JPH0427687B2 - - Google Patents

Info

Publication number
JPH0427687B2
JPH0427687B2 JP58124861A JP12486183A JPH0427687B2 JP H0427687 B2 JPH0427687 B2 JP H0427687B2 JP 58124861 A JP58124861 A JP 58124861A JP 12486183 A JP12486183 A JP 12486183A JP H0427687 B2 JPH0427687 B2 JP H0427687B2
Authority
JP
Japan
Prior art keywords
film
amorphous silicon
silicon film
resist layer
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58124861A
Other languages
Japanese (ja)
Other versions
JPS6017920A (en
Inventor
Katsuyuki Machida
Takashi Morimoto
Susumu Muramoto
Yoshio Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58124861A priority Critical patent/JPS6017920A/en
Publication of JPS6017920A publication Critical patent/JPS6017920A/en
Publication of JPH0427687B2 publication Critical patent/JPH0427687B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、大規模集積回路または集積回路の製
造工程における高反射率の材料による膜の微細パ
ターンの形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for forming a fine pattern in a film of a highly reflective material in a large-scale integrated circuit or in the manufacturing process of an integrated circuit.

〔発明の背景〕[Background of the invention]

従来の集積回路のパターン形成においては、パ
ターンを形成すべき被膜上にレジスト層を直接塗
布し、該レジスト層によりパターンを形成してい
た。しかし、このような方法にあつては、パター
ンを形成すべき膜の下地材料がAのように高反
射率の材料である場合、レジスト層がAlによる
反射光によつても同時に露光してしまうため、微
細なレジストパターンを形成するのは困難である
という欠点があつた。この反射を防ぐために、反
射防止膜としてレジスト層とパターンを形成すべ
き膜との間にアモルフアスシリコン膜をスパツタ
法により堆積する方法がある。しかし、パター
ンを形成すべき膜がAのように低融点金属の場
合は、従来技術におけるように300〜400℃の温度
雰囲気中でアモルフアスシリコン膜を堆積する
と、Aとアモルフアスシリコンがシリサイド反
応を生じ易く、そのためAの抵抗値が上がつた
り、Aの表面が荒れて凹凸ができてしまう。
後の工程におけるアモルフアスシリコン膜の除去
を容易にするためには、緻密で300Å以下のうす
いアモルフアスシリコン膜を制御よく形成するこ
とが必要であるが、そのような膜を形成すること
は困難である、等の欠点を有し、微細パターンの
形成には限界があつた。
In conventional integrated circuit pattern formation, a resist layer is directly applied onto a film on which a pattern is to be formed, and a pattern is formed using the resist layer. However, in such a method, if the base material of the film on which the pattern is to be formed is a material with high reflectance like A, the resist layer is simultaneously exposed to the light reflected by Al. Therefore, there was a drawback that it was difficult to form a fine resist pattern. In order to prevent this reflection, there is a method of depositing an amorphous silicon film as an antireflection film between the resist layer and the film on which a pattern is to be formed by sputtering. However, when the film to be patterned is a low melting point metal like A, if an amorphous silicon film is deposited in an atmosphere at a temperature of 300 to 400°C as in the conventional technology, A and amorphous silicon will undergo a silicide reaction. As a result, the resistance value of A increases and the surface of A becomes rough and uneven.
In order to facilitate the removal of the amorphous silicon film in subsequent steps, it is necessary to form a dense, thin amorphous silicon film of 300 Å or less in a well-controlled manner, but it is difficult to form such a film. However, there are limitations to the formation of fine patterns.

なお、一般に、A膜上にアモルフアスシリコ
ン膜を形成する方法としては、アルゴンイオン等
を用いたスパツタ法が用いられている。この方法
によれば、アモルフアスシリコン膜形成時の基板
の温度上昇はある程度抑制することが可能である
(200℃以下)が、面全体にわたる膜厚の均一性を
あげることが難しい。そのため、大口径のシリコ
ンターゲツトが必要となるので高価格になり、ま
た、大口径のシリコンターゲツトは高純度化も難
しく、破損しやすい欠点を有している。
Note that generally, as a method for forming an amorphous silicon film on the A film, a sputtering method using argon ions or the like is used. According to this method, it is possible to suppress the temperature rise of the substrate during formation of the amorphous silicon film to some extent (200° C. or less), but it is difficult to increase the uniformity of the film thickness over the entire surface. Therefore, a silicon target with a large diameter is required, resulting in a high price. Also, a silicon target with a large diameter is difficult to achieve high purity and has the disadvantage of being easily damaged.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、レジスト層とパターン化すべ
き高反射率の膜との間に介在させることにより微
細パターンを容易に形成し得るアモルフアスシリ
コン膜を低温度雰囲気中において膜厚を薄く形成
することを達成するにある。
An object of the present invention is to form a thin amorphous silicon film in a low-temperature atmosphere so that a fine pattern can be easily formed by interposing it between a resist layer and a high-reflectance film to be patterned. is to achieve.

〔発明の概要〕[Summary of the invention]

すなわち、本発明は反射防止膜としてのアモル
フアスシリコン層をマイクロ波電子サイクロトロ
ン共鳴を用いたECR(Electron Cyclotron
Resonace)型プラズマ堆積法によつて堆積する
ことを特徴とする。
That is, the present invention provides an amorphous silicon layer as an anti-reflection film by ECR (Electron Cyclotron Resonance) using microwave electron cyclotron resonance.
It is characterized by being deposited by a Resonace type plasma deposition method.

〔発明の実施例〕[Embodiments of the invention]

第1図A,Bは、本発明の実施例を示す概略工
程断面図であつて、1はパターン化すべき膜すな
わち配線または電極であり、ここではA膜であ
る。2はECR型プラズマ堆積装置によつて形成
されたアモルフアスシリコン膜、3はパターン化
したレジスト層、4は半導体基板、5は絶縁膜で
ある。第1図Aに示す構造を形成するには、まず
高反射率であるA膜1を形成する。次に、低温
で均一な膜堆積が可能であるECR型プラズマ堆
積装置によりアモルフアスシリコン膜2を堆積す
る。膜厚は約300Åである。次に、アモルフアス
シリコン膜2上にレジスト層3を塗布して、露
光、現像を行なう、この際、高反射率を有するA
膜1とレジスト層3の間に低反射率のアモルフ
アスシリコン膜2ではさまれているので、A膜
1からの反射光によるレジスト層3の露光が防止
されて微細パターンが容易に形成できる。第1図
Bに示す構造は、平行平板ドライエツチング装置
によりアモルフアスシリコン膜2とA膜1を同
時にエツチングして得られる。
FIGS. 1A and 1B are schematic process cross-sectional views showing an embodiment of the present invention, and 1 is a film to be patterned, that is, a wiring or an electrode, which is the A film here. 2 is an amorphous silicon film formed by an ECR type plasma deposition apparatus, 3 is a patterned resist layer, 4 is a semiconductor substrate, and 5 is an insulating film. To form the structure shown in FIG. 1A, first, a film A 1 having a high reflectance is formed. Next, an amorphous silicon film 2 is deposited using an ECR type plasma deposition apparatus that is capable of uniform film deposition at low temperatures. The film thickness is approximately 300 Å. Next, a resist layer 3 is coated on the amorphous silicon film 2, exposed to light, and developed.
Since the amorphous silicon film 2 having a low reflectance is sandwiched between the film 1 and the resist layer 3, exposure of the resist layer 3 to light reflected from the A film 1 is prevented and a fine pattern can be easily formed. The structure shown in FIG. 1B is obtained by simultaneously etching the amorphous silicon film 2 and the A film 1 using a parallel plate dry etching apparatus.

なお、ECR型プラズマ堆積法は、マイクロ波
電子サイクロトロン共鳴を用いてプラズマを発生
させ、このプラズマを発散磁界に沿つて電気的に
浮遊状態にある基板上に入射させることにより、
基板に所望の膜を形成する方法である。この堆積
法によれば、プラズマ中の電子が磁界中で何回転
も円運動されながら加速され続けるので高エネル
ギーとなり、この高エネルギー電子がそれ自身の
もつ磁気モーメントと発散磁界との相互作用によ
り発散磁界に沿つて基板に到達し、基板を負に帯
電させるので、プラズマ発生部と基板との間のプ
ラズマ中にイオンを加速し、電子を減速させるよ
うな電界が発生し、この電界分布は電子とイオン
の流量が一致する中和条件を満たすようなものに
なる。
The ECR plasma deposition method generates plasma using microwave electron cyclotron resonance, and makes the plasma incident on an electrically suspended substrate along a divergent magnetic field.
This is a method of forming a desired film on a substrate. According to this deposition method, electrons in the plasma are accelerated in a circular motion many times in a magnetic field, resulting in high energy, and these high-energy electrons diverge due to the interaction between their own magnetic moment and the divergent magnetic field. They reach the substrate along the magnetic field and charge the substrate negatively, so an electric field is generated in the plasma between the plasma generation part and the substrate that accelerates the ions and decelerates the electrons, and this electric field distribution is The neutralization condition is such that the flow rate of the ions and the flow rate of the ions match.

上記の構成により、ECR型プラズマ堆積法は、
発散磁界によりプラズマ流を基板に到達衝撃させ
膜形成反応を促進させるので、熱エネルギーを与
えることなく、室温程度の温度での膜形成が可能
である。
With the above configuration, the ECR type plasma deposition method
Since the diverging magnetic field causes the plasma flow to reach the substrate and accelerate the film formation reaction, film formation can be performed at a temperature around room temperature without applying thermal energy.

なお、上述したアモルフアスシリコン膜の堆積
は例えば、次のような条件で行えば良い。SiH4
(100%)を20cc/minの流量で供給し、これを4.2
×10-4Torrの反応圧力下でマイクロ波パワーを
150Wでプラズマ化しアモルフアス膜を形成する。
この時、膜形成速度は約380Å/minであり、基
板の温度は、常温から50℃程度であつた。
Note that the above-described amorphous silicon film may be deposited under, for example, the following conditions. SiH4
(100%) at a flow rate of 20 cc /min.
Microwave power under reaction pressure of ×10 -4 Torr
It turns into plasma at 150W and forms an amorphous film.
At this time, the film formation rate was about 380 Å/min, and the temperature of the substrate was between room temperature and about 50°C.

第2図はECR型プラズマ堆積装置によるアモ
ルフアスシリコン膜の光学特性を示すグラフであ
る。横軸はアモルフアスシリコン膜の膜厚であ
り、縦軸は波長436nmの光に対する透過率であ
る。ここでは、透明石英基板にアモルフアスシリ
コン膜を堆積して試料を作製し、波長436nmの光
を使用して透過率を測定したものである。直線の
傾きにより本装置によるアモルフアスシリコン膜
の吸収係数は3.3×105cm-1であり、本装置による
アモルフアスシリコン膜の吸収係数が単結晶シリ
コンあるいはpolyシリコン(2.0〜4.0×104cm-1
より約1桁大きいことが確認できた。Aの反射
率を40%、アモルフアスシリコンの反射率を20%
のとき、アモルフアスシリコン膜の透過率が20%
であれば、A上にそのアモルフアスシリコン膜
を堆積した場合の反射率は約27%となり、Aだ
けでの40%より反射率が低減できる。これはアモ
ルフアスシリコン膜の膜厚が約300Åで実現でき
る。実際に、ECR型プラズマ堆積装置は、100Å
程度の薄膜でも均一で緻密に膜付け可能であり、
300Å程度の膜厚は容易に実現できる。この薄膜
であることにより、エツチング後のアモルフアス
シリコン膜の除去が容易に行なうことができ、エ
ツチング時に配線材料へのダメージを与えること
がないという利点がある。
FIG. 2 is a graph showing the optical characteristics of an amorphous silicon film produced by an ECR type plasma deposition apparatus. The horizontal axis is the thickness of the amorphous silicon film, and the vertical axis is the transmittance for light with a wavelength of 436 nm. Here, a sample was prepared by depositing an amorphous silicon film on a transparent quartz substrate, and the transmittance was measured using light with a wavelength of 436 nm. Due to the slope of the straight line, the absorption coefficient of the amorphous silicon film measured by this device is 3.3 × 10 5 cm -1 , and the absorption coefficient of the amorphous silicon film measured by this device is 3.3 × 10 5 cm -1. -1 )
It was confirmed that it was about one order of magnitude larger than that. The reflectance of A is 40%, and the reflectance of amorphous silicon is 20%.
When , the transmittance of the amorphous silicon film is 20%
If so, the reflectance when depositing the amorphous silicon film on A is about 27%, which is lower than the 40% with A alone. This can be achieved with an amorphous silicon film thickness of approximately 300 Å. In fact, ECR type plasma deposition equipment has a thickness of 100Å.
It is possible to apply even a thin film evenly and densely,
A film thickness of about 300 Å can be easily achieved. This thin film has the advantage that the amorphous silicon film can be easily removed after etching, and the wiring material is not damaged during etching.

第3図は、平行平板ドライエツチング装置によ
るアモルフアスシリコン膜のエツチングレートを
示すグラフである。エツチングガスはCC4、ガ
ス流量は75SCCM、ガス圧は0.25Torr、RF current
は3Aであり、通常のAのエツチングに用いら
れる条件である。図の傾きより、エツチングレー
トは800Å/minであり、Aのエツチングレー
ト1000Å/minに近くアモルフアスシリコン膜お
よびA膜を同時にエツチングできることを示し
ている。したがつて、ECR型プラズマ堆積装置
によりアモルフアスシリコン膜が低温で緻密で均
一な膜を堆積できること、またそのエツチング特
性によりLSI工程において工程数の著しい増加も
なく容易な工程で低融点金属で高反射率を有する
配線材料の微細パターンの形成法に応用できる。
FIG. 3 is a graph showing the etching rate of an amorphous silicon film using a parallel plate dry etching apparatus. Etching gas is CC 4 , gas flow rate is 75 SCCM , gas pressure is 0.25 Torr, RF current
is 3A, which is the condition used for normal A etching. From the slope of the figure, the etching rate is 800 Å/min, which is close to the etching rate of A of 1000 Å/min, indicating that the amorphous silicon film and the A film can be etched simultaneously. Therefore, it is possible to deposit a dense and uniform amorphous silicon film at low temperature using an ECR-type plasma deposition system, and its etching properties allow it to be easily etched with low melting point metals without significantly increasing the number of steps in the LSI process. It can be applied to a method for forming fine patterns of wiring materials that have reflectivity.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、反射防
止膜としてのアモルフアスシリコン層を低温度雰
囲気中において形成することができるので、パタ
ーニング被膜の劣化を生じることなく高反射率を
有する該パターニング被膜の微細パターンの形成
を容易に行なうことができる。さらに、アモルフ
アスシリコン膜を緻密で均一に薄く形成できるの
で、後の工程において該アモルフアスシリコン膜
を容易に除去することができる。このように本発
明の効果は顕著である。
As explained above, according to the present invention, an amorphous silicon layer as an anti-reflection film can be formed in a low-temperature atmosphere, so that the patterning film has a high reflectance without causing deterioration of the patterning film. The formation of fine patterns can be easily performed. Furthermore, since the amorphous silicon film can be formed densely and uniformly and thinly, the amorphous silicon film can be easily removed in a later step. As described above, the effects of the present invention are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略工程断面
図、第2図は本発明に係るアモルフアスシリコン
膜の光学特性を示すグラフ、第3図はアモルフア
スシリコン膜のエツチング特性を示すグラフであ
る。 1……A膜(パターン化すべき膜)、2……
アモルフアスシリコン膜、3……レジスト層、4
……半導体基板、5……絶縁膜。
FIG. 1 is a schematic process sectional view showing an example of the present invention, FIG. 2 is a graph showing the optical characteristics of the amorphous silicon film according to the present invention, and FIG. 3 is a graph showing the etching characteristics of the amorphous silicon film. be. 1... A film (film to be patterned), 2...
Amorphous silicon film, 3...Resist layer, 4
...Semiconductor substrate, 5...Insulating film.

Claims (1)

【特許請求の範囲】[Claims] 1 パターンを形成すべき反射率の高い膜上にレ
ジスト層を塗布し、露光、現像処理を行つて所定
のパターンを形成した該レジスト層により前記膜
のパターンを形成する微細パターンの形成方法に
おいて、前記レジスト層と前記膜との間に反射防
止膜としてマイクロ波電子サイクロトロン共鳴を
用いたECR型プラズマ堆積法によつてアモルフ
アスシリコン膜を堆積することを特徴とする微細
パターンの形成方法。
1. A method for forming a fine pattern, in which a resist layer is applied on a film with high reflectance on which a pattern is to be formed, and a predetermined pattern is formed by exposure and development, and the pattern of the film is formed by the resist layer, A method for forming a fine pattern, comprising depositing an amorphous silicon film as an antireflection film between the resist layer and the film by an ECR type plasma deposition method using microwave electron cyclotron resonance.
JP58124861A 1983-07-11 1983-07-11 Formation of fine pattern Granted JPS6017920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58124861A JPS6017920A (en) 1983-07-11 1983-07-11 Formation of fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58124861A JPS6017920A (en) 1983-07-11 1983-07-11 Formation of fine pattern

Publications (2)

Publication Number Publication Date
JPS6017920A JPS6017920A (en) 1985-01-29
JPH0427687B2 true JPH0427687B2 (en) 1992-05-12

Family

ID=14895910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58124861A Granted JPS6017920A (en) 1983-07-11 1983-07-11 Formation of fine pattern

Country Status (1)

Country Link
JP (1) JPS6017920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022071380A (en) * 2020-10-28 2022-05-16 日本ゲームカード株式会社 Paper sheet carrying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022071380A (en) * 2020-10-28 2022-05-16 日本ゲームカード株式会社 Paper sheet carrying device

Also Published As

Publication number Publication date
JPS6017920A (en) 1985-01-29

Similar Documents

Publication Publication Date Title
US4405710A (en) Ion beam exposure of (g-Gex -Se1-x) inorganic resists
US6214637B1 (en) Method of forming a photoresist pattern on a semiconductor substrate using an anti-reflective coating deposited using only a hydrocarbon based gas
JPH0697660B2 (en) Thin film formation method
JPH02244507A (en) Etching method for indium tin oxide thin layer and formation method for transporent conductive pattern
JPH07101687B2 (en) Insulator deposition method
JP3542118B2 (en) Formation of non-reflective material layer, semiconductor manufacturing method using the same, and method of forming transistor gate stack
JP2009253268A (en) Substrate structure and method of forming the same
US5139974A (en) Semiconductor manufacturing process for decreasing the optical refelctivity of a metal layer
US20230174416A1 (en) Method for etching curved substrate
JP2000040671A (en) Method for forming metallic wiring of semiconductor element using titanium aluminum nitride anti-reflection film
US5264077A (en) Method for producing a conductive oxide pattern
JPH0427687B2 (en)
JPH03174724A (en) Method of forming pattern
JPH0355401B2 (en)
JPH09304620A (en) Production of grid polarizer
JPH0314172B2 (en)
CN1063552C (en) Method for making quantum line ultra-fine figure
JPH0677208A (en) Manufacture of semiconductor device
JPH07297281A (en) Method for manufacturing connection hole
KR0144430B1 (en) Method for making pattern of semiconductor
KR100532748B1 (en) Method for manufacturing metal layer in semiconductor device
JP3009072B2 (en) Semiconductor surface etching method
JP2004043874A (en) Gas cluster ion-aided method for depositing oxide thin film
JPS61117829A (en) Formation of contact electrode
KR100781445B1 (en) Method for manufacturing metal layer in semiconductor device