JP2022066063A - 電力変換システム - Google Patents

電力変換システム Download PDF

Info

Publication number
JP2022066063A
JP2022066063A JP2020174973A JP2020174973A JP2022066063A JP 2022066063 A JP2022066063 A JP 2022066063A JP 2020174973 A JP2020174973 A JP 2020174973A JP 2020174973 A JP2020174973 A JP 2020174973A JP 2022066063 A JP2022066063 A JP 2022066063A
Authority
JP
Japan
Prior art keywords
short
circuit switch
switch
circuit
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020174973A
Other languages
English (en)
Other versions
JP7504761B2 (ja
Inventor
一 浦井
Hajime Urai
矩也 中尾
Takuya Nakao
央 上妻
Hiroshi Kamitsuma
公久 古川
Kimihisa Furukawa
邦彦 富安
Kunihiko Tomiyasu
欣也 中津
Kinya Nakatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020174973A priority Critical patent/JP7504761B2/ja
Priority to EP21199144.3A priority patent/EP3985850A1/en
Publication of JP2022066063A publication Critical patent/JP2022066063A/ja
Application granted granted Critical
Publication of JP7504761B2 publication Critical patent/JP7504761B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/25Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in series, e.g. for multiplication of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/81Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal arranged for operation in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】故障ユニットをバイパスする短絡スイッチのサージ電流耐量仕様を低減でき、短絡スイッチに小型で安価な素子を適用して、システムの信頼性および冗長性を向上させる電力変換システムを提供する。【解決手段】電力変換システム100は、半導体スイッチ素子を用いて形成された複数の電力変換器ユニット10を直列接続して備え、電力変換器ユニット10の入力端子および/または出力端子に設けられ、当該電力変換器ユニット10をバイパスするスイッチ素子201,211と、スイッチ素子201,211を導電状態に切り替えるタイミングを制御するスイッチングコントローラ54と、を備える。【選択図】図1

Description

本発明は、電力変換システムに関する。
近年、交流を直流にあるいは直流を交流に変換する電力変換装置が多く用いられている。この種の電力変換装置は高電圧の分野にも応用されている。その場合に、例えば、半導体スイッチング素子(Insulated-gate bipolar transistor:IGBTなど)を含んだ単相電力変換器を利用して、この単相電力変換器を複数直列に接続する。このような構成であればスイッチング素子の耐圧以上の電圧を出力できる。直流送電システム(HVDC)や無効電力補償装置(STATCOM)、モータドライブインバータなどへの応用が期待されている。
複数の単相電力変換器ユニットを直列接続してなる電力変換システムの例としては、単相インバータ装置(以下、セルインバータ装置という)を複数直列に接続して1相分のインバータ装置群を形成し、これを例えば3相に組み合わせて3相のインバータシステムを形成したものが知られている(特許文献1参照)。
このような直列多重変換器システムでは、1つのセルインバータ装置が異常になった場合、負荷に正常な電力を供給できなくなるばかりでなく、他の健全な単相電力変換器の正常動作にも影響を与えるおそれがある。1つのセルインバータ装置に故障(異常)が発生した場合に、すべてのセルインバータ装置を停止することなく、運転を継続するために、単相電力変換器ユニットの出力線に挿入された出力切り離しスイッチと、該切り離しスイッチを含めて各単相電力変換器の出力をバイパスするバイパス回路にバイパススイッチを備える構成が知られている(特許文献2参照)。
特開平10-75580号公報 特開2000-245168号公報
しかしながら、このような従来の直列変換器システムにあっては、電力変換器ユニット故障時に故障ユニットをバイパスする短絡スイッチの故障については、考慮されていない。短絡スイッチが故障すると、故障ユニットを無効化することができず、電力変換システム全体を停止させなければならない。
電力変換器ユニットの故障時には、過渡的な高周波の振動を伴ったサージ電流が発生する場合があり、このサージ電流により短絡スイッチが故障しないよう、サージ電流耐量の大きい短絡スイッチを用いる必要がある。一方、サージ電流耐量の大きい短絡スイッチは、大型化するため、短絡スイッチの重量が大きくなる。このため、コンバータシステムの単位重量当たりの電力量が小さくなり、電力変換量の重量効率が低下する問題点がある。
本発明は、このような事情に鑑みてなされたものであり、故障ユニットをバイパスする短絡スイッチのサージ電流耐量仕様を低減でき、短絡スイッチに小型で安価な素子を適用して、システムの信頼性および冗長性を向上させることができる電力変換システムを提供することを目的とする。
上記課題を解決するために、本発明の電力変換システムは、複数の電力変換器ユニットを直列接続して備える電力変換システムであって、前記電力変換器ユニットの入力側および/または出力側に設けられ、当該電力変換器ユニットをバイパスする短絡スイッチと、前記短絡スイッチを導電状態に切り替えるタイミングを制御する制御部と、を備えることを特徴とする。
本発明のその他の態様については、後記する実施形態において説明する。
本発明によれば、故障ユニットをバイパスする短絡スイッチのサージ電流耐量仕様を低減でき、短絡スイッチに小型で安価な素子を適用して、システムの信頼性および冗長性を向上させることができる。
本発明の第1の実施形態に係る電力変換システムの全体構成を示す図である。 本発明の第1の実施形態に係る電力変換システムの電力変換器ユニットの入力端子に接続する短絡スイッチユニットの構成を示す図である。 本発明の第1の実施形態に係る電力変換システム内の短絡故障時のサージ電流の例を示す波形図である。 本発明の第2の実施形態に係る電力変換システムのスイッチングコントローラの構成を示す図である。 本発明の第3の実施形態に係る電力変換システムのスイッチングコントローラの構成を示す図である。 本発明の第4の実施形態に係る電力変換システムのスイッチングコントローラの構成を示す図である。
以下、本発明の実施形態について図面を参照して詳細に説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る電力変換システムの全体構成を示す図である。本実施形態は、複数の高周波ACリンクコンバータを用いた多重電力変換装置に適用した例である。
[電力変換システムの構成]
電力変換システム100は、半導体スイッチ素子を用いて形成された複数の単相電力変換器ユニット10(以下、電力変換器ユニット10という)を直列接続して備える。
電力変換システム100は、電力変換器ユニット10の入力端子(入力側)に設けられ、電力変換器ユニット10をバイパスするスイッチ素子201を有する入力側の短絡スイッチユニット20を備える。さらに、電力変換システム100は、電力変換器ユニット10の出力端子(出力側)に設けられ、電力変換器ユニット10をバイパスするスイッチ素子211を有する出力側の短絡スイッチユニット21を備える。
複数の電力変換器ユニット10と短絡スイッチユニット20,21は、単相の電力変換器群301,302,303を構成する。3台の単相電力変換器群301,302,303は、3相(U、V、W相)AC電源30をDCに変換する。
複数の電力変換器ユニット10の、各電力変換器ユニット10の構成は同一である。また、電力変換器ユニット10の入力端子および出力端子に設けられる各短絡スイッチユニット20,21の構成は同一である。
<電力変換器ユニット10>
電力変換器ユニット10を、図1の単相の電力変換器群301のものを例に説明する。電力変換器ユニット10は、ここでは高周波リンクコンバータのユニットである。
電力変換器ユニット10は、ACをDCに変換するAC/DCコンバータ101と、DCを高周波のACに変換する高周波DC/ACインバータ102と、高周波ACをDCに変換する高周波AC/DCコンバータ103と、絶縁トランス(高周波変圧器)104と、平滑コンデンサ105,106と、を備える。
高周波DC/ACインバータ102と高周波AC/DCコンバータ103は、絶縁トランス104を介して接続される。高周波ACには、例えばkHzオーダーのキャリア周波数が用いられる。
AC/DCコンバータ101、高周波DC/ACインバータ102、および高周波AC/DCコンバータ103は、半導体スイッチ素子としてIGBT(Insulated Gate Bipolar Transistor)を用いたフルブリッジのインバータ、コンバータである。この半導体スイッチ素子に、例えば、パワーMOSFET(Power Metal-Oxide-semiconductor Field-Effect Transistor)が用いられることもある。
本実施形態では、電力変換器ユニット10の一例として、高周波ACリンクコンバータを例に採っているが、電力変換器ユニット10は、どのようなものでもよい。また、図1において、コンバータまたはインバータ単体、もしくはこれらの組み合わせを変えてもよい。
多重接続された電力変換器ユニット10で単相の電力変換器群301,302,303を構成し、3台の単相電力変換器群301,302,303で三相AC電源30をDCに変換する。
<短絡スイッチユニット20,21>
単相の電力変換器群301は、電力変換器ユニット10の、入力端子間と出力端子間に短絡スイッチユニット20,21を設ける。図1の例では、短絡スイッチユニット20は、3相AC電源30の交流端子に接続される。
短絡スイッチユニット20,21は、スイッチ素子201,211(短絡スイッチ)と、スイッチングコントローラ54(図2参照)と、過電圧抑制素子202,212と、を備える。また、スイッチングコントローラ54には、異常検出判定部50(図2参照)から異常検出判定値が入力される。
電力変換器ユニット10の入力端子に接続する短絡スイッチユニット20と、出力端子に接続する短絡スイッチユニット21とは、構成および仕様は同じとしてもよく、異なっていてもよい。また、短絡スイッチユニット20のスイッチ素子201と、短絡スイッチユニット21のスイッチ素子211の仕様は同じとしてもよく、異なっていてもよい。同様に、短絡スイッチユニット20の過電圧抑制素子202と短絡スイッチユニット21の過電圧抑制素子212の仕様は同一である必要はない。
<スイッチ素子201,211>
スイッチ素子201,211は、故障時に、故障した電力変換器ユニット10をバイパスする短絡スイッチである。
スイッチ素子201は、電力変換器ユニット10内の入力回路側(AC/DCコンバータ101側)の故障時に導通状態となり電力変換器ユニット10をバイパスする。
スイッチ素子211は、電力変換器ユニット10内の出力回路側(高周波AC/DCコンバータ103側)の故障時に導通状態となり電力変換器ユニット10をバイパスする。
スイッチ素子201,211は、両極性のものを使用する場合には、単一の素子で構成できる。
スイッチ素子201,211は、スイッチングコントローラ54からのゲート電圧を受けて、導電状態に切り替えるタイミングが制御される(後記)。
なお、スイッチ素子201,211には、半導体スイッチ素子を適用することが望ましいが、気中リレーや真空開閉器など機械接点方式のスイッチを用いることもできる。
スイッチ素子201,211には、例えば電磁コイルで駆動する機械式のリレースイッチや、サイリスタやMOSFETなどの固体スイッチで構成できる。
短絡スイッチに半導体スイッチ素子を適用することで、ミリ秒オーダーで回路を短絡することができ、単相電力変換器ユニット内部の素子故障において、素子に流れる故障電流を短時間でバイパスして、素子の破壊故障を防止できる。故障波及を最小限に抑制することができ、さらに信頼性を高めることができる。
<過電圧抑制素子202,212>
過電圧抑制素子202,212は、スイッチ素子201,211と並列に接続され、電圧により導電状態が切り替わる。
過電圧抑制素子202,212は、高電圧が印加された場合に、低抵抗となる非線形抵抗素子であればよい。バリスタやガスアレスタに限定するものではないが、インバータもしくはコンバータを構成するスイッチ素子などの内部破壊の場合に、短絡故障がアーク放電に移行した後、消弧された場合に減衰性の高周波電圧が発生するため、耐通過電流It容量の大きいガスアレスタとすることが望ましい。
外部の雷インパルスの急峻なサージ電圧を保護する必要がある場合には、動作時間の早いMOV(Metal Oxide Varistor;金属酸化物バリスタ)を設置してもよい。また、特性の異なるガスアレスタとMOVを並列に接続してもよい。なお、スイッチ素子201,211が十分に高い過電圧耐量を有する場合には過電圧抑制素子202,212は省略できる。
過電圧抑制素子202,212は、高電圧が印加された場合に、低抵抗となる非線形抵抗素子である。非線形抵抗素子は、例えば、放電を利用したガスアレスタ53や、酸化亜鉛(ZnO)などの非線形抵抗を用いたバリスタ(後記)を適用する。ガスアレスタ53は、瞬間的に発生するサージ電圧が印加された場合に、サージ電圧のみを接地側にパスさせる。
なお、短絡スイッチユニット20のスイッチ素子201と短絡スイッチユニット21のスイッチ素子211の仕様、および短絡スイッチユニット20の過電圧抑制素子202と短絡スイッチユニット21の過電圧抑制素子212の仕様は、それぞれ、同一である必要はない。
また、過電圧抑制素子202,212は、短絡スイッチユニット20,21が十分な耐電圧を有する場合は省略可能である。
[短絡スイッチユニット20,21の構成]
図2は、電力変換器ユニット10の入力端子(入力側)に接続する短絡スイッチユニット20の構成を示す図である。入力端子に接続する短絡スイッチユニット20と出力端子に接続する短絡スイッチユニット21とは、それぞれ同じ構成としてよい。以下、入力端子の短絡スイッチユニット20を例に説明する。
図2に示すスイッチ素子201は、半導体スイッチ素子であり、例えば、逆極性で接続したサイリスタ51,52(短絡スイッチ)を適用する。
スイッチ素子201は、2個のサイリスタ51,52を逆極性で接続することで、双方向で通電できる。
短絡スイッチユニット21のように直流端子に適用する場合には、サイリスタ素子1個(図2において、サイリスタ52を削除)として単極性としてよい。
過電圧抑制素子202は、例えば、ガスアレスタ53である。このガスアレスタ53は、短絡スイッチユニット20(図1参照)に備えられて電力変換システム100の内部故障を保護するためのものである。誘導雷サージから電子機器の電源や通信ラインを保護するためのガスアレスタとは用途が異なる。
<異常検出判定部50>
異常検出判定部50は、電力変換器ユニット10の短絡故障(異常)を検出し、異常検出判定値をスイッチングコントローラ54(制御部)に出力する。
電力変換システム100(図1参照)は、電力変換器ユニット10をカスケード状に接続したアームを制御するために、各アームの電圧および電流を計測する電圧および電流センサ(計測手段)が設置されている(図示省略)。
また、電力変換システム100は、この電圧および電流センサ(計測手段)の検出結果をもとに電力変換器ユニット10の異常を判定する異常検出判定部50(異常判定手段)を備えている。本実施形態では、電力変換システム100に備えられた異常検出判定部50(異常判定手段)の異常検出判定値をスイッチングコントローラ54に入力する。したがって、異常検出判定部50は、短絡スイッチユニット20,21の構成要素ではない。
<スイッチングコントローラ54>
スイッチングコントローラ54は、異常検出判定部50からの異常検出判定値をもとに、単体もしくは複数のスイッチのON,OFFを制御する。
スイッチングコントローラ54は、スイッチ素子201の導電状態に切り替えるタイミングを制御する。
スイッチングコントローラ54は、電力変換器ユニット10の短絡故障が検出された場合、所定遅延時間後に、短絡スイッチを導電状態とする。
スイッチングコントローラ54は、図2に示すスイッチ素子201にサイリスタ51,52を用いた場合、サイリスタ51,52のゲートを駆動するゲートドライバーである。より詳細には、スイッチングコントローラ54は、ゲートドライバーを構成する電子回路に、遅延のためのロジック回路を付加したものである。
スイッチングコントローラ54は、スイッチ素子に機械式スイッチを用いた場合は、例えばソレノイドを駆動するトリップ回路となる。以下では、スイッチ素子にサイリスタを用いた場合を例として説明する。
以下、上述のように構成された電力変換システム100の動作について説明する。
(原理説明)
電力変換システム100は、1つの電力変換器ユニット10の単相電力変換器が故障した場合、短絡スイッチユニット20のスイッチ素子201により、その電力変換器ユニット10がシステムから切り離され、かつ短絡スイッチユニット21のスイッチ素子211により、その電力変換器ユニット10の出力がバイパスされる。これにより、システムから故障に係る単相電力変換器が除去され、そのまま運転を継続することができる。その結果、残りの健全な電力変換器ユニット10の直列出力により、負荷への電力供給が継続されることになり、電力供給の信頼性が向上する。
短絡スイッチには、例えば電磁コイルで駆動する機械式のリレースイッチや、サイリスタやMOSFET(Metal-oxide-semiconductor field-effect transistor)などの固体スイッチで構成できる。短絡スイッチに半導体スイッチ素子を適用することで、ミリ秒オーダーで回路を短絡することができ、単相電力変換器ユニット内部の素子故障において、素子に流れる故障電流を短時間でバイパスして、素子の破壊故障を防止できる。故障波及を最小限にすることができ、さらに信頼性を高めることができる。
しかしながら、電力変換器ユニット10の故障時には、過渡的な高周波の振動を伴ったサージ電流が発生する場合があり、このサージ電流により短絡スイッチが故障しないよう、サージ電流耐量の大きい短絡スイッチを用いる必要がある。一方、サージ電流耐量の大きい短絡スイッチは大型化するため、短絡スイッチの重量が大きくなり、コンバータシステムの単位重量当たりの電力量が小さくなり、電力変換量の重量効率が低下する問題点がある。
本発明者らは、電力変換器ユニット10が故障した際に発生するサージ電流が減衰した後に、短絡スイッチをクローズすれば、サージ電流による短絡スイッチの故障が防げることに着目した。
そこで、電力変換システム100は、スイッチ素子201(短絡スイッチ)を導電状態に切り替えるタイミングを制御するスイッチングコントローラ54を備える。スイッチ素子201にサイリスタ51,52を用いる場合、スイッチングコントローラ54は、サイリスタ51,52のゲートに遅れ時間Td(図3参照)を設けてON指令を入力する。
(動作説明)
図3は、電力変換器ユニット10内の短絡故障時のサージ電流の例を示す波形図である。縦軸に故障発生時のサージ電流をとり、横軸に経過時間をとる。
図3の破線は、短絡故障時のサージ電流波形402である。図3の実線は、サイリスタ51,52(図2参照)に流れるサイリスタ投入電流波形402である。また、図3の矢印Tdは、短絡故障が検出された後、サイリスタ51,52を導電状態とするまでの遅延時間403である。なお、遅延時間403は、装置固有の浮遊の容量成分Cとインダクタ成分L等で決定されるため、設定値を事前に設ける。図3の矢印Ioは、短絡故障時のサージ電流波形402のピーク値である。
スイッチングコントローラ54(図2参照)は、サイリスタ51,52のゲートに遅延時間403(遅延時間Td)を設けてON指令を入力する。これにより、サイリスタ51,52は、遅延時間403経過後のタイミングで導電状態に切り替えられる。
ここでは簡単のため、電力変換器ユニット10の故障点の抵抗値よりも短絡スイッチのON抵抗が十分小さいと仮定し、故障電流が瞬時にサイリスタ51,52に転流するものとして示している。ここで、遅延時間403(遅延時間Td)は、故障電流の周波数の数倍を見込めばよい。例えば、サージ電流のピーク値(図3に示すピーク値Io)の1/2以下と設定することで、短絡スイッチの耐サージ電流を1/2に低減できる。小型の短絡スイッチ素子が使用可能になる。
故障発生時のサージ電流と、遅延時間Tdとの関係について補足して説明する。
電力変換システム100は、1つの電力変換器ユニット10の単相電力変換器が故障した場合、短絡スイッチユニット21のスイッチ素子211により、その電力変換器ユニット10の出力がバイパスされる。基本的には短絡していればよく、故障したところで短絡しているのでよい。ただし、故障した箇所が1~2秒継続してしまうと、そこが発熱して、二次被害となるおそれがある。
本実施形態では、遅延時間403(遅延時間Td)の周波数はMHzであり、せいぜいミリ秒オーダーの短い期間である。このため、遅延時間403を設けてサイリスタ51,52を投入することによる、全体的な影響はない。すなわち、短絡したところに数秒~数分というオーダーで、サージ電流を流し続けると問題となるが、本実施形態では、せいぜいミリ秒オーダーの短い期間、遅延時間403を設けるだけであるので、影響はないと考えられる。
[効果]
以上説明したように、本実施形態の電力変換システム100(図1参照)は、半導体スイッチ素子を用いて形成された複数の電力変換器ユニット10(図1参照)を直列接続して備え、電力変換器ユニット10の入力端子および/または出力端子に設けられ、当該電力変換器ユニット10をバイパスするスイッチ素子201,211(短絡スイッチ)(図2参照)と、スイッチ素子201,211(短絡スイッチ)を導電状態に切り替えるタイミングを制御するスイッチングコントローラ54(図2参照)と、を備える。
この構成により、1つの電力変換器が故障した場合、スイッチ素子201,211により電力変換器ユニット10がバイパスされて、電力変換システム100の運転を継続できる。
短絡スイッチに半導体スイッチ素子を適用することで、ミリ秒オーダーで回路を短絡することができ、電力変換器ユニット10内部の素子故障において、素子に流れる故障電流を短時間でバイパスして、素子の破壊故障を防止できる。故障波及を最小限とできさらに信頼性を高めることができる。
特に、サージ電流を短絡スイッチに転流する際に、短絡スイッチに流れる電流値を抑制できる。これにより、故障ユニットをバイパスする短絡スイッチのサージ電流耐量仕様を低減でき、短絡スイッチに小型で安価な素子を適用できる。短絡スイッチの故障を抑制して、システムの信頼性および冗長性を向上させることができる。
(第2の実施形態)
図4は、本発明の第2の実施形態に係る電力変換システムのスイッチングコントローラ54Aの構成を示す図である。本実施形態のスイッチングコントローラ54Aは、図2のスイッチングコントローラ54に代えて用いられる。
本発明の第2の実施形態に係る電力変換システムの全体構成は、図1と同様である。
図4に示すように、スイッチングコントローラ54Aは、ゲートコントローラ412を備える。スイッチングコントローラ54Aには、図2に示すスイッチングコントローラ54と同様に、異常検出判定部50から電力変換器ユニット10の短絡故障を検知した信号(電力変換器ユニット10の異常検出判定値411)が入力される。
ゲートコントローラ412は、演算装置を実装しており、該演算装置は、電力変換器ユニット10の異常検出判定値411を入力し、サイリスタ51,52を緩やかに立ち上げるための、サイリスタ51,52のゲート電圧波形413を決定する。
本実施形態では、サイリスタ51,52のゲート電圧立ち上がり遅れ時間414(ゲート電圧立ち上がり遅れ時間Tg)を、例えば故障電流の数周期の間、緩やかに立ち上げる。
本実施形態では、ゲートコントローラ412は、電力変換器ユニット10の短絡故障が検出された場合、サイリスタ51,52に印加するゲート電圧を、定格のゲート電圧まで緩やかに立ち上げる。
サイリスタ51,52のゲート電圧が、定格のゲート電圧よりも低い場合の、ON抵抗により短絡電流を限流させることで、サイリスタ51,52の耐サージ電流よりも大きい電流が流れるのを防ぐことができる。
第1の実施形態は、図4に示す異常検出判定値411をそのまま遅延させ(投入波形は変えない)例であったが、本実施形態では、サイリスタ51,52のゲート電圧が、定格のゲート電圧よりも低い場合の、ON抵抗(サイリスタ51,52のゲート電圧が低い場合にON抵抗が高い特性を用いること)により短絡電流を限流させる。これにより、サイリスタ51,52のON抵抗の高いところで、ON抵抗により限流させる。後記第3および第4の実施形態のように、限流素子63を設けることなく、限流させることができる。
(第3の実施形態)
図5は、本発明の第3の実施形態に係る電力変換システムの入力端子(入力側)に接続する短絡スイッチユニットの構成を示す図である。図2と同一構成部分には、同一符号を付している。
図5に示すように、本実施形態に係る電力変換システムの短絡スイッチユニット20Aは、図2に示す短絡スイッチユニット20のサイリスタ51,52とは別に限流素子63を付加した例である。
短絡スイッチユニット20Aは、第1の短絡スイッチ201であるサイリスタ51,52と並列に、限流素子63を設置するとともに、限流素子63と直列に第2の短絡スイッチ203であるサイリスタ61,62を、第1の短絡スイッチ201と並列に設ける。
限流素子63は、抵抗もしくはコイルで構成した電流抑制用の素子である。
スイッチングコントローラ54Bは、サイリスタ51,52,61,62のゲートを駆動するゲートドライバーである。
以上の構成において、短絡スイッチユニット20Aは、第1の短絡スイッチ201よりも第2の短絡スイッチ203を先にクローズするようサイリスタ51,52,61,62のゲート電圧を印加する。故障電流が限流素子63により低減された後に、第1の短絡スイッチ201をクローズする。
以上説明したように、短絡スイッチユニット20Aは、並列に設置された、第1の短絡スイッチ201と、第2の短絡スイッチ202とを備え、第1の短絡スイッチ201と並列で、かつ、第2の短絡スイッチ202に直列に接続された限流素子63を備え、スイッチングコントローラ54Bは、電力変換器ユニット10の短絡故障が検出された場合、第2の短絡スイッチ202を動作させて、限流素子63により限流し、所定遅延時間後に、第1の短絡スイッチ201を導電状態に切り替える。
すなわち、スイッチングコントローラ54Bは、故障判定後、すぐに第2の短絡スイッチ203(サイリスタ61,62)を投入し、限流素子63により限流する。限流素子63で電流を限流しているので、その間に第1の短絡スイッチ201(サイリスタ51,52)を、遅延時間Td(図3参照)を設けて投入する。その後、第2の短絡スイッチ203の漏れ電流を抑え、サイリスタ61,62のゲート電圧のロスを減らすために、第2の短絡スイッチ203(サイリスタ61,62)はオフにする。なお、第2の短絡スイッチ203のオフのタイミングの条件は緩やかである。
このように、本実施形態では、短絡スイッチユニット20Aは、強制的に電流を絞る限流素子63を入れることで、第1および第2の実施形態のように、短絡電流が限流するまでまってから短絡スイッチを投入することなく、すぐに、かつ確実に短絡することができる。
サージ電流を短絡スイッチに転流する際に、短絡スイッチに流れる電流値を抑制できる。これにより、故障ユニットをバイパスする短絡スイッチのサージ電流耐量仕様を低減でき、短絡スイッチに小型で安価な素子を適用できる。
(第4の実施形態)
図6は、本発明の第4の実施形態に係る電力変換システムの入力端子(入力側)に接続する短絡スイッチユニットの構成を示す図である。図5と同一構成部分には、同一符号を付している。
図6に示すように、本実施形態に係る電力変換システムの短絡スイッチユニット20Bは、図5に示す短絡スイッチユニット20Aと同様に、限流素子63を備える。
短絡スイッチユニット20Bは、第3の短絡スイッチ201であるサイリスタ51,52と直列に限流素子63を設置し、この限流素子63と並列に第4の短絡スイッチ203であるサイリスタ61,62を設置する。
スイッチングコントローラ54Cは、サイリスタ51,52,61,62のゲートを駆動するゲートドライバーである。
以上の構成において、短絡スイッチユニット20Bは、第3の短絡スイッチ201(サイリスタ51,52)が、故障電流を検出した後瞬時にクローズし、遅れ時間を設けて第4の短絡スイッチ203(サイリスタ61,62)をクローズするように制御する。
これにより、第3の短絡スイッチ201がクローズした後、サージ電流の一部が転流し限流素子63に流れる。限流素子63により第3の短絡スイッチ201に流れるサージ電流は耐サージ電流以下に抑制される。サージ電流が減衰した後に、第4の短絡スイッチ203(サイリスタ61,62)をクローズにして、限流素子63をバイパスすることで、短絡スイッチ全体の抵抗を小さくする。
以上説明したように、短絡スイッチユニット20Bは、直列に設置された、第3の短絡スイッチ201と、第4の短絡スイッチ203とを備え、第3の短絡スイッチ201に直列で、かつ、第4の短絡スイッチ203と並列に接続され限流素子63を備え、スイッチングコントローラ54Cは、電力変換器ユニット10の短絡故障が検出された場合、第3の短絡スイッチ201を動作させて、限流素子63により限流し、所定遅延時間後に、第4の短絡スイッチ203を導電状態に切り替える。
このように、本実施形態では、短絡スイッチユニット20Bは、強制的に電流を絞る限流素子63を入れることで、第3の実施形態と同様に、短絡電流が限流するまでまってから短絡スイッチを投入することなく、すぐに、かつ確実に短絡することができる。
サージ電流を短絡スイッチに転流する際に、短絡スイッチに流れる電流値を抑制できる。これにより、故障ユニットをバイパスする短絡スイッチのサージ電流耐量仕様を低減でき、短絡スイッチに小型で安価な素子を適用できる。
なお、AC/DCコンバータ構成において、DC端子に設置する短絡スイッチユニットでは、第4の短絡スイッチ202を省略してもよい。
本発明は上記の各実施形態例に限定されるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、他の変形例、応用例を含む。
例えば、上記短絡スイッチを電力変換器ユニットの入力端子または出力端子のいずれか一方に設ける態様でもよい。また、ある実施形態例の構成の一部を他の実施形態例の構成に置き換えることが可能であり、また、ある実施形態例の構成に他の実施形態例の構成を加えることも可能である。また、各実施形態例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
10 電力変換器ユニット
20,20A,20B 短絡スイッチユニット(入力側)
21 短絡スイッチユニット(出力側)
30 3相AC電源
51,52 サイリスタ(半導体スイッチ素子,短絡スイッチ,第1の短絡スイッチ,第3の短絡スイッチ)
53 ガスアレスタ(過電圧抑制素子)
54,54A,54B,54C スイッチングコントローラ(制御部)
61,62 サイリスタ(半導体スイッチ素子,短絡スイッチ,第2の短絡スイッチ,第4の短絡スイッチ)
63 限流素子
100 電力変換システム
101 AC/DCコンバータ
102 高周波DC/ACインバータ
103 高周波AC/DCコンバータ
104 絶縁トランス(高周波変圧器)
105,106 平滑コンデンサ
201,211 スイッチ素子(第1の短絡スイッチ,第3の短絡スイッチ)
202,212 過電圧抑制素子
203 スイッチ素子(第2の短絡スイッチ,第4の短絡スイッチ)
301,302,303 単相電力変換器群
401 短絡スイッチに流れる電流
402 故障時のサージ電流
403 半導体スイッチの投入までの遅延時間
411 電力変換器ユニットの故障信号
412 ゲートコントローラ(制御部)
413 ゲート電圧
414 ゲート電圧立ち上がり遅れ時間

Claims (5)

  1. 複数の電力変換器ユニットを直列接続して備える電力変換システムであって、
    前記電力変換器ユニットの入力側および/または出力側に設けられ、当該電力変換器ユニットをバイパスする短絡スイッチと、
    前記短絡スイッチを導電状態に切り替えるタイミングを制御する制御部と、を備える
    ことを特徴とする電力変換システム。
  2. 前記制御部は、前記電力変換器ユニットの短絡故障が検出された場合、所定遅延時間後に、前記短絡スイッチを導電状態とする
    ことを特徴とする請求項1に記載の電力変換システム。
  3. 前記短絡スイッチは、前記制御部からのゲート電圧を受けて駆動する半導体スイッチ素子であり、
    前記制御部は、前記電力変換器ユニットの短絡故障が検出された場合、前記半導体スイッチ素子に印加する前記ゲート電圧を、定格のゲート電圧まで緩やかに立ち上げる
    ことを特徴とする請求項1に記載の電力変換システム。
  4. 前記短絡スイッチは、並列に設置された、第1の短絡スイッチと、第2の短絡スイッチとを備え、
    前記第1の短絡スイッチと並列で、かつ、前記第2の短絡スイッチに直列に接続された電流抑制素子を備え、
    前記制御部は、前記電力変換器ユニットの短絡故障が検出された場合、前記第2の短絡スイッチを動作させて、前記電流抑制素子により限流し、
    所定遅延時間後に、前記第1の短絡スイッチを導電状態に切り替える
    ことを特徴とする請求項1に記載の電力変換システム。
  5. 前記短絡スイッチは、直列に設置された、第3の短絡スイッチと、第4の短絡スイッチとを備え、
    前記第3の短絡スイッチに直列で、かつ、前記第4の短絡スイッチと並列に接続された電流抑制素子を備え、
    前記制御部は、前記電力変換器ユニットの短絡故障が検出された場合、前記第3の短絡スイッチを動作させて、前記電流抑制素子により限流し、
    所定遅延時間後に、前記第4の短絡スイッチを導電状態に切り替える
    ことを特徴とする請求項1に記載の電力変換システム。
JP2020174973A 2020-10-16 2020-10-16 電力変換システム Active JP7504761B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020174973A JP7504761B2 (ja) 2020-10-16 2020-10-16 電力変換システム
EP21199144.3A EP3985850A1 (en) 2020-10-16 2021-09-27 Power conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020174973A JP7504761B2 (ja) 2020-10-16 2020-10-16 電力変換システム

Publications (2)

Publication Number Publication Date
JP2022066063A true JP2022066063A (ja) 2022-04-28
JP7504761B2 JP7504761B2 (ja) 2024-06-24

Family

ID=77998731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020174973A Active JP7504761B2 (ja) 2020-10-16 2020-10-16 電力変換システム

Country Status (2)

Country Link
EP (1) EP3985850A1 (ja)
JP (1) JP7504761B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116961440B (zh) * 2023-05-25 2023-12-08 国网湖北省电力有限公司经济技术研究院 电力电子变压器直流端口短路电流抑制方法、装置及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245168A (ja) 1999-02-18 2000-09-08 Hitachi Ltd 電力変換器システム
JP5386185B2 (ja) 2009-01-30 2014-01-15 東芝三菱電機産業システム株式会社 電力変換装置
WO2015121983A1 (ja) * 2014-02-14 2015-08-20 三菱電機株式会社 直流送電系統の保護システムおよび交流/直流変換器ならびに直流送電系統の遮断方法
JP2016077135A (ja) 2014-10-03 2016-05-12 三菱電機株式会社 電力変換装置および制御方法
GB2542789A (en) * 2015-09-29 2017-04-05 Alstom Technology Ltd Fault protection for voltage source converters
JP6476318B2 (ja) 2015-11-30 2019-02-27 株式会社日立製作所 電力変換装置
WO2018051602A1 (ja) * 2016-09-16 2018-03-22 三菱電機株式会社 電力変換装置
US10998830B2 (en) * 2017-06-06 2021-05-04 Hitachi, Ltd. Power conversion device and three-phase power conversion device
CN111756232B (zh) * 2019-03-27 2022-10-18 台达电子企业管理(上海)有限公司 功率单元

Also Published As

Publication number Publication date
JP7504761B2 (ja) 2024-06-24
EP3985850A1 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
AU2016286710B2 (en) Fault current-suppressing damper topology circuit and control method thereof and converter
EP3107172B1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
JP3720601B2 (ja) 電力調相装置及び送電システム
US20140328093A1 (en) Power converter
EP3568915B1 (en) Dc power switching assembly and method
US10439400B2 (en) Electric protection on AC side of HVDC
CN105745730A (zh) 用于切换直流电的装置和方法
GB2542789A (en) Fault protection for voltage source converters
WO2020187479A1 (en) Apparatus and methods for voltage control
CN113258809A (zh) 使故障转换器子模块短路的方法和支持该方法的功率转换器
WO2021177130A1 (ja) 電力変換システム
US20180115253A1 (en) Improvements in or relating to electrical assemblies
CN111712982B (zh) 故障处理
JP2022066063A (ja) 電力変換システム
JP6424976B1 (ja) 直流遮断装置
WO1994024622A1 (en) Turnoff thyristor controlled series compensation system
JPH10126961A (ja) 限流装置
US11239657B2 (en) AC switching arrangement
CN113302812A (zh) 用于在直流电压供电网中提供故障电流的脉冲电路
US12034379B2 (en) Power conversion system
EP3614543A1 (en) Switching valve
WO2018157915A1 (en) Load transfer switching
WO2019145044A1 (en) Protection of switching cells for a voltage source converter
WO2018198552A1 (ja) 直流遮断装置
CN106936123B (zh) 一种供电设备的保护装置及不间断电源

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240612

R150 Certificate of patent or registration of utility model

Ref document number: 7504761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150