JP2022067069A - 測定機器を有するツールホルダにおける状態監視 - Google Patents

測定機器を有するツールホルダにおける状態監視 Download PDF

Info

Publication number
JP2022067069A
JP2022067069A JP2021166619A JP2021166619A JP2022067069A JP 2022067069 A JP2022067069 A JP 2022067069A JP 2021166619 A JP2021166619 A JP 2021166619A JP 2021166619 A JP2021166619 A JP 2021166619A JP 2022067069 A JP2022067069 A JP 2022067069A
Authority
JP
Japan
Prior art keywords
tool holder
tool
measurement
axis
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021166619A
Other languages
English (en)
Inventor
グロッシュ,トーマス
Grosch Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haimer GmbH
Original Assignee
Haimer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haimer GmbH filed Critical Haimer GmbH
Publication of JP2022067069A publication Critical patent/JP2022067069A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0966Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring a force on parts of the machine other than a motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/12Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/24Chucks characterised by features relating primarily to remote control of the gripping means
    • B23B31/28Chucks characterised by features relating primarily to remote control of the gripping means using electric or magnetic means in the chuck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0971Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring mechanical vibrations of parts of the machine
    • B23Q17/0976Detection or control of chatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

【課題】測定機器を有するツールホルダにおける状態監視を提供する。【解決手段】ツールホルダ(1)の動作挙動を監視するための方法(100)において、結果として得られる測定軸信号(結果(R))は、ツールホルダに設けられたセンサ(9)の少なくとも2つの径方向に向けられた測定軸(x、y)の少なくとも2つの測定軸信号(x、y)を使用して計算され、監視は、結果として得られる測定軸信号又は結果(R)を使用して実行される。【選択図】図12

Description

本発明は、ツールホルダの動作挙動を監視するための方法に関する。
そのような方法は、たとえば、(非特許文献1)、(非特許文献2)、又は、(非特許文献3)から知られている。
この場合、ここで監視されるツールホルダは、軸方向を定義するツールホルダ回転軸(D)のまわりを回転するように設計されており、その一方の軸方向長手端に、ツールを受容するためのツール受容構成を有するツール部を提供し、その他方の軸方向長手端に、工作機械のスピンドルにトルクを伝達するように連結するための連結構成を有する連結部を提供する。
さらにまた、監視されるツールホルダは、ツールホルダの動作に関するデータを取得するための測定機器を有し、測定機器は、ツールホルダ回転軸(D)に対して径方向に向けられた単一の測定軸を有する1軸加速度センサであり、したがって、加速度センサは、前記径方向測定軸に割り当てられた測定軸信号を生成する。
このツールホルダの場合、動作挙動の監視、たとえば、ここではミリング作業の場合(ここで、そのとき、ミリングツールはツールホルダのツール受容構成に受容されている)のツールホルダにおける、びびりなどの振動の観察又は不安定性の識別は、ミリング作業中に1軸加速度センサによって測定される測定軸信号が、時間の経過にわたり又は周波数スペクトルにおいて分析されるように実行される。たとえば、時間の経過にわたる、1軸加速度センサの測定軸信号における「異常な」(たとえば、急激な)変化が、不安定性を示すことがある。
測定機器/加速度センサを有するそのようなツールホルダによるミリング加工作業の(ここで一例として考えられる)この監視の場合の欠点は、特に、好適な評価方法がない場合に、加工作業のためのツールホルダの測定機器によって出力される信号/データが、この場合はミリング加工などの、ツールホルダの動作を、不適当にのみか又は低い有益性でモデル化し、それによって(加工)監視もまた、不適当にのみ可能であることである。要するに、測定機器を有するツールホルダは、加工に関して解釈が困難な可能性がある(加工)信号/(加工)データを出力する。
In-Process Control with a Sensory Tool Holder to Avoid Chatter, F. Bleicher, et al., Journal of Machine Engineering, 2018, Vol. 18, No. 3, 16-27 Using Sensory Tool Holder Data for Optimizing Production Processes, P. Schorghofer, et al., Journal of Machine Engineering, 2019, Vol. 19, No. 3, 43-55 Method for Determining Edge Chipping in Milling based on Tool Holder Vibration Measurements, F. Bleicher, et al., CIRP Annals - Manufacturing Technology 69 (2020) 101-104
したがって、本発明の目的は、測定機器を有するツールホルダの動作挙動を監視するための方法を提供することであり、当該方法は、従来技術からの欠点を回避し、特に、改善された有益性を伴って、ツールホルダにおける又はツールホルダの動作及び/又は動作挙動若しくは加工プロセスをモデル化及び監視することが可能であるように、従来技術を発展させる。
前記目的は、独立請求項の特徴を有する、ツールホルダの動作挙動を監視するための方法によって達成される。従属請求項及び以下の説明は本発明の好適な発展形態に関する。
上、下、前、後、左、又は右などの用語は、別に明確に定義されていない限り、従来の理解に従って理解すべきである。径方向及び軸方向などの用語は、ツールホルダのツールホルダ回転軸(D)に対して理解すべきである。
用語「略」は(最高裁判所(Supreme Court)の理解に従って)「実際的には依然として有意な程度まで」を意味すると理解されてもよい。したがって、この用語によって示される正確さからの可能な偏差は、製造又は組立公差などのために、意図せずに(すなわち、機能的根拠なしに)生じてもよい。
ツールホルダの動作挙動を監視するための方法は、軸方向を定義するツールホルダ回転軸(D)のまわりの回転のために設計されるツールホルダを提供する。
さらにまた、監視されるツールホルダは、その一方の軸方向長手端に、ツールを受容するためのツール受容構成を有するツール部を提供し、その他方の軸方向長手端に、工作機械のスピンドルにトルクを伝達するように連結するための連結構成を有する連結部を提供する。
さらにまた、監視されるツールホルダが、ツールホルダの動作に関するデータを取得するための測定機器を有する場合もある。
前記測定機器は、少なくとも2つの測定軸(たとえば、x及びyによって示される)を有する、センサ、特に、加速度センサであり、2つの測定軸(x、y)は、ツールホルダ回転軸(D)に対して略径方向に向けられる。
さらにまた、ツールホルダ回転軸(D)に対して略径方向に向けられる、(たとえば、x及びyによって示される)少なくとも2つの測定軸(x、y)が、互いに対して直交する場合、好都合であることがある。
ここで、さらに、ツールホルダ回転軸(D)に対して略径方向に向けられる少なくとも2つの測定軸が中空シャフト円錐の場合、インデックスノッチ又はドライバなどのツールホルダの方向付け機能と整列することも好都合であることもある。したがって、機械制御部による十分に速い通信(リアルタイム)によって、回転角の割当てが可能である可能性がある。したがって、機械座標における振動のフェーザ表示の形態は可能であろう。
しかしながら、測定機器は、力、速度、若しくは変形センサなどの、方向依存性信号を出力する他のセンサシステム、又は、移動量測定システムも備えてもよい。
本発明は、加速度センサを使用して、又は、加速度センサに基づいて、一例として以下で論じられる。
加速度センサは、少なくとも2つの(径方向)測定軸に割り当てられた少なくとも2つの測定軸信号を出力し、当該測定軸信号は、評価されるか若しくは解釈されるか、又は、一般に処理されるとき、(測定)データとして、ツールホルダの動作を記述又はモデル化し、前記測定軸信号は、たとえばx及びyとも呼ばれ、測定軸x及びyに対応する。
簡単にするために、用語「(測定)信号」、「(測定)値」、及び「(測定)データ」は、互いに同義的に使用されてもよい。
それから、ツールホルダの動作挙動を監視するための方法では、少なくとも2つの測定軸信号を使用して、結果として得られる測定軸信号(以下では略して単に「結果」(R)と呼ばれる)が計算され、監視は結果を使用して実行される場合がある。
ここで、少なくとも2つの測定軸信号の結果として得られる測定軸信号、すなわち結果は、(数学的)力学の分野における従来のものと同様に、(ベクトル)合計を意味すると理解されてもよい、しかしながら、これは2つの測定軸信号に一緒に数学的演算を行う任意の(数学的計算)ルールに適用され、そして、その答えは「結果」を構成する。
要するに、数学的に表現すると、R=f(x,y)であり、ここで、fは数学的計算ルールを表す。
たとえば、結果(R)は、以下のルールに従って計算されてもよい。
R(x)=Sqr(Sum(x )) (1)
ここで、
軸iの測定軸信号
Sqr 平方根
Sum 合計
(特に、非直交センサの場合、(1)もベクトルである)
方法は、一方では、このように設計されて、ツールホルダに配置される加速度センサは、ツールホルダ回転軸(D)に対して略径方向に向けられた少なくとも2つの測定軸を有し、それが生成する(測定)信号/(測定)データとして、ツールホルダの動作を記述又はモデル化することがより適切に可能であり、したがって、(そのようなセンサ構造を有する)ツールホルダを使用して行われる加工プロセスをより有益に記述することができるという認識に基づく。
さらに、他方で、加工プロセスの有益なモデルが少なくとも2つの測定軸信号を使用して形成された結果によって初めて提供される場合もある。
したがって、より信頼性のある分析及び改善された予測、たとえば、異常な動作状態、不安定性、ツール破損、又はツール摩耗が可能である。
センサを備えるツールホルダを使用した試験は、特に、単純な1軸センサ又は単純な1軸センサを有するツールホルダは、加工プロセスに関するあまり有益ではないデータを出力する可能性があり、そこから、異常な動作状態、不安定性、ツール破損、ツール摩耗などを、信頼性をもって識別する可能性が低減することを示した。
図10は、たとえば、ツールホルダの加工/センサデータを示し、この場合、歯の数z=4による底フライスであり、径方向(32)に向けられた1つの測定軸を有する1軸加速度センサを使用する。加工パラメータは、n=2400回転/分、a(切込深さ)=2mm、及びa(作用係合)=4mmである。
ここで図10は、3次元イラストで、スペクトル解析対時間を示す(スペクトログラム)。ここで、時間軸は底部から左に伸び、周波数は右から下向きに増加する。期待される歯かみ合い周波数は160Hzである。これは、一見したところ図10から見て取ることはできない。
対照的に、図11はツールホルダの加工/センサデータを示し、この場合同様に、歯の数z=4による底フライスであり、この場合、2軸加速度センサであり、径方向(32)に向けられた2つの直交する測定軸(x、y)を有する。2つの(測定/測定軸)信号x、y又はその(測定)データは、ルールに従って結果Rxyを形成するために組み合わせられた。
R(x)=Sqr(Sum(x )) (1)
ここで、
軸iの測定軸信号
Sqr 平方根
Sum 合計
加工パラメータは、同様に、n=2400回転/分、a(切込深さ)=2mm、及びa(作用係合)=4mmである。
図11は、同様に、3次元イラストで、スペクトル解析対時間を示す。ここで、時間軸は同様に底部から左に伸び、周波数は同様に右から下向きに増加する。期待される歯かみ合い周波数は同様に160Hzであり、今度は、(ZEFによって示される)図11の卓越周波数として明確に識別することができる。
したがって、少なくとも2軸加速度センサは、その測定信号から形成される結果と組み合わせて、ツールホルダの動作挙動をモデル化又は記述することが可能であり、それによって、ツールホルダの異常な動作状態、不安定性、ツール破損、ツール摩耗、又は同様のものを確実に識別することができることが分かる。
加速度センサが、たとえばzとして示される第3の測定軸も有する(対応する(測定軸)信号/値/データもzによって示されてもよい)場合、好都合であり、第3の測定軸は、ツールホルダ回転軸(D)に対して略軸方向に向けられ、したがって、加速度センサは、第3の測定軸に割り当てられた第3の測定軸信号(z)も出力し、特に、結果(R)は場合によっては第3の測定軸信号も使用して計算可能である。
しかしながら、第3の測定軸信号(z)は、場合によっては別に評価されてもよく、それは、主な刺激がその測定平面で起こるので、第3の測定軸又はz軸は、(それが異なるように刺激されるため)第1の測定軸又はx及びy軸とはいくらか異なるように振る舞うことがあるためである。
ここで、多要素動力計による切削力試験から、軸方向の軸信号は、不安定性が存在する場合、相当の信号の変動を示すことがすでに知られている。
第3の測定軸又はz軸が異なるように刺激されると、適切である場合、びびりの検出が考慮されてもよく、たとえば、それは、力測定プラットフォームの場合、同様に、この軸は、びびりが存在するとき、力の非常に激しい階段状変化を示すためである。
さらに、未処理の若しくは処理済みの測定軸信号及び/又はデータが、評価ユニットに、特に、状態監視システム(CMS)に無線で伝達されることが規定されてもよい。これは、たとえば、知られている(無線)規格に従って、及び/又は、Bluetoothによって実行されてもよい。
さらに、未処理の若しくは処理済みの測定軸信号及び/又はデータが、統計処理、特に、平滑化、フィルタリング、又は周波数分析される場合、好都合である。
未処理の若しくは処理済みの測定軸信号及び/又はデータが、変換される、特に、回転系、たとえば、ツールホルダとともに回転し、測定軸にわたる座標系から、慣性座標系に座標変換されることが規定されてもよい。
加速度センサが、ツールホルダ回転軸(D)内に、又は、ツールホルダ回転軸(D)の近くに配置される場合、特に好都合である。加速度センサの位置決めは、ベース負荷azp(向心加速度)が回転速度nの二乗で変化する影響を有し、したがって、ツールホルダ回転軸(D)に対する加速度センサの間隔は、高い回転速度の監視のためにできるだけ小さく維持しなければならない。このように、加速度センサの測定範囲は、わずかにのみ制限される。
測定結果に対する回転速度依存影響は、ベース負荷azpの大きさによる振動のシフトによって、時間信号に反映される。時間信号の振動強度が評価のために考慮される場合、これは観察しなければならない。さらに、測定される最大値は、加工による刺激に対応しないが、シフトが減じられた後のみ有益である。
測定システムの好適な較正により、ベース負荷azpの分析を通して、機械のスピンドルにクランプされたツールの偏心を識別することさえ可能である。
好ましくは、ツールホルダとともに加工プロセス/動作にある工作機械の加工及び/又は動作パラメータが、監視に依存する方法で自動的に適応及び/又は変化することが規定されてもよい。比喩的に且つ簡略化して表現すると、監視結果を使用して開ループ及び/又は閉ループ様式で加工プロセスを制御することは好都合である。たとえば、監視結果がびびりを示した場合、工作機械の回転速度を変えることができる、又は、差し迫ったツール破損の最初の兆候で、工作機械を制御された方法で停止させることができる。
さらに、加速度センサの他に、ツールホルダが、さらなる電子部品、特にマイクロコントローラ、1つ若しくは複数の伝達装置、特に1つ若しくは複数のアンテナ、1つ若しくは複数の回路ボード、及び/又は、1つ又は複数のエネルギー供給部を有する場合、好都合である。
1つの発展形態において、ツール受容構成が、収縮チャック又は液圧式エキスパンションチャック又はフェイスミルアーバ又はコレットチャック又はパワーチャックであることが規定される。
連結構成は、たとえば、中空シャフト円錐、若しくは急傾斜テーパ、及び/又は、ボール形クランプシステム若しくは多角形中空シャフトのための係合構成であってもよいか、又は、それらを備える。
方法は好ましくは、異常な動作/加工状態、特に、ツールホルダに受容されたツール内の/ツールの、不安定性及び/又はびびり及び/又は摩耗及び/又は破損を識別するために使用することができ、識別は、結果を使用した分析を介して実行される。
方法はまた、加工プロセス/動作にある工作機械の加工及び/又は動作パラメータによる、自動工作機械制御のために使用されてもよく、ツールホルダは監視に依存する方法で自動的に適応及び/又は変化する。
インテリジェント(「スマート」)ツールホルダを提供することも可能であり、当該インテリジェントツールホルダは、少なくとも1つのツールホルダであって、当該少なくとも1つのツールホルダが軸方向を定義するツールホルダ回転軸(D)のまわりを回転するように設計され、当該少なくとも1つのツールホルダが、その一方の軸方向長手端に、ツールを受容するためのツール受容構成を有するツール部を有し、その他方の軸方向長手端に、工作機械のスピンドルにトルクを伝達するように連結するための連結構成を有する連結部を有し、当該少なくとも1つのツールホルダがツールホルダの動作に関するデータを取得するための測定機器を有し、当該測定機器が少なくとも2つの測定軸を有する加速度センサであり、当該2つの測定軸がツールホルダ回転軸(D)に対して略径方向に向けられ、当該センサが少なくとも2つの測定軸に割り当てられた少なくとも2つの測定軸信号を出力する、少なくとも1つのツールホルダを有し、且つ、方法又はその発展形態の1つを行うように構成された評価ユニット、たとえば、CMSを有する。
要するに、前記タイプのインテリジェントツールホルダは、当該方法に従って提供されるツールホルダ(すなわち、発展させたツールホルダ)、及び、当該方法を行う評価ユニット(又は、その発展形態の1つ)を提供する。
ある発展形態において、加速度センサは、さまざまな方法で設計されてもよい。たとえば、1つの発展形態において、加速度センサは、特に、互いに対して直交する2つの測定軸を(正確に)有することが規定されてもよい。別の発展形態において、加速度センサは、この場合特に、直交座標系にわたる3つの測定軸を有してもよく、この場合、第3の測定軸は、ツールホルダ回転軸(D)に対して略軸方向に向けられてもよい。
結果(R)は、評価ユニット、たとえば、マイクロプロセッサ/マイクロコントローラによって計算される、又は、状態監視(CM)の間に、若しくは、状態監視システム(CMS)において計算される場合も好都合である。
さらにまた、加速度センサが別々の回路ボード上に、特に、マイクロコントローラとは異なる回路ボード上に配置されることも規定されてもよい。このように、ツールホルダ内の、(柔軟に交換可能である)有利なモジュール式構造システムとしても、構成要素のより柔軟な配置を実現することが可能である。
ここで、マイクロコントローラを持つ回路ボードは、可撓性回路ボードとして構成されてもよく、したがって、ツールホルダの好都合な設置状況を生じさせることができる。
1つ又は複数の伝達装置又はアンテナも、1つ又は複数の別々の回路ボード上に配置されてもよい。
したがって、このような分散配置により、簡単に交換可能である、ツールホルダ内の有利なモジュール構造が可能となる。
しかしながら、主要な構成要素を、1つのチップ上の1つの電子構造ユニットに、たとえば、センサ/μCの組合せに組み合わせることも好都合であることがある。
アンテナは、便宜上、SMD(表面実装装置)アンテナ又はワイヤアンテナ又は自己接着性箔アンテナであってもよい。ここで、SMDアンテナ又はワイヤアンテナが、別々の回路ボード(モジュール構造/モジュール式システム)上に配置されることも規定されてもよい。
さらにまた、伝達装置、特に、アンテナ、及び/又はエネルギー供給部がツールホルダの外面上の窪みに凹状に配置されることも規定されてもよい。
そのような窪みは便宜上、ツールホルダの外面上の円形ポケットとして形成されてもよく、特に、窪みは、特に、シリコーン化合物を使用してポッティングされる、及び/又は覆われる。
1つの発展形態において、2つ以上の伝達装置、特に、2つ以上のアンテナ、特に、ワイヤアンテナが設けられ、それらは、特に、ツールホルダ回転軸(D)のまわりの周方向に分布するように配置される。たとえば、2つ以上のアンテナの1つが伝達影に位置する場合、他のアンテナがデータを(冗長に)伝達することができる。したがって、連続的なデータ伝達を保証することができる。
さらにまた、1つ又は複数の接続穴が、ツールホルダ回転軸(D)に対して斜めに走る、特に、加速度センサ又はアンテナの接続線のための接続穴が、ツールホルダ回転軸(D)に対して斜めに走ることも規定されてもよい。この点に関して、ケーブルガイドによる斜めの穴は、ケーブルキンクを避けることを支援し、そのため、よりフェイルセーフなシステムとなる。
1つの発展形態において、加速度センサがSPIインタフェースを有すること、及び/又は、ツールホルダ内の電子機器がSPIインタフェース及び/又はSPIバスを有することも規定される。要するに、当該方法においては、値/データ/信号がSPIインタフェースを介して伝達されることが好ましい。SPIインタフェース又はSPIバスは、たとえば、ICインタフェースより高い、高データ速度を可能にする。
さらにまた、エネルギー供給が、特に運動エネルギー採取によって実現されることも好都合であることがあり、特にツールホルダ内の冷却材流れは、特にツールホルダ内の冷却材チャネルのタービンによってエネルギーを発生させるために使用される。
代替的に又はそれに加えて、エネルギー供給は、バッテリ及び/又は蓄電池によって提供することができる。
特に、本発明による方法、本発明によるツールホルダ、若しくは、上記のように発展された方法及び/又はツールホルダが備えられる場合、好都合である。したがって、プロセスを工作機械上で監視することが可能である。
本発明の上記の説明及び本発明の有利な構造の上記の説明は、個々に示され、及び場合によっては個々の(主/従属)請求項における組合せで一緒に示される、多数の特徴を含む。しかしながら、これらの特徴はまた、便宜上、ツールホルダのために個々に考えられてもよく、及び/又は、さらなる有意義な組合せを形成するために組み合わされてもよい。
いくつかの用語が、説明又は特許請求の範囲において、各場合に単数で又は数字とともに使用されたとしても、本発明の範囲は、前記用語に関して単数又はそれぞれの数に限定されることが意図されない。さらにまた、単語「a」又は「an」は、数字ではなく不定冠詞として理解されるべきである。
本発明の上記の特性、特徴、及び利点、並びに、これらが実現される方法は、図面/図とともにさらに詳細に論じられる、本発明の例示的な実施形態の以下の説明とともにより明白に且つより明確に理解できるようになるであろう(同一の部分/構成要素及び機能は、図面/図の同じ参照記号によって示される)。
例示的な実施形態は、本発明の説明に役立ち、本発明を、その中に明示される機能的特徴を含む特徴の組合せに限定しない。さらにまた、この目的のために、それぞれの例示的な実施形態の好適な特徴が、単独で明示的に考慮され、1つの例示的な実施形態から取り除かれ、別の例示的な実施形態を補足するために別の例示的な実施形態に導入され、及び請求項のいずれか一項と組み合わされてもよい。
1つの実施形態による、クランプチャック(この場合、収縮チャック)を有するツールホルダを示す。 バッテリ区画及びアンテナポケットを有する、図1によるツールホルダの一部を示す。 図1によるツールホルダの図を(可撓性)メインボードの位置とともに示す。 前側及び後側に保護箔を有し、図1によるツールホルダのためのセンサ接続部、マイクロコントローラ(μC)、及びアンテナ接続部を有する、(可撓性)メインボードを示す。 図1によるツールホルダのためのセンサ接続(プラグ接点)、マイクロコントローラ(μC)、アンテナ接続、プログラミング接点、及びエネルギー供給接続(プラグ接点)を有する(可撓性)メインボードを示す。 図1によるツールホルダの図をセンサの位置とともに示す。 センサを有し、図1によるツールホルダのための配線を有するセンサボードを示す。 センサを有するセンサボード、及び図1によるツールホルダのために配線された(可撓性)メインボードを示す。 2線式アンテナを有するさらなる実施形態による、クランプチャック(この場合、収縮チャック)を有するツールホルダを示す。 1軸加速度センサを有するツールホルダの加工/センサデータを示す(時間の経過にわたる)。 2つの径方向測定軸を有する2軸加速度センサによる、本発明によるツールホルダの加工/センサデータを示す(スペクトログラム)。 ツールホルダ、たとえば、上記の実施形態によるツールホルダの動作挙動を監視するための方法の略図を示す。 加工プロセス(ミリング加工)中の時間の経過にわたる、2つの径方向測定軸を有する2軸加速度センサによる、本発明によるツールホルダの結果Rを示す。 図13による、加工プロセス(ミリング加工)中の時間の経過にわたる、2つの径方向測定軸を有する2軸加速度センサによる、本発明によるツールホルダの結果Rのスペクトログラムを示す。
センサを装備したツールホルダによる状態監視
- センサ装置を有するツールホルダ1(図1~8)
図1は、本発明によるツールホルダ1の第1の実施形態を示し、以下では略して単にツールホルダ1又は第1のツールホルダ1と呼ばれる。
ツールホルダ1は、ツールホルダ本体35を備え、それは、以下では単に本体35と呼ばれる。考えられる最も高い剛性を実現するために、本体35は、この場合には一体形態である。前記本体は、従来の方法で金属から製造される。
本発明の文脈において、構成要素が付加的なプロセスにおいて、たとえば、金属粉末から生成される場合、又は、分離できない方法で、たとえば、溶接若しくはろう付けによって複数の構成要素から組み立てられる場合も、一体構造が存在する。
以下では単に回転軸Dと呼ばれるツールホルダ回転軸Dに沿って(軸方向31に)延在するツールホルダ1は、そのツール側長手端2にツール部3を有し、その反対側の連結側長手端5に連結部6を有する。
ツール部3は、ツール受容凹部4の形態のツール受容構成4を備える。ツール(図1に示されていない)のシャフトは、ツール側長手端2から前記ツール受容凹部4に軸方向31に挿入することができる。
ツールホルダ1のツール部3は、それ自体知られている方法で、収縮チャックとして設計され、ツール(図1に示されていない)のシャフトは、本体の材料の熱膨張及び熱収縮を利用してクランプすることができる。
図1に示されるツールホルダ1の例では、連結部6は、略してHSC(hollow shaft cone)と呼ばれる中空シャフト円錐の形態の連結構成7を備える。
示されていないさらなる例示的な実施形態から分かるように、ツール部3は、液圧式エキスパンションチャックの原理などの、何らかの他のクランプする原理に従って設計されてもよい。これとは別に、連結部6が何らかの他のシャフト設計で構成されることが同様に可能である。
ツール部3と連結部6との間の軸方向31に、たとえばグリッパ機器によってツールホルダ1を操作するための操作構成36が設けられてもよい。図1に示されるように、操作構成36は、周方向21で回転軸Dを取り囲むグリッパ溝37を備えてもよい。
図1に示される例では、中央凹部38は、本体35を通して完全に軸方向31に貫通しており、中央凹部38のツール受容凹部4は、特に冷却剤を、ツールホルダ1を通して加工位置に供給するために利用できる軸方向部分を形成し、その加工位置では、ツールホルダ1にクランプされるツール(図示されていない)は、加工される、たとえば、ミリングツールの場合、ミリング加工されるワークピースと加工係合している。
ワークピース加工中、ツールホルダ1の動作を監視するために、ツールホルダ1には測定機器8が設けられる。
前記測定機器8により、たとえば、ツールホルダ1における、ツール破損/摩耗、振動、又は他の不安定性、たとえば、びびりなどの異常な状態を識別することも可能となる。この目的のために、測定機器の信号/データは、分析及び評価/処理される。
この目的のために、測定機器8は、ツールホルダ1上に配置されて、(ケーブルを介して)互いに接続される、加速度センサ9、SMDアンテナ11、マイクロコントローラ(μC)10、及び電圧/エネルギー供給部又はバッテリ16など(特に図2~8を参照されたい)のさまざまな構成要素を提供し、それらの構成要素は通常、以下で説明されるように、接続線/ケーブル23(図示されていない)、24、25を介して互いに接続される、マイクロコントローラ(μC)10を有するメインボード14、加速度センサ9を有する(センサ)ボード13、及びSMDアンテナ11を有する(アンテナ)ボード15などの別々のボード12、13、14、15上に、モジュール構造に基づいて配置される。
- 2軸加速度センサ9
測定機器8の主要な構成部品は、特に図6~8図示されるように、この場合には、2軸加速度センサ9であり、その2つの測定軸x及びyは、互いに対して直交方向に配置される。
モジュール式に実装し、測定機器8の他の構成要素から独立させるために、この加速度センサ9は、異なる(センサ)ボード13(図7及び8を参照されたい)上に分けて配置される。
ツールホルダ1の回転から生じる加速度センサ9上の遠心力の影響をできるだけ小さく維持するために、加速度センサ9は、特に図6に示されるように、ツールホルダ1の中心点/回転軸D上に配置され、(互いに対して直交する)測定軸x及びyは、回転軸Dに対して垂直に向けられる(そして、軸方向x及びyの径方向(32)加速度を測定する)(図6を参照されたい)。
この2軸加速度センサ9に代わるものとして、3軸加速度センサが使用されてもよく、その場合、その3つの測定軸x、y、zは、この場合、直交座標系にわたり、その第3の測定軸zは、その場合、ツールホルダ回転軸(D)に対して軸方向31に向けられる(示されない)。
(センサ)ボード13は、図6にも示されているように、冷却剤パイプの代わりにツールホルダ1にねじ込むことができるハウジング39内に接着接合される。加速度センサ9は、瞬間接着剤によってハウジング39に直接、接着接合される。
(センサ)ボード13とメインボード14との間の接続は、特に図8及び図7から分かるように、有線形態で実装される(加速度センサ9のための接続線23、並びに、接続線23のためのプラグ接点26のためのプラグコネクタ40)。対応するプラグ接点26は、このために、すなわち、プラグコネクタ40のために、メインボード14上に設けられる。有線接続の代わりに無線接続を構成要素間に設けることも可能である。
- マイクロコントローラ(μC)10を有するメインボード14
マイクロコントローラ(μC)10を有するメインボード14のツールホルダ1への一体化のために、図3に示されるように、回転軸Dに対して同心である円形又はリング状の溝33がツールホルダ1に形成され、その溝33は、(加速度センサのためにここでは示されていない)ツールホルダ1の中央凹部38又は冷却剤パイプの領域のまわりを走る。
リング状溝33は、図2に示されるように、ねじ込むことができるカバー34で閉じられ、これは、この領域はスピンドルからツールホルダ1を取り出すためのHSCインタフェースの部分であるので有利である。
センサハウジング39の(センサ)ボード13と同様に、メインボード14は、すべての構成要素がリング状溝33に設置された後、シリコーン保護被膜を使用してポッティングされる(19)。
図3~5に示されるように、メインボード14は、可撓性「ストリップ」として設計されるが、これは、特に設置プロセスに関して、大きな利点をもたらすためである。可撓性ボードは、大きな労力なしに円形溝33の形状に調整することができ(ここでは、同様に図3及び図4を参照されたい)、さまざまな接続用線/ケーブル23、24(示されていない)、25の接続の間、剛性の変形形態よりも操作/設置が容易である。
図5は、(接続線/ケーブル23、24、25のない(図8を参照されたい))実装されるメインボード14の平面図を示す。図5は、すべての構成要素が取り付けられたメインボード14の頂面を示す。導体トラックのみ、メインボード14の後側に存在する。
加速度センサ9のための接続線/ケーブル(23)、エネルギー供給部16のための接続線/ケーブル(25)、及びアンテナ11のための接続線/ケーブル(24(示されていない))などのすべての接続線/ケーブル23、24(示されていない)、25は、容易且つ柔軟な設置のために有利であるプラグ接点26、27、28によって実装される。
図5に示されるように、接続線23のための接続プラグ接点26又は加速度センサ9のプラグコネクタ40は、メインボード14の左端に位置する。下に位置する(自由)接点29は、適切な場合、さらなるセンサ信号のために使用されてもよい。
さまざまな構成要素を有するマイクロコントローラ(μC)10は、図5に示されるように、メインボード14の中心のわずかに左に配置され、マイクロコントローラは、加速度センサ9から信号/データを読み出す。
信号/データは、加速度センサ9からSPIを介して読み出され、この場合、2つの測定軸、特にx及びyに関する値を提供する。
ある時点で、1つより多い値が必要とされる場合、すべての値を1つの読出操作で伝達することが必要である。読出操作完了後、加速度センサ9からの値は廃棄され、経時的に後続の値は、次の読出操作のためにロードされる。
加速度センサ9は、データをバイト単位で伝達し、個々の値はそれぞれ、2バイトから構成される。さらに、加速度センサ9は、最初に値全体の「後部」を、その後「前部」を伝達し、それらを、マイクロコントローラ(μC)10のソフトウェアがまとめなければならない。データはマイクロコントローラ(μC)10によってまとめられ、伝達の準備が整う。
図5に示されるように、メインボード14の中心の右に、アンテナの接続のための2つの装置、すなわち、プラグ接点があり、第1のツールホルダ1の場合、1つ(この場合、上プラグ接点27)は、SMDアンテナ11のために使用され、それは、信号/データをツールホルダ1の外部、たとえば、CMSに(Bluetooth伝達によって)伝達する。
図5に示されるように、メインボード14の場合、さらに右に、非常に多くのプログラミング接点30を見ることができ、メインボード14の右端に、電圧/エネルギー供給部16のための接続部又はプラグ接点28を見ることができる。
メインボード14の構成要素を保護するために、メインボード14の前側及び後側は、適切な場合、図4に示されるように、その上に接着接合される保護箔42を有してもよい。
- SMDアンテナ11
別のアンテナボード15(図2を参照されたい)上に配置されるSMDアンテナ11は、グリッパカラー43上の円形ポケット17を介して、図1及び2に示されるように、ツールホルダ1に取り付けられ、その円形ポケットは、接続線24(示されていない)のキンクを防ぐために偏心している(接続線24(示されていない)のための)斜めの接続用/接続穴22を介して、メインボード14を受容する円形溝33に接続される。
適切な場合、第2の反対側に位置する同一の円形ポケット(17)が、第1に、ツールホルダ1のつりあいの品質を改善するために、第2に、2つのアンテナ(11)で他のアンテナ概念を実現することを可能にするために(及び、場合によっては、結果として伝達電力を改善するために)グリッパカラー(43)に形成されてもよい(この場合、2線式アンテナ11を有する第2の実施形態による図9又はツールホルダ1を参照されたい)。この目的のために、第2のアンテナ接続(この場合、さらなるプラグ接点27)がメインボード14上にすでに設けられている(上記を参照されたい)。
円形ポケット17にアンテナボード15を固定するために、前記アンテナボードは、シリコーンによってポッティングされる(19)(若しくは、代わりに覆われる)、又は、メインボード14用と同じシリコーン保護被膜19が使用されてもよい。
- エネルギー供給部/バッテリ16
エネルギー/電圧源16又はバッテリ16は、グリッパカラー43上のさらなる円形ポケット17(バッテリ区画45)を介して、図1及び2に示されるように、SMDアンテナ11と同様に取り付けられ、そのさらなる円形ポケットは、接続線25のキンクを防ぐために偏心している(接続線25のための)斜めの接続用穴22を介して、メインボード14を受容する円形溝33に同様に接続される。
バッテリ16は、ねじ込むことができるカバー20によってバッテリ区画45に固定され(図1を参照されたい)、カバー20は、バッテリ区画45上にねじ込むことが可能であり、バッテリ区画45を閉じて、バッテリ16との接点も同時に発生させる。前記カバー20は、バッテリ16の外部からの交換も可能とする。
適切な場合、シール(示されていない)をバッテリ区画45に設けることも可能であり、そのシールは、液体(示されていない)の浸入からバッテリ区画を保護する。
- センサ装置を有するツールホルダ1(図9)
図9は、本発明によるツールホルダ1のさらなる実施形態を示し、略して単に第2のツールホルダ1と呼ばれる。
このさらなる又は第2のツールホルダ1は、第1の実施形態によるツールホルダ、すなわち、第1のツールホルダ1(図1~8を参照されたい)と、単に、異なるタイプのアンテナ11を提供するという点だけ異なる。
これを除けば、この第2のツールホルダ1は、第1の実施形態のように、加速度センサ9を提供し、さらに、他の構成要素をすべて提供する。しかしながら、他の構成要素は、以下ではより詳細には触れないが、第1のツールホルダ1に関連して記載されている。この点に関するより詳細な記述は、第1のツールホルダ1に関する記述に見いだすことができる。
第1の実施形態(ここで、SMDアンテナ11は、第1のツールホルダ1の外周21の円形ポケット17に設置されている(図2を参照されたい))に比べると、この第2のツールホルダ1は、図9に示されるように、それぞれが同様に円形ポケット17に凹状に配置される場合、第2のツールホルダ1の外周21上に均一に分布するように配置される2線式アンテナ11を提供する。前記ワイヤアンテナもそれぞれ、接続線/ケーブルを介して、メインボード又はその上に位置するアンテナ接続/プラグ接点27に接続される。
また、ここで、ツールホルダ1の外周21上の、2線式アンテナ11を受容する円形ポケット17は、同様に、シリコーンによってポッティングされてもよい(19)(又は、代わりに覆われてもよい)。
- センサ装置を有するツールホルダ1による工作機械/加工機プロセスの状態監視(図12~14)
図12は、ツールホルダ1、たとえば、上記の実施形態によるツールホルダ1(図1~9を参照されたい)の動作挙動を監視するための方法100(状態監視(CM))の略図である。
図12は、上記のツールホルダ1のうちの1つとともに実装される(したがって、加速度センサ9によって、加工プロセスに関する測定データを出力することが可能である)、工作機械202(又は、何らかの他の加工機)の(CM又はCMS201の一部としての)開ループ/閉ループ制御装置203の(ブロック)図の形態でこれを示す。
上で述べられて、図12に示されるように、センサを備えたツール受容部1から受信されて、場合によっては、前処理された測定信号の信号伝送150が、Bluetoothを介して、CMS201又はその中の閉ループ制御装置203に対して行われる。これにより、初期の及び/又は未解決の不安定状態に対する臨時の反応、又は、そのような若しくは類似した異常なプロセス状態の補整が可能となる。
これは、工作機械202における、送り運動、回転速度などの加工パラメータのリアルタイム適合/変化160によって実行され、この適合/変化160は、振動、びびり、又はツールの力の導入などの、(センサを備えたツールホルダ1の測定信号/データから識別される)加工状態に応じた方法で実行され、加工状態は、センサを備えたツールホルダ1の測定信号/データによって取得され、閉ループ制御装置203に伝達される。
閉ループ制御装置203は、実質的に、図12に示されるように、加工安定性(正常性/異常性(加工不安定性))について決定し120、この加工安定性が仕様(正常性)に対応しない場合、場合によっては、閉ループ制御装置203によって工作機械202の加工パラメータを変更する160、データ取得及び評価ユニット204から構成される。
CMS201の、センサを備えたツールホルダ1から測定信号/データを受信する(Bluetooth)レシーバ205(トランシーバ)は、この場合、リアルタイムチャネルを介して、前記データ取得及び評価ユニット204に接続され、それにより、システムのリアルタイム機能を可能にする。
評価ユニット204は、ツールホルダ1と一緒に移動する又はともに回転する加速度センサ9から測定データを受信し、前記評価ユニットは、たとえば、バッファメモリに前記測定データを記憶し、すでに上で説明されたように、加工状態の識別/取得120のために、すぐに、さまざまなアルゴリズム、特に、測定軸信号/データからの結果Rの計算110を実行する。
使用されるアルゴリズムは、工作機械202の開ループ制御への(自動)介入160がどのような条件の下で実行されるかも特定されるように構成される。
アルゴリズムの一部は、センサを備えたツール容器1からの測定信号/データから加工状態を確認する。
ここで、特に、結果(R)は、ツールホルダ1の2軸加速度センサ9の2つの測定軸信号x、yから、特に、以下のルールに従って計算される。
R(x)=Sqr(Sum(x )) (1)
ここで、
軸iの測定軸信号、この場合、x及びy
Sqr 平方根
Sum 合計
ツールホルダ1の2軸加速度センサ9の測定軸信号x、yが回転系によって出力される場合、これらは適切な場合、変換140、すなわち、この場合、ツールホルダ1の回転系から慣性座標系への座標変換を受けてもよい。
ここで、適切な場合、測定軸信号x、y又は測定データの測定誤差、測定値異常値などを排除するために、測定軸信号を統計処理130、たとえば、平滑化することも可能である。
次いで、特に、評価ユニット204は、特に、結果Rなどの処理又は評価された測定軸信号x、y又は測定データの、時間の経過にわたるスペクトログラムとしてのさまざまな表現に、加工状態の識別/取得のためのその分析の基礎をおく。
図13は、たとえば、加工プロセス(ミリング加工)における、時間の経過にわたる、センサを備えたツールホルダ1のこの結果Rを示す(横軸:t(時間)、縦軸:結果R又は法線加速度gの倍数としてのその振幅(結果の大きさ))。(対応する結果、又はその経過も、慣性座標系への変換の場合に生じる、そのため、ここでは簡単にするために「ともに回転するデータ」が考えられる)。
(時間の経過にわたる)結果Rから分かるように、歯かみ合いは約0.5秒後に始まり、振幅、すなわち、結果Rの値は、ほんのわずかだけ上昇する。
約5.5秒後、この場合、約70gまでの結果Rの急激な上昇を見ることができ、そこから、加工における、びびりなどの初期の不安定性を推測することができる。
約10秒後、送り運動は、v=0mm/分まで、つまり、ツールがさらに移動することなくその場で回転するまで(約10.5秒)減少する。これ以降は、振幅又は結果は略一定のままである、すなわちその後、約13.5秒後に、モータスピンドルが完全に停止する又は止められるまで、加工は再び安定状態にある。
図14は、前記結果Rの、図13の結果Rと関連付けられたスペクトログラムを示す。ここで、時間軸(t=秒)は右下から右上に伸び、周波数(Hz)は右下から左下に増加する。
ここで、図14に示されるように、加工プロセスの回転周波数fnII=45Hz及びその倍数は、最も重要な周波数と見ることができる。歯かみ合い周波数fZEFII=180Hzは同様に見ることができ、これも常に回転周波数の倍数となる。
約8秒後、さらなる周波数が約192Hzでスペクトルに生じる、それは、不安定な加工又はびびりのための特徴と解釈することができる(図13に関する上記を参照されたい)。
したがって、使用される結果Rは、加工プロセス又は加工状態の有益な描写を与える。すなわち、この場合、びびりなどの不安定性は、(評価装置204によって)前記結果に基づいて明確に識別することができる。
次いで、工作機械202又はそれによって行われる加工プロセスへの介入が必要かどうかを決定するために、アルゴリズムの別の部分は、これらの加工状態を、たとえば、材料パラメータなど及び/又はユーザ入力などの加工パラメータに関連付ける。
次いで、アルゴリズムのさらなる部分は、適切な場合、前記データに基づいて加工パラメータを適応させる(上記の、加工プロセスの安定が実現されるまでの送り運動の減少を参照されたい)。
ここで、評価ユニット204は、リアルタイムチャネルを介して工作機械コントローラ203に連結される。したがって、加工中の機械送り運動及び/又は機械回転速度及び/又は同様のものの臨時の適合/変化が可能となる。
ここで、典型的な用途は、加工誤差、加工不安定性、びびり、ツール破損、ツール摩耗などの回避及び/又は識別である。
加工不安定性又は同様のものが発生した場合、加工パラメータは、それに反応して、自動的且つリアルタイムに、工作機械コントローラ203によって変更される160。
好ましい例示的な実施形態を使用して、本発明がさらに詳細に示されて説明されたが、本発明は、開示された例によって限定されず、他の変形形態は、本発明の保護範囲を逸脱しない範囲で、そこから導き出すことができる。
参照記号のリスト
1 ツールホルダ
2 (第1の、ツール側)軸方向長手端
3 ツール部
4 ツール受容構成、ツール受容凹部
5 (第2の、連結側)軸方向長手端
6 連結部
7 連結構成
8 測定機器
9 (加速度)センサ
10 マイクロコントローラ(μC)
11 伝達装置、アンテナ、SMDアンテナ、ワイヤアンテナ
12 回路ボード、ボード
13 (センサ)ボード
14 メインボード
15 (アンテナ)ボード
16 エネルギー供給部、電圧源、バッテリ
17 窪み、円形ポケット
18 外面
19 埋込用樹脂、シリコーン化合物
20 蓋、カバー(バッテリ区画用)
21 (ツールホルダ(1)の)周方向、また、外周
22 接続穴、接続用穴
23 接続線(加速度センサ用)
24 接続線(伝達装置用)
25 接続線(エネルギー供給部用)
26 (加速度センサ用)接続線のためのプラグ接点
27 (伝達装置用)接続線のためのプラグ接点
28 (エネルギー供給部用)接続線のためのプラグ接点
29 自由プラグ接点
30 プログラミング接点
31 軸方向
32 径方向
33 環状/リング状溝
34 カバー(リング状溝用)
35 (ツールホルダ)本体
36 操作構成
37 グリッパ溝
38 中央凹部
39 ハウジング((センサ)ボード13用)
40 (((加速度)センサ用)接続線用プラグ接点のための)プラグコネクタ
41 ((エネルギー供給部用)接続線用プラグ接点のための)プラグコネクタ
42 保護フィルム
43 グリッパカラー
44 操作構成、グリッパ機器
45 バッテリ区画
100 方法
110 結果として得られる測定軸信号の、又は、少なくとも2つの測定軸信号(x、y)を使用した結果Rの形成
120 結果Rを使用した(プロセス条件の)監視/識別/評価
130 統計処理
140 変換、座標変換
150 (SPIインタフェースを介した)伝達
160 動作パラメータの適合/変化
200 インテリジェントツールホルダ
201 CMS
202 工作機械、加工機
203 閉ループ制御装置/開ループ制御装置(CMS)
204 評価ユニット(CMS)
205 レシーバ
R 結果
D ツールホルダ回転軸、回転軸
x 測定軸、測定軸信号
y 測定軸、測定軸信号
z 測定軸、測定軸信号
ZEF 中央かみ合い周波数
nII 回転周波数
ZEFII 歯かみ合い周波数

Claims (15)

  1. ツールホルダ(1)の動作挙動を監視するための方法(100)であって、
    前記ツールホルダ(1)が、軸方向(31)を定義するツールホルダ回転軸(D)のまわりを回転するように設計されており、
    前記ツールホルダ(1)が、その一方の軸方向長手端(2)に、ツールを受容するためのツール受容構成(4)を有するツール部(3)を有し、その他方の軸方向長手端(5)に、工作機械のスピンドルにトルクを伝達するように連結するための連結構成(7)を有する連結部(6)を有し、
    前記ツールホルダ(1)が、前記ツールホルダ(1)の動作に関するデータを取得するための測定機器(8)を有し、前記測定機器(8)が、少なくとも2つの測定軸(x、y)を有するセンサ(9)、特に、加速度センサ(9)であり、前記2つの測定軸(x、y)が、前記ツールホルダ回転軸(D)に対して略径方向に向けられ(32)、前記センサ(9)が、前記少なくとも2つの測定軸(x、y)に割り当てられた少なくとも2つの測定軸信号(x、y)を出力し、
    結果として得られる測定軸信号(結果R)が、前記少なくとも2つの測定軸信号(x、y)を使用して計算され(110)、前記監視が、前記結果Rを使用して実行される(120)、
    方法(100)。
  2. 前記結果(R)が、以下のルールに従って計算される、
    R(x)=Sqr(Sum(x )) (1)
    ここで、
    軸iの測定軸信号
    Sqr 平方根
    Sum 合計
    (特に、非直交センサの場合、(1)もベクトルである)
    請求項1に記載の方法(100)。
  3. 前記センサ(9)が第3の測定軸(z)を有し、前記第3の測定軸(z)が、前記ツールホルダ回転軸(D)に対して略軸方向に向けられ(31)、したがって、前記センサ(9)が、前記第3の測定軸(z)に割り当てられた第3の測定軸信号(z)も出力し、特に、前記結果(R)が前記第3の測定軸信号(z)も使用して計算される(110)、及び/又は、前記第3の測定軸信号(z)が別に評価される、
    請求項1又は2に記載の方法(100)。
  4. 未処理の若しくは処理済みの測定軸信号及び/又はデータが、評価ユニットに、特に、状態監視システム(CMS)に無線で伝達される、
    請求項1~3のいずれか一項に記載の方法(100)。
  5. 未処理の若しくは処理済みの測定軸信号及び/又はデータが、統計処理される、特に、平滑化、フィルタリング、又は周波数分析される(130)、
    請求項1~4のいずれか一項に記載の方法(100)。
  6. 未処理の若しくは処理済みの測定軸信号及び/又はデータが、変換される、特に、回転系から慣性座標系に座標変換される(140)、
    請求項1~5のいずれか一項に記載の方法(100)。
  7. 信号及び/又はデータが、SPIインタフェースを介して伝達される(150)、
    請求項1~6のいずれか一項に記載の方法(100)。
  8. 前記センサ(9)が、前記ツールホルダ回転軸(D)内に、又は、前記ツールホルダ回転軸(D)の近くに配置される、
    請求項1~7のいずれか一項に記載の方法(100)。
  9. 前記ツールホルダ(1)とともに加工プロセス/動作にある工作機械(202)の加工及び/又は動作パラメータが、前記監視に依存する方法で自動的に適応及び/又は変化する(160)、
    請求項1~8のいずれか一項に記載の方法(100)。
  10. 前記ツールホルダ(1)が、
    さらなる電子部品、特にマイクロコントローラ(10)、
    1つ若しくは複数の伝達装置(11)、特に1つ若しくは複数のアンテナ(11)、
    1つ若しくは複数の回路ボード(12、13、14、15)、及び/又は、
    1つ若しくは複数のエネルギー供給(16)
    を有する、
    請求項1~9のいずれか一項に記載の方法(100)。
  11. 前記ツール受容構成(4)が、収縮チャック若しくは液圧式エキスパンションチャック若しくはフェイスミルアーバ若しくはコレットチャック若しくはパワーチャックであり、及び/又は、
    前記連結構成(6)が、中空シャフト円錐、若しくは、急傾斜テーパ、及び/又は、ボール形クランプシステムのための係合構成を備える、
    請求項1~10のいずれか一項に記載の方法(100)。
  12. 異常な動作/加工状態、特に、前記ツールホルダ(1)に受容されたツール内の/ツールの、不安定性及び/又はびびり及び/又は摩耗及び/又は破損を識別するために使用され、
    前記識別が、前記結果(R)を使用した分析を介して実行される、
    請求項1~11のいずれか一項に記載の方法(100)。
  13. 偏心を識別するために使用され、
    ベース負荷azpが分析される、
    請求項1~12のいずれか一項に記載の方法(100)。
  14. 加工プロセス/動作にある前記工作機械(202)の加工及び/又は動作パラメータによる自動工作機械制御のために使用され、
    前記ツールホルダ(1)が、前記監視に依存する方法で自動的に適応及び/又は変化する(160)、
    請求項1~13のいずれか一項に記載の方法(100)。
  15. 少なくとも1つのツールホルダ(1)が、軸方向(31)を定義するツールホルダ回転軸(D)のまわりを回転するように設計され、
    前記少なくとも1つのツールホルダ(1)が、その一方の軸方向長手端(2)に、ツールを受容するためのツール受容構成(4)を有するツール部(3)を有し、その他方の軸方向長手端(5)に、工作機械のスピンドルにトルクを伝達するように連結するための連結構成(7)を有する連結部(6)を有し、
    前記少なくとも1つのツールホルダ(1)が、前記ツールホルダ(1)の動作に関するデータを取得するための測定機器(8)を有し、前記測定機器(8)が、少なくとも2つの測定軸(x、y)を有するセンサ(9)、特に、加速度センサ(9)であり、前記2つの測定軸(x、y)が、前記ツールホルダ回転軸(D)に対して略径方向に向けられ(32)、前記センサ(9)が、前記少なくとも2つの測定軸(x、y)に割り当てられた少なくとも2つの測定軸信号(x、y)を出力する、
    前記少なくとも1つのツールホルダ(1)を有し、及び、
    請求項1~14のいずれか一項に記載の方法(1)を行うように構成された評価ユニット(204)、特に、状態監視システム(CMS 201)を有する、
    インテリジェントツールホルダ(200)。
JP2021166619A 2020-10-19 2021-10-11 測定機器を有するツールホルダにおける状態監視 Pending JP2022067069A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020127510.2A DE102020127510A1 (de) 2020-10-19 2020-10-19 Zustandsüberwachung bei einem Werkzeughalter mit Messvorrichtung
DE102020127510.2 2020-10-19

Publications (1)

Publication Number Publication Date
JP2022067069A true JP2022067069A (ja) 2022-05-02

Family

ID=78179141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021166619A Pending JP2022067069A (ja) 2020-10-19 2021-10-11 測定機器を有するツールホルダにおける状態監視

Country Status (5)

Country Link
US (1) US11685009B2 (ja)
EP (1) EP3984695A3 (ja)
JP (1) JP2022067069A (ja)
CN (1) CN114378642A (ja)
DE (1) DE102020127510A1 (ja)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH486289A (de) * 1968-08-08 1970-02-28 Kistler Instrumente Ag Elektrische Überwachungsanlage für Werkzeugmaschinen
US4131837A (en) * 1976-11-10 1978-12-26 The Boeing Company Machine tool monitoring system
CH680421A5 (ja) * 1989-12-22 1992-08-31 Kistler Instrumente Ag
CH682182A5 (ja) * 1990-05-31 1993-07-30 Kk Holding Ag
DE9014037U1 (ja) 1990-10-09 1990-12-20 Emuge-Werk Richard Glimpel Fabrik Fuer Praezisionswerkzeuge, 8560 Lauf, De
DE4314235A1 (de) * 1993-04-30 1994-11-03 Bilz Otto Werkzeug Werkzeughalter, insbesondere Schnellwechselfutter
EP1334799B1 (en) * 2000-10-27 2011-08-10 Tokyo Seimitsu Co., Ltd. Machine tool
DE102004026635A1 (de) * 2004-06-01 2005-12-29 Franz Haimer Maschinenbau Kg Durchmesserausgleichsbuchse für einen Werkzeughalter
WO2007147232A1 (en) * 2006-06-19 2007-12-27 Robarts Research Institute Apparatus for guiding a medical tool
EP2271462A2 (en) * 2008-03-17 2011-01-12 Christopher A. Suprock Smart machining system and smart tool holder therefor
CN101804584A (zh) * 2010-03-31 2010-08-18 沈阳理工大学 车铣加工三向切削力测量仪
JP6227603B2 (ja) * 2015-09-10 2017-11-08 ファナック株式会社 衝撃検出機能を有する電子機器
DE102015220533A1 (de) 2015-10-21 2017-04-27 Haimer Gmbh Werkzeughalter mit integrierter Sensorik
DE102016116179A1 (de) * 2016-08-01 2018-02-01 Nuton GmbH Werkzeugspindel mit Kraftmesseinrichtung
US10875138B1 (en) * 2016-08-09 2020-12-29 M4 Sciences Llc Tool holder assembly for machining system
DE102017007857A1 (de) * 2017-08-23 2019-02-28 Deckel Maho Pfronten Gmbh Spindelvorrichtung zum Einsatz an einer numerisch gesteuerten Werkzeugmaschine
US20190152011A1 (en) * 2017-11-21 2019-05-23 General Electric Company Predictive cutting tool failure determination
TWI649152B (zh) * 2017-11-28 2019-02-01 先馳精密儀器股份有限公司 刀具狀態檢測系統及方法
DE102018109880A1 (de) 2017-12-22 2019-06-27 Friedrich Bleicher Sensormodul, Maschinen- oder Werkzeugelement und Werkzeugmaschine
US11609544B2 (en) * 2018-01-29 2023-03-21 Shaper Tools, Inc. Systems, methods and apparatus for guided tools with multiple positioning systems
CN108747586A (zh) * 2018-04-28 2018-11-06 基准精密工业(惠州)有限公司 刀柄、监测方法及存储设备
JP7053526B2 (ja) 2019-03-25 2022-04-12 ファナック株式会社 主軸振動測定システム、主軸振動測定方法、およびプログラム
CN110091215A (zh) * 2019-05-08 2019-08-06 北京理工大学 一种实时监测铣削力、振动的无线传输智能刀柄检测系统

Also Published As

Publication number Publication date
CN114378642A (zh) 2022-04-22
US20220118575A1 (en) 2022-04-21
DE102020127510A1 (de) 2022-04-21
EP3984695A3 (de) 2022-07-13
EP3984695A2 (de) 2022-04-20
US11685009B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
JP6975143B2 (ja) センサが組み込まれたツールホルダ
US20090234490A1 (en) Smart Machining System and Smart Tool Holder Therefor
JP7036726B2 (ja) 切削工具のためのセンサーモジュール、工具ホルダー、及び切削アッセンブリ
TWI457196B (zh) 可即時監測工作狀態之工具機主軸結構
JP2018054611A (ja) 振動測定装置
CN103769945B (zh) 颤振抑制方法和机床
US20020183178A1 (en) Tool, tool holder, method of driving the same, machine tool, and tool management system
EP3292929B1 (en) Estimation of orientation of a cutting tool
US20190061086A1 (en) Magnetic add-on system with vibration and acoustic sensing capabilities for tool condition monitoring
US20220097192A1 (en) Tool State Detection System
JP2019166600A (ja) 旋削工具用ホルダ、旋削工具および旋削方法
JP2022071034A (ja) 切削工具、工具システムおよび通信制御方法
JP2022067069A (ja) 測定機器を有するツールホルダにおける状態監視
Suprock et al. A low cost wireless tool tip vibration sensor for milling
KR101212880B1 (ko) 공작기계의 진동 모니터링 시스템
EP0749804B1 (en) Tool breakage detecting system
JP2022067070A (ja) 測定機器を有するツールホルダ
KR101407861B1 (ko) 절삭공구의 마멸 감지장치 및 이를 이용한 절삭공구의 마멸 감지방법
JP2019166601A (ja) 転削工具用ホルダ、転削工具および転削方法
JP2018051760A (ja) 手持ち式工具に用いる無線式測定ユニット
JPH10249676A (ja) 数値制御工作機械によるワークの加工方法
JP2018043328A (ja) 切削工具、及び加工方法
WO2021015239A1 (ja) 工具保持具、工作機械及びデータ収集システム
US10753823B2 (en) Dynamic characterization system for measuring a dynamic response
CN118159822A (zh) 针对待在运行中旋转的刀具的同心度监控模块和同心度监控方法