JP2022068454A - Cultivation device - Google Patents

Cultivation device Download PDF

Info

Publication number
JP2022068454A
JP2022068454A JP2020177135A JP2020177135A JP2022068454A JP 2022068454 A JP2022068454 A JP 2022068454A JP 2020177135 A JP2020177135 A JP 2020177135A JP 2020177135 A JP2020177135 A JP 2020177135A JP 2022068454 A JP2022068454 A JP 2022068454A
Authority
JP
Japan
Prior art keywords
temperature
water
temperature change
plant
potting soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020177135A
Other languages
Japanese (ja)
Other versions
JP7539080B2 (en
Inventor
慶太 藤原
Keita Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenuto Co Ltd
Original Assignee
Tenuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tenuto Co Ltd filed Critical Tenuto Co Ltd
Priority to JP2020177135A priority Critical patent/JP7539080B2/en
Publication of JP2022068454A publication Critical patent/JP2022068454A/en
Application granted granted Critical
Publication of JP7539080B2 publication Critical patent/JP7539080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

To provide a cultivation device that allows watering in consideration of the water absorption state of a plant.SOLUTION: A cultivation device has water supply means D that supplies compost 11 having a plant planted therein with water, temperature detection means S that detects the temperature of the compost 11, and control means C that controls the water supply means D, The control means C causes the temperature detection means S to calculate a temperature change rate of the compost 11, and if the temperature change rate is equal to or higher than a predetermined value, controls the water supply means D to water the compost 11.SELECTED DRAWING: Figure 1

Description

本発明は、植物を栽培する栽培装置に関するものである。 The present invention relates to a cultivation device for cultivating a plant.

特許文献1には、植物が定植された培養土の水分値を水分センサによって検出し、水分値が所定値を下回ると自動で培養土に潅水するように構成された栽培装置が開示されている。 Patent Document 1 discloses a cultivation device configured to detect the water value of the potting soil in which a plant is planted by a water sensor and automatically irrigate the potting soil when the water value falls below a predetermined value. ..

特開2013-102712号公報Japanese Unexamined Patent Publication No. 2013-102712

しかしながら、培養土は、一つの袋体や容器の中であっても、収容されている培地の性質などにより、水分量の分布にはバラツキが生じる。このため、特許文献1等の技術を用いた潅水方法によれば、植物の水分吸収状況(例えば、植物の水分を吸収する速度など)を踏まえた潅水制御は困難であり、その結果、水枯れが発生して植物の品質低下が起こるおそれが存在した。 However, even in a single bag or container, the distribution of water content of the potting soil varies depending on the nature of the medium contained in the soil. Therefore, according to the irrigation method using the technique of Patent Document 1 and the like, it is difficult to control the irrigation based on the water absorption status of the plant (for example, the rate of water absorption of the plant), and as a result, the water withers. There was a risk that the quality of the plant would deteriorate.

そこで、本発明は、このような問題を解消し、植物の水分吸収状況を踏まえた潅水を可能とする栽培装置を提供することを目的とする。 Therefore, an object of the present invention is to solve such a problem and to provide a cultivation apparatus capable of irrigation based on the water absorption state of a plant.

第1の発明は、上記の目的を達成するため、
植物が定植された培養土に水を供給する水供給手段と、前記培養土の温度を検出する温度検出手段と、前記水供給手段を制御する制御手段とを備え、
前記制御手段は、前記温度検出手段によって培養土の温度変化率を算出し、
前記温度変化率が所定値以上であることを条件として、前記水供給手段の制御により培養土に潅水を行うよう構成されたことを特徴とする栽培装置を提供する。
The first invention is to achieve the above object.
A water supply means for supplying water to the potting soil in which a plant is planted, a temperature detecting means for detecting the temperature of the potting soil, and a control means for controlling the water supply means are provided.
The control means calculates the temperature change rate of the potting soil by the temperature detection means, and obtains the temperature change rate.
Provided is a cultivation apparatus characterized in that the culture soil is irrigated under the control of the water supply means on condition that the temperature change rate is equal to or higher than a predetermined value.

上記第1の発明によれば、植物が適切に水分を吸収しているタイミングで潅水でき、その結果、植物の水分吸収状況を踏まえた潅水が可能となり、水枯れを好適に防止して、植物Pの品質を向上できる。 According to the first invention, irrigation can be performed at the timing when the plant appropriately absorbs water, and as a result, irrigation can be performed based on the water absorption status of the plant, and water withering can be suitably prevented, and the plant can be irrigated. The quality of P can be improved.

第2の発明は、上記第1の発明の構成に加え、
前記温度検出手段は、非接触で前記培養土の温度情報を取得可能な撮影装置であることを特徴とする。
The second invention is in addition to the configuration of the first invention described above.
The temperature detecting means is a photographing device capable of acquiring temperature information of the potting soil without contact.

上記第2の発明によれば、上記第1の発明の効果に加え、培養土全体の温度変化を迅速かつ的確に取得でき、水枯れをさらに好適に防止することができる。また、植物の病気による吸水の異常を早期に発見することができる。 According to the second invention, in addition to the effect of the first invention, the temperature change of the whole potting soil can be quickly and accurately obtained, and water withering can be more preferably prevented. In addition, abnormal water absorption due to plant diseases can be detected at an early stage.

第3の発明は、上記第1または第2の発明の構成に加え、
さらに、植物が定植された培養土に空気を供給する空気供給手段を備え、
前記制御手段は、前記温度変化率が、前記所定値よりも小なる値である設定基準値以下であることを条件として、前記培養土に空気を供給するように構成されたことを特徴とする。
The third invention is in addition to the configuration of the first or second invention described above.
In addition, it is equipped with an air supply means that supplies air to the potting soil in which the plants are planted.
The control means is characterized in that air is supplied to the potting soil on condition that the temperature change rate is equal to or less than a setting reference value which is a value smaller than the predetermined value. ..

上記第3の発明によれば、上記第1または第2の発明の効果に加え、植物Pの吸水が遅い場合には、培養土に空気を供給して、培養土を乾燥させ、根腐れを好適に防止できる。 According to the third invention, in addition to the effect of the first or second invention, when the water absorption of the plant P is slow, air is supplied to the potting soil to dry the potting soil and prevent root rot. It can be suitably prevented.

本発明によれば、植物の水分吸収状況を踏まえた潅水を可能とする栽培装置を提供することができる。 According to the present invention, it is possible to provide a cultivation apparatus capable of irrigation based on the water absorption state of a plant.

図1は、本発明の好ましい第1実施形態に係る栽培装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a cultivation device according to a preferred first embodiment of the present invention. 図2は、第1実施形態の制御手段の制御ブロック図である。FIG. 2 is a control block diagram of the control means of the first embodiment. 図3は、第1実施形態の栽培装置1の潅水制御に係る動作例を示すフローチャートである。FIG. 3 is a flowchart showing an operation example related to irrigation control of the cultivation device 1 of the first embodiment. 図4は、潅水後における時間経過に応じた温度検知手段による検知温度の温度変化を示す説明図である。FIG. 4 is an explanatory diagram showing a temperature change of the detected temperature by the temperature detecting means according to the passage of time after irrigation. 図5(a)は、通常のカメラで培養土を撮影した場合のイメージ図であり、図5(b)は、本発明に係る撮影装置で培養土を撮影した場合のイメージ図である。FIG. 5A is an image diagram when the culture soil is photographed with a normal camera, and FIG. 5B is an image diagram when the culture soil is photographed by the imaging apparatus according to the present invention. 図6は、第2実施形態に係る栽培装置の概略構成図である。FIG. 6 is a schematic configuration diagram of the cultivation apparatus according to the second embodiment. 図7は、第2実施形態に係る制御手段の制御ブロック図である。FIG. 7 is a control block diagram of the control means according to the second embodiment. 図8は、第2実施形態の栽培装置の潅水制御に係る動作例を示すフローチャートである。FIG. 8 is a flowchart showing an operation example relating to irrigation control of the cultivation apparatus of the second embodiment. 図9は、第3実施形態に係る栽培装置の概略構成図である。FIG. 9 is a schematic configuration diagram of the cultivation apparatus according to the third embodiment.

[第1実施形態]
<1-1.基本構成>
まず、本発明の第1実施形態について説明する。
図1は、本発明の好ましい第1実施形態に係る栽培装置1の概略構成図である。
図1に示されるように、栽培装置1は、基本構成として、植物P(例えば、トマトなど)が定植された培養土11に、水を供給する水供給手段Dと、培養土11の温度を検出する温度検出手段Sと、前記水供給手段Dを制御する制御手段Cと、を備えている。なお、本実施形態において、培養土11は、栽培容器12に収容されており、この栽培容器12は、赤外線を透過しやすい素材で形成されることが好ましい。
[First Embodiment]
<1-1. Basic configuration>
First, the first embodiment of the present invention will be described.
FIG. 1 is a schematic configuration diagram of a cultivation device 1 according to a preferred first embodiment of the present invention.
As shown in FIG. 1, the cultivation apparatus 1 has, as a basic configuration, the water supply means D for supplying water to the potting soil 11 in which the plant P (for example, tomato) is planted, and the temperature of the potting soil 11. It includes a temperature detecting means S for detecting and a control means C for controlling the water supply means D. In the present embodiment, the culture soil 11 is housed in a cultivation container 12, and it is preferable that the cultivation container 12 is made of a material that easily transmits infrared rays.

温度検出手段Sは、培養土11の温度情報を非接触で取得可能な撮影装置である赤外線サーモグラフィカメラであり、培養土11を撮影して画像データである温度情報を取得し、取得した温度情報を、後述の制御手段Cに無線通信を用いてリアルタイムで送信するよう構成されている。 The temperature detecting means S is an infrared thermography camera which is an imaging device capable of acquiring temperature information of the cultured soil 11 in a non-contact manner, photographs the cultured soil 11 to acquire temperature information which is image data, and acquires the acquired temperature information. Is configured to be transmitted in real time to the control means C described later by using wireless communication.

水供給手段Dは、図1に示されるように、水を供給する水供給源(貯水タンク)d1と、該水供源d1と配管接続された供給路d2上に配設された電磁弁Bと、該供給路d2に配管接続され、培養土11中に埋設されて水を供給可能に構成された水供給パイプd3とを備えている。なお、水供給パイプd3は、所謂ポーラスパイプと呼ばれる多孔質管状体で形成されている。この電磁弁Bの開閉制御により、培養土11中への水の供給状態(潅水)と供給停止状態とが切換えられる。 As shown in FIG. 1, the water supply means D includes a water supply source (water storage tank) d1 for supplying water and an electromagnetic valve B arranged on a supply path d2 connected to the water source d1 by a pipe. And a water supply pipe d3 which is connected to the supply path d2 by a pipe and is buried in the culture soil 11 so as to be able to supply water. The water supply pipe d3 is formed of a so-called porous tubular body. By controlling the opening and closing of the solenoid valve B, the supply state (irrigation) of water into the potting soil 11 and the supply stop state are switched.

図2は、第1実施形態の制御手段Cの制御ブロック図である。
制御手段Cは、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成された情報処理装置である。制御手段Cの入力側には、温度検出手段Sである赤外線サーモグラフィカメラが通信可能に接続されている。また、出力側には、電磁弁Bが接続されている。
FIG. 2 is a control block diagram of the control means C of the first embodiment.
The control means C is an information processing device composed of a well-known microcomputer including a CPU, ROM, RAM, and peripheral circuits thereof. An infrared thermography camera, which is a temperature detecting means S, is communicably connected to the input side of the control means C. Further, a solenoid valve B is connected to the output side.

<1-2.潅水制御>
図3は、第1実施形態の栽培装置1の潅水制御に係る動作例を示すフローチャートである。
制御手段Cは、温度検出手段Sから、リアルタイムで温度情報を取得し、所定の時間間隔(例えば、3分)における培養土11の温度変化率Δtの算出を繰り返し、これを記憶する(ステップS1)。
<1-2. Irrigation control>
FIG. 3 is a flowchart showing an operation example related to irrigation control of the cultivation device 1 of the first embodiment.
The control means C acquires temperature information in real time from the temperature detection means S, repeats the calculation of the temperature change rate Δt of the potting soil 11 at a predetermined time interval (for example, 3 minutes), and stores this (step S1). ).

次に、制御手段Cは、電磁弁Bを開制御する条件である供給開始条件を充足するか判定する(ステップS2)。ここで、本実施形態において、供給開始条件は、温度変化率Δtが、所定値以上であることを条件としている。これにより、制御手段Cは、温度変化率Δtが、所定値以上となると、電磁弁Bを開制御し、水供給手段Dによって、培養土11に水の供給を開始する(ステップS3)。 Next, the control means C determines whether or not the supply start condition, which is a condition for opening and controlling the solenoid valve B, is satisfied (step S2). Here, in the present embodiment, the supply start condition is a condition that the temperature change rate Δt is equal to or higher than a predetermined value. As a result, when the temperature change rate Δt becomes equal to or higher than a predetermined value, the control means C opens and controls the solenoid valve B, and the water supply means D starts supplying water to the potting soil 11 (step S3).

水の供給開始後、制御手段Cは、電磁弁Bを閉制御する条件である供給終了条件を充足するか判定する(ステップS4)。ここで、本実施形態において、供給終了条件は、水の供給開始から所定時間の経過(例えば、5分)を条件としている。 After the start of water supply, the control means C determines whether or not the supply end condition, which is a condition for closing and controlling the solenoid valve B, is satisfied (step S4). Here, in the present embodiment, the supply end condition is a condition that a predetermined time has elapsed (for example, 5 minutes) from the start of water supply.

制御手段Cは、供給終了条件が充足されると、電磁弁Bを閉制御して水の供給を停止し(ステップS5)、ステップS1に戻る。 When the supply end condition is satisfied, the control means C closes and controls the solenoid valve B to stop the water supply (step S5), and returns to step S1.

<1-3.技術的意義>
次に、本発明の技術的意義について説明する。
図4は、潅水後における時間経過に応じた温度検知手段による検知温度の温度変化を示す説明図である。図4中において、実線Aおよび二点鎖線Bは、温度検知手段Sによる検知温度の温度変化の一例を示している。このうち実線Aは、植物Pが定植されていない培養土11の温度変化(以下「植物無時温度変化A」という)であり、二点鎖線Bは、植物Pが定植された培養土11の温度変化(以下「植物有時温度変化B」という)である。
<1-3. Technical significance>
Next, the technical significance of the present invention will be described.
FIG. 4 is an explanatory diagram showing a temperature change of the detected temperature by the temperature detecting means according to the passage of time after irrigation. In FIG. 4, the solid line A and the alternate long and short dash line B show an example of the temperature change of the detected temperature by the temperature detecting means S. Of these, the solid line A is the temperature change of the potting soil 11 in which the plant P is not planted (hereinafter referred to as “plantless temperature change A”), and the two-point chain line B is the temperature change of the potting soil 11 in which the plant P is planted. It is a temperature change (hereinafter referred to as "plant temperature change B").

図4に示されるように、潅水後、植物無時温度変化Aは、時間の経過とともに一定の温度変化率Δt1で温度上昇を続けて、常温に到達する。一方、植物有時温度変化Bは、植物Pが水を吸収することにより、植物無時温度変化Aよりも温度変化率Δt2は、大きくなり、培養土11に水分が行き渡っている状態においては、植物Pが水を吸収する速度が速いほど、温度変化率Δt2は大きくなる。 As shown in FIG. 4, after irrigation, the plant timeless temperature change A continues to rise at a constant temperature change rate Δt1 with the passage of time and reaches normal temperature. On the other hand, in the plant time temperature change B, the temperature change rate Δt2 is larger than that in the plant timeless temperature change A due to the absorption of water by the plant P, and the temperature change rate Δt2 is larger than that in the plant timeless temperature change A. The faster the plant P absorbs water, the larger the temperature change rate Δt2.

そこで、上記実施形態のように、培養土11の温度変化率Δtが所定値以上であることを条件として、潅水を開始する構成によれば、植物Pが適切に水分を吸収しているタイミングで潅水でき、その結果、植物Pの水分吸収状況を踏まえた潅水が可能となり、水枯れを好適に防止して、植物Pの品質を向上できる。 Therefore, according to the configuration in which irrigation is started on the condition that the temperature change rate Δt of the potting soil 11 is equal to or higher than a predetermined value as in the above embodiment, the plant P appropriately absorbs water. It can be irrigated, and as a result, irrigation can be performed based on the water absorption status of the plant P, water withering can be suitably prevented, and the quality of the plant P can be improved.

なお、図4においては、水温<常温の場合(例えば、夏場)が示されているが、例えば、水温>常温の場合(例えば、冬場)においても、温度変化率Δt1の大きさを監視することにより、同様に、植物Pが適切に水分を吸収しているタイミングで潅水することができる。 Although the case where the water temperature is <normal temperature (for example, in the summer) is shown in FIG. 4, the magnitude of the temperature change rate Δt1 should be monitored even when the water temperature> the normal temperature (for example, in the winter). Similarly, the plant P can be irrigated at the timing when it appropriately absorbs water.

図5(a)は、通常のカメラで培養土を撮影した場合のイメージ図であり、図5(b)は、本発明に係る撮影装置(赤外線サーモグラフィカメラ)で培養土を撮影した場合のイメージ図である。図5(a)、図5(b)に示されるように、非接触で培養土11の温度情報を取得可能な赤外線サーモグラフィカメラによって、培養土11の温度情報をリアルタイムで取得する構成によれば、培養土11全体の温度変化を迅速かつ的確に取得でき、水枯れをさらに好適に防止することができる。また、植物Pの病気による吸水の異常を早期に発見することができる。 FIG. 5A is an image diagram when the culture soil is photographed with a normal camera, and FIG. 5B is an image diagram when the culture soil is photographed by the imaging device (infrared thermography camera) according to the present invention. be. As shown in FIGS. 5 (a) and 5 (b), according to a configuration in which the temperature information of the potting soil 11 is acquired in real time by an infrared thermography camera capable of acquiring the temperature information of the potting soil 11 in a non-contact manner. , The temperature change of the whole potting soil 11 can be obtained quickly and accurately, and water withering can be more preferably prevented. In addition, abnormal water absorption due to a disease of plant P can be detected at an early stage.

[第2実施形態]
<2-1.基本構成>
次に、本発明の第2実施形態について説明する。
図5は、第2実施形態に係る栽培装置1の概略構成図である。
なお、第2実施形態のうち、上記第1実施形態と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。
[Second Embodiment]
<2-1. Basic configuration>
Next, a second embodiment of the present invention will be described.
FIG. 5 is a schematic configuration diagram of the cultivation apparatus 1 according to the second embodiment.
Of the second embodiments, the same components as those of the first embodiment are designated by the same reference numerals, description thereof will be omitted, and different points will be mainly described.

第2実施形態に係る栽培装置1は、第1実施形態に係る栽培装置1の基本構成に加え、培養土11に空気を供給する空気供給手段D2を備え、さらに、植物Pの培養土11上には、適宜の箇所に、植物G周囲の照度を測定する照度計S2と、培養土11の水分濃度を検出する水分計S3が配されている。 The cultivation device 1 according to the second embodiment includes, in addition to the basic configuration of the cultivation device 1 according to the first embodiment, an air supply means D2 for supplying air to the culture soil 11, and further, on the culture soil 11 of the plant P. A luminometer S2 for measuring the illuminance around the plant G and a moisture meter S3 for detecting the water concentration of the potting soil 11 are arranged at appropriate locations.

空気供給手段D2は、図1に示されるように、空気を供給する空気供給源(空気貯蔵ボンベ)d21と、該空気供源d21と配管接続された第2供給路d22上に配設された第2電磁弁B2と、第2供給路d22に配管接続され、培養土11中に埋設されて空気を供給可能に構成された空気供給パイプd23とを備えている。なお、この空気供給パイプd23は、所謂ポーラスパイプと呼ばれる多孔質管状体で形成されている。この第2電磁弁B2の開閉制御により、培養土11中への空気の供給状態と供給停止状態とが切換えられる。 As shown in FIG. 1, the air supply means D2 is arranged on an air supply source (air storage cylinder) d21 for supplying air and a second supply path d22 connected to the air source d21 by a pipe. It includes a second electromagnetic valve B2 and an air supply pipe d23 that is connected to a second supply path d22 by a pipe and is embedded in the culture soil 11 so as to be able to supply air. The air supply pipe d23 is formed of a so-called porous tubular body. By controlling the opening and closing of the second solenoid valve B2, the supply state and the supply stop state of air into the potting soil 11 are switched.

図6は、第2実施形態に係る制御手段Cの制御ブロック図である。
制御手段Cは、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成された情報処理装置である。制御手段Cの入力側には、第1実施形態の構成に加え、照度計S2及び水分計S3から測定値を取得可能に通信接続され、また、出力側には、第2電磁弁B2が接続されている。
FIG. 6 is a control block diagram of the control means C according to the second embodiment.
The control means C is an information processing device composed of a well-known microcomputer including a CPU, ROM, RAM, and peripheral circuits thereof. In addition to the configuration of the first embodiment, the input side of the control means C is connected by communication so that measured values can be acquired from the illuminance meter S2 and the moisture meter S3, and the second solenoid valve B2 is connected to the output side. Has been done.

<2-2.潅水制御>
図7は、第2実施形態の栽培装置1の潅水制御に係る動作例を示すフローチャートである。
<2-2. Irrigation control>
FIG. 7 is a flowchart showing an operation example related to irrigation control of the cultivation device 1 of the second embodiment.

制御手段Cは、温度変化検出手段Sから、リアルタイムで温度情報を取得し、所定の時間間隔(例えば、1分)における培養土11の温度変化率Δtを算出し、これを記憶する(ステップS201)。 The control means C acquires temperature information in real time from the temperature change detecting means S, calculates the temperature change rate Δt of the potting soil 11 at a predetermined time interval (for example, 1 minute), and stores it (step S201). ).

次に、制御手段Cは、照度計S2から照度の測定値を取得する(ステップS202)。次に、照度の測定値が所定値以上か判定する(ステップS203)、照度の測定値が所定値以上のとき、ステップS204に進み、所定値よりも小さいときは、ステップS201に戻る。 Next, the control means C acquires the measured value of the illuminance from the illuminance meter S2 (step S202). Next, it is determined whether the measured value of the illuminance is equal to or higher than the predetermined value (step S203).

次に、照度の測定値が所定値以上のとき、制御手段Cは、水分計S3から培養土11の水分濃度の測定値を取得する(ステップS204)。続いて、制御手段Cは、水分濃度の測定値が所定値(例えば、30%)以下か判定し(ステップS205)、所定値以下であれば、ステップS206に進み、所定値よりも小さければ、ステップS201に戻る。 Next, when the measured value of the illuminance is equal to or higher than a predetermined value, the control means C acquires the measured value of the water concentration of the potting soil 11 from the moisture meter S3 (step S204). Subsequently, the control means C determines whether the measured value of the water concentration is a predetermined value (for example, 30%) or less (step S205), proceeds to step S206 if the measured value is equal to or less than the predetermined value, and proceeds to step S206 if the measured value is smaller than the predetermined value. Return to step S201.

次に、制御手段Cは、電磁弁Bを開制御する条件である供給開始条件を充足するか判定する(ステップS206)。ここで、本実施形態において、供給開始条件は、温度変化率Δtが、所定値以上であることを条件としている。 Next, the control means C determines whether or not the supply start condition, which is a condition for opening and controlling the solenoid valve B, is satisfied (step S206). Here, in the present embodiment, the supply start condition is a condition that the temperature change rate Δt is equal to or higher than a predetermined value.

したがって、制御手段Cは、温度変化率Δtが、所定値以上のとき、電磁弁Bを開制御し、水供給手段Dによって、培養土11に水の供給を開始する(ステップS207)。 Therefore, when the temperature change rate Δt is equal to or higher than a predetermined value, the control means C opens and controls the solenoid valve B, and the water supply means D starts supplying water to the potting soil 11 (step S207).

水の供給開始後、制御手段Cは、電磁弁Bを閉制御する条件である供給終了条件を充足するか判定する(ステップS208)。ここで、本実施形態において、供給終了条件は、水の供給開始から所定時間の経過(例えば、5分)を条件としている。 After the start of water supply, the control means C determines whether or not the supply end condition, which is a condition for closing and controlling the solenoid valve B, is satisfied (step S208). Here, in the present embodiment, the supply end condition is a condition that a predetermined time has elapsed (for example, 5 minutes) from the start of water supply.

制御手段Cは、供給終了条件が充足されると、電磁弁Bを閉制御して水の供給を停止し(ステップS209)、ステップS201に戻る。 When the supply end condition is satisfied, the control means C closes and controls the solenoid valve B to stop the water supply (step S209), and returns to step S201.

一方で、ステップS206において、電磁弁Bを開制御する条件である供給開始条件を充足しないと判定した場合、第2電磁弁B2を開制御する条件である空気供給開始条件を充足するか否か判定する(ステップS211)。ここで、本実施形態において、空気供給開始条件は、温度変化率Δtが、供給開始条件の所定値よりも小なる値である設定基準値以下であることを条件としている。なお、上記設定基準値は予め制御手段Cに設定されて記憶されている。 On the other hand, if it is determined in step S206 that the supply start condition, which is the condition for opening and controlling the solenoid valve B, is not satisfied, whether or not the air supply start condition, which is the condition for opening and controlling the second solenoid valve B2, is satisfied. Determination (step S211). Here, in the present embodiment, the air supply start condition is a condition that the temperature change rate Δt is equal to or less than the setting reference value which is a value smaller than the predetermined value of the supply start condition. The setting reference value is set and stored in the control means C in advance.

したがって、制御手段Cは、温度変化率Δtが、設定基準値以下のとき、第2電磁弁B2を開制御し、空気供給手段D2によって、培養土11に空気の供給を開始する(ステップS212)。一方、温度変化率Δtが、設定基準値より大きいとき、ステップS201に戻る。 Therefore, when the temperature change rate Δt is equal to or less than the set reference value, the control means C opens and controls the second solenoid valve B2, and the air supply means D2 starts supplying air to the culture soil 11 (step S212). .. On the other hand, when the temperature change rate Δt is larger than the set reference value, the process returns to step S201.

空気の供給開始後、制御手段Cは、第2電磁弁B2を閉制御する条件である空気供給終了条件を充足するか判定する(ステップS213)。ここで、本実施形態において、供給終了条件は、空気の供給開始から所定時間の経過(例えば、5分)を条件としている。 After the start of air supply, the control means C determines whether or not the air supply end condition, which is a condition for closing and controlling the second solenoid valve B2, is satisfied (step S213). Here, in the present embodiment, the supply end condition is a condition that a predetermined time has elapsed (for example, 5 minutes) from the start of air supply.

制御手段Cは、供給終了条件が充足されると、第2電磁弁B2を閉制御し(ステップS214)、ステップS201に戻る。 When the supply end condition is satisfied, the control means C closes and controls the second solenoid valve B2 (step S214), and returns to step S201.

<2-3.技術的意義>
次に、本発明の第2実施形態に係る栽培装置1の技術的意義について説明する。
本発明の第2実施形態における栽培装置1は、照度計S2によって植物Pの周囲の照度を測定し、その照度が所定値より小さいときは、潅水を行わないよう構成されている。さらに、水分計S3によって、培養土11の水分濃度を検出し、水分濃度が所定値より大きいときは潅水を行わないよう構成されている。これらの制御によって、培養土11の過湿状態を抑止し、植物Pの根腐れを防止することができる。
<2-3. Technical significance>
Next, the technical significance of the cultivation apparatus 1 according to the second embodiment of the present invention will be described.
The cultivation device 1 in the second embodiment of the present invention is configured to measure the illuminance around the plant P by the illuminance meter S2, and when the illuminance is smaller than a predetermined value, irrigation is not performed. Further, the water content meter S3 detects the water concentration of the potting soil 11, and when the water concentration is higher than a predetermined value, irrigation is not performed. By these controls, it is possible to suppress the over-humidity state of the potting soil 11 and prevent the root rot of the plant P.

また、培養土11の温度変化率Δtが、設定基準値以下であることを条件として、培養土11に空気を供給するように構成されている。これにより、植物Pの吸水が遅い場合には、培養土11に空気を供給して、培養土11を乾燥させ、根腐れをさらに好適に防止できる。 Further, the potting soil 11 is configured to supply air on condition that the temperature change rate Δt of the potting soil 11 is equal to or less than the set reference value. Thereby, when the water absorption of the plant P is slow, air can be supplied to the potting soil 11 to dry the potting soil 11 and root rot can be more preferably prevented.

[第3実施形態]
次に、本発明の第3実施形態について説明する。
なお、第3実施形態のうち、上記第1実施形態、上記第2実施形態と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。
[Third Embodiment]
Next, a third embodiment of the present invention will be described.
Of the third embodiment, the components equivalent to those of the first embodiment and the second embodiment are designated by the same reference numerals, description thereof will be omitted, and different points will be mainly described.

図8は、第3実施形態に係る栽培装置1の概略構成図である。
第3実施形態における栽培装置1は、複数の栽培区画(図示例では4つであり、各栽培区画に、順に、A1、A2、A3、A4と付番している。)毎に、それぞれ、植物Pが定植された培養土11と、水を供給する水供給手段Dと、培養土11の温度を検出する温度検出手段Sと、培養土11に空気を供給する空気供給手段D2と、培養土11の水分濃度を検出する水分計S3と、植物G周囲の照度を測定する照度計S2と、培養土11に紫外線を照射するLEDである紫外線照射手段L1と、殺菌用の薬剤を散布する薬剤散布手段L2が配設されている。さらに、温度検出手段Sである赤外線サーモグラフィカメラは、複数の栽培区画A1~A4全体を撮影し、各栽培区画A1、A2、A3、A4の培養土11の温度を取得するように構成されている。
FIG. 8 is a schematic configuration diagram of the cultivation apparatus 1 according to the third embodiment.
The cultivation device 1 in the third embodiment is used for each of a plurality of cultivation plots (four in the illustrated example, and each cultivation plot is numbered A1, A2, A3, A4 in order). The culture soil 11 in which the plant P is planted, the water supply means D for supplying water, the temperature detection means S for detecting the temperature of the culture soil 11, the air supply means D2 for supplying air to the culture soil 11, and the culture. A moisture meter S3 that detects the moisture concentration of the soil 11, an illuminance meter S2 that measures the illuminance around the plant G, an ultraviolet irradiation means L1 that is an LED that irradiates the cultured soil 11 with ultraviolet rays, and a chemical for sterilization are sprayed. The chemical spraying means L2 is arranged. Further, the infrared thermography camera, which is the temperature detecting means S, is configured to photograph the entire cultivation plots A1 to A4 and acquire the temperature of the culture soil 11 of each cultivation plot A1, A2, A3, A4. ..

制御手段Cは、温度検出手段Sから画像データである温度情報を取得し、各栽培区画A1、A2、A3、A4毎の培養土11の温度を判断し、これらを記憶することが可能に構成されている。さらに、各栽培区画A1、A2、A3、A4に配された水供給手段D、空気供給手段D2を、各栽培区画A1、A2、A3、A4毎にそれぞれ独立して制御可能に構成されている。 The control means C can acquire temperature information which is image data from the temperature detection means S, determine the temperature of the potting soil 11 for each cultivation section A1, A2, A3, and A4, and store them. Has been done. Further, the water supply means D and the air supply means D2 arranged in each cultivation section A1, A2, A3, A4 are configured to be independently controllable for each cultivation section A1, A2, A3, A4. ..

さらに、制御手段Cは、各栽培区画A1、A2、A3、A4毎にそれぞれ独立して、図7に示される制御を実行するよう構成されている。これにより、例えば、栽培ハウス内に複数の栽培区画を設けて、それぞれの栽培区画で植物Pを栽培する場合においても、植物の水分吸収状況を踏まえた潅水が可能となり、各培養土11の過湿状態を抑止し、植物Pの根腐れを防止することができる。 Further, the control means C is configured to independently execute the control shown in FIG. 7 for each cultivation section A1, A2, A3, and A4. As a result, for example, even when a plurality of cultivation plots are provided in the cultivation house and the plant P is cultivated in each cultivation plot, irrigation can be performed based on the water absorption status of the plant, and the excess of each potting soil 11 can be obtained. It is possible to suppress the wet state and prevent the root rot of the plant P.

さらに、制御手段Cは、温度検出手段Sによって、異常な温度変化が検出された栽培区画A1~A4に対し、紫外線照射手段L1によって、紫外線を照射し、殺虫を行うよう構成されている。加えて、薬剤散布手段L2によって、殺菌用の薬剤を散布するよう構成されている。これにより、異常が発生した栽培区画A1~A4の植物Pの生育環境を改善することができる。 Further, the control means C is configured to irradiate the cultivation sections A1 to A4 in which an abnormal temperature change is detected by the temperature detecting means S with ultraviolet rays by the ultraviolet irradiation means L1 to kill insects. In addition, the drug spraying means L2 is configured to spray the bactericidal drug. This makes it possible to improve the growing environment of the plants P in the cultivation plots A1 to A4 in which the abnormality has occurred.

1 栽培装置
11 培養土
12 栽培容器
B 電磁弁
B2 第2電磁弁
C 制御手段
D 水供給手段
d1 水供給源
d2 供給路
d3 水供給パイプ
D2 空気供給手段
d21 空気供給源
d22 第2供給路
d23 空気供給パイプ
S 温度検出手段
S2 照度計
S3 水分計
L1 紫外線照射手段
L2 薬剤散布手段
1 Cultivation equipment 11 Cultivation soil 12 Cultivation container B Solenoid valve B2 Second solenoid valve C Control means D Water supply means d1 Water supply source d2 Supply path d3 Water supply pipe D2 Air supply means d21 Air supply source d22 Second supply path d23 Air Supply pipe S Temperature detecting means S2 Luminometer S3 Moisture meter L1 Ultraviolet irradiation means L2 Chemical spraying means

Claims (3)

植物が定植された培養土に水を供給する水供給手段と、前記培養土の温度を検出する温度検出手段と、前記水供給手段を制御する制御手段とを備え、
前記制御手段は、前記温度検出手段によって培養土の温度変化率を算出し、
前記温度変化率が所定値以上であることを条件として、前記水供給手段の制御により培養土に潅水を行うよう構成されたことを特徴とする栽培装置。
A water supply means for supplying water to the potting soil in which a plant is planted, a temperature detecting means for detecting the temperature of the potting soil, and a control means for controlling the water supply means are provided.
The control means calculates the temperature change rate of the potting soil by the temperature detection means, and obtains the temperature change rate.
A cultivation apparatus characterized in that the culture soil is irrigated under the control of the water supply means on condition that the temperature change rate is equal to or higher than a predetermined value.
前記温度検出手段は、非接触で前記培養土の温度情報を取得可能な撮影装置であることを特徴とする請求項1に記載の栽培装置。 The cultivation device according to claim 1, wherein the temperature detecting means is a photographing device capable of acquiring temperature information of the potting soil without contact. さらに、植物が定植された培養土に空気を供給する空気供給手段を備え、
前記制御手段は、前記温度変化率が、前記所定値よりも小なる値である設定基準値以下であることを条件として、前記培養土に空気を供給するように構成されたことを特徴とする請求項1または請求項2に記載の栽培装置。
In addition, it is equipped with an air supply means that supplies air to the potting soil in which the plants are planted.
The control means is characterized in that air is supplied to the potting soil on condition that the temperature change rate is equal to or less than a setting reference value which is a value smaller than the predetermined value. The cultivation apparatus according to claim 1 or 2.
JP2020177135A 2020-10-22 2020-10-22 Cultivation Equipment Active JP7539080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020177135A JP7539080B2 (en) 2020-10-22 2020-10-22 Cultivation Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020177135A JP7539080B2 (en) 2020-10-22 2020-10-22 Cultivation Equipment

Publications (2)

Publication Number Publication Date
JP2022068454A true JP2022068454A (en) 2022-05-10
JP7539080B2 JP7539080B2 (en) 2024-08-23

Family

ID=81460027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020177135A Active JP7539080B2 (en) 2020-10-22 2020-10-22 Cultivation Equipment

Country Status (1)

Country Link
JP (1) JP7539080B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312552A (en) 1999-04-28 2000-11-14 Takenaka Komuten Co Ltd Device for controlling temperature of soil
JP2004151092A (en) 2002-10-11 2004-05-27 Three N Gijutsu Consultant:Kk Method of monitoring vegetation
US20090321535A1 (en) 2008-06-26 2009-12-31 Shawn Davis Irrigation system
JP6878067B2 (en) 2017-03-20 2021-05-26 株式会社Subaru Landmine detection system and landmine detection method
CN111372444B (en) 2017-12-01 2022-03-08 索尼公司 Information processing device, information processing method, and vegetation management system

Also Published As

Publication number Publication date
JP7539080B2 (en) 2024-08-23

Similar Documents

Publication Publication Date Title
Sihombing et al. Automated hydroponics nutrition plants systems using arduino uno microcontroller based on android
US20180184602A1 (en) Plant growing system and method
KR20160142599A (en) Control system for supplying nutrient solution using wireless communication
Mamatha et al. Design & implementation of indoor farming using automated aquaponics system
RU132309U1 (en) VEGETATION INSTALLATION
CN207867372U (en) A kind of vegetable greenhouse booth remote monitoring system
TWI536904B (en) Greenhouse apparatus for monitoring and controlling growth factors of plant factory and the method thereof
JP2019041637A (en) Cultivation apparatus
Naser et al. Design and construction of smart IoT-based aquaponics powered by PV cells
JP2009044999A5 (en)
Supriadi et al. Controlling pH and temperature aquaponics use proportional control with Arduino and Raspberry
JP2009044999A (en) Plant cultivation controller
Karthikamani et al. IOT based smart irrigation system using Raspberry Pi
JP2022068454A (en) Cultivation device
Rico Automated pH monitoring and controlling system for hydroponics under greenhouse condition
Maulini et al. Monitoring of pH, amonia (NH3) and temperature parameters aquaponic water in the 4.0 revolution era
Debdas et al. IoT Edge Based Vertical Farming
CN106818283A (en) A kind of flowerpot Intelligent watering system and flowerpot Intelligent watering method
Prenger et al. Plant response-based irrigation control system in a greenhouse: system evaluation
CN207867373U (en) A kind of greenhouse monitoring system
CN112616519A (en) Farming uses breeding device
JP6897522B2 (en) Plant cultivation equipment
JP2017221150A (en) Plant cultivation device and irrigation control method
CN117940011A (en) System and method for controlling plant growth
RU78033U1 (en) SYSTEM OF AUTOMATIC IRRIGATION OF PLANTS FOR HOUSING

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20240612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240801

R150 Certificate of patent or registration of utility model

Ref document number: 7539080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150