程度、搬送方向幅を8〜15〔mm〕程度にすると、帰還ガイド部25の突出量は3〜6〔mm〕程度が望ましい。エア帰還孔24から直線主搬送路231へ流入する帰還流の流入角度(帰還流の流入方向と搬送方向とが成す鋭角)を15〜30゜の範囲で調整できるからである。帰還流が強い場合には、帰還流の流入角度を小さくして、帰還流が直線主搬送路231の中央付近を流れる紙幣PMに到達するまでの距離を長くする。かくすれば、強すぎる帰還流の流下勢は紙幣PMへ到達するまでに減衰してゆき、程良い流下勢となった帰還流が紙幣PMに作用する。一方。帰還流が弱い場合には、帰還流の流入角度を大きくして、帰還流が直線主搬送路231の中央付近を流れる紙幣PMに到達するまでの距離を短くする。かくすれば、帰還流が消失する前に紙幣PMへ到達させることができ、紙幣PMを下流へ搬送する力を帰還流から与えることができる。 When the bill PM is to be transported and the air return holes 24 are provided in two rows corresponding to the upper and lower cover bodies 221 and 222, the vertical height of the return guide portion 25 is about 20 to 30 [mm]. When the direction width is about 8 to 15 [mm], the amount of protrusion of the return guide portion 25 is preferably about 3 to 6 [mm]. This is because the inflow angle of the return flow flowing from the air return hole 24 into the straight main transport path 231 (an acute angle formed by the inflow direction of the return flow and the transport direction) can be adjusted in the range of 15 to 30 °. When the return flow is strong, the inflow angle of the return flow is reduced to increase the distance until the return flow reaches the banknote PM flowing near the center of the straight main transport path 231. In this way, the flow-down force of the return flow that is too strong is attenuated by the time it reaches the banknote PM, and the return flow that has become a moderate flow-down force acts on the banknote PM. on the other hand. When the return flow is weak, the inflow angle of the return flow is increased to shorten the distance until the return flow reaches the banknote PM flowing near the center of the straight main transport path 231. In this way, the banknote PM can be reached before the return flow disappears, and the force for transporting the banknote PM downstream can be given from the return flow.

前述したように、加圧した搬送用エアが送り込まれる直線搬送管2内では、上下左右の壁面を外向きに押す圧力が生じる。上部,下部カバー体221,222の第1,第2分岐誘導部221a1,222a1,221b1,222b1を外向きに押す力は、搬送用エアを第1,第2分岐誘導空部232a,232bから第1,第2帰還誘導空部233a,233bへ誘導する力として作用する。なお、上部,下部カバー体221,222には、第1主搬送壁211と第2主搬送壁212の中間部位より左右両側に第1分岐誘導部221a1,222a1と第2分岐誘導部221b1,222b1を設けたので、左右に偏り無く気流が分岐して行く。 As described above, in the linear transport pipe 2 to which the pressurized transport air is sent, pressure is generated to push the upper, lower, left and right wall surfaces outward. The force that pushes the first and second branch guidance portions 221a1,222a1,221b1,222b1 of the upper and lower cover bodies 221,222 outwards pushes the transport air outward from the first and second branch guidance empty portions 232a and 232b. 1, Second feedback guidance Acts as a force to guide the empty parts 233a and 233b. The upper and lower cover bodies 221,222 include the first branch guide portions 221a1,222a1 and the second branch guide portions 221b1,222b1 on the left and right sides of the intermediate portion between the first main transport wall 211 and the second main transport wall 212. Because the airflow is provided, the airflow branches evenly to the left and right.

しかも、第1,第2分岐誘導部221a1,221b1の内面は外側(直線主搬送路231から遠ざかる上下方向)に突出して滑らかに第1,第2外方誘導部221a2,221b2に連なる凸面形状の誘引流動面となるので、コアンダ効果により、第1,第2帰還誘導空部233a,233bへ誘導され易い。なお、コアンダ効果とは、粘性流体が近接した壁面に沿って流れる性質のことで、搬送用エアも粘性流体であるから、上部カバー体221および下部カバー体222の内面に沿って流れて行くことは理に適っている。 Moreover, the inner surface of the first and second branch guide portions 221a1,221b1 has a convex shape that protrudes outward (in the vertical direction away from the straight main transport path 231) and smoothly connects to the first and second outer guide portions 221a2 and 221b2. Since it becomes an attracting flow surface, it is easily guided to the first and second return induction empty portions 233a and 233b by the Coanda effect. The Coanda effect is a property that the viscous fluid flows along the adjacent wall surface, and since the transport air is also the viscous fluid, it flows along the inner surfaces of the upper cover body 221 and the lower cover body 222. Makes sense.

したがって、直線搬送管2内へ圧送された搬送用エアの一部は、直線主搬送路231から第1,第2分岐誘導空部232a,232bへ、更には第1,第2帰還誘導空部233a,233bへ誘導され、第1,第2主搬送壁211,212の外壁面211a,212a側へ回り込む。この気流は途切れること無く続くので、第1,第2主搬送壁211,212の外壁面211a,212a側へ回り込んだ搬送用エアが、極端に減圧されることは無い。第1,第2主搬送壁211,212の外壁面211a,212a側へ至った搬送用エアは、第1,第2帰還誘導空部233a,233b内を下流へ向かいつつ、直線主搬送路231の中央側(上部カバー体221では下方、下部カバー体222では上方)へ誘導される。 Therefore, a part of the transport air pumped into the linear transport pipe 2 is transferred from the straight main transport path 231 to the first and second branch guide vacant portions 232a and 232b, and further to the first and second return guide vacant portions. It is guided to 233a and 233b and wraps around to the outer wall surfaces 211a and 212a of the first and second main transport walls 211 and 212. Since this airflow continues without interruption, the transport air that wraps around the outer wall surfaces 211a and 212a of the first and second main transport walls 211 and 212 is not extremely depressurized. The transport air that has reached the outer wall surfaces 211a and 212a of the first and second main transport walls 211 and 212 heads downstream in the first and second return guidance empty portions 233a and 233b, and is a straight main transport path 231. Is guided to the center side (downward in the upper cover body 221 and upper in the lower cover body 222).

第1,第2帰還誘導空部233a,233bへ誘導された搬送用エアは、エア帰還孔24の帰還ガイド部25へ到達すると、エア導入開口25aから導入され、エア帰還孔24を介して第1主搬送壁211の内壁面211b側へ戻される帰還流となる。なお、搬送用エアが帰還ガイド部25に到達しないまま第1帰還誘導空部233aの下方部に至っても、第1帰還誘導空部233aの下部は終端屈曲部221a2−eで閉塞されているため、終端屈曲部221a2−eに沿って更に下流へ流れる。その下流にもエア帰還孔24を適宜な間隔で設けてあるので、下流のエア帰還孔24の帰還ガイド部25へ到達した搬送用エアの一部は、エア導入開口25aから導入されて直線主搬送路231へ戻る帰還流となる。 When the transport air guided to the first and second return guidance empty portions 233a and 233b reaches the return guide portion 25 of the air return hole 24, it is introduced from the air introduction opening 25a and is introduced through the air return hole 24. 1 It is a return flow returned to the inner wall surface 211b side of the main transport wall 211. Even if the transport air reaches the lower portion of the first return guidance empty portion 233a without reaching the return guide portion 25, the lower portion of the first return guidance empty portion 233a is blocked by the terminal bending portion 221a2-e. , Flows further downstream along the terminal bent portion 221a2-e. Since the air return holes 24 are also provided downstream thereof at appropriate intervals, a part of the transport air that has reached the return guide portion 25 of the downstream air return hole 24 is introduced from the air introduction opening 25a and is a straight line main. It becomes a return flow returning to the transport path 231.

なお、直線搬送管2内へ圧送された搬送用エアの一部は、直線主搬送路231から第1,第2分岐誘導空部232a,232bへ至るものの、そのまま第1,第2分岐誘導空部232a,232b内を下流へ流れてゆく搬送用エアの割合が多い。直線搬送管2の実験結果では、第1,第2分岐誘導空部232a,232bから第1,第2帰還誘導空部233a,233bへ誘導される搬送用エアは50%以下であった。したがって、第1,第2分岐誘導空部232a,232bから効率良く第1,第2帰還誘導空部233a,233bへ搬送用エアを誘導するために、誘導プレート7(図3中、二点鎖線で示す)を設けるようにしても良い。 Although a part of the transport air pumped into the straight transport pipe 2 reaches from the straight main transport path 231 to the first and second branch guide vacant portions 232a and 232b, the first and second branch guide vacancy is maintained as it is. The proportion of the transport air flowing downstream in the portions 232a and 232b is large. According to the experimental results of the linear transport pipe 2, the amount of transport air guided from the first and second branch guide vacant portions 232a and 232b to the first and second return guide vacant portions 233a and 233b was 50% or less. Therefore, in order to efficiently guide the transport air from the first and second branch guidance vacant portions 232a and 232b to the first and second feedback guidance vacant portions 233a and 233b, the guide plate 7 (two-dot chain line in FIG. 3). (Indicated by) may be provided.

例えば、上部,下部カバー体221,222の第1,第2分岐誘導部221a1,221b1,222a1,222b1に対して、第1,第2分岐誘導空部232a,232b内に突出する誘導プレート7を設ける。誘導プレート7は、半円弧状の板材を弦方向に引き延ばした外観の板状体であり、一方の第1面が上流側に、他方の第2面が下流側に向くよう、第1,第2分岐誘導部221a1,221b1,222a1,222b1へ斜めに取り付ける。このため、誘導プレート7における弧状の曲縁部は、第1,第2分岐誘導部221a1,221b1,222a1,222b1の凹状内面と密に接するような曲率に設定しておく。そして、第1,第2分岐誘導部221a1,221b1,222a1,222b1に取り付けた誘導プレート7の平坦縁部は、搬送用エアの送風方向WDとほぼ平行となり、直線主搬送路231と第1,第2分岐誘導空部232a,232bの境界近傍に位置する。 For example, with respect to the first and second branch guide portions 221a1,221b1,222a1,222b1 of the upper and lower cover bodies 221,222, the guide plates 7 projecting into the first and second branch guidance empty portions 232a and 232b are provided. Provide. The guide plate 7 is a plate-like body having an appearance in which a semicircular arc-shaped plate material is stretched in the chord direction, and the first and first surfaces are directed so that one first surface faces the upstream side and the other second surface faces the downstream side. It is attached diagonally to the two-branch guide portion 221a1,221b1,222a1,222b1. Therefore, the arcuate curved edge portion of the guide plate 7 is set to have a curvature so as to be in close contact with the concave inner surface of the first and second branch guide portions 221a1,221b1,222a1,222b1. The flat edges of the guide plates 7 attached to the first and second branch guide portions 221a1,221b1,222a1,222b1 are substantially parallel to the blowing direction WD of the transport air, and the straight main transport paths 231 and the first and first It is located near the boundary between the second branch guidance empty portions 232a and 232b.

また、上部カバー体221において、第1分岐誘導部221a1に設ける誘導プレート7の上流側端部と、第2分岐誘導部221b1に設ける誘導プレート7の上流側端部は、第1分岐誘導部221a1と第2分岐誘導部221b1との連結部にて当接、或いは近接させる。第1分岐誘導部221a1と第2分岐誘導部221b1との連結部は、第1,第2主搬送壁211,212の中間位置となるので、左右一対の誘導プレート7,7は、直線主搬送路231から上方へ圧入しつつ下流へ向かう搬送用エアを二等分するV字状の楔として機能する。下部カバー体222においても同様に、左右一対の誘導プレート7,7は、第1分岐誘導部222a1と第2分岐誘導部222b1との連結部にて当接、或いは近接させる。 Further, in the upper cover body 221, the upstream end portion of the guide plate 7 provided in the first branch guide portion 221a1 and the upstream end portion of the guide plate 7 provided in the second branch guide portion 221b1 are the first branch guide portion 221a1. And the second branch guide portion 221b1 are brought into contact with each other or brought close to each other at the connecting portion. Since the connecting portion between the first branch guide portion 221a1 and the second branch guide portion 221b1 is located at an intermediate position between the first and second main transport walls 211 and 212, the pair of left and right guide plates 7 and 7 are linearly main transports. It functions as a V-shaped wedge that bisects the transport air going downstream while press-fitting upward from the road 231. Similarly, in the lower cover body 222, the pair of left and right guide plates 7 and 7 are brought into contact with each other or brought close to each other at the connecting portion between the first branch guide portion 222a1 and the second branch guide portion 222b1.

一方、誘導プレート7の下流側端部は、第1,第2分岐誘導部221a1,221b1と第1,第2外方誘導部221a2,221b2との連結部(或いは、第1,第2分岐誘導部222a1,222b1と第1,第2外方誘導部222a2,222b2との連結部)近傍に位置させる。かくすれば、第1,第2分岐誘導部221a1,221b1,222a1,222b1に各々設けた誘導プレート7により、第1,第2分岐誘導空部232a,232bから第1,第2帰還誘導空部233a,233bへ円滑に搬送流を誘導できる。 On the other hand, the downstream end of the guide plate 7 is a connecting portion (or a first and second branch guide) between the first and second branch guide portions 221a1,221b1 and the first and second outer guide portions 221a2 and 221b2. It is located in the vicinity of the connecting portion between the portions 222a1,222b1 and the first and second outer guiding portions 222a2, 222b2). Thus, the first and second branch guidance empty portions 232a and 232b to the first and second return induction empty portions are provided by the guidance plates 7 provided on the first and second branch guidance portions 221a1,221b1,222a1,222b1 respectively. The transport flow can be smoothly guided to 233a and 233b.

このように誘導プレート7を配置すると、直線主搬送路231から上部,下部カバー体221,222へ圧入された搬送用エアは、誘導プレート7に沿って、滑らかに第1,第2主搬送壁211,212の外壁面211a,212a側へ誘導される。誘導プレート7を設けた直線搬送管2の実験結果では、第1,第2分岐誘導空部232a,232bから第1,第2帰還誘導空部233a,233bへ誘導される搬送用エアは80%以上と大幅に改善された。よって、誘導プレート7を設けることで、帰還流の効率(エア帰還孔24から主搬送路231へ戻される搬送用エアの風量や風速など)を飛躍的に向上させることが可能である。 When the guide plate 7 is arranged in this way, the transport air pressed into the upper and lower cover bodies 221 and 222 from the straight main transport path 231 smoothly flows along the guide plate 7 to the first and second main transport walls. It is guided to the outer wall surfaces 211a and 212a of 211 and 212. According to the experimental results of the linear transport pipe 2 provided with the guide plate 7, the transport air guided from the first and second branch guide vacant portions 232a and 232b to the first and second return guide vacant portions 233a and 233b is 80%. It was greatly improved as above. Therefore, by providing the guide plate 7, it is possible to dramatically improve the efficiency of the return flow (air volume, wind speed, etc. of the transfer air returned from the air return hole 24 to the main transfer path 231).

次に、各エア帰還孔24から直線主搬送路231へ流入した帰還流の挙動を図5に基づいて説明する。なお、図5(A)〜(C)は、直線搬送管2の上部カバー体221を搬送方向へ略水平に切り欠いて、直線主搬送路231と第1,第2帰還誘導空部233a,233bを上方から見た状態を示す。図5(A)〜(C)において、第1,第2分岐誘導空部232a,232bから第1,第2帰還誘導空部233a,233bへ導かれた循環流Fgが帰還ガイド部25のエア導入開口25aから導入されて帰還流となる。また、エア導入開口25aへ導入されずに帰還ガイド部25の下流側へ至った搬送用エアの一部は、更に下流のエア帰還孔24から直線主搬送路231へ導入される帰還流となる可能性がある。 Next, the behavior of the return flow flowing from each air return hole 24 into the straight main transport path 231 will be described with reference to FIG. In addition, in FIGS. 5A to 5C, the upper cover body 221 of the linear transport pipe 2 is cut out substantially horizontally in the transport direction, and the straight main transport path 231 and the first and second return induction empty portions 233a, The state where 233b is seen from above is shown. In FIGS. 5A to 5C, the circulating flow Fg guided from the first and second branch guidance vacant portions 232a and 232b to the first and second feedback guidance vacant portions 233a and 233b is the air of the feedback guide portion 25. It is introduced from the introduction opening 25a and becomes a feedback flow. Further, a part of the transport air that has reached the downstream side of the return guide portion 25 without being introduced into the air introduction opening 25a becomes a return flow that is introduced into the straight main transport path 231 from the air return hole 24 further downstream. there is a possibility.

図5(A)に示すのは、理想的な設計の直線搬送管2であり、第1,第2主搬送壁211,212の各帰還孔24からの帰還流によって、内壁面211b,212bに沿った側方流Fr,Frが形成され、これらに挟まれて搬送方向へ直進する中央流Fcが形成される。直線搬送管2においては、搬送用エアが各エア帰還孔24の開口面へ上流から流れ込んで、帰還流と干渉して乱流を生ずることはないので、帰還ガイド部25の角度調整により制御できる流入角度で帰還流を中央流Fc内へ到達させることができる。したがって、直線搬送管2では、紙幣PMの両側面近傍まで帰還流を到達させることで、紙幣PMが中央流Fc内を左右に大きく蛇行することを抑制し、略中央へ安定的に保持できる。更に、直線搬送管2では、紙幣PMの両側面近傍まで到達する帰還流により、紙幣PMを搬送方向(下流)へ向かわせる力を与えられるので、紙幣PMは効率良く搬送されることとなる。 FIG. 5A shows an ideally designed straight transfer pipe 2, which is formed on the inner walls 211b and 212b by the return flow from the return holes 24 of the first and second main transfer walls 211 and 212. Lateral flows Fr and Fr along the line are formed, and a central flow Fc that is sandwiched between them and travels straight in the transport direction is formed. In the linear transfer pipe 2, the transfer air does not flow into the opening surface of each air return hole 24 from the upstream and interfere with the return flow to generate turbulent flow, so that the control can be performed by adjusting the angle of the return guide unit 25. The return flow can reach the central flow Fc at the inflow angle. Therefore, in the straight line transport pipe 2, by allowing the return flow to reach the vicinity of both side surfaces of the banknote PM, it is possible to prevent the banknote PM from meandering largely to the left and right in the central flow Fc, and to stably hold the banknote PM substantially in the center. Further, in the linear transport pipe 2, the return flow that reaches the vicinity of both side surfaces of the bill PM gives a force to direct the bill PM in the transport direction (downstream), so that the bill PM is efficiently transported.

ただし、紙幣PMの両側面へ到達する帰還流の流速は、強過ぎたり、弱過ぎたりしない、程良い流速が望ましい。図5(B)に示すのは、十分な帰還流が得られない設計となった直線搬送管2′であり、内壁面211b,212bに沿った両サイドの側方流Fr,Frが弱いために、中央流Fcが左右に広がってしまった状態である。直線搬送管2′においては、搬送用エアが各エア帰還孔24の開口面へ上流から流れ込んでも、帰還流と干渉して有害な乱流を生じ難い反面、帰還流を中央流Fc内中心付近の紙幣PMまで到達させることは困難である。直線搬送管2′のように、側方流中央流Fc内中心付近の紙幣PMの両側面へ帰還流を到達させることができないと、上述した直線搬送管2のような高い搬送効率は得難い。 However, it is desirable that the flow velocity of the return flow reaching both sides of the banknote PM is moderate so that it is neither too strong nor too weak. FIG. 5B shows a linear transport pipe 2'designed so that a sufficient feedback flow cannot be obtained, and the side currents Fr and Fr on both sides along the inner wall surfaces 211b and 212b are weak. In addition, the central flow Fc has spread to the left and right. In the straight transfer pipe 2', even if the transfer air flows into the opening surface of each air return hole 24 from the upstream, it is unlikely to interfere with the return flow and generate harmful turbulence, but the return flow is near the center of the central flow Fc. It is difficult to reach the banknote PM of. If the return flow cannot reach both sides of the banknote PM near the center of the side flow central flow Fc as in the straight line transfer tube 2', it is difficult to obtain the high transfer efficiency as in the straight line transfer tube 2 described above.

また、直線搬送管2′においては、帰還流が弱いために内壁面211b,212b付近にしか影響を与えられないので、紙幣PMは左右に広がった中央流Fc内を左右に大きく蛇行しながら流れてゆく可能性が高く、紙幣PMは不安定な状態となってしまう。さらに、なんらかの理由で紙幣PMが内壁面211b,212bに接触してエア帰還孔24を塞いでしまうと、帰還流が発生しなくなり、そのまま内壁面211b,212bに紙幣PMが張り付いてしまう危険性がある。そうなると、外部から力を加えない限り、紙幣PMは内壁面211b,212bから外れないため、搬送されなくなってしまう。 Further, in the straight transfer pipe 2', since the return flow is weak, it can affect only the vicinity of the inner wall surfaces 211b and 212b, so that the banknote PM flows while meandering largely to the left and right in the central flow Fc spreading to the left and right. There is a high possibility that the banknote PM will be in an unstable state. Further, if the banknote PM comes into contact with the inner wall surfaces 211b and 212b and blocks the air return hole 24 for some reason, the return flow does not occur and there is a risk that the banknote PM will stick to the inner wall surfaces 211b and 212b as it is. There is. In that case, the banknote PM will not come off from the inner wall surfaces 211b and 212b unless a force is applied from the outside, so that the banknote PM will not be transported.

一方、図5(C)に示すのは、強すぎる帰還流がエア帰還孔24より直線主搬送路231内へ流入する設計となった直線搬送管2″であり、搬送用エアが各エア帰還孔24の開口面へ上流から流れ込んで、強い帰還流と干渉して渦状の乱流を生じてしまった状態である。この乱流の影響で、直線主搬送路231の中央付近を流れる紙幣PMには細かな振動が繰り返し生じるため、効率的な搬送は実現できない。 On the other hand, FIG. 5C shows a linear transport pipe 2 ″ designed so that a too strong return flow flows into the straight main transport path 231 from the air return hole 24, and the transport air returns to each air. It is a state in which a vortex-like turbulent flow is generated by flowing into the opening surface of the hole 24 from the upstream and interfering with a strong return flow. Due to the influence of this turbulent flow, the banknote PM flowing near the center of the straight main transport path 231 Since small vibrations occur repeatedly in the machine, efficient transportation cannot be realized.

エア帰還孔24から直線主搬送路231へ流入する帰還流が強い場合には、帰還流が直線主搬送路231の中央付近を流れる紙幣PMに到達するまでの距離を長くすれば、紙幣PMに到達する帰還流の流速を抑制できる。また、エア帰還孔24から直線主搬送路231へ流入する帰還流が弱い場合には、帰還流の流入角度を大きくして、帰還流が直線主搬送路231の中央付近を流れる紙幣PMに到達するまでの距離を短くすれば、紙幣PMに到達する帰還流の流速を高めることができる。 When the return flow flowing from the air return hole 24 into the straight main transport path 231 is strong, if the distance until the return flow reaches the bill PM flowing near the center of the straight main transport path 231 is lengthened, the bill PM can be used. The flow velocity of the incoming feedback flow can be suppressed. When the return flow flowing from the air return hole 24 into the straight main transport path 231 is weak, the inflow angle of the return flow is increased so that the return flow reaches the banknote PM flowing near the center of the straight main transport path 231. By shortening the distance to the banknote PM, the flow velocity of the return flow reaching the banknote PM can be increased.

ただし、帰還流を直線主搬送路231の中央付近へ届かせるために流入角度を大きくする(90゜に近づける)と、搬送方向へ向かわせる力が弱くなり、本来の搬送機能が損なわれる可能性がある。そこで、極端に帰還流の流速が弱い場合には、上述した誘導プレート7を用いるなど、別の手法で帰還流の効率を高めるようにすることが望ましい。例えば、帰還流の効率を向上させるために、第1,第2帰還誘導空部233a,233bの左右幅を狭めて、帰還ガイド部25との隙間を小さくし、その隙間から下流側へ通り抜ける搬送用エアの量を低減させてもよい。具体的には、第1,第2外方誘導部221a2,221b2の内壁面と各帰還ガイド部25との間、および第1,第2外方誘導部222a2,222b2の内壁面と各帰還ガイド部25との間に生ずる空隙を狭くすると、より多くの搬送用エアを帰還ガイド部25のエア導入開口25aへ導くことができる。 However, if the inflow angle is increased (approached to 90 °) in order to allow the return flow to reach near the center of the straight main transport path 231, the force directed in the transport direction is weakened, and the original transport function may be impaired. There is. Therefore, when the flow velocity of the return flow is extremely weak, it is desirable to improve the efficiency of the return flow by another method such as using the induction plate 7 described above. For example, in order to improve the efficiency of the return flow, the left and right widths of the first and second return guidance empty portions 233a and 233b are narrowed to reduce the gap with the return guide portion 25, and the transport passing through the gap to the downstream side. The amount of air for use may be reduced. Specifically, between the inner wall surface of the first and second outer guide portions 221a2, 221b2 and each return guide portion 25, and the inner wall surface of the first and second outer guide portions 222a2, 222b2 and each return guide. By narrowing the gap formed between the portion 25 and the portion 25, more transport air can be guided to the air introduction opening 25a of the return guide portion 25.

更には、第1,第2外方誘導部221a2,221b2および第1,第2外方誘導部222a2,222b2を各帰還ガイド部25と一体化させて作成すれば、第1,第2帰還誘導空部233a,233bとエア導入開口25aの左右方向開口幅を一致させた構造とすることもできる。かくすれば、第1,第2外方誘導部221a2,221b2および第1,第2外方誘導部222a2,222b2の内壁面に沿って下流側へ流れる搬送用エアが、段差無く帰還ガイド部25のエア導入開口25aへ導入されるので、帰還流の効率を一層高められる。 Further, if the first and second outer guidance portions 221a2 and 221b2 and the first and second outer guidance portions 222a2 and 222b2 are integrated with the respective return guide portions 25, the first and second return induction portions are further induced. It is also possible to have a structure in which the opening widths of the empty portions 233a and 233b and the air introduction opening 25a in the left-right direction are matched. In this way, the transport air flowing downstream along the inner wall surfaces of the first and second outer guide portions 221a2 and 221b2 and the first and second outer guide portions 222a2 and 222b2 returns without a step to the return guide portion 25. Since it is introduced into the air introduction opening 25a of the above, the efficiency of the return flow can be further improved.

また、上部カバー体221の第1,第2外方誘導部221a2,221b2を各帰還ガイド部25と一体化させて作成するときに、各帰還ガイド部25の下部と終端屈曲部221a2−e,221b2−eとを一致させておけば、各帰還ガイド部25の下側に隙間が無くなる。すなわち、帰還ガイド部25の下側の隙間から下流側へ通り抜ける搬送用エアをなくすことで、エア導入開口25aに導入される搬送用エアの量を増やし、帰還流の効率を一層高めることが可能になる。同様に、下部カバー体222の第1,第2外方誘導部222a2,222b2を各帰還ガイド部25と一体化させて作成するときに、各帰還ガイド部25の上部と終端屈曲部222a2−e,222b2−eとを一致させておけば、各帰還ガイド部25の上側に隙間が無くなる。すなわち、帰還ガイド部25の上側の隙間からから下流側へ通り抜ける搬送用エアをなくすことで、エア導入開口25aに導入される搬送用エアの量を増やし、帰還流の効率を一層高めることが可能になる。 Further, when the first and second outer guide portions 221a2 and 221b2 of the upper cover body 221 are integrally formed with the respective return guide portions 25, the lower portion of each return guide portion 25 and the end bending portion 221a2-e, If the 221b2-e is matched, there will be no gap on the lower side of each return guide portion 25. That is, by eliminating the transport air that passes through the gap on the lower side of the return guide portion 25 to the downstream side, it is possible to increase the amount of transport air introduced into the air introduction opening 25a and further improve the efficiency of the return flow. become. Similarly, when the first and second outer guide portions 222a2 and 222b2 of the lower cover body 222 are integrally formed with the respective return guide portions 25, the upper portion and the terminal bent portion 222a2-e of each return guide portion 25 are formed. If, 222b2-e and 222b2-e are matched, there will be no gap on the upper side of each return guide portion 25. That is, by eliminating the transport air that passes from the gap on the upper side of the return guide portion 25 to the downstream side, it is possible to increase the amount of transport air introduced into the air introduction opening 25a and further improve the efficiency of the return flow. become.

次に、上記直線搬送管2と接続可能な湾曲搬送管3について説明する。ここでは、説明を簡単にするため、湾曲搬送管3は直線搬送管2によって横方向(例えば、水平方向)に搬送されてきた紙幣PMを横方向に曲げるものとして説明するが、湾曲搬送管3は、横方向に搬送されてきた紙幣PMの搬送方向を縦方向(例えば、鉛直方向)へ曲げるために使用することができる。無論、湾曲搬送管3は、縦方向に搬送されてきた紙幣PMの搬送方向を横方向へ曲げるために使用することもできる。先ず、図6〜図8を参照して、第1構成例の湾曲搬送管3Aの構造および機能について詳述する。 Next, the curved transport pipe 3 that can be connected to the straight transport pipe 2 will be described. Here, for the sake of simplicity, the curved transport pipe 3 will be described as bending the banknote PM transported in the lateral direction (for example, the horizontal direction) by the linear transport pipe 2 in the lateral direction. Can be used to bend the transport direction of the banknote PM that has been transported in the horizontal direction in the vertical direction (for example, the vertical direction). Of course, the curved transport pipe 3 can also be used to bend the transport direction of the banknote PM that has been transported in the vertical direction in the horizontal direction. First, the structure and function of the curved transport pipe 3A of the first configuration example will be described in detail with reference to FIGS. 6 to 8.

湾曲搬送管3Aは、送風方向WDに対して右回りに180゜搬送路を変更できるもので、図6(A)における左側が上流、右側が下流となる。具体的には、内壁面311b側が凹状となる外側湾曲壁311の上流側を、直線搬送管2の下流側の第1主搬送壁211と接続し、内壁面312a側が凸状となる内側湾曲壁312の上流側を、直線搬送管2の下流側の第1主搬送壁211と接続する。また、外側湾曲壁311の下流側を、直線搬送管2の上流側の第1主搬送壁211と接続し、内側湾曲壁312の下流側を、直線搬送管2の上流側の第1主搬送壁211と接続する。このように、直線搬送管2,2と湾曲搬送管3とを接続すると、湾曲搬送管3によって送風方向WDを反転させ、搬送方向を逆向きに変えることができる。 The curved transport pipe 3A can change the transport path 180 ° clockwise with respect to the ventilation direction WD, and the left side in FIG. 6 (A) is upstream and the right side is downstream. Specifically, the upstream side of the outer curved wall 311 whose inner wall surface 311b side is concave is connected to the first main transport wall 211 on the downstream side of the linear transport pipe 2, and the inner curved wall 312a side is convex. The upstream side of 312 is connected to the first main transport wall 211 on the downstream side of the straight transport pipe 2. Further, the downstream side of the outer curved wall 311 is connected to the first main transport wall 211 on the upstream side of the straight transport pipe 2, and the downstream side of the inner curved wall 312 is the first main transport on the upstream side of the straight transport pipe 2. Connect with wall 211. When the straight transport pipes 2 and 2 and the curved transport pipe 3 are connected in this way, the blow direction WD can be reversed by the curved transport pipe 3 and the transport direction can be changed in the opposite direction.

また、外側,内側湾曲壁311,312の上下両端部に設ける端部カバーとしての上部湾曲カバー体321と下部湾曲カバー体322をそれぞれ設け、これら上部,下部湾曲カバー体321,322は、直線搬送管2の上部,下部カバー体221,222と夫々連結される。これら外側,内側湾曲壁311,312と上部,下部湾曲カバー体321,322により、圧縮空気を送り出せる機密性の高いエア湾曲通過空間33が内部に形成される。このエア湾曲通過空間33のうち、外側湾曲壁311の内壁面311bと内側湾曲壁312の内壁面312bとで挟まれた空間が湾曲主搬送路331となり、この湾曲主搬送路331を通って紙幣PMが搬送されるのである。なお、これら外側,内側湾曲壁311,312と上部,下部湾曲カバー体321,322は、個別のパーツとして形成し、組み立てても良いし、3Dプリンタによって一体成形としても良い。また、樹脂加工に限らず、厚さ1〜2〔mm〕程度の板材を加工して、外側,内側湾曲壁311,312と上部,下部湾曲カバー体321,322を作っても良い。 Further, an upper curved cover body 321 and a lower curved cover body 322 are provided as end covers provided at the upper and lower ends of the outer and inner curved walls 311, 312, respectively, and these upper and lower curved cover bodies 321 and 322 are linearly conveyed. It is connected to the upper and lower cover bodies 221 and 222 of the pipe 2, respectively. The outer and inner curved walls 311, 312 and the upper and lower curved covers 321 and 322 form a highly airtight air curved passage space 33 inside which compressed air can be sent out. Of the air curved passage space 33, the space sandwiched between the inner wall surface 311b of the outer curved wall 311 and the inner wall surface 312b of the inner curved wall 312 becomes the curved main transport path 331, and the bills pass through the curved main transport path 331. The PM is transported. The outer and inner curved walls 311, 312 and the upper and lower curved covers 321 and 322 may be formed as individual parts and assembled, or may be integrally molded by a 3D printer. Further, the present invention is not limited to resin processing, and a plate material having a thickness of about 1 to 2 [mm] may be processed to form outer and inner curved walls 311, 312 and upper and lower curved cover bodies 321 and 322.

また、外側湾曲壁311には、外壁面311aから内壁面311bに搬送用エアが通過し得る外側湾曲エア帰還孔34を搬送方向へ所要間隔毎(例えば、180゜の半円弧状である外側湾曲壁311に対して、45゜毎)に設ける。また、本構成の湾曲搬送管3Aにおいては、上部湾曲カバー体321に対応させた外側湾曲壁311の上部と、下部湾曲カバー体322に対応させた外側湾曲壁311の下部とに、それぞれ一列状に設けた。 Further, in the outer curved wall 311, an outer curved air return hole 34 through which transport air can pass from the outer wall surface 311a to the inner wall surface 311b is provided at each required interval (for example, a semicircular arc shape of 180 °) in the transport direction. It is provided every 45 ° with respect to the wall 311. Further, in the curved transport pipe 3A having this configuration, the upper portion of the outer curved wall 311 corresponding to the upper curved cover body 321 and the lower portion of the outer curved wall 311 corresponding to the lower curved cover body 322 are arranged in a row. It was provided in.

なお、湾曲角度を基準にして外側湾曲エア帰還孔34を等間隔で設けると、湾曲主搬送路331の距離が長いのに外側湾曲エア帰還孔34が足りなかったり、逆に湾曲主搬送路331の距離が短いのに外側湾曲エア帰還孔34が多すぎたりする可能性がある。そこで、搬送物である紙葉類の長手方向の長さを基準として、外側エア帰還孔34の配設数を決めるようにしても良い。例えば、日本の紙幣PMの長手方向は150〜160〔mm〕であり、3つ以上の外側湾曲エア帰還孔34が紙幣PMの側面に臨むようにするには50〔mm〕間隔で設ければ良く、4つ以上の外側湾曲エア帰還孔34が紙幣PMの側面に臨むようにするには35〜36〔mm〕間隔で設ければ良い。 If the outer curved air return holes 34 are provided at equal intervals based on the bending angle, the outer curved air return holes 34 may be insufficient even though the distance of the curved main transport path 331 is long, or conversely, the curved main transport path 331. There is a possibility that there are too many outer curved air return holes 34 even though the distance is short. Therefore, the number of arrangements of the outer air return holes 34 may be determined based on the length of the paper sheets to be conveyed in the longitudinal direction. For example, the longitudinal direction of the Japanese banknote PM is 150 to 160 [mm], and three or more outer curved air return holes 34 may be provided at intervals of 50 [mm] so as to face the side surface of the banknote PM. Well, in order for the four or more outer curved air return holes 34 to face the side surface of the banknote PM, they may be provided at intervals of 35 to 36 [mm].

各外側湾曲エア帰還孔34は、上流側開口縁341と下流側開口縁342と上側開口縁343aと下側開口縁343bとで囲まれた略四角形状である。なお、本構成例の湾曲搬送管3Aにおける外側湾曲エア帰還孔34は略四角形状としたが、前述した直線搬送管2におけるエア帰還孔24と同様、その開口形状や開口面積、配置間隔等は、特に限定されるものではなく、必要十分な帰還流を得ることができれば良い。例えば図7に示すように、上流側開口縁341から下流側開口縁342までの開口幅は約25°相当とし、20゜相当の無孔区間を挟んで隣接する外側湾曲エア帰還孔34の上流側開口縁341を配置する。かくすれば、湾曲搬送管3Aに、4つの外側湾曲エア帰還孔34を等間隔で配置することができる。 Each outer curved air return hole 34 has a substantially quadrangular shape surrounded by an upstream opening edge 341, a downstream opening edge 342, an upper opening edge 343a, and a lower opening edge 343b. Although the outer curved air return hole 34 in the curved transfer pipe 3A of this configuration example has a substantially quadrangular shape, the opening shape, opening area, arrangement interval, etc. thereof are the same as those of the air return hole 24 in the linear transfer pipe 2 described above. However, it is not particularly limited, and it is sufficient if a necessary and sufficient return flow can be obtained. For example, as shown in FIG. 7, the opening width from the upstream opening edge 341 to the downstream opening edge 342 is equivalent to about 25 °, and is upstream of the outer curved air return hole 34 adjacent to each other with a non-perforated section equivalent to 20 °. The side opening edge 341 is arranged. Thus, the four outer curved air return holes 34 can be arranged at equal intervals in the curved transport pipe 3A.

上部湾曲カバー体321は、外側湾曲壁311の内壁面311b側から外壁面311a側を経て何れかの外側湾曲エア帰還孔34へ搬送用エアを誘導可能な外側湾曲誘導空部を生じさせる構造である。なお、本構成の上部湾曲カバー体321においては、連結する直線搬送管2の上部カバー体221と形状を合わせるため、内側湾曲壁312にはエア帰還孔を設けていないものの、内側湾曲壁312側に内側湾曲誘導空部が生ずるものとした。よって、上部湾曲カバー体321には、外側湾曲壁311の内壁面311b側から外壁面311a側へ誘導するための外側湾曲分岐誘導部321a1と、内側湾曲壁312の内壁面312b側から外壁面312a側へ空気を誘導する内側湾曲分岐誘導部321b1を設けた。また、本構成例の上部湾曲カバー体321では、外側湾曲壁311の上端縁の上方空間に外側湾曲分岐誘導空部332aを生じさせる滑らかな凹曲面状の外側湾曲分岐誘導部321a1と、内側湾曲壁312の上端縁の上方空間に内側湾曲分岐誘導空部332bを生じさせる内側湾曲分岐誘導部321b1を備える。 The upper curved cover body 321 has a structure that creates an outer curved induction space capable of guiding transport air from the inner wall surface 311b side of the outer curved wall 311 to any outer curved air return hole 34 via the outer wall surface 311a side. is there. In the upper curved cover body 321 of this configuration, although the inner curved wall 312 is not provided with an air return hole in order to match the shape with the upper cover body 221 of the linear transport pipe 2 to be connected, the inner curved wall 312 side. It is assumed that an inner curved induction space is generated in. Therefore, the upper curved cover body 321 includes an outer curved branch guiding portion 321a1 for guiding from the inner wall surface 311b side of the outer curved wall 311 to the outer wall surface 311a side, and an outer wall surface 312a from the inner wall surface 312b side of the inner curved wall 312. An inner curved branch guide portion 321b1 that guides air to the side was provided. Further, in the upper curved cover body 321 of the present configuration example, the outer curved branch guide portion 321a1 having a smooth concave curved surface that causes the outer curved branch guide empty portion 332a to be generated in the space above the upper end edge of the outer curved wall 311 and the inner curved portion 321a1 An inner curved branch guiding portion 321b1 that creates an inner curved branch guiding empty portion 332b is provided in the space above the upper end edge of the wall 312.

上部湾曲カバー体321の外側湾曲分岐誘導部321a1に連なる外側湾曲外方誘導部321a2は、外側湾曲分岐誘導空部332aを介して外側湾曲壁311の外壁面311a側へ誘導された搬送用エアを外側湾曲エア帰還孔34へ誘導可能な外側湾曲帰還誘導空部333aを生じさせる。同様に、上部湾曲カバー体321の内側湾曲分岐誘導部321b1に連なる内側湾曲外方誘導部321b2は、内側湾曲分岐誘導空部332bを介して内側湾曲壁312の外壁面312a側へ搬送用エアを誘導する内側湾曲帰還誘導空部333bを生じさせる。 The outer curved outer guiding portion 321a2 connected to the outer curved branch guiding portion 321a1 of the upper curved cover body 321 sends the transport air guided to the outer wall surface 311a side of the outer curved wall 311 via the outer curved branch guiding empty portion 332a. An outer curved return guiding empty portion 333a that can be guided to the outer curved air return hole 34 is generated. Similarly, the inner curved outer guiding portion 321b2 connected to the inner curved branch guiding portion 321b1 of the upper curved cover body 321 sends air for conveying to the outer wall surface 312a side of the inner curved wall 312 via the inner curved branch guiding empty portion 332b. The inner curved feedback induction empty part 333b to induce is generated.

なお、本構成例の内側湾曲壁312にはエア帰還孔を設けていないが、仮にエア帰還孔が設けられていた場合、上部湾曲カバー体321の内側湾曲帰還誘導空部333bは、内側湾曲分岐誘導空部332bからエア帰還孔へ搬送用エアを誘導する機能を発揮できる。また、外側湾曲外方誘導部321a2の下端は、滑らかに湾曲させて外側湾曲壁311の外壁面311aに密着する終端屈曲部とし、外側湾曲エア帰還孔34の若干下方位置にて外側湾曲帰還誘導空部333aが閉塞されるようにしておく。同様に、内側湾曲外方誘導部321b2の下端も滑らかに湾曲させることで、内側湾曲壁312の外壁面312aに密着する終端屈曲部とし、外側湾曲外方誘導部321a2の終端屈曲部と対向する位置にて内側湾曲帰還誘導空部333bが閉塞されるようにしておく。 Although the inner curved wall 312 of this configuration example is not provided with an air return hole, if an air return hole is provided, the inner curved return induction empty portion 333b of the upper curved cover body 321 is provided with an inner curved branch. The function of guiding the transport air from the guidance empty portion 332b to the air return hole can be exhibited. Further, the lower end of the outer curved outer guide portion 321a2 is formed as a terminal bent portion that is smoothly curved so as to be in close contact with the outer wall surface 311a of the outer curved wall 311. The empty portion 333a is closed. Similarly, the lower end of the inner curved outer guide portion 321b2 is also smoothly curved to form a terminal bent portion that is in close contact with the outer wall surface 312a of the inner curved wall 312, and faces the terminal bent portion of the outer curved outer guide portion 321a2. The inner curved return guide empty portion 333b is closed at the position.

下部湾曲カバー体322も上部湾曲カバー体321と同様に、外側湾曲壁311の内壁面311b側から外壁面311a側を経て何れかの外側湾曲エア帰還孔34へ搬送用エアを誘導可能な外側湾曲誘導空部を生じさせる構造である。なお、本構成の下部湾曲カバー体322においては、連結する直線搬送管2の下部カバー体222と形状を合わせるため、内側湾曲壁312にはエア帰還孔を設けていないものの、内側湾曲壁312側に内側湾曲誘導空部が生ずるものとした。よって、下部湾曲カバー体322にも、外側湾曲壁311の内壁面311b側から外壁面311a側へ空気を誘導するための外側湾曲分岐誘導部322a1と、内側湾曲壁312の内壁面312b側から外壁面312a側へ空気を誘導する内側湾曲分岐誘導部322b1を設けた。また、本構成例の下部湾曲カバー体322では、外側湾曲壁311の下端縁の下方空間に外側湾曲分岐誘導空部332aを生じさせる滑らかな凹曲面状の外側湾曲分岐誘導部322a1と、内側湾曲壁312の下端縁の下方空間に内側湾曲分岐誘導空部332bを生じさせる内側湾曲分岐誘導部322b1を備える。 Similar to the upper curved cover body 321, the lower curved cover body 322 also has an outer curved surface capable of guiding transport air from the inner wall surface 311b side of the outer curved wall 311 to any outer curved air return hole 34 via the outer wall surface 311a side. It is a structure that creates an induced airspace. In the lower curved cover body 322 of this configuration, although the inner curved wall 312 is not provided with an air return hole in order to match the shape with the lower cover body 222 of the linear transport pipe 2 to be connected, the inner curved wall 312 side It is assumed that an inner curved induction space is generated in. Therefore, the lower curved cover body 322 also has an outer curved branch guide portion 322a1 for guiding air from the inner wall surface 311b side of the outer curved wall 311 to the outer wall surface 311a side, and an outer surface from the inner wall surface 312b side of the inner curved wall 312. An inner curved branch guide portion 322b1 for guiding air to the wall surface 312a side was provided. Further, in the lower curved cover body 322 of this configuration example, a smooth concave curved outer curved branch guiding portion 322a1 that causes an outer curved branch guiding empty portion 332a in the space below the lower end edge of the outer curved wall 311 and an inner curved branch guiding portion 322a1. An inner curved branch guiding portion 322b1 that creates an inner curved branch guiding empty portion 332b is provided in the space below the lower end edge of the wall 312.

下部湾曲カバー体322の外側湾曲分岐誘導部322a1に連なる外側湾曲外方誘導部322a2は、外側湾曲分岐誘導空部332aを介して外側湾曲壁311の外壁面311a側へ誘導された搬送用エアを外側湾曲エア帰還孔34へ誘導可能な外側湾曲帰還誘導空部333aを生じさせる。同様に、下部湾曲カバー体322の内側湾曲分岐誘導部322b1に連なる内側湾曲外方誘導部322b2は、内側湾曲分岐誘導空部332bを介して内側湾曲壁312の外壁面312a側へ搬送用エアを誘導する内側湾曲帰還誘導空部333bを生じさせる。 The outer curved outer guiding portion 322a2 connected to the outer curved branch guiding portion 322a1 of the lower curved cover body 322 transfers the transport air guided to the outer wall surface 311a side of the outer curved wall 311 via the outer curved branch guiding empty portion 332a. An outer curved return guiding empty portion 333a that can be guided to the outer curved air return hole 34 is generated. Similarly, the inner curved outer guiding portion 322b2 connected to the inner curved branch guiding portion 322b1 of the lower curved cover body 322 sends air for conveying to the outer wall surface 312a side of the inner curved wall 312 via the inner curved branch guiding empty portion 332b. The inner curved feedback induction empty part 333b to induce is generated.

なお、本構成例の内側湾曲壁312にはエア帰還孔を設けていないが、仮にエア帰還孔が設けられていた場合、下部湾曲カバー体322の内側湾曲帰還誘導空部333bは、内側湾曲分岐誘導空部332bからエア帰還孔へ搬送用エアを誘導する機能を発揮できるのである。また、外側湾曲外方誘導部322a2の上端は、滑らかに湾曲させて外側湾曲壁311の外壁面311aに密着する終端屈曲部とし、外側湾曲エア帰還孔34の若干上方位置にて外側湾曲帰還誘導空部333aが閉塞されるようにしておく。同様に、内側湾曲外方誘導部322b2の上端も滑らかに湾曲させることで、内側湾曲壁312の外壁面312aに密着する終端屈曲部とし、外側湾曲外方誘導部322a2の終端屈曲部と対向する位置にて内側湾曲帰還誘導空部333bが閉塞されるようにしておく。 Although the inner curved wall 312 of this configuration example is not provided with an air return hole, if an air return hole is provided, the inner curved return induction empty portion 333b of the lower curved cover body 322 is provided with an inner curved branch. The function of guiding the transport air from the induction air portion 332b to the air return hole can be exhibited. Further, the upper end of the outer curved outer guide portion 322a2 is formed as a terminal bent portion that is smoothly curved so as to be in close contact with the outer wall surface 311a of the outer curved wall 311. The empty portion 333a is closed. Similarly, the upper end of the inner curved outer guide portion 322b2 is also smoothly curved to form a terminal bent portion that is in close contact with the outer wall surface 312a of the inner curved wall 312, and faces the terminal bent portion of the outer curved outer guide portion 322a2. The inner curved return guide empty portion 333b is closed at the position.

上述したように、上部湾曲カバー体321には外側,内側湾曲分岐誘導部321a1,321b1を設け、下部湾曲カバー体322には外側,内側湾曲分岐誘導部322a1,322b1を設ければ、湾曲主搬送路331の上方左右および下方左右へ均等に搬送用エアを誘導できる。なお、上部,下部湾曲カバー体321,322に設ける分岐誘導部は左右一対の構造に限定されない。例えば、外側湾曲外方誘導部321a2と内側湾曲外方誘導部321b2、或いは外側湾曲外方誘導部322a2と内側湾曲外方誘導部322b2を滑らかな曲面で連結する一つの分岐誘導部を用いて、上部湾曲カバー体321或いは下部湾曲カバー体322を構成しても良い。また、端部湾曲カバー体として、上部湾曲カバー体321と下部湾曲カバー体322の両方を設けず、一方端のみに端部湾曲カバー体を設けておき、外側,内側湾曲壁311,312に外側湾曲エア帰還孔34をそれぞれ一列だけ設けてもよい。かくする場合、端部湾曲カバー体を設けない他方端では、外側湾曲壁311と内側湾曲壁312の間を遮蔽壁等で塞ぐことにより、搬送用エアが漏れない密閉状のエア湾曲通過空間33を形成すれば良い。 As described above, if the upper curved cover body 321 is provided with the outer and inner curved branch guide portions 321a1, 321b1 and the lower curved cover body 322 is provided with the outer and inner curved branch guide portions 322a1, 322b1, the curved main transport is provided. The transport air can be evenly guided to the upper left and right and the lower left and right of the road 331. The branch guide portions provided on the upper and lower curved cover bodies 321 and 322 are not limited to a pair of left and right structures. For example, using one branch guide that connects the outer curved outer guide 321a2 and the inner curved outer guide 321b2, or the outer curved outer guide 322a2 and the inner curved outer guide 322b2 with a smooth curved surface, The upper curved cover body 321 or the lower curved cover body 322 may be configured. Further, as the end curved cover body, both the upper curved cover body 321 and the lower curved cover body 322 are not provided, and the end curved cover body is provided only on one end, and the outer and inner curved walls 311, 312 are provided with the outer side. Only one row of curved air return holes 34 may be provided. In this case, at the other end where the end curved cover body is not provided, the space between the outer curved wall 311 and the inner curved wall 312 is closed with a shielding wall or the like so that the transport air does not leak. Should be formed.

外側湾曲エア帰還孔34を設けた外側湾曲壁311の外壁面311a側には、上部,下部湾曲カバー体321,322の外側湾曲外方誘導部321a2,322a2にて誘導された搬送用エアを外側湾曲エア帰還孔34へ導く外側湾曲帰還ガイド部35を設ける。外側湾曲帰還ガイド部35は、少なくとも、外側湾曲エア帰還孔34の上流側開口縁341に外側湾曲エア導入開口35aが位置し、外側湾曲エア帰還孔34の下流側開口縁342に向かって狭まる突出体で、その横断面は略三角形状とした(例えば、図7を参照)。外側湾曲帰還ガイド部35は、外側湾曲エア帰還孔34に臨む面が平坦な主エア誘導部351と、この主エア誘導部351の上部と外側湾曲エア帰還孔34の上側開口縁343aとを連結する上側エア誘導部352aと、主エア誘導部351の下部と下側開口縁343bとを連結する下側エア誘導部352bとを有する。 On the outer wall surface 311a side of the outer curved wall 311 provided with the outer curved air return hole 34, the transport air guided by the outer curved outer guiding portions 321a2 and 322a2 of the upper and lower curved cover bodies 321 and 322 is outside. An outer curved return guide portion 35 that leads to the curved air return hole 34 is provided. In the outer curved return guide portion 35, at least the outer curved air introduction opening 35a is located at the upstream opening edge 341 of the outer curved air return hole 34, and the protrusion narrows toward the downstream opening edge 342 of the outer curved air return hole 34. The cross section of the body was substantially triangular (see, for example, FIG. 7). The outer curved return guide portion 35 connects a main air guiding portion 351 having a flat surface facing the outer curved air return hole 34, an upper portion of the main air guiding portion 351 and an upper opening edge 343a of the outer curved air return hole 34. It has an upper air guiding portion 352a and a lower air guiding portion 352b that connects the lower portion of the main air guiding portion 351 and the lower opening edge 343b.

また、外側湾曲帰還ガイド部35における上側,下側エア誘導部352a,352bの上流側は、乱流を生じやすい角部とせず、滑らかな曲面部で構成した。これら上側,下側エア誘導部352a,352bの上流側曲面部は、外側湾曲エア帰還孔34の下流側開口縁342の上端部または下端部へ向かって徐々に収束する形状である。よって、上側エア誘導部352aの内面は上方誘導湾曲面となり、下側エア誘導部352bの内面は下方誘導湾曲面となる。 Further, the upper and lower air guiding portions 352a and 352b of the outer curved feedback guide portion 35 are not formed as corner portions where turbulent flow is likely to occur, but are formed of smooth curved surfaces. The upstream curved surfaces of the upper and lower air guiding portions 352a and 352b have a shape that gradually converges toward the upper end portion or the lower end portion of the downstream opening edge 342 of the outer curved air return hole 34. Therefore, the inner surface of the upper air guiding portion 352a becomes an upward guiding curved surface, and the inner surface of the lower air guiding portion 352b becomes a downward guiding curved surface.

上方誘導湾曲面が形成された上側エア誘導部352aと下方誘導湾曲面が形成された下側エア誘導部352bとを備える外側湾曲帰還ガイド部35を設けると、外側湾曲エア帰還孔34から湾曲主搬送路331へ戻る外側湾曲帰還流は、上下方向にも広がりやすくなる。すなわち、外側湾曲エア導入開口35aから流入した搬送用エアの上部では、外側湾曲エア帰還孔34の上流側開口縁341に向かって湾曲幅が上向きに狭くなる上側エア誘導部352aに沿って流れるため、外側湾曲エア帰還孔34を抜けると上方に広がり易い。同様に、外側湾曲エア導入開口35aから流入した搬送用エアの下部では、外側湾曲エア帰還孔34の上流側開口縁341に向かって湾曲幅が下向きに狭くなる下側エア誘導部352bに沿って流れるため、外側湾曲エア帰還孔34を抜けると下方に広がり易い。このように拡散した帰還流が紙幣PMの側面に適量吹き当たることで、紙幣PMは搬送方向へ移送されることとなる。 When the outer curved return guide portion 35 including the upper air guiding portion 352a on which the upward guiding curved surface is formed and the lower air guiding portion 352b on which the downward guiding curved surface is formed is provided, the curved main part is curved from the outer curved air return hole 34. The outer curved return flow returning to the transport path 331 tends to spread in the vertical direction as well. That is, in the upper part of the transport air flowing in from the outer curved air introduction opening 35a, it flows along the upper air guiding portion 352a whose bending width narrows upward toward the upstream opening edge 341 of the outer curved air return hole 34. After passing through the outer curved air return hole 34, it easily spreads upward. Similarly, at the lower part of the transport air flowing in from the outer curved air introduction opening 35a, along the lower air guiding portion 352b whose bending width narrows downward toward the upstream opening edge 341 of the outer curved air return hole 34. Since it flows, it easily spreads downward when it passes through the outer curved air return hole 34. When an appropriate amount of the return flow diffused in this way hits the side surface of the banknote PM, the banknote PM is transferred in the transport direction.

さらに、外側湾曲帰還ガイド部35の主エア誘導部351は、その内面の誘導方向が、外側湾曲エア帰還孔34の下流側開口縁342で、外側湾曲壁311の内壁面311bの接線方向となるようにしてある。したがって、外側湾曲帰還ガイド部35に誘導されて湾曲主搬送路331へ戻された外側湾曲帰還流は、外側湾曲壁311の内壁面311bにおける外側湾曲エア帰還孔34の下流側開口縁342にて、当該内壁面311bの接線方向となる向きに流入するよう誘導される。これにより、外側湾曲エア帰還孔34を抜けた外側湾曲帰還流は、段差なく外側湾曲壁311の内壁面311bに押しあたり、ゲルトラー渦が発生する(図8を参照)。 Further, the guiding direction of the inner surface of the main air guiding portion 351 of the outer curved return guide portion 35 is the tangential direction of the inner wall surface 311b of the outer curved wall 311 at the downstream opening edge 342 of the outer curved air return hole 34. It is done like this. Therefore, the outer curved feedback flow guided by the outer curved return guide portion 35 and returned to the curved main transport path 331 is at the downstream opening edge 342 of the outer curved air return hole 34 on the inner wall surface 311b of the outer curved wall 311. , It is guided to flow in the direction tangential to the inner wall surface 311b. As a result, the outer curved return flow that has passed through the outer curved air return hole 34 hits the inner wall surface 311b of the outer curved wall 311 without a step, and a Geltler vortex is generated (see FIG. 8).

外側湾曲壁311の内壁面311bにゲルトラー渦を発生させることにより、紙幣PMが外側湾曲壁311の内壁面311bに押し当たることを阻止し、紙幣PMを湾曲主搬送路331の左右方向中央側へ押し曲げる。これにより、紙幣PMは、要所要所で発生させたゲルトラー渦によって湾曲主搬送路331の湾曲状態に応じて曲げられてゆき、途中で外側湾曲壁311の内壁面311bに当たったり、外側湾曲エア帰還孔34を塞いだりすることなく、湾曲搬送管3Aの最下流端まで安定して搬送される。なお、紙幣PMを搬送対象として、安定搬送に十分なゲルトラー渦を生ずる帰還流を得る場合、外側湾曲帰還ガイド部35における外側湾曲エア導入開口35aの開口高さ(外側湾曲壁311の外壁面311aを基準とした左右方向の開口幅)は、4〔mm〕程度である。 By generating a Gertler vortex on the inner wall surface 311b of the outer curved wall 311 to prevent the bill PM from pressing against the inner wall surface 311b of the outer curved wall 311, the bill PM is moved to the center side in the left-right direction of the curved main transport path 331. Push and bend. As a result, the banknote PM is bent according to the curved state of the curved main transport path 331 by the Gertler vortex generated at the required point, and hits the inner wall surface 311b of the outer curved wall 311 on the way or the outer curved air. It is stably transported to the most downstream end of the curved transport pipe 3A without blocking the return hole 34. When a return flow that generates a Geltler vortex sufficient for stable transportation is obtained for the banknote PM to be conveyed, the opening height of the outer curved air introduction opening 35a in the outer curved return guide portion 35 (the outer wall surface 311a of the outer curved wall 311). The opening width in the left-right direction based on the above is about 4 [mm].

上述したように、第1構成例の湾曲搬送管3Aにおいては、外側湾曲エア帰還孔34と外側湾曲帰還ガイド部35が、直線搬送管2の直線主搬送路231から湾曲主搬送路331に搬送された紙幣PMが外側湾曲壁311の内壁面311bに押し当たることを阻止するゲルトラー渦を任意箇所で発生させる紙葉類湾曲誘導手段として機能する。なお、外側湾曲エア帰還孔34と外側湾曲帰還ガイド部35は、樹脂加工により外側湾曲壁311と一体に形成すれば、外側湾曲帰還ガイド部35の主エア誘導部351と外側湾曲壁311の内壁面311bが段差なく接線方向に連続した形状を作りやすいという利点がある。無論、別体として形成した外側湾曲帰還ガイド部用構造体を外側湾曲エア帰還孔34の縁部に沿って取り付けることにより、外側湾曲帰還ガイド部35を形成するようにしても良い。 As described above, in the curved transport pipe 3A of the first configuration example, the outer curved air return hole 34 and the outer curved return guide portion 35 are transported from the straight main transport path 231 of the straight transport pipe 2 to the curved main transport path 331. It functions as a paper leaf bending guiding means for generating a Geltler vortex at an arbitrary position to prevent the bill PM from being pressed against the inner wall surface 311b of the outer curved wall 311. If the outer curved air return hole 34 and the outer curved return guide portion 35 are integrally formed with the outer curved wall 311 by resin processing, the inside of the main air guiding portion 351 and the outer curved wall 311 of the outer curved return guide portion 35. There is an advantage that the wall surface 311b can easily form a continuous shape in the tangential direction without a step. Of course, the outer curved return guide portion 35 may be formed by attaching the outer curved return guide portion structure formed as a separate body along the edge portion of the outer curved air return hole 34.

また、本構成例の湾曲搬送管3Aは、横方向に搬送されてきた紙幣PMを横方向へ180゜曲げるために用いたが、湾曲搬送管3Aの設置角度を上下に90゜傾けることにより、横方向に搬送されてきた紙幣PMを縦方向へ180゜曲げて横方向へ戻す使い方もできる。そして、湾曲搬送管3Aの湾曲角度を180゜から90゜程度に変えると、紙幣PMの搬送方向を横から縦(或いは、縦から横)へ曲げるために用いることができる。紙幣PMの搬送方向を横から縦(或いは、縦から横)に変更する場合には、横方向から横方向へ搬送方向を変える場合よりも強い紙葉類湾曲誘導手段を備える必要がある。そこで、搬送方向を縦−横変換する湾曲搬送管3Aでは、より短い間隔でゲルトラー渦を作用させるように、外側湾曲エア帰還孔34の配設間隔を短く(例えば、35.7〔mm〕以下に)することが望ましい。さらに、搬送方向を縦−横変換する湾曲搬送管3Aでは、横方向から横方向へ搬送方向を変える場合よりも強いゲルトラー渦を発生させるように、外側湾曲エア導入開口35aの開口高さをより高く(例えば、5〔mm〕程度に)することが望ましい。以下に説明する他の構成例の湾曲搬送管も、同様にして、ゲルトラー渦を作用させる間隔や強さを調整することで、紙葉類の搬送方向を縦−横変換するために使うことが可能となる。 Further, the curved transport pipe 3A of this configuration example was used to bend the banknote PM transported in the lateral direction by 180 ° in the lateral direction, but by tilting the installation angle of the curved transport pipe 3A up and down by 90 °, It is also possible to bend the banknote PM transported in the horizontal direction by 180 ° in the vertical direction and return it in the horizontal direction. Then, when the bending angle of the curved transport pipe 3A is changed from 180 ° to about 90 °, it can be used to bend the transport direction of the banknote PM from horizontal to vertical (or vertical to horizontal). When changing the transport direction of the banknote PM from horizontal to vertical (or from vertical to horizontal), it is necessary to provide a paper leaf bending guiding means stronger than when changing the transport direction from the horizontal direction to the horizontal direction. Therefore, in the curved transport pipe 3A that changes the transport direction from vertical to horizontal, the arrangement interval of the outer curved air return holes 34 is shortened (for example, 35.7 [mm] or less) so that the Geltler vortex acts at shorter intervals. It is desirable to do). Further, in the curved transport pipe 3A that changes the transport direction from vertical to horizontal, the opening height of the outer curved air introduction opening 35a is increased so as to generate a stronger Geltler vortex than when the transport direction is changed from the horizontal direction to the horizontal direction. It is desirable to make it high (for example, about 5 [mm]). The curved transport pipes of the other configuration examples described below can also be used to change the transport direction of paper sheets vertically-horizontally by adjusting the interval and strength at which the Geltler vortex acts in the same manner. It will be possible.

次に、図9〜図11を参照して、第2構成例の湾曲搬送管3Bの構造および機能について詳述する。なお、第1構成例の湾曲搬送管3Aと同一の機能については、同一符号を付して説明を省略する。 Next, with reference to FIGS. 9 to 11, the structure and function of the curved transport pipe 3B of the second configuration example will be described in detail. The same functions as those of the curved transport pipe 3A of the first configuration example are designated by the same reference numerals, and the description thereof will be omitted.

湾曲搬送管3Bは、外側湾曲壁311の内壁面311bに、ゲルトラー渦増幅プレート36を設けたものである。ゲルトラー渦増幅プレート36は、内壁面311bからの突出量が下流に向かって徐々に増す滑らかな曲面形状のゲルトラー渦増幅面361を備えるもので、外側湾曲エア帰還孔34における下流側開口縁342より上流側に設ける。本構成例の湾曲搬送管3Bでは、ゲルトラー渦増幅プレート36の上流側縁部362aを外側湾曲エア帰還孔34の下流側開口縁342にほぼ一致させ、ゲルトラー渦増幅プレート36の下流側縁部362bを外側湾曲エア帰還孔34の上流側開口縁341にほぼ一致させる。 The curved transport pipe 3B is provided with a Geltler vortex amplification plate 36 provided on the inner wall surface 311b of the outer curved wall 311. The Geltler vortex amplification plate 36 includes a smooth curved surface-shaped Geltler vortex amplification surface 361 in which the amount of protrusion from the inner wall surface 311b gradually increases toward the downstream side, and is more than a downstream opening edge 342 in the outer curved air return hole 34. Installed on the upstream side. In the curved transport pipe 3B of this configuration example, the upstream side edge portion 362a of the Geltler vortex amplification plate 36 is substantially aligned with the downstream side opening edge 342 of the outer curved air return hole 34, and the downstream side edge portion 362b of the Geltler vortex amplification plate 36 is provided. Approximately coincides with the upstream opening edge 341 of the outer curved air return hole 34.

かくすれば、外側湾曲エア帰還孔34を抜けた外側湾曲帰還流は、外側湾曲壁311の内壁面311bよりも曲率が大きいゲルトラー渦増幅面361に押し当たり、より広範囲に強いゲルトラー渦を発生させることができる(図11を参照)。しかも、ゲルトラー渦増幅プレート36の下流側縁部362bは、外側湾曲エア帰還孔34の上流側開口縁341よりも適宜立ち上がっているので、ゲルトラー渦増幅プレート36の下流側では、湾曲主搬送路331の左右方向中央に近い位置にゲルトラー渦を生じさせることができる。したがって、紙幣PMは、一層、湾曲主搬送路331の左右方向中央寄りに押し曲げられることとなり、途中で外側湾曲壁311の内壁面311bに当たったり外側湾曲エア帰還孔34を塞いだりする危険性を一層低減できる。また、ゲルトラー渦増幅プレート36の下流側縁部362bは、外側湾曲エア帰還孔34の上流側開口縁341よりも適宜立ち上がった突出体となるので、何らかの事情でゲルトラー渦が低減あるいは消失しても、紙幣PMが外側湾曲エア帰還孔34を塞いでしまうことを防止できる。なお、紙幣PMを搬送対象として、安定搬送に十分なゲルトラー渦を生ずる帰還流を得る場合、外側湾曲帰還ガイド部35における外側湾曲エア導入開口35aの開口高さ(内側湾曲壁312の外壁面312aを基準とした左右方向の開口幅)は、2〔mm〕程度である。 Thus, the outer curved return flow that has passed through the outer curved air return hole 34 abuts against the Geltler vortex amplification surface 361 having a curvature larger than that of the inner wall surface 311b of the outer curved wall 311 and generates a stronger Geltler vortex in a wider range. Can be done (see FIG. 11). Moreover, since the downstream side edge portion 362b of the Geltler vortex amplification plate 36 appropriately rises from the upstream side opening edge 341 of the outer curved air return hole 34, the curved main transport path 331 is located downstream of the Geltler vortex amplification plate 36. A Geltler vortex can be generated near the center in the left-right direction of. Therefore, the banknote PM is further pushed and bent toward the center of the curved main transport path 331 in the left-right direction, and there is a risk of hitting the inner wall surface 311b of the outer curved wall 311 or blocking the outer curved air return hole 34 on the way. Can be further reduced. Further, since the downstream side edge portion 362b of the Geltler vortex amplification plate 36 is a projecting body that appropriately rises from the upstream side opening edge 341 of the outer curved air return hole 34, even if the Geltler vortex is reduced or disappears for some reason. , It is possible to prevent the bill PM from blocking the outer curved air return hole 34. When a return flow that generates a Geltler vortex sufficient for stable transportation is obtained for the banknote PM as a transfer target, the opening height of the outer curved air introduction opening 35a in the outer curved return guide portion 35 (the outer wall surface 312a of the inner curved wall 312). The opening width in the left-right direction with respect to the above is about 2 [mm].

第2構成例の湾曲搬送管3Bにおいては、外側湾曲エア帰還孔34と外側湾曲帰還ガイド部35とゲルトラー渦増幅プレート36が協働することで、ゲルトラー渦を任意箇所で発生させる紙葉類湾曲誘導手段を実現できる。なお、外側湾曲エア帰還孔34と外側湾曲帰還ガイド部35とゲルトラー渦増幅プレート36は、樹脂加工により外側湾曲壁311と一体に形成すれば、外側湾曲帰還ガイド部35の主エア誘導部351とゲルトラー渦増幅プレート36のゲルトラー渦増幅面361が段差なく連続した形状を作りやすいという利点がある。無論、別体として形成した外側湾曲帰還ガイド部用構造体を外側湾曲エア帰還孔34の縁部に沿って取り付けると共に、別体として形成したゲルトラー渦増幅プレート用構造体を外側湾曲壁311の内壁面311bに取り付けても良い。 In the curved transport pipe 3B of the second configuration example, the outer curved air return hole 34, the outer curved return guide portion 35, and the Geltler vortex amplification plate 36 cooperate to generate the Gertler vortex at an arbitrary position. Guidance means can be realized. If the outer curved air return hole 34, the outer curved return guide portion 35, and the Gertrad vortex amplification plate 36 are integrally formed with the outer curved wall 311 by resin processing, they can be combined with the main air guiding portion 351 of the outer curved feedback guide portion 35. There is an advantage that the Geltler vortex amplification surface 361 of the Geltler vortex amplification plate 36 can easily form a continuous shape without a step. Of course, the structure for the outer curved return guide portion formed as a separate body is attached along the edge of the outer curved air return hole 34, and the structure for the Geltler vortex amplification plate formed as a separate body is attached to the inside of the outer curved wall 311. It may be attached to the wall surface 311b.

次に、図12〜図14を参照して、第3構成例の湾曲搬送管3Cの構造および機能について詳述する。なお、第1構成例の湾曲搬送管3Aあるいは第2構成例の湾曲搬送管3Bと同一の機能については、同一符号を付して説明を省略する。 Next, with reference to FIGS. 12 to 14, the structure and function of the curved transport pipe 3C of the third configuration example will be described in detail. The same functions as the curved transport pipe 3A of the first configuration example or the curved transport pipe 3B of the second configuration example are designated by the same reference numerals and the description thereof will be omitted.

湾曲搬送管3Cでは、内側湾曲壁312に内側湾曲エア帰還孔37を上下2列に、約45゜相当の距離を隔てて等間隔に設ける。すなわち、外側湾曲壁311に設けた外側湾曲エア帰還孔34それぞれに対応させて内側湾曲エア帰還孔37を設けるのである。内側湾曲エア帰還孔37は、上流側開口縁371と下流側開口縁372と上側開口縁343aと下側開口縁343bとで囲まれた略四角形状である。なお、本構成例の湾曲搬送管3Cにおける内側湾曲エア帰還孔37は略四角形状としたが、前述した直線搬送管2におけるエア帰還孔24や外側湾曲エア帰還孔34と同様、その開口形状や開口面積、配置間隔等は、特に限定されるものではなく、必要十分な帰還流を得ることができれば良い。例えば図13に示すように、外側湾曲エア帰還孔34の上流側開口縁341を基準(0゜)として、約10゜相当の位置を上流側開口縁371とし、下流側開口縁342までの開口幅は約15°相当とする。よって、内側湾曲エア帰還孔37の下流側開口縁342は、外側湾曲エア帰還孔34の下流側開口縁342と同じ25゜相当の位置となる。また、隣接する内側湾曲エア帰還孔37は、約20゜相当の無孔区間を挟んで設ける。これにより、湾曲搬送管3Cには、4つの外側湾曲エア帰還孔34に加えて、4つの内側湾曲エア帰還孔37を等間隔で配置することができる。 In the curved transport pipe 3C, the inner curved air return holes 37 are provided in two rows above and below the inner curved wall 312 at equal intervals with a distance equivalent to about 45 °. That is, the inner curved air return hole 37 is provided corresponding to each of the outer curved air return holes 34 provided in the outer curved wall 311. The inner curved air return hole 37 has a substantially quadrangular shape surrounded by an upstream opening edge 371, a downstream opening edge 372, an upper opening edge 343a, and a lower opening edge 343b. The inner curved air return hole 37 in the curved transfer pipe 3C of this configuration example has a substantially quadrangular shape, but the opening shape and the opening shape thereof are the same as those of the air return hole 24 and the outer curved air return hole 34 in the linear transfer pipe 2 described above. The opening area, arrangement interval, and the like are not particularly limited, and it is sufficient that a necessary and sufficient feedback flow can be obtained. For example, as shown in FIG. 13, with the upstream side opening edge 341 of the outer curved air return hole 34 as a reference (0 °), the position corresponding to about 10 ° is set as the upstream side opening edge 371, and the opening up to the downstream side opening edge 342. The width is equivalent to about 15 °. Therefore, the downstream opening edge 342 of the inner curved air return hole 37 is at a position corresponding to 25 °, which is the same as the downstream opening edge 342 of the outer curved air return hole 34. Further, the adjacent inner curved air return hole 37 is provided so as to sandwich a non-perforated section corresponding to about 20 °. As a result, in addition to the four outer curved air return holes 34, the four inner curved air return holes 37 can be arranged at equal intervals in the curved transfer pipe 3C.

内側湾曲エア帰還孔37を設けた内側湾曲壁312の外壁面312a側には、上部,下部湾曲カバー体321,322の内側湾曲帰還誘導空部333bに誘導された搬送用エアを内側湾曲エア帰還孔37へ導く内側湾曲帰還ガイド部38を設ける。内側湾曲帰還ガイド部38は、少なくとも、内側湾曲エア帰還孔37の上流側開口縁371に内側湾曲エア導入開口38aが位置し、内側湾曲エア帰還孔37の下流側開口縁372に向かって狭まる突出体で、その横断面は略三角形状とした(例えば、図13を参照)。内側湾曲帰還ガイド部38は、内側湾曲エア帰還孔37に臨む面が平坦な主エア誘導部381と、この主エア誘導部381の上部と内側湾曲エア帰還孔37の上側開口縁373aとを連結する上側エア誘導部382aと、主エア誘導部381の下部と下側開口縁373bとを連結する下側エア誘導部382bとを有する。 On the outer wall surface 312a side of the inner curved wall 312 provided with the inner curved air return hole 37, the transport air guided to the inner curved return induction empty portion 333b of the upper and lower curved cover bodies 321 and 322 is returned to the inner curved air. An inner curved return guide portion 38 that leads to the hole 37 is provided. In the inner curved return guide portion 38, at least the inner curved air introduction opening 38a is located at the upstream opening edge 371 of the inner curved air return hole 37, and the protrusion narrows toward the downstream opening edge 372 of the inner curved air return hole 37. The body has a substantially triangular cross section (see, for example, FIG. 13). The inner curved return guide portion 38 connects the main air guiding portion 381 having a flat surface facing the inner curved air return hole 37, the upper portion of the main air guiding portion 381, and the upper opening edge 373a of the inner curved air return hole 37. It has an upper air guiding portion 382a and a lower air guiding portion 382b that connects the lower portion of the main air guiding portion 381 and the lower opening edge 373b.

また、内側湾曲帰還ガイド部38における上側,下側エア誘導部382a,382bの上流側は、乱流を生じやすい角部とせず、滑らかな曲面部で構成した。これら上側,下側エア誘導部382a,382bの上流側曲面部は、内側湾曲エア帰還孔37の下流側開口縁372の上端部または下端部へ向かって徐々に収束する形状である。よって、上側エア誘導部382aの内面は上方誘導湾曲面となり、下側エア誘導部382bの内面は下方誘導湾曲面となる。 Further, the upper and lower air guiding portions 382a and 382b of the inner curved feedback guide portion 38 are formed of smooth curved surfaces instead of corner portions where turbulence is likely to occur. The upstream curved surfaces of the upper and lower air guiding portions 382a and 382b have a shape that gradually converges toward the upper end portion or the lower end portion of the downstream opening edge 372 of the inner curved air return hole 37. Therefore, the inner surface of the upper air guiding portion 382a becomes an upward guiding curved surface, and the inner surface of the lower air guiding portion 382b becomes a downward guiding curved surface.

上方誘導湾曲面が形成された上側エア誘導部382aと下方誘導湾曲面が形成された下側エア誘導部382bとを備える内側湾曲帰還ガイド部38を設けると、内側湾曲エア帰還孔37から湾曲主搬送路331へ戻る内側湾曲帰還流は、上下方向にも広がりやすくなる。すなわち、内側湾曲エア導入開口38aから流入した搬送用エアの上部では、内側湾曲エア帰還孔37の上流側開口縁371に向かって湾曲幅が上向きに狭くなる上側エア誘導部382aに沿って流れるため、内側湾曲エア帰還孔37を抜けると上方に広がり易い。同様に、内側湾曲エア導入開口38aから流入した搬送用エアの下部では、内側湾曲エア帰還孔37の上流側開口縁371に向かって湾曲幅が下向きに狭くなる下側エア誘導部382bに沿って流れるため、内側湾曲エア帰還孔37を抜けると下方に広がり易い。 When the inner curved return guide portion 38 including the upper air guiding portion 382a on which the upward guiding curved surface is formed and the lower air guiding portion 382b on which the downward guiding curved surface is formed is provided, the curved main part is curved from the inner curved air return hole 37. The inner curved return flow returning to the transport path 331 tends to spread in the vertical direction as well. That is, in the upper part of the transport air flowing in from the inner curved air introduction opening 38a, it flows along the upper air guiding portion 382a whose bending width narrows upward toward the upstream opening edge 371 of the inner curved air return hole 37. After passing through the inner curved air return hole 37, it easily spreads upward. Similarly, at the lower part of the transport air flowing in from the inner curved air introduction opening 38a, along the lower air guiding portion 382b whose bending width narrows downward toward the upstream opening edge 371 of the inner curved air return hole 37. Since it flows, it tends to spread downward when passing through the inner curved air return hole 37.

さらに、内側湾曲帰還ガイド部38の主エア誘導部381は、その内面の誘導方向が、外側湾曲壁311の内壁面311b(図13においては、ゲルトラー渦増幅プレート36のゲルトラー渦増幅面361)に対して所要の角度範囲(例えば、10゜〜45゜)となるように調整する。かくすれば、内側湾曲帰還ガイド部38に誘導されて内側湾曲エア帰還孔37を抜けた内側湾曲帰還流は、ゲルトラー渦を生じさせ得る角度で外側湾曲壁311の内壁面311b(あるいは、ゲルトラー渦増幅プレート36のゲルトラー渦増幅面361)に押し当たる。これにより、外側湾曲エア帰還孔34を抜けた外側湾曲帰還流に加えて内側湾曲エア帰還孔37を抜けた内側湾曲帰還流が外側湾曲壁311の内壁面311b(あるいは、ゲルトラー渦増幅プレート36のゲルトラー渦増幅面361)に押し当たり、より広範囲に強いゲルトラー渦を発生させることができる(図14を参照)。 Further, the main air guiding portion 381 of the inner curved feedback guide portion 38 has an inner surface whose guiding direction is the inner wall surface 311b of the outer curved wall 311 (in FIG. 13, the Geltler vortex amplification surface 361 of the Geltler vortex amplification plate 36). On the other hand, the angle is adjusted so as to be within the required angle range (for example, 10 ° to 45 °). Thus, the inner curved return flow, which is guided by the inner curved return guide portion 38 and passes through the inner curved air return hole 37, has an inner wall surface 311b (or a Geltler vortex) of the outer curved wall 311 at an angle capable of generating a Geltler vortex. It abuts against the Geltler vortex amplification surface 361) of the amplification plate 36. As a result, in addition to the outer curved return flow that has passed through the outer curved air return hole 34, the inner curved return flow that has passed through the inner curved air return hole 37 is the inner wall surface 311b (or the Geltler vortex amplification plate 36) of the outer curved wall 311. It can hit the Geltler vortex amplification surface 361) to generate a stronger Geltler vortex over a wider area (see FIG. 14).

第3構成例の湾曲搬送管3Cにおいては、内側湾曲エア帰還孔37と内側湾曲帰還ガイド部38とによって、直線搬送管2の直線主搬送路231から湾曲主搬送路331に搬送された紙幣PMが外側湾曲壁311の内壁面311bに押し当たることを阻止するゲルトラー渦を任意箇所で発生させる紙葉類湾曲誘導手段を構成できる。そして、前述した外側湾曲エア帰還孔34と外側湾曲帰還ガイド部35で構成した紙葉類湾曲誘導手段やゲルトラー渦増幅プレート36と組み合わせることにより、湾曲主搬送路331内で紙幣PMを一層安定的に搬送することが可能となる。 In the curved transport pipe 3C of the third configuration example, the bill PM transported from the straight main transport path 231 of the straight transport pipe 2 to the curved main transport path 331 by the inner curved air return hole 37 and the inner curved return guide portion 38. It is possible to construct a paper banknote bending guiding means for generating a Geltler vortex at an arbitrary position, which prevents the paper from hitting the inner wall surface 311b of the outer curved wall 311. Then, by combining with the paper leaf bending guiding means composed of the outer curved air return hole 34 and the outer curved return guide portion 35 and the Geltler vortex amplification plate 36 described above, the banknote PM is more stable in the curved main transport path 331. Can be transported to.

なお、内側湾曲エア帰還孔37と内側湾曲帰還ガイド部38によって湾曲主搬送路331内へ流入させる内側湾曲帰還流は、ゲルトラー渦を発生させ易い角度で外側湾曲壁311に当てることができるので、外側湾曲エア帰還孔34と外側湾曲帰還ガイド部35で生じさせる外側湾曲帰還流ほどの風量・風速は必要ない。よって、内側湾曲エア帰還孔37の前後幅(上流側開口縁371から下流側開口縁342までの開口幅)は外側湾曲エア帰還孔34の前後幅よりも狭くて構わない。また、内側湾曲帰還ガイド部38における内側湾曲エア導入開口38aの開口高さ(内側湾曲壁312の外壁面312aを基準とした左右方向の開口幅)も、外側湾曲帰還ガイド部35における外側湾曲エア導入開口35aの開口高さの半分程度(2〔mm〕程度)で構わない。また、内側湾曲帰還流が紙幣PMに当たると、搬送方向への推進力を与えることができるものの、紙幣PMを外側湾曲壁311へ押しつける方向の力としても作用するため、この力によって紙幣PMを減速させてしまい、紙幣PMの安定搬送を阻害する危険性もある。よって、内側湾曲帰還流を強くし過ぎないということは、紙幣PMを減速させることなく安定して搬送することにも有用である。 The inner curved return flow flowing into the curved main transport path 331 by the inner curved air return hole 37 and the inner curved return guide portion 38 can be applied to the outer curved wall 311 at an angle at which a Geltrar vortex is likely to be generated. The air volume and speed are not as high as those generated by the outer curved air return hole 34 and the outer curved return guide portion 35. Therefore, the front-rear width of the inner curved air return hole 37 (the opening width from the upstream opening edge 371 to the downstream opening edge 342) may be narrower than the front-rear width of the outer curved air return hole 34. Further, the opening height of the inner curved air introduction opening 38a in the inner curved return guide portion 38 (the opening width in the left-right direction with respect to the outer wall surface 312a of the inner curved wall 312) is also the outer curved air in the outer curved return guide portion 35. It may be about half the opening height of the introduction opening 35a (about 2 [mm]). Further, when the inner curved return flow hits the bill PM, a propulsive force can be given in the transport direction, but it also acts as a force in the direction of pressing the bill PM against the outer curved wall 311. Therefore, this force decelerates the bill PM. There is also a risk of hindering the stable transportation of the banknote PM. Therefore, not making the inner curved feedback flow too strong is also useful for stably transporting the banknote PM without decelerating it.

内側湾曲エア帰還孔37と内側湾曲帰還ガイド部38は、樹脂加工により内側湾曲壁312と一体に形成すれば、内側湾曲帰還ガイド部38の主エア誘導部381による帰還流誘導角度を高精度に作りやすいという利点がある。無論、別体として形成した内側湾曲帰還ガイド部用構造体を内湾曲エア帰還孔37の縁部に沿って取り付けることにより、内側湾曲帰還ガイド部38を形成するようにしても良い。 If the inner curved air return hole 37 and the inner curved return guide portion 38 are integrally formed with the inner curved wall 312 by resin processing, the return flow guidance angle by the main air guiding portion 381 of the inner curved return guide portion 38 can be made highly accurate. It has the advantage of being easy to make. Of course, the inner curved return guide portion 38 may be formed by attaching the inner curved return guide portion structure formed as a separate body along the edge portion of the inner curved air return hole 37.

次に、図15〜図17を参照して、第4構成例の湾曲搬送管3Dの構造および機能について詳述する。なお、第1〜第3構成例の湾曲搬送管3A〜3Cと同一の機能については、同一符号を付して説明を省略する。 Next, with reference to FIGS. 15 to 17, the structure and function of the curved transport pipe 3D of the fourth configuration example will be described in detail. The same functions as the curved transport pipes 3A to 3C of the first to third configuration examples are designated by the same reference numerals, and the description thereof will be omitted.

第3構成例の湾曲搬送管3Dにおいては、紙幣PMが外側湾曲壁311の内壁面311bに密着することを防止する凸状の外側湾曲リブ8を外側湾曲壁311の内壁面311bに設けた。また、内側湾曲壁312の内壁面312bには、紙幣PMの後端部が内側湾曲壁312の内壁面312bに接触することを防止する凸状の内側湾曲リブ9を設けた。 In the curved transport pipe 3D of the third configuration example, the convex outer curved rib 8 for preventing the bill PM from coming into close contact with the inner wall surface 311b of the outer curved wall 311 is provided on the inner wall surface 311b of the outer curved wall 311. Further, the inner wall surface 312b of the inner curved wall 312 is provided with a convex inner curved rib 9 for preventing the rear end portion of the bill PM from coming into contact with the inner wall surface 312b of the inner curved wall 312.

外側湾曲リブ8は、外側湾曲壁311の内壁面311bから湾曲主搬送路331内に一定量突出した凹曲面状の密着防止面81と、密着防止面81の上縁から内壁面311bに至る湾曲上面部82と、密着防止面81の下縁から内壁面311bに至る湾曲下面部83とを備える。密着防止面81の突出高さは、例えば、ゲルトラー渦増幅プレート36における下流側縁部362bの突出高さと同じにする。かくすれば、外側湾曲リブ8とゲルトラー渦増幅プレート36との間に段差が生じないので、紙幣PMが段差に引っかかる危険性を無くすことができる。 The outer curved rib 8 has a concave curved contact prevention surface 81 protruding from the inner wall surface 311b of the outer curved wall 311 by a certain amount into the curved main transport path 331, and a curve extending from the upper edge of the adhesion prevention surface 81 to the inner wall surface 311b. An upper surface portion 82 and a curved lower surface portion 83 extending from the lower edge of the adhesion prevention surface 81 to the inner wall surface 311b are provided. The protruding height of the contact prevention surface 81 is made the same as, for example, the protruding height of the downstream side edge portion 362b of the Geltler vortex amplification plate 36. In this way, since a step is not generated between the outer curved rib 8 and the Geltler vortex amplification plate 36, the risk of the banknote PM being caught in the step can be eliminated.

この外側湾曲リブ8は、湾曲搬送管3Dの流入開口に上流側端部84aを位置させ、湾曲搬送管3Dの流出開口に下流側端部84bを位置させることで、湾曲搬送管3Dの流入開口から流出開口まで途切れずに連続した形状である。したがって、外側湾曲エア帰還孔34でも外側湾曲リブ8が途切れないように、外側湾曲エア帰還孔34の上流側開口縁341から下流側開口縁342へ跨がるように配置する。このとき、外側湾曲エア帰還孔34の上下方向中央付近に外側湾曲リブ8を配置することが望ましい。外側湾曲エア帰還孔34の上部側を塞ぐように外側湾曲リブ8を設けると、外側湾曲帰還流が上方に広がることを阻止してしまい、外側湾曲エア帰還孔34の下部側を塞ぐように外側湾曲リブ8を設けると、外側湾曲帰還流が下方に広がることを阻止してしまうからである。 The outer curved rib 8 has an upstream end portion 84a located at the inflow opening of the curved transport pipe 3D and a downstream end portion 84b located at the outflow opening of the curved transport pipe 3D. It has a continuous shape from to the outflow opening without interruption. Therefore, the outer curved rib 8 is arranged so as to straddle from the upstream opening edge 341 to the downstream opening edge 342 of the outer curved air return hole 34 so that the outer curved rib 8 is not interrupted even in the outer curved air return hole 34. At this time, it is desirable to arrange the outer curved rib 8 near the center in the vertical direction of the outer curved air return hole 34. If the outer curved rib 8 is provided so as to block the upper side of the outer curved air return hole 34, the outer curved return flow is prevented from spreading upward, and the outer side is blocked so as to block the lower side of the outer curved air return hole 34. This is because the provision of the curved rib 8 prevents the outer curved return flow from spreading downward.

上記のような外側湾曲リブ8を設けておけば、前述した紙葉類湾曲誘導手段等が有効に機能せず、外側湾曲壁311の内壁面311bに十分なゲルトラー渦を発生させることができなくても、紙幣PMが外側湾曲壁311の内壁面311bに密着することを防止できる(図17を参照)。なお、外側湾曲リブ8は、単一の部材で形成しても良いし、外側湾曲エア帰還孔34の配設サイクル毎(湾曲搬送管3Dの45゜相当の範囲毎)の短尺部材に分割しておき、隣接する外側湾曲リブ8の上流側端部84aと下流側端部84bを連結することで、湾曲搬送管3Dの流入開口から流出開口まで連続させても良い。また、樹脂加工により外側湾曲壁311と一体、ゲルトラー渦増幅プレート36と一体、あるいは外側湾曲壁311およびゲルトラー渦増幅プレート36と一体に形成しても良い。 If the outer curved rib 8 is provided as described above, the above-mentioned paper banknote bending guiding means and the like do not function effectively, and a sufficient Geltler vortex cannot be generated on the inner wall surface 311b of the outer curved wall 311. However, it is possible to prevent the bill PM from coming into close contact with the inner wall surface 311b of the outer curved wall 311 (see FIG. 17). The outer curved rib 8 may be formed of a single member, or may be divided into short members for each arrangement cycle of the outer curved air return hole 34 (for each range corresponding to 45 ° of the curved transport pipe 3D). By connecting the upstream end 84a and the downstream end 84b of the adjacent outer curved ribs 8, the curved transport pipe 3D may be made continuous from the inflow opening to the outflow opening. Further, it may be integrally formed with the outer curved wall 311 and the Geltler vortex amplification plate 36 by resin processing, or integrally with the outer curved wall 311 and the Geltler vortex amplification plate 36.

内側湾曲リブ9は、内側湾曲壁312の内壁面312bから湾曲主搬送路331内に突出した凸曲面状の接触防止面91と、接触防止面91の上縁から内壁面312bに至る湾曲上面部92と、接触防止面91の下縁から内壁面312bに至る湾曲下面部93とを備える。この内側湾曲リブ9は、外側湾曲エア帰還孔34の配設サイクル毎(湾曲搬送管3Dの45゜相当の範囲毎)に設けられ、接触防止面91は、内側湾曲リブ9の上流側端部94aから下流側端部94bに向かって徐々に突出量が増加してゆく。すなわち、内側湾曲リブ9の上流側端部94aの突出量は限りなく0に近く(理想的には、内側湾曲壁312の内壁面312bに等しく)、下流側端部94bの突出量が最大(概ね、外側湾曲リブ8の突出量と同等)となる。 The inner curved rib 9 has a convex curved contact prevention surface 91 protruding from the inner wall surface 312b of the inner curved wall 312 into the curved main transport path 331, and a curved upper surface portion extending from the upper edge of the contact prevention surface 91 to the inner wall surface 312b. The 92 is provided with a curved lower surface portion 93 extending from the lower edge of the contact prevention surface 91 to the inner wall surface 312b. The inner curved rib 9 is provided for each arrangement cycle of the outer curved air return hole 34 (every range corresponding to 45 ° of the curved transport pipe 3D), and the contact prevention surface 91 is an upstream end portion of the inner curved rib 9. The amount of protrusion gradually increases from 94a toward the downstream end 94b. That is, the amount of protrusion of the upstream end 94a of the inner curved rib 9 is infinitely close to 0 (ideally equal to the inner wall surface 312b of the inner curved wall 312), and the amount of protrusion of the downstream end 94b is maximum (ideally equal to the inner wall 312b of the inner curved wall 312). Approximately the same as the amount of protrusion of the outer curved rib 8).

この内側湾曲リブ9は、外側湾曲エア帰還孔34の配設サイクル内(湾曲搬送管3Dの45゜相当の範囲内)で途切れずに連続した形状である。したがって、内側湾曲エア帰還孔37でも内側湾曲リブ9が途切れないように、内側湾曲エア帰還孔37の上流側開口縁371から下流側開口縁372へ跨がるように配置する。このとき、内側湾曲エア帰還孔37の上下方向中央付近に内側湾曲リブ9を配置することが望ましい。内側湾曲エア帰還孔37の上部側を塞ぐように内側湾曲リブ9を設けると、内側湾曲帰還流が上方に広がることを阻止してしまい、内側湾曲エア帰還孔37の下部側を塞ぐように内側湾曲リブ9を設けると、内側湾曲帰還流が下方に広がることを阻止してしまうからである。 The inner curved rib 9 has an uninterrupted and continuous shape within the arrangement cycle of the outer curved air return hole 34 (within a range corresponding to 45 ° of the curved transport pipe 3D). Therefore, the inner curved rib 9 is arranged so as to straddle the upstream opening edge 371 of the inner curved air return hole 37 to the downstream opening edge 372 so that the inner curved rib 9 is not interrupted even in the inner curved air return hole 37. At this time, it is desirable to arrange the inner curved rib 9 near the center of the inner curved air return hole 37 in the vertical direction. If the inner curved rib 9 is provided so as to block the upper side of the inner curved air return hole 37, the inner curved return flow is prevented from spreading upward, and the inner curved air return hole 37 is closed so as to block the lower side. This is because the provision of the curved rib 9 prevents the inner curved return flow from spreading downward.

上記のような内側湾曲リブ9を設けておけば、何らかの理由で、紙幣PMの後端部が湾曲主搬送路331の左右方向中央側へ寄せられず、内側湾曲壁312の内壁面312bに近づいた場合でも、内側湾曲壁312の内壁面312bに接触することを防止できる(図17を参照)。仮に、紙幣PMの後端部が内側湾曲壁312の内壁面312bに押し当たると、面接触か線接触となるのに対して、紙幣PMの後端部が内側湾曲リブ9押し当たっても、線接触か点接触程度にとどめられるので、接触抵抗による搬送速度の減衰を抑制できるという効果もある。また、内側湾曲リブ9は上流側端部94aから下流側端部94bに向かって徐々に突出量が大きくなるので、内側湾曲リブ9に接触した紙幣PMの後端部を、湾曲主搬送路331の左右方向中央側へ押し戻す効果も期待できる。なお、別体として形成した内側湾曲リブ9を内側湾曲壁312の内壁面312bに取り付けても良いし、樹脂加工により内側湾曲壁312と内側湾曲リブ9を一体に形成しても良い。 If the inner curved rib 9 as described above is provided, for some reason, the rear end portion of the bill PM cannot be moved toward the center side in the left-right direction of the curved main transport path 331, and approaches the inner wall surface 312b of the inner curved wall 312. Even in this case, it is possible to prevent the inner wall surface 312b of the inner curved wall 312 from coming into contact with the inner wall surface 312b (see FIG. 17). If the rear end of the banknote PM is pressed against the inner wall surface 312b of the inner curved wall 312, surface contact or line contact occurs, whereas even if the rear end of the banknote PM is pressed against the inner curved rib 9 Since the contact is limited to line contact or point contact, there is also an effect that the attenuation of the transport speed due to the contact resistance can be suppressed. Further, since the amount of protrusion of the inner curved rib 9 gradually increases from the upstream side end portion 94a toward the downstream side end portion 94b, the rear end portion of the bill PM in contact with the inner curved rib 9 is used as the curved main transport path 331. You can also expect the effect of pushing back to the center side in the left-right direction. The inner curved rib 9 formed as a separate body may be attached to the inner wall surface 312b of the inner curved wall 312, or the inner curved wall 312 and the inner curved rib 9 may be integrally formed by resin processing.

上述した第1〜第4構成例の湾曲搬送管3A〜3Dは、搬送方向を180゜変えるものであったが、任意の角度だけ搬送方向を変えるように湾曲搬送管を構成しても良い。あるいは、所要角度だけ湾曲搬送路を変える湾曲搬送ユニットを複数組み合わせることで、搬送方向を所望の角度まで変更したり、搬送位置をずらしたりすることもでき、汎用性の高いものとなる。 The curved transport pipes 3A to 3D of the first to fourth configuration examples described above change the transport direction by 180 °, but the curved transport pipe may be configured so as to change the transport direction by an arbitrary angle. Alternatively, by combining a plurality of curved transport units that change the curved transport path by a required angle, the transport direction can be changed to a desired angle or the transport position can be shifted, resulting in high versatility.

図18に示すのは、右湾曲搬送ユニット3RUであり、前述した第4構成例の湾曲搬送管3Dを外側湾曲エア帰還孔34の配設サイクル内(湾曲搬送管3Dの45゜相当の範囲内)で分割した構造である。したがって、右湾曲搬送ユニット3RUには、外側湾曲エア帰還孔34および外側湾曲帰還ガイド部35、ゲルトラー渦増幅プレート36、内側湾曲エア帰還孔37および内側湾曲帰還ガイド部38、外側湾曲リブ8、内側湾曲リブ9を全て設けることができる。また、右湾曲搬送ユニット3RUは、上流側に送風方向WDで流入した搬送用エアを、下流側で右へ45゜曲げて出力できるものである。 FIG. 18 shows the right curved transport unit 3RU, in which the curved transport pipe 3D of the fourth configuration example described above is placed in the arrangement cycle of the outer curved air return hole 34 (within the range corresponding to 45 ° of the curved transport pipe 3D). ) Is the structure divided by. Therefore, in the right curved transport unit 3RU, the outer curved air return hole 34 and the outer curved return guide portion 35, the Geltrar vortex amplification plate 36, the inner curved air return hole 37 and the inner curved return guide portion 38, the outer curved rib 8, and the inner side are provided. All curved ribs 9 can be provided. Further, the right-curved transport unit 3RU can output the transport air that has flowed into the upstream side in the blowing direction WD by bending it 45 ° to the right on the downstream side.

一方、図19に示すのは、左湾曲搬送ユニット3LUであり、右湾曲搬送ユニット3RUを左右判定した構造である。よって、左湾曲搬送ユニット3LUは、上流側に送風方向WDで流入した搬送用エアを、下流側で左へ45゜曲げて出力できるものである。無論、左湾曲搬送ユニット3LUにも、外側湾曲エア帰還孔34および外側湾曲帰還ガイド部35、ゲルトラー渦増幅プレート36、内側湾曲エア帰還孔37および内側湾曲帰還ガイド部38、外側湾曲リブ8、内側湾曲リブ9を全て設けることができる。 On the other hand, what is shown in FIG. 19 is a left-curved transport unit 3LU, which has a structure in which the right-curved transport unit 3RU is left-right determined. Therefore, the left-curved transport unit 3LU can output the transport air that has flowed into the upstream side in the blowing direction WD by bending it 45 ° to the left on the downstream side. Of course, the left curved transport unit 3LU also has an outer curved air return hole 34 and an outer curved return guide portion 35, a Geltrar vortex amplification plate 36, an inner curved air return hole 37 and an inner curved return guide portion 38, an outer curved rib 8, and an inner surface. All curved ribs 9 can be provided.

右湾曲搬送ユニット3RUと左湾曲搬送ユニット3LUは、上流側と下流側を密に連結可能な取付機構(図示省略)を備えており、右湾曲搬送ユニット3RU同士、左湾曲搬送ユニット3LU同士、右湾曲搬送ユニット3RUと左湾曲搬送ユニット3LUを相互に取り付けられる。無論、前述した直線搬送管2にも同様の取付機構を設けておき、直線搬送管2と右湾曲搬送ユニット3RUあるいは左湾曲搬送ユニット3LUを相互に取り付け可能としても良い。なお、前述した直線搬送管2は上下方向に対象な構造であるから、湾曲搬送管3A〜3Dも上下方向に対象な構造とした。したがって、湾曲搬送管3Dを4等分した構造の右湾曲搬送ユニット3RUも上下方向に対象な構造であり、右湾曲搬送ユニット3RUを上下反転させると、左湾曲搬送ユニット3LUと同じ形状になる。同様に、左湾曲搬送ユニット3LUを上下反転させると、右湾曲搬送ユニット3RUと同じ形状になる。すなわち、右湾曲搬送ユニット3RUだけ、あるいは左湾曲搬送ユニット3LUだけで、湾曲主搬送路331の右湾曲と左湾曲を行うことも可能である。 The right-curved transfer unit 3RU and the left-curved transfer unit 3LU are provided with a mounting mechanism (not shown) that can tightly connect the upstream side and the downstream side, and the right-curved transfer unit 3RUs, the left-curved transfer units 3LUs, and the right. The curved transfer unit 3RU and the left curved transfer unit 3LU can be attached to each other. Of course, the linear transport pipe 2 described above may be provided with the same mounting mechanism so that the straight transport pipe 2 and the right-curved transport unit 3RU or the left-curved transport unit 3LU can be mounted on each other. Since the linear transport pipe 2 described above has a structure symmetrical in the vertical direction, the curved transport pipes 3A to 3D also have a structure symmetrical in the vertical direction. Therefore, the right-curved transport unit 3RU having a structure in which the curved transport pipe 3D is divided into four equal parts also has a structure that is symmetrical in the vertical direction, and when the right-curved transport unit 3RU is turned upside down, it has the same shape as the left-curved transport unit 3LU. Similarly, when the left curved transport unit 3LU is turned upside down, the shape becomes the same as that of the right curved transport unit 3RU. That is, it is also possible to perform right-curving and left-curving of the curved main transport path 331 with only the right-curved transport unit 3RU or the left-curved transport unit 3LU.

これら右湾曲搬送ユニット3RUと左湾曲搬送ユニット3LUを用いれば、搬送方向を左右へ45゜、90゜、135゜、180゜変更できる。また、右湾曲搬送ユニット3RUと左湾曲搬送ユニット3LUを用いれば、搬送方向を変更するだけでなく、搬送方向を変えずに搬送位置をずらすことも可能である。図20に、右湾曲搬送ユニット3RUと左湾曲搬送ユニット3LUを用いて構成した湾曲搬送管3をいくつか例示する。 By using these right-curved transport unit 3RU and left-curved transport unit 3LU, the transport direction can be changed to the left and right by 45 °, 90 °, 135 °, and 180 °. Further, by using the right-curved transport unit 3RU and the left-curved transport unit 3LU, it is possible not only to change the transport direction but also to shift the transport position without changing the transport direction. FIG. 20 illustrates some curved transport pipes 3 configured by using the right curved transport unit 3RU and the left curved transport unit 3LU.

図20(A)示す第5構成例の湾曲搬送管3Eは、上流側に右湾曲搬送ユニット3RUを、下流側に左湾曲搬送ユニット3LUを連結して構成したものである。湾曲搬送管3Eは、右湾曲搬送ユニット3RUによって右へ45゜送風方向WDが傾いた後、左湾曲搬送ユニット3LUによって左へ45゜送風方向WDが戻されるので、紙幣PMの搬送方向は変わらない。しかしながら、湾曲搬送管3Eの上流側と下流側では、搬送位置が右に変位距離Dだけずれることとなる。紙幣搬送装置1の搬送路を一直線に形成できず、途中で左右にずれる小さな段差があるような場合に、この湾曲搬送管3Eが有用である。 The curved transport pipe 3E of the fifth configuration example shown in FIG. 20 (A) is configured by connecting the right curved transport unit 3RU on the upstream side and the left curved transport unit 3LU on the downstream side. In the curved transport pipe 3E, after the right curved transport unit 3RU tilts the WD in the blowing direction WD to the right by 45 °, the curved transport unit 3LU returns the WD in the blowing direction WD to the left by 45 °, so that the transport direction of the banknote PM does not change. .. However, on the upstream side and the downstream side of the curved transfer pipe 3E, the transfer position is shifted to the right by the displacement distance D. This curved transport pipe 3E is useful when the transport path of the bill transport device 1 cannot be formed in a straight line and there is a small step that shifts to the left or right on the way.

図20(B)に示す第6構成例の湾曲搬送管3Fは、上流側の右湾曲搬送ユニット3RUと、下流側の左湾曲搬送ユニット3LUとの間に、比較的短尺な直線搬送管2′を連結して構成したものである。この湾曲搬送管3Fは、上述した湾曲搬送管3Eと同様に、紙幣PMの搬送方向が変わらず、搬送位置が右にずれる。しかしながら、湾曲搬送管3Fは、右湾曲搬送ユニット3RUと左湾曲搬送ユニット3LUの間に直線搬送管2′が連結されているので、搬送位置のずれる変位距離D′は、湾曲搬送管3Eの変位距離Dよりも大きくなる。しかも、湾曲搬送管3Fの変位距離D′は、直線搬送管2′の長さによって微調整することもできるので、湾曲搬送管3Eでは対応できないぐらいの段差があるような場合に、この湾曲搬送管3Fが有用である。 The curved transport pipe 3F of the sixth configuration example shown in FIG. 20B is a relatively short linear transport pipe 2'between the right curved transport unit 3RU on the upstream side and the left curved transport unit 3LU on the downstream side. Is concatenated. Similar to the curved transport pipe 3E described above, the curved transport pipe 3F does not change the transport direction of the banknote PM, and the transport position shifts to the right. However, in the curved transport pipe 3F, since the linear transport pipe 2'is connected between the right curved transport unit 3RU and the left curved transport unit 3LU, the displacement distance D'in which the transport position deviates is the displacement of the curved transport pipe 3E. It becomes larger than the distance D. Moreover, since the displacement distance D'of the curved transport pipe 3F can be finely adjusted by the length of the straight transport pipe 2', this curved transport is performed when there is a step that cannot be handled by the curved transport pipe 3E. Tube 3F is useful.

図20(C)示す第7構成例の湾曲搬送管3Gは、上流側に2つの右湾曲搬送ユニット3RUを、下流側に2つの左湾曲搬送ユニット3LUを連結して構成したものである。湾曲搬送管3Eは、2つの右湾曲搬送ユニット3RUによって右へ90゜送風方向WDが傾けられた後、2つの左湾曲搬送ユニット3LUによって左へ90゜送風方向WDが戻されるので、紙幣PMの搬送方向は変わらない。そして、湾曲搬送管3Gの上流側と下流側で、搬送位置を右に変位距離D″だけずらすことができる。 The curved transport pipe 3G of the seventh configuration example shown in FIG. 20C is configured by connecting two right curved transport units 3RU on the upstream side and two left curved transport units 3LU on the downstream side. In the curved transport pipe 3E, the 90 ° blow direction WD is tilted to the right by the two right curved transport units 3RU, and then the 90 ° blow direction WD is returned to the left by the two left curved transport units 3LU. The transport direction does not change. Then, the transport position can be shifted to the right by the displacement distance D ″ on the upstream side and the downstream side of the curved transport pipe 3G.

なお、上記湾曲搬送管3Fは、右湾曲搬送ユニット3RUと左湾曲搬送ユニット3LUの間に連結する直線搬送管2′の管長を調整することで変位距離D′を自在に変えられるので、湾曲搬送管3Gの変位距離D″と同じにする事は可能である。しかしながら、湾曲搬送管3Fで長い直線搬送管2′を用いると、それだけ上流側開口端から下流側開口端までの距離Lが大きくなってしまい、湾曲搬送管3Gの上流側開口端から下流側開口端までの距離L′を越えることとなる。よって、短い距離範囲で搬送路の段差に対応しなければならない場合、この湾曲搬送管3Gが有用である。しかも、湾曲搬送管3Gにおいて、右湾曲搬送ユニット3RUと左湾曲搬送ユニット3LUの間に直線搬送管2′を連結すれば、上流側開口端から下流側開口端までの距離L′を変えずに、変位距離D″だけを自在に変えることができる。 In the curved transport pipe 3F, the displacement distance D'can be freely changed by adjusting the pipe length of the linear transport pipe 2'connected between the right curved transport unit 3RU and the left curved transport unit 3LU. It is possible to make it the same as the displacement distance D ″ of the pipe 3G. However, when a long straight transport pipe 2'is used in the curved transport pipe 3F, the distance L from the upstream side opening end to the downstream side opening end is increased accordingly. Therefore, the distance L'from the upstream side opening end to the downstream side opening end of the curved transport pipe 3G is exceeded. Therefore, when it is necessary to deal with a step in the transport path within a short distance range, this curved transport The pipe 3G is useful. Moreover, in the curved transport pipe 3G, if the linear transport pipe 2'is connected between the right curved transport unit 3RU and the left curved transport unit 3LU, the distance from the upstream opening end to the downstream opening end can be reached. Only the displacement distance D ″ can be freely changed without changing the distance L ′.

図21に示すのは、第8構成例の湾曲搬送管3Hで、上流側と下流側にそれぞれ左湾曲搬送ユニット3LUを配し、その間を6つの右湾曲搬送ユニット3RUで連結した構成である。湾曲搬送管3Hは、最初の左湾曲搬送ユニット3LUによって左へ45゜送風方向WDが傾けられた後、6つの右湾曲搬送ユニット3RUによって右へ270°送風方向WDが変更され、最後の左湾曲搬送ユニット3LUによって左へ45゜送風方向WDが傾けられる。したがって、湾曲搬送管3Hでは、送風方向WDが180゜変更され、紙幣PMの搬送方向を反転させるUターン構造となる。 FIG. 21 shows the curved transport pipe 3H of the eighth configuration example, in which the left curved transport unit 3LU is arranged on the upstream side and the downstream side, respectively, and the left curved transport unit 3LU is connected between them by six right curved transport units 3RU. The curved transport pipe 3H is tilted 45 ° to the left by the first left curved transport unit 3LU, and then the 270 ° blow direction WD is changed to the right by the six right curved transport units 3RU, resulting in the final left curvature. The transport unit 3LU tilts the WD in the blowing direction by 45 ° to the left. Therefore, the curved transport pipe 3H has a U-turn structure in which the blowing direction WD is changed by 180 ° and the transport direction of the bill PM is reversed.

なお、紙幣PMの搬送方向を反転させるには、右湾曲搬送ユニット3RUを4つ連結した半円状の湾曲搬送管、あるいは左湾曲搬送ユニット3LUを4つ連結した半円状の湾曲搬送管を用いれば十分であるが、上流側と下流側の変位距離D2は大きくなる。一方、湾曲搬送管3Hでは、上流側と下流側の変位距離D1を小さく抑えられる。したがって、湾曲搬送管3Hを用いれば、上流側に接続する直線搬送管2と下流側に接続する直線搬送管2との間隔を小さく抑えることができ、紙幣搬送装置1における直線搬送部分の往路と復路を狭小なダクト内に納めなければならない場合などに有用である。 In order to reverse the transport direction of the banknote PM, a semicircular curved transport pipe in which four right curved transport units 3RU are connected or a semicircular curved transport pipe in which four left curved transport units 3LU are connected is used. Although it is sufficient to use it, the displacement distances D2 on the upstream side and the downstream side become large. On the other hand, in the curved transport pipe 3H, the displacement distances D1 on the upstream side and the downstream side can be kept small. Therefore, if the curved transport pipe 3H is used, the distance between the straight transport pipe 2 connected to the upstream side and the straight transport pipe 2 connected to the downstream side can be kept small, and the distance between the straight transport pipe 2 and the straight transport portion in the bill transport device 1 can be kept small. This is useful when the return route must be housed in a narrow duct.

以上、本発明に係る紙葉類搬送装置を実施形態に基づき説明したが、本発明は、この実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない限りにおいて実現可能な全ての紙葉類搬送装置を権利範囲として包摂するものである。 Although the paper leaf transport device according to the present invention has been described above based on the embodiment, the present invention is not limited to this embodiment and can be realized as long as the configuration described in the claims is not changed. All paper leaf transport devices are included as a scope of rights.

1 紙幣搬送装置
2 直線搬送管
211 第1主搬送壁
212 第2主搬送壁
221 上部カバー体
222 下部カバー体
23 エア直線通過空間
231 直線主搬送路
232a 第1分岐誘導空部
232b 第2分岐誘導空部
233a 第1帰還誘導空部
233b 第2帰還誘導空部
24 エア帰還孔
3 湾曲搬送管
311 外側湾曲壁
312 内側湾曲壁
321 上部湾曲カバー体
322 下部湾曲カバー体
33 エア湾曲通過空間
331 湾曲主搬送路
332a 外側湾曲分岐誘導空部
332b 内側湾曲分岐誘導空部
333a 外側湾曲帰還誘導空部
333b 内側湾曲帰還誘導空部
34 外側湾曲エア帰還孔
35 外側湾曲帰還ガイド部
PM 紙幣
1 Bill transport device 2 Straight transport pipe 211 1st main transport wall 212 2nd main transport wall 221 Upper cover body 222 Lower cover body 23 Air straight passage space 231 Straight main transport path 232a 1st branch guidance vacant part 232b 2nd branch guidance Empty part 233a 1st return induction empty part 233b 2nd return induction empty part 24 Air return hole 3 Curved transport pipe 311 Outer curved wall 312 Inner curved wall 321 Upper curved cover body 322 Lower curved cover body 33 Air curved passage space 331 Curved main Transport path 332a Outer curved branch guidance empty part 332b Inner curved branch guidance empty part 333a Outer curved feedback guidance empty part 333b Inner curved feedback guidance empty part 34 Outer curved air return hole 35 Outer curved return guide part PM bill

Claims (6)

上流から下流に向けて搬送用流体が流れる搬送管にて、紙葉類を上流から下流へ搬送する紙葉類搬送装置であって、
前記搬送管は、前記紙葉類を直線状に搬送する直線主搬送路を含む流体直線搬送空間が内部に形成される直線搬送管と、該直線搬送管と連結されて前記紙葉類を湾曲状に搬送する湾曲主搬送路を含む流体湾曲搬送空間が内部に形成される湾曲搬送管と、を含み、
前記直線搬送管は、
前記紙葉類の主たる2面に対向するよう内壁面側が配置された一対の主搬送壁部と、
前記一対の主搬送壁部における前記紙葉類の搬送方向に直交する二方向の少なくとも一方端側に設けられ、前記主搬送壁部の外壁面側の一部を覆う端部カバーと、
前記一対の主搬送壁部における前記端部カバー配設側に前記搬送方向へ所要間隔で形成され、前記外壁面側から前記内壁面側に前記搬送用流体が通過し得る流体帰還孔と、
前記一対の主搬送壁部と前記端部カバーとの間に形成され、前記一対の主搬送壁部の前記内壁面側から前記外壁面側を経て前記流体帰還孔へ前記搬送用流体を誘導可能な搬送用流体誘導空部と、
を備え、
前記湾曲搬送管は、
前記主搬送壁部の一方と連結され、内壁面側が凹状となる外側湾曲壁部と、
前記主搬送壁部の他方と連結され、内壁面側が凸状となる内側湾曲壁部と、
前記端部カバーと連結され、少なくとも、前記外側湾曲壁部の前記外壁面側の一部を覆う端部湾曲カバーと、
前記外側湾曲壁部に設けられ、前記直線搬送管の前記直線主搬送路から前記湾曲主搬送路に搬送された前記紙葉類が前記外側湾曲壁部の前記内壁面に押し当たることを阻止するゲルトラー渦を任意箇所で発生させる紙葉類湾曲誘導手段と、
を備えることを特徴とする紙葉類搬送装置。
A paper leaf transport device that transports paper sheets from upstream to downstream through a transport pipe through which a transport fluid flows from upstream to downstream.
The transport pipe is a straight transport pipe in which a fluid linear transport space including a straight main transport path for linearly transporting the paper sheets is formed, and is connected to the straight transport pipe to bend the paper sheets. Including a curved transport pipe in which a fluid curved transport space including a curved main transport path for transporting in a shape is formed.
The straight transfer pipe
A pair of main transport wall portions whose inner wall surface side is arranged so as to face the two main surfaces of the paper sheets, and
An end cover provided on at least one end side of the pair of main transport wall portions in two directions orthogonal to the transport direction of the paper sheets and covering a part of the outer wall surface side of the main transport wall portion.
A fluid return hole formed on the end cover arrangement side of the pair of main transport wall portions at a required interval in the transport direction and through which the transport fluid can pass from the outer wall surface side to the inner wall surface side.
It is formed between the pair of main transport wall portions and the end cover portion, and can guide the transport fluid from the inner wall surface side of the pair of main transport wall portions to the fluid return hole via the outer wall surface side. Fluid induction empty space for transport,
With
The curved transport pipe is
An outer curved wall portion that is connected to one of the main transport wall portions and has a concave inner wall surface side.
An inner curved wall portion that is connected to the other of the main transport wall portions and has a convex inner wall surface side.
An end curved cover that is connected to the end cover and covers at least a part of the outer curved wall portion on the outer wall surface side.
The paper sheets provided on the outer curved wall portion and transported from the straight main transport path of the straight transport pipe to the curved main transport path are prevented from being pressed against the inner wall surface of the outer curved wall portion. Paper leaf bending guiding means to generate a Gerthler vortex at an arbitrary location,
A paper leaf transport device characterized by being provided with.
前記紙葉類湾曲誘導手段は、
前記外側湾曲壁部における前記端部湾曲カバー配設側に形成され、前記外壁面側から前記内壁面側に前記搬送用流体が通過し得る外側湾曲流体帰還孔と、
前記外側湾曲壁部と前記端部湾曲カバーとの間に形成された外側湾曲誘導空部と、
前記外側湾曲誘導空部から前記外側湾曲流体帰還孔を経て前記湾曲主搬送路へ前記搬送用流体が戻ることで生ずる外側湾曲帰還流が、前記外側湾曲壁部の前記内壁面における前記外側湾曲流体帰還孔の下流側開口縁にて、当該内壁面の接線方向となる向きに流入するよう誘導する外側湾曲帰還ガイド部と、
を備えることを特徴とする請求項1に記載の紙葉類搬送装置。
The paper leaf bending guiding means
An outer curved fluid return hole formed on the end curved cover arrangement side of the outer curved wall portion and through which the transport fluid can pass from the outer wall surface side to the inner wall surface side.
An outer curved induction space formed between the outer curved wall portion and the end curved cover,
The outer curved return flow generated by the return of the transport fluid from the outer curved induction vacant portion to the curved main transport path through the outer curved fluid return hole is the outer curved fluid on the inner wall surface of the outer curved wall portion. An outer curved return guide portion that guides the fluid to flow in the direction tangential to the inner wall surface at the downstream opening edge of the return hole.
The paper leaf transport device according to claim 1, further comprising.
前記紙葉類湾曲誘導手段は、上流から下流へ向かうにしたがって前記外側湾曲壁部における前記内壁面からの突出量が徐々に増すゲルトラー渦増幅面を備えたゲルトラー渦増幅プレートを、前記外側湾曲流体帰還孔の上流側に設けたことを特徴とする請求項2に記載の紙葉類搬送装置。 The paper leaf bending guiding means uses a Geltler vortex amplification plate provided with a Geltler vortex amplification surface in which the amount of protrusion from the inner wall surface of the outer curved wall portion gradually increases from upstream to downstream, and the outer curved fluid. The paper leaf transport device according to claim 2, wherein the paper leaf transport device is provided on the upstream side of the return hole. 前記紙葉類湾曲誘導手段は、
前記内側湾曲壁部における前記端部湾曲カバー配設側に形成され、前記外壁面側から前記内壁面側に前記搬送用流体が通過し得る内側湾曲流体帰還孔と、
前記内側湾曲壁部と前記端部湾曲カバーとの間に形成された内側湾曲誘導空部と、
前記内側湾曲誘導空部から前記内側湾曲流体帰還孔を経て前記湾曲主搬送路へ前記搬送用流体が戻ることで生ずる内側湾曲帰還流が、ゲルトラー渦を生じさせ得る角度で前記外側湾曲壁部の前記内壁面側へ押し当たるように誘導する内側湾曲帰還ガイド部と、
を備えることを特徴とする請求項1〜請求項3の何れか1項に記載の紙葉類搬送装置。
The paper leaf bending guiding means
An inner curved fluid return hole formed on the end curved cover arrangement side of the inner curved wall portion and through which the transport fluid can pass from the outer wall surface side to the inner wall surface side.
An inner curved induction space formed between the inner curved wall portion and the end curved cover,
The inner curved return flow generated by the return of the transport fluid from the inner curved guided empty portion to the curved main transport path through the inner curved fluid return hole of the outer curved wall portion at an angle capable of generating a Geltler vortex. An inner curved return guide portion that guides the user to press against the inner wall surface side,
The paper leaf transport device according to any one of claims 1 to 3, wherein the paper leaf transport device is provided.
前記外側湾曲壁部の前記内壁面側に設けられ、前記紙葉類が前記外側湾曲壁部の前記内壁面に密着することを防止する凸状の外側湾曲リブを備えることを特徴とする請求項1〜請求項4の何れか1項に記載の紙葉類搬送装置。 The claim is characterized in that it is provided on the inner wall surface side of the outer curved wall portion, and is provided with a convex outer curved rib that prevents the paper sheets from coming into close contact with the inner wall surface of the outer curved wall portion. The paper leaf transport device according to any one of claims 1 to 4. 前記内側湾曲壁部の前記内壁面側に設けられ、前記紙葉類の後端部が前記内側湾曲壁部の前記内壁面に接触することを防止する凸状の内側湾曲リブを備えることを特徴とする請求項1〜請求項5の何れか1項に記載の紙葉類搬送装置。 It is characterized by being provided on the inner wall surface side of the inner curved wall portion and provided with a convex inner curved rib that prevents the rear end portion of the paper sheets from coming into contact with the inner wall surface of the inner curved wall portion. The paper leaf transport device according to any one of claims 1 to 5.
JP2019226044A 2019-12-16 2019-12-16 Paper sheet conveyance device Active JP7374473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019226044A JP7374473B2 (en) 2019-12-16 2019-12-16 Paper sheet conveyance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226044A JP7374473B2 (en) 2019-12-16 2019-12-16 Paper sheet conveyance device

Publications (2)

Publication Number Publication Date
JP2021095230A true JP2021095230A (en) 2021-06-24
JP7374473B2 JP7374473B2 (en) 2023-11-07

Family

ID=76430470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226044A Active JP7374473B2 (en) 2019-12-16 2019-12-16 Paper sheet conveyance device

Country Status (1)

Country Link
JP (1) JP7374473B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6339732B1 (en) 2017-09-29 2018-06-06 日本金銭機械株式会社 Air flow transfer device

Also Published As

Publication number Publication date
JP7374473B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
CN100565594C (en) Bill identification and counting machine
JP4373528B2 (en) Modular transport system
JP6339732B1 (en) Air flow transfer device
JP2009046310A (en) Paper sheet conveyance device
JP2021095230A (en) Paper sheets transport device
JP7440069B2 (en) Paper sheet conveyance device
JP6709474B2 (en) Paper transport device
JP6725929B1 (en) Paper transport device
RU2527814C2 (en) Device and method for processing of important documents
JP6833239B1 (en) Paper leaf transport device
JP6864309B2 (en) Paper leaf capture device
JP2021172492A (en) Paper sheet conveyance device
JP2021172493A (en) Paper sheet conveyance device
JP7142990B1 (en) Paper sheet conveying device
JP2021011361A (en) Paper sheet conveying device
JP6709481B1 (en) Paper transport device
JP7330494B2 (en) Paper sheet conveying device
JP5670110B2 (en) Paper sheet take-in device
US6042107A (en) Device for contact-free sheet guidance in a sheet-fed printing press
JP6983445B1 (en) Transport flow amplification device
JP3649940B2 (en) Paper sheet guide structure in paper sheet conveying device
JP7464283B2 (en) Paper sheet transport device
JPH11185103A (en) Thin piece guide member and utilization device therefor
JP7368889B2 (en) Paper sheet conveyance device
JP5132544B2 (en) Optical character reader

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231018

R150 Certificate of patent or registration of utility model

Ref document number: 7374473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150