JP2022059872A - Steel sliding part and method for manufacturing the same - Google Patents

Steel sliding part and method for manufacturing the same Download PDF

Info

Publication number
JP2022059872A
JP2022059872A JP2020167744A JP2020167744A JP2022059872A JP 2022059872 A JP2022059872 A JP 2022059872A JP 2020167744 A JP2020167744 A JP 2020167744A JP 2020167744 A JP2020167744 A JP 2020167744A JP 2022059872 A JP2022059872 A JP 2022059872A
Authority
JP
Japan
Prior art keywords
sliding
steel
ferrite
steel sliding
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020167744A
Other languages
Japanese (ja)
Inventor
和潔 來村
Kazukiyo Kimura
なつみ 菊地
Natsumi Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020167744A priority Critical patent/JP2022059872A/en
Publication of JP2022059872A publication Critical patent/JP2022059872A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To provide a steel sliding part excellent in sliding properties.SOLUTION: A steel sliding part has a sliding surface on a surface of the steel sliding part. Integrated intensity of a diffraction line of a (200) plane of ferrite on the sliding surface is 3.0 times or more that of a sample of non-oriented ferrite in X-ray diffraction with Co-K-alpha-ray.SELECTED DRAWING: Figure 2

Description

本発明は、鋼材摺動部品及び鋼材摺動部品の製造方法に関する。 The present invention relates to a steel sliding part and a method for manufacturing a steel sliding part.

鉄鋼材料は、製品が使用される場面だけではなく、製造工程においても他の部品等と摺動することがある。そのため、鉄鋼材料の摩擦特性や摩耗特性の把握・制御・向上は重要な課題である。 The steel material may slide with other parts and the like not only in the situation where the product is used but also in the manufacturing process. Therefore, understanding, controlling, and improving the frictional characteristics and wear characteristics of steel materials is an important issue.

摺動特性が問題となる代表的な製品として、自動車用エンジンのクランクシャフトがある。自動車の燃費改善のため、クランクシャフトへは軽量化と耐焼付性の向上とが求められている。耐焼付性の向上が求められている要因は、低粘度のエンジン潤滑油の利用による油膜厚みの減少やエンジン停止によって油圧がかかっていない状態から始動すること等により焼付き発生への懸念が増加していることと、エンジン潤滑油使用量やポンプ容量の減少による軽量化メリットへの期待とに大別できる。 A typical product in which sliding characteristics are a problem is the crankshaft of an automobile engine. In order to improve the fuel efficiency of automobiles, the crankshaft is required to be lighter and have better seizure resistance. The factors that require improvement in seizure resistance are the decrease in oil film thickness due to the use of low-viscosity engine lubricating oil, and the increase in concerns about seizure due to starting from a state where no hydraulic pressure is applied due to engine stoppage. It can be roughly divided into what is being done and expectations for the benefits of weight reduction due to the reduction in engine lubricating oil usage and pump capacity.

焼付き発生への懸念に対して、エンジン潤滑油メーカーでは油への添加剤の開発、軸受メーカーでは素材合金設計やオーバーレイに代表される耐焼付性を担う層の開発が行われている。しかし、耐焼付性の要求は高まる一方であり、より摺動特性に優れた鋼材の開発が求められている。 In response to concerns about seizure, engine lubricant manufacturers are developing additives for oils, and bearing manufacturers are developing layers that are responsible for seizure resistance, such as material alloy design and overlays. However, the demand for seizure resistance is increasing, and the development of steel materials with better sliding characteristics is required.

クランクシャフトの場合、焼付きの支配因子はシャフトと軸受(ベアリング)との接触問題である。潤滑油の供給不良やシャフトと軸受との摺動界面の温度上昇により、潤滑油膜の破断を引き起こし、シャフトと軸受との接触に至り、焼付きに至ると考えられる。シャフトと軸受との接触を防止するために、表面凹凸の低減によって凸部同士の衝突を防ぐことや、シャフトの硬さを高くすることで摩耗量を低減し、摩耗粉による接触を避けること等の方策が提案されている。 In the case of crankshafts, the controlling factor for seizure is the contact problem between the shaft and the bearing. It is considered that the poor supply of lubricating oil and the temperature rise at the sliding interface between the shaft and the bearing cause the lubricating oil film to break, leading to contact between the shaft and the bearing and seizure. In order to prevent contact between the shaft and the bearing, collision between the convex parts is prevented by reducing the surface unevenness, and the amount of wear is reduced by increasing the hardness of the shaft to avoid contact by wear debris. Measures have been proposed.

特開平7-18379号公報には、鋼に軟窒化処理を施し、表面に平均で12μm以上の化合物層を均一に形成することで、表面硬さを確保して耐焼付性を得ることが開示されている。特許第4589885号公報には、表面硬度と熱伝導率との関係を規定することによって、摺動面の油膜を確保することが開示されている。 Japanese Unexamined Patent Publication No. 7-18379 discloses that steel is subjected to soft nitriding treatment to uniformly form a compound layer having an average of 12 μm or more on the surface, thereby ensuring surface hardness and obtaining seizure resistance. Has been done. Japanese Patent No. 4598885 discloses that an oil film on a sliding surface is secured by defining the relationship between surface hardness and thermal conductivity.

特開昭60-1424号公報には、摺動面に凹凸を形成し、凹凸面に固体潤滑剤を保持させた摺動部材が開示されている。特開2003-253395号公報には、焼入れ性換算パラメータf(C)、f(Si)、f(Mn)及びf(Cr)の合計で表される焼入れ性指数が1.1~1.5である高周波焼入れ部品が開示されている。 Japanese Unexamined Patent Publication No. 60-1424 discloses a sliding member in which irregularities are formed on the sliding surface and a solid lubricant is held on the uneven surface. Japanese Patent Application Laid-Open No. 2003-253395 has a hardenability index of 1.1 to 1.5, which is the sum of the hardenability conversion parameters f (C), f (Si), f (Mn) and f (Cr). High frequency hardened parts are disclosed.

特開2020-32455号公報には、金属部品に強加工を行うことにより、他の結晶面よりも潤滑油が化学吸着しやすい吸着傾向を有する結晶面の配向強度を大きくする、金属部品の製造方法が開示されている。同公報には、鋼材の場合、{101}の結晶面が他の方位の結晶面よりも潤滑油を化学吸着しやすい吸着面であると記載されている。 Japanese Patent Application Laid-Open No. 2020-32455 describes the manufacture of metal parts in which the orientation strength of the crystal plane having an adsorption tendency that the lubricating oil is more easily chemisorbed than other crystal planes is increased by strongly processing the metal parts. The method is disclosed. The publication describes that in the case of steel materials, the crystal plane of {101} is an adsorption surface that is more likely to chemically adsorb lubricating oil than the crystal planes in other directions.

特開2014-205588号公報には、材料の摩擦係数を最適可するための材料の結晶配向、結晶構造及び組成を探索する方法が開示されている。 Japanese Unexamined Patent Publication No. 2014-205588 discloses a method for searching for a crystal orientation, a crystal structure and a composition of a material in order to optimize the friction coefficient of the material.

摺動部品に関するものではないが、特許第2535963号公報、特許第3480072号公報、及び富田俊郎、田中隆「珪素鋼板における等温γ→α変態による{100}集合組織の形成とその機構」、鉄と鋼、第79巻12号(1993年)には、板面垂直方向に<100>軸が高密度に集積した磁気特性に優れた珪素鋼板及びその製造方法が開示されている。例えば特許第2535963号公報には、鋼板を弱脱炭雰囲気下でα+γ域又はγ域に加熱して表層部をγ→α変態させ、次いで強脱炭雰囲気下でα+γ域又はγ域に加熱して内部をγ→α変態させることで、板面垂直方向の<100>軸の軸密度が結晶方位配向性のないものの8倍以上である鋼板が得られると記載されている。 Although it is not related to sliding parts, Patent No. 2535963, Japanese Patent No. 3480072, and Toshiro Tomita, Takashi Tanaka "Formation of {100} aggregate structure and its mechanism by isothermal γ → α transformation in silicon steel sheet", iron And Steel, Vol. 79, No. 12 (1993) discloses a silicon steel sheet having excellent magnetic properties in which <100> axes are densely integrated in the direction perpendicular to the plate surface and a method for manufacturing the same. For example, in Japanese Patent No. 2535963, a steel sheet is heated to the α + γ region or the γ region under a weak decarburization atmosphere to transform the surface layer portion from γ to α, and then heated to the α + γ region or the γ region under a strong decarburization atmosphere. It is described that by transforming the inside from γ to α, a steel sheet having an axial density of the <100> axis in the direction perpendicular to the plate surface is 8 times or more that of the one having no crystal orientation orientation can be obtained.

特開平7-18379号公報Japanese Unexamined Patent Publication No. 7-18379 特許第4589885号公報Japanese Patent No. 4598885 特開昭60-1424号公報Japanese Unexamined Patent Publication No. 60-1424 特開2003-253395号公報Japanese Patent Application Laid-Open No. 2003-253395 特開2020-32455号公報Japanese Unexamined Patent Publication No. 2020-32455 特開2014-205588号公報Japanese Unexamined Patent Publication No. 2014-205588 特許第2535963号公報Japanese Patent No. 2535963 特許第3480072号公報Japanese Patent No. 3480072

富田俊郎、田中隆「珪素鋼板における等温γ→α変態による{100}集合組織の形成とその機構」、鉄と鋼、第79巻12号(1993年)Toshiro Tomita, Takashi Tanaka, "Formation of {100} texture by isothermal γ → α transformation in silicon steel plate and its mechanism", Iron and Steel, Vol. 79, No. 12 (1993)

軟窒化あるいは浸炭といった鋼材表面硬化プロセスは高コストである。ショットピーニング等で表面に油溜まりを形成することは油膜の確保には効果があるが、この方法も高コストであり、汎用技術として使用するためにはコスト低減が不可欠である。また、温度上昇による油膜厚みの低下は避けて通れない。 Steel surface hardening processes such as soft nitriding or carburizing are expensive. Forming an oil pool on the surface by shot peening or the like is effective in securing an oil film, but this method is also expensive, and cost reduction is indispensable for use as a general-purpose technology. In addition, it is inevitable that the oil film thickness will decrease due to the temperature rise.

特開2020-32455号公報の方法は、強加工を施すことによるコスト上昇の問題と、部品形状によっては強加工を施すことができないという問題とがある。また、潤滑油の働きは様々であり、潤滑油の化学吸着性を制御することが耐焼付性等の摺動特性の向上に寄与するかは必ずしも明らかではない。 The method of JP-A-2020-32455 has a problem of cost increase due to strong processing and a problem that strong processing cannot be performed depending on the shape of a part. Further, the functions of the lubricating oil are various, and it is not always clear whether controlling the chemisorbency of the lubricating oil contributes to the improvement of sliding characteristics such as seizure resistance.

本発明の課題は、摺動特性に優れた鋼材摺動部品及び鋼材摺動部品の製造方法を提供することである。 An object of the present invention is to provide a steel sliding component having excellent sliding characteristics and a method for manufacturing the steel sliding component.

本発明の一実施形態による鋼材摺動部品は、部品表面に摺動面を有する鋼材摺動部品であって、前記摺動面は、Co-Kα線によるX線回折において、フェライトの{200}面の回折線の積分強度が、無配向のフェライトの試料の場合の3.0倍以上である。 The steel sliding component according to the embodiment of the present invention is a steel sliding component having a sliding surface on the surface of the component, and the sliding surface is a ferrite {200} in X-ray diffraction by Co-Kα rays. The integrated intensity of the diffraction lines on the surface is 3.0 times or more that of the non-oriented ferrite sample.

本発明の一実施形態による鋼材摺動部品の製造方法は、上述した鋼材摺動部品を製造する方法であって、素材をフェライトとオーステナイトとの二相域又はオーステナイト単相域の温度において、真空度10Pa以下に保持する工程を備える。 The method for manufacturing a steel sliding component according to an embodiment of the present invention is the method for manufacturing the steel sliding component described above, wherein the material is vacuumed at a temperature in a two-phase region of ferrite and austenite or a single-phase region of austenite. A step of keeping the temperature at 10 Pa or less is provided.

本発明によれば、摺動特性に優れた鋼材摺動部品が得られる。 According to the present invention, a steel sliding component having excellent sliding characteristics can be obtained.

図1は、電子線後方散乱回折の測定結果の一例である。FIG. 1 is an example of the measurement result of electron backscatter diffraction. 図2は、原子間力顕微鏡による摩擦力の測定結果の一例である。FIG. 2 is an example of the measurement result of the frictional force by the atomic force microscope. ボール・オン・ディスク型摩擦・摩耗試験機の概略図である。It is a schematic diagram of the ball-on-disc type friction / wear tester.

本発明者らは、鋼材の摺動特性について、結晶配向と摺動特性との関係に着目して検討を行った。 The present inventors have investigated the sliding characteristics of steel materials by focusing on the relationship between crystal orientation and sliding characteristics.

焼付きは、最終的には部材表面の接触問題である。本発明者らは、鋼材表面における摩擦特性を原子間力顕微鏡等によって調査した。その結果、フェライトの{100}面が他の面よりも小さい摩擦係数を持つことを見出した。摩擦係数が小さいことは、摩擦の主要因である凝着力が小さいことによると考えられる。すなわちフェライトの{100}面は、他の面よりも凝着力が小さいと考えられる。そのため、摺動部品の摺動面においてフェライトの{100}面の配向度を大きくすることによって、摩擦を小さくし、また凝着力による摩耗を小さくできると考えられる。 Seizure is ultimately a contact problem on the surface of the member. The present inventors investigated the frictional properties on the surface of steel materials by an atomic force microscope or the like. As a result, it was found that the {100} plane of ferrite has a smaller coefficient of friction than the other planes. The small coefficient of friction is thought to be due to the small cohesive force that is the main cause of friction. That is, it is considered that the {100} plane of ferrite has a smaller adhesion force than the other planes. Therefore, it is considered that the friction can be reduced and the wear due to the adhesive force can be reduced by increasing the degree of orientation of the {100} surface of the ferrite on the sliding surface of the sliding component.

本発明者らはさらに、フェライトの{100}面の配向度を大きくした試験片を作成して潤滑及び無潤滑状態での摩擦試験を行い、これらの試験片で耐焼付性等の摺動特性が向上していることを確認した。 The present inventors further prepared test pieces in which the degree of orientation of the {100} surface of ferrite was increased, and conducted a friction test in a lubricated and non-lubricated state, and these test pieces had sliding characteristics such as seizure resistance. Was confirmed to be improving.

以上の知見に基づいて、本発明は完成された。以下、本発明の一実施形態による鋼材摺動部品及びその製造方法について詳述する。 Based on the above findings, the present invention has been completed. Hereinafter, the steel sliding parts and the manufacturing method thereof according to the embodiment of the present invention will be described in detail.

[鋼材摺動部品]
本発明の一実施形態による鋼材摺動部品は、部品表面に摺動面を有する鋼材摺動部品である。この摺動面は表層に、フェライトを主体とする組織であって、{100}面の配向度が高い組織を有している。具体的には、この摺動面は、Co-Kα線によるX線回折において、フェライトの{200}面の回折線の積分強度が、無配向のフェライトの試料の場合の3.0倍以上である。
[Steel sliding parts]
The steel sliding component according to the embodiment of the present invention is a steel sliding component having a sliding surface on the surface of the component. This sliding surface has a structure mainly composed of ferrite on the surface layer and has a structure having a high degree of orientation of the {100} surface. Specifically, in this sliding surface, the integrated intensity of the diffraction line of the {200} plane of ferrite is 3.0 times or more that of the non-oriented ferrite sample in the X-ray diffraction by Co-Kα ray. be.

鋼材摺動部品は、例えばクランクシャフトである。 The steel sliding component is, for example, a crankshaft.

フェライトの{100}面は、他の面よりも摩擦係数が小さい。そのため、摺動面においてフェライトの{100}面の配向度を大きくすることによって、摺動部品の耐焼付性を向上させることができる。 The {100} plane of ferrite has a smaller coefficient of friction than the other planes. Therefore, by increasing the degree of orientation of the {100} surface of the ferrite on the sliding surface, the seizure resistance of the sliding component can be improved.

摺動面におけるフェライトの{100}面の配向度は、Co-Kα線によるX線回折によって、次のように評価する。鋼材摺動部品から、摺動面を含むようにサンプルを採取する。X線の侵入深さによる分析深さは数μm程度であるので、表面から厚さ1mm程度のサンプルを採取すれば十分である。摺動面が曲面の場合、曲面のままでよいが、X線の照射エリアを検討して十分な検出強度となるように検出時間を調整する。摺動面に対してX線回折を行い、{200}面の回折線の積分強度を測定する。この積分強度の、同様の条件で測定した無配向のフェライトの試料の{200}面の回折線の積分強度に対する倍率を、摺動面の「{100}配向度」と定義する。同様の条件で測定ができない場合、最強強度線の信号強度を用いて規格化した値を用いてもよい。無配向のフェライトの試料の{200}面の回折線の積分強度は、無配向のフェライトの試料を粉末法により作製して測定してもよいし、X線回折のデータベースから求めてもよい。 The degree of orientation of the {100} plane of ferrite on the sliding surface is evaluated as follows by X-ray diffraction with Co-Kα rays. A sample is taken from the steel sliding parts so as to include the sliding surface. Since the analysis depth based on the penetration depth of X-rays is about several μm, it is sufficient to collect a sample having a thickness of about 1 mm from the surface. If the sliding surface is a curved surface, the curved surface may be left as it is, but the detection time is adjusted so that the detection intensity is sufficient by examining the X-ray irradiation area. X-ray diffraction is performed on the sliding surface, and the integrated intensity of the diffraction line on the {200} surface is measured. The magnification of this integrated intensity with respect to the integrated intensity of the diffraction line of the {200} plane of the non-oriented ferrite sample measured under the same conditions is defined as the “{100} degree of orientation” of the sliding surface. If measurement cannot be performed under the same conditions, a value standardized using the signal strength of the strongest intensity line may be used. The integrated intensity of the diffraction line of the {200} plane of the non-oriented ferrite sample may be measured by preparing the non-oriented ferrite sample by the powder method, or may be obtained from the database of X-ray diffraction.

摺動面の{100}配向度が3.0以上であれば、優れた耐焼付性が得られる。摺動面の{100}配向度は、好ましくは3.5以上であり、さらに好ましくは4.5以上である。 When the {100} degree of orientation of the sliding surface is 3.0 or more, excellent seizure resistance can be obtained. The degree of {100} orientation of the sliding surface is preferably 3.5 or more, and more preferably 4.5 or more.

鋼材摺動部品は、部品の少なくとも一部の表面において{100}配向度が3.0以上であればよく、部品の全表面において{100}配向度が3.0以上である必要はない。例えばクランクシャフトの場合、ピン又はジャーナルの表面だけにおいて{100}配向度が3.0以上であってもよい。もっとも、部品の全表面において{100}配向度が3.0以上であっても問題はない。 The steel sliding component may have a {100} degree of orientation of 3.0 or more on at least a part of the surface of the part, and does not need to have a {100} degree of orientation of 3.0 or more on the entire surface of the part. For example, in the case of a crankshaft, the degree of orientation of {100} may be 3.0 or more only on the surface of the pin or the journal. However, there is no problem even if the degree of orientation of {100} is 3.0 or more on the entire surface of the component.

摺動面の{100}配向度を3.0以上にするためには、上述のとおり、摺動面の表層部に、フェライトを主体とする組織であって、{100}面の配向度が高い組織(以下「{100}配向組織」という。)が存在していればよい。摺動面の最表層におけるフェライトの体積分率は、上述したX線回折の条件を満たすものであれば制限はないが、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。 In order to make the {100} degree of orientation of the sliding surface 3.0 or more, as described above, the surface layer of the sliding surface has a structure mainly composed of ferrite, and the degree of orientation of the {100} surface is set. It suffices if a high structure (hereinafter referred to as “{100} oriented structure”) is present. The volume fraction of ferrite on the outermost layer of the sliding surface is not limited as long as it satisfies the above-mentioned X-ray diffraction conditions, but is preferably 90% or more, more preferably 95% or more, and further. It is preferably 98% or more.

{100}配向組織は、摺動面の表層部だけに存在していればよい。{100}配向組織の厚さは、上述したX線回折の条件を満たすものであれば制限はない。{100}配向組織の厚さは、摩耗する摺動部材であれば部材寿命に対応する厚さを有していればよく、また、クランクシャフトのように摩耗せずに耐焼付きを求められる部材であれば数μmあればよい。{100}配向組織の厚さの下限は、これに限定されないが、好ましくは2μmであり、より好ましくは20μmであり、さらに好ましくは200μmである。{100}配向組織の厚さの上限は、これに限定されないが、好ましくは10mmであり、より好ましくは5mmであり、さらに好ましくは1mmである。 The {100} oriented structure need only be present in the surface layer portion of the sliding surface. The thickness of the {100} oriented structure is not limited as long as it satisfies the above-mentioned X-ray diffraction conditions. The thickness of the {100} oriented structure may be a thickness corresponding to the life of the member if it is a sliding member that wears, and a member such as a crankshaft that is required to have seizure resistance without being worn. If so, it may be several μm. The lower limit of the thickness of the {100} oriented structure is not limited to this, but is preferably 2 μm, more preferably 20 μm, and even more preferably 200 μm. The upper limit of the thickness of the {100} oriented structure is not limited to this, but is preferably 10 mm, more preferably 5 mm, and even more preferably 1 mm.

摺動面の表層部以外の部分の組織は特に限定されないが、好ましくはフェライト・パーライト(フルパーライトを含む)、ベイナイト、マルテンサイト、又はこれらの混合組織であり、特に好ましいのはフェライト・パーライトである。 The structure of the portion other than the surface layer portion of the sliding surface is not particularly limited, but is preferably ferrite pearlite (including full pearlite), bainite, martensite, or a mixed structure thereof, and particularly preferably ferrite pearlite. be.

鋼材摺動部品の化学組成は特に限定されず、摺動部品用の鋼材として一般的な鋼材の化学組成を用いることができる。鋼材摺動部品は、亜共析鋼であってもよいし、過共析鋼であってもよい。 The chemical composition of the sliding parts of the steel material is not particularly limited, and a general chemical composition of the steel material can be used as the steel material for the sliding parts. The steel sliding component may be sub-eutectic steel or hyper-eutectoid steel.

鋼材摺動部品の化学組成は例えば、質量%で、C:0.05~1.20%、Si:6.5%以下、Mn:5.0%以下、Cr:1.00%以下、S:0.20%以下を含む。鋼材摺動部品の化学組成は、上記以外の元素(例えばVやNb等)を含有してもよい。鋼材摺動部品の化学組成は、好ましくは、C:0.05~1.20%、Si:6.5%以下、Mn:5.0%以下、Cr:1.00%以下、S:0.20%以下、残部:Fe及び不純物である。C含有量の下限は、好ましくは0.20%であり、さらに好ましくは0.30%である。Si含有量の下限は、好ましくは0.05%である。Mn含有量の下限は、好ましくは0.05%である。Cr含有量の下限は、好ましくは0.05%である。 The chemical composition of the sliding parts of steel is, for example, C: 0.05 to 1.20%, Si: 6.5% or less, Mn: 5.0% or less, Cr: 1.00% or less, S in mass%. : Includes 0.20% or less. The chemical composition of the sliding parts made of steel may contain elements other than the above (for example, V, Nb, etc.). The chemical composition of the sliding steel parts is preferably C: 0.05 to 1.20%, Si: 6.5% or less, Mn: 5.0% or less, Cr: 1.00% or less, S: 0. .20% or less, balance: Fe and impurities. The lower limit of the C content is preferably 0.20%, more preferably 0.30%. The lower limit of the Si content is preferably 0.05%. The lower limit of the Mn content is preferably 0.05%. The lower limit of the Cr content is preferably 0.05%.

ここで「鋼材摺動部品の化学組成」は、鋼材摺動部品のバルクの化学組成を意味し、上述した{100}配向組織が存在する部分以外の部分の化学組成を意味する。{100}配向組織が存在する部分の化学組成は、バルクの化学組成と異なる場合がある。例えば、後述するような真空焼鈍によって{100}配向組織を形成する方法で鋼材摺動部品を製造した場合、{100}配向組織が存在する部分の化学組成は、バルクの化学組成よりもC含有量等が低くなる。鋼材摺動部品のバルクの化学組成は、鋼材摺動部品が例えばクランクシャフトのような軸形状の場合、肉厚中央位置や外径の1/4位置から採取したサンプルで評価することできる。 Here, the "chemical composition of the sliding parts made of steel" means the chemical composition of the bulk of the sliding parts made of steel, and means the chemical composition of the portion other than the portion where the {100} oriented structure described above is present. The chemical composition of the portion where the {100} oriented structure is present may differ from the chemical composition of the bulk. For example, when a steel sliding part is manufactured by a method of forming a {100} oriented structure by vacuum annealing as described later, the chemical composition of the portion where the {100} oriented structure is present contains C rather than the bulk chemical composition. The amount etc. will be low. The bulk chemical composition of the steel sliding component can be evaluated by a sample taken from the center position of the wall thickness or the 1/4 position of the outer diameter when the steel sliding component has a shaft shape such as a crankshaft.

[鋼材摺動部品の製造方法]
以下、本実施形態による鋼材摺動部品の製造方法の一例を説明する。本実施形態による鋼材摺動部品の製造方法は、これに限定されない。
[Manufacturing method of sliding steel parts]
Hereinafter, an example of a method for manufacturing a steel sliding component according to the present embodiment will be described. The manufacturing method of the steel sliding parts according to the present embodiment is not limited to this.

鋼材摺動部品の素材を準備する。素材は例えば、熱間鍛造品である。例えば、鋼を溶製し、連続鋳造又は分塊圧延を実施して鋼片にした後、鋼片を熱間鍛造して摺動部品の粗形状に加工したものを素材とすることができる。熱間鍛造後の素材に切削加工等を施してもよい。 Steel material Prepare the material for sliding parts. The material is, for example, a hot forged product. For example, steel can be melted, continuously cast or slab-rolled to form steel pieces, and then hot forged to form a rough shape of sliding parts. The material after hot forging may be machined.

素材をフェライトとオーステナイトとの二相域又はオーステナイト単相域の温度において、真空度10Pa以下に保持する。真空下で保持することによって、素材の表面から脱炭が起こり、等温でのオーステナイトからフェライトへの変態時、表面エネルギーが比較的低いと考えられる{100}面が優先的に生成する。これによって、素材の表層に上述した{100}配向組織が形成される。 The material is kept at a vacuum degree of 10 Pa or less at a temperature in a two-phase region of ferrite and austenite or a single-phase region of austenite. By holding under vacuum, decarburization occurs from the surface of the material, and the {100} surface, which is considered to have a relatively low surface energy, is preferentially generated during the transformation from austenite to ferrite at an isothermal temperature. As a result, the {100} oriented structure described above is formed on the surface layer of the material.

保持温度の下限は、好ましくは800℃であり、さらに好ましくは850℃である。保持温度の上限は、好ましくは1200℃であり、さらに好ましくは1150℃である。真空度は、好ましくは1.0Pa以下であり、さらに好ましくは0.01Pa以下である。保持時間は、保持温度や真空度にも依存するが、好ましくは1時間以上であり、さらに好ましくは2時間以上であり、さらに好ましくは4時間以上である。 The lower limit of the holding temperature is preferably 800 ° C, more preferably 850 ° C. The upper limit of the holding temperature is preferably 1200 ° C, more preferably 1150 ° C. The degree of vacuum is preferably 1.0 Pa or less, and more preferably 0.01 Pa or less. The holding time depends on the holding temperature and the degree of vacuum, but is preferably 1 hour or more, more preferably 2 hours or more, still more preferably 4 hours or more.

真空処理後、表層に形成された{100}配向組織が完全に除去されない範囲で、研削や研磨等の機械加工を施してもよい。 After the vacuum treatment, machining such as grinding or polishing may be performed as long as the {100} oriented structure formed on the surface layer is not completely removed.

以上、本発明の一実施形態による鋼材摺動部品及びその製造方法を説明した。本実施形態による鋼材摺動部品は、優れた摺動特性を有する。 The steel sliding parts and the manufacturing method thereof according to the embodiment of the present invention have been described above. The steel sliding parts according to the present embodiment have excellent sliding characteristics.

以下、実施例によって本発明をより具体的に説明する。本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to these examples.

[AFMによる{100}面の評価]
機械構造用鋼S45Cの成分を持つ鋼を溶解し、鍛造及び熱延した後、1250℃で30分間保持後炉冷し、フェライト・パーライト組織を有する鋼材を得た。この鋼材から10mm角、厚さ2mmの試験片を作製し、表面を鏡面研磨した後、電子線後方散乱回折(EBSD)法によって試料表面の結晶方位を把握した。EBSDの観察結果の例を図1に示す。図1では、等価な面を同じ色で示している。
[Evaluation of {100} plane by AFM]
A steel having a component of the machine structural steel S45C was melted, forged and hot-rolled, held at 1250 ° C. for 30 minutes, and then cooled in a furnace to obtain a steel material having a ferrite pearlite structure. A 10 mm square, 2 mm thick test piece was prepared from this steel material, the surface was mirror-polished, and then the crystal orientation of the sample surface was grasped by the electron backscatter diffraction (EBSD) method. An example of the observation result of EBSD is shown in FIG. In FIG. 1, the equivalent planes are shown in the same color.

その後、スパッタクリーナーによって表面の堆積炭素を除去してから、原子間力顕微鏡(AFM)装置にて、カンチレバーを用いた一定荷重(2.2μN)下での摩擦力を測定する、水平力顕微鏡(LFM)モードで摩擦力を測定した。あらかじめビッカース痕を打つことにより、同じ結晶粒に対してEBSD及びLFMを実施した。LFMの測定結果の例を図2に示す。図2の測定領域は、図1の領域Aに対応する。 Then, after removing the deposited carbon on the surface with a spatter cleaner, a horizontal force microscope (AFM) device is used to measure the frictional force under a constant load (2.2 μN) using a cantilever. The frictional force was measured in LFM) mode. EBSD and LFM were performed on the same crystal grains by hitting Vickers marks in advance. An example of the measurement result of LFM is shown in FIG. The measurement area of FIG. 2 corresponds to the area A of FIG.

この結果から、フェライトの{100}面は、他の面と比較して10%から20%ほど低い摩擦係数を持つことが分かった。 From this result, it was found that the {100} plane of ferrite has a friction coefficient as low as 10% to 20% as compared with other planes.

[実鋼材による検証]
表1に示す化学組成を有する鋼を150kg真空誘導溶解炉(VIM)によって溶製し、インゴットを作製した。
[Verification using actual steel materials]
Steels having the chemical compositions shown in Table 1 were melted in a 150 kg vacuum induction melting furnace (VIM) to prepare an ingot.

Figure 2022059872000002
Figure 2022059872000002

このインゴットを950~1200℃で熱間鍛造して直径40mmの軸材とした。この軸材から直径20mm、厚さ3mmの試験材を作製し、表2の熱処理を行った後、表面を鏡面仕上げとした。 This ingot was hot forged at 950 to 1200 ° C. to obtain a shaft material having a diameter of 40 mm. A test material having a diameter of 20 mm and a thickness of 3 mm was prepared from this shaft material, and after the heat treatment shown in Table 2, the surface was mirror-finished.

Figure 2022059872000003
Figure 2022059872000003

X線回折法により、前述した{100}配向度を測定した。結果を前掲の表2に併せて示す。 The above-mentioned {100} degree of orientation was measured by the X-ray diffraction method. The results are also shown in Table 2 above.

ボール・オン・ディスク型摩擦・摩耗試験機を用いて、試験材の摺動特性を評価した。図3は、ボール・オン・ディスク型摩擦・摩耗試験機の概略図である。 The sliding characteristics of the test material were evaluated using a ball-on-disc type friction / wear tester. FIG. 3 is a schematic view of a ball-on-disc type friction / wear tester.

ドライ摺動性として、無潤滑油での摩擦特性を測定した。試験条件は、相手材のボールをアルミナ、荷重を10N、摺動速度を10mm/sとした。摩擦係数0.30以下を低摩擦とし、摺動回転数が15回のときに低摩擦であるものを「○」と評価し、それ以外を「×」と評価した。 As dry slidability, the friction characteristics with unlubricated oil were measured. The test conditions were that the mating ball was alumina, the load was 10 N, and the sliding speed was 10 mm / s. A friction coefficient of 0.30 or less was regarded as low friction, those having low friction when the sliding rotation speed was 15 times were evaluated as "◯", and those having a friction coefficient of 0.30 or less were evaluated as "x".

潤滑油環境における耐焼付性の評価として、市販のエンジンオイルを2mL試験材表面に滴下し、相手材のボールを高Cr鋼であるSUJ2、荷重を10N、摺動速度を47cm/sとし、60分間摺動させる試験を行った。試験時間中に摩擦係数が0.6以上を示した場合、焼付きが発生したものとして「×」と評価し、0.6以上にならなかったものを「○」と評価した。 As an evaluation of seizure resistance in a lubricating oil environment, 2 mL of commercially available engine oil was dropped on the surface of the test material, the ball of the mating material was SUJ2, which is a high Cr steel, the load was 10 N, and the sliding speed was 47 cm / s. A test of sliding for a minute was performed. When the friction coefficient was 0.6 or more during the test time, it was evaluated as “x” as if seizure had occurred, and as “○” if it did not become 0.6 or more.

これらの結果を前掲の表2に併せて示す。表2に示すように、{100}配向度が3.0以上であるNo.1~4の試験材は、ドライ摺動性及び耐焼付性ともに良好であった。一方、{100}配向度が3.0未満であるNo.5~8の試験材は、ドライ摺動性及び耐焼付性のいずれかが不十分であった。 These results are also shown in Table 2 above. As shown in Table 2, No. 1 having a {100} degree of orientation of 3.0 or more. The test materials 1 to 4 had good dry sliding property and seizure resistance. On the other hand, No. 1 having a {100} degree of orientation less than 3.0. The test materials 5 to 8 had insufficient dry sliding property or seizure resistance.

この結果から、摺動部品の摺動面においてフェライトの{100}面の配向度を大きくすることによって、摺動特性を向上できることを確認した。 From this result, it was confirmed that the sliding characteristics can be improved by increasing the degree of orientation of the {100} plane of ferrite on the sliding surface of the sliding component.

以上、本発明の一実施形態を説明したが、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変形して実施することが可能である。 Although one embodiment of the present invention has been described above, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-mentioned embodiment can be appropriately modified and carried out within a range not deviating from the gist thereof.

Claims (4)

部品表面に摺動面を有する鋼材摺動部品であって、前記摺動面は、Co-Kα線によるX線回折において、フェライトの{200}面の回折線の積分強度が、無配向のフェライトの試料の場合の3.0倍以上である、鋼材摺動部品。 It is a steel sliding component having a sliding surface on the surface of the component, and the sliding surface is a ferrite in which the integral strength of the diffraction line of the {200} plane of ferrite is non-oriented in X-ray diffraction by Co-Kα rays. Steel sliding parts, which is 3.0 times more than the sample of. 請求項1に記載の鋼材摺動部品であって、
化学組成が、質量%で、C:0.05~1.20%、Si:6.5%以下、Mn:5.0%以下、Cr:1.00%以下、S:0.20%以下を含む、鋼材摺動部品。
The steel sliding component according to claim 1.
The chemical composition is C: 0.05 to 1.20%, Si: 6.5% or less, Mn: 5.0% or less, Cr: 1.00% or less, S: 0.20% or less in mass%. Including steel sliding parts.
請求項1又は2に記載の鋼材摺動部品であって、
前記鋼材摺動部品は、クランクシャフトである、鋼材摺動部品。
The steel sliding component according to claim 1 or 2.
The steel sliding component is a crankshaft, which is a steel sliding component.
請求項1~3のいずれか一項に記載の鋼材摺動部品を製造する方法であって、
素材をフェライトとオーステナイトとの二相域又はオーステナイト単相域の温度において、真空度10Pa以下に保持する工程を備える、鋼材摺動部品の製造方法。
The method for manufacturing a steel sliding component according to any one of claims 1 to 3.
A method for manufacturing a sliding steel component, comprising a step of keeping the material at a vacuum degree of 10 Pa or less at a temperature in a two-phase region of ferrite and austenite or a single-phase region of austenite.
JP2020167744A 2020-10-02 2020-10-02 Steel sliding part and method for manufacturing the same Pending JP2022059872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020167744A JP2022059872A (en) 2020-10-02 2020-10-02 Steel sliding part and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020167744A JP2022059872A (en) 2020-10-02 2020-10-02 Steel sliding part and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2022059872A true JP2022059872A (en) 2022-04-14

Family

ID=81124580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020167744A Pending JP2022059872A (en) 2020-10-02 2020-10-02 Steel sliding part and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2022059872A (en)

Similar Documents

Publication Publication Date Title
JP4956146B2 (en) Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
Zhang et al. Effect of ultrasonic surface rolling on microstructure and rolling contact fatigue behavior of 17Cr2Ni2MoVNb steel
JP6088322B2 (en) Gears with excellent seizure resistance
CN103348031A (en) Steel for nitriding and nitrided component
JP5886119B2 (en) Case-hardened steel
JP5169724B2 (en) Sliding parts
JP5682485B2 (en) Steel for cold forging and nitriding
CN111601908A (en) Carburized bearing steel member and steel bar for carburized bearing steel member
JP5260032B2 (en) Induction hardened steel excellent in cold workability, rolling member made of the steel, and linear motion device using the rolling member
JPH11303874A (en) Rolling member
JP4050512B2 (en) Manufacturing method of carburizing and quenching member and carburizing and quenching member
Vicen et al. Influence of shot peening on the wear behaviour of medium carbon steel
JP2022059872A (en) Steel sliding part and method for manufacturing the same
JP6111121B2 (en) Gears with excellent seizure resistance
JP6737103B2 (en) Steel, steel material and sliding parts, and method for manufacturing steel material
JP4507422B2 (en) Crankshaft steel with excellent machinability and wear resistance
JP7056237B2 (en) Manufacturing method of steel material for sliding parts and steel material for sliding parts
JP5313042B2 (en) Nitriding sliding member, steel for sliding member, and method for manufacturing sliding member
JP2007238965A (en) Crankshaft
WO2020050053A1 (en) Steel material for sliding members, and method for producing same
JP2021091957A (en) Steel for slide components and method for producing steel for slide components
JP2002194502A (en) Crank shaft steel superior in both machinability and abrasion resistance
JP2020041214A (en) Steel for slide component and method for producing the same
JP2020045557A (en) Slide member
JP7323850B2 (en) Steel and carburized steel parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528