JP6111121B2 - Gears with excellent seizure resistance - Google Patents

Gears with excellent seizure resistance Download PDF

Info

Publication number
JP6111121B2
JP6111121B2 JP2013075192A JP2013075192A JP6111121B2 JP 6111121 B2 JP6111121 B2 JP 6111121B2 JP 2013075192 A JP2013075192 A JP 2013075192A JP 2013075192 A JP2013075192 A JP 2013075192A JP 6111121 B2 JP6111121 B2 JP 6111121B2
Authority
JP
Japan
Prior art keywords
less
nitriding
seizure resistance
surface layer
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013075192A
Other languages
Japanese (ja)
Other versions
JP2013227675A (en
Inventor
清佳 永松
清佳 永松
新堂 陽介
陽介 新堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013075192A priority Critical patent/JP6111121B2/en
Publication of JP2013227675A publication Critical patent/JP2013227675A/en
Application granted granted Critical
Publication of JP6111121B2 publication Critical patent/JP6111121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding

Description

本発明は、高回転・高すべりの発生する作動部位において使用され、優れた耐焼付き性を有する歯車に関するものであり、特に電気自動車モータ用として有用な歯車に関するものである。   The present invention relates to a gear that is used in an operation site where high rotation and high slip occur and has excellent seizure resistance, and particularly relates to a gear useful for an electric vehicle motor.

例えば、自動車のトランスミッション用歯車などのような動力伝達部に使用される機械構造部品は、その使用時に、接触面圧の増大によって金属接触部分が剥離損傷するピッチング損傷を起こすことが知られている。そこで、このような用途に使用される鋼部品としては、SCr、SCM、SNCM等の各種肌焼鋼を用いて、熱間鍛造や切削加工で成形加工した後、浸炭処理や浸炭窒化処理等の表面硬化処理を施し、更に、必要によっては、部品表面に二硫化モリブデンなどの固体潤滑皮膜を形成したものが用いられている。   For example, it is known that mechanical structural parts used in power transmission parts such as automobile transmission gears cause pitching damage in which a metal contact portion peels off due to an increase in contact surface pressure. . Therefore, as steel parts used for such applications, various case-hardened steels such as SCr, SCM, SNCM, etc. are used for forming by hot forging or cutting, followed by carburizing or carbonitriding. A surface hardening treatment is applied, and if necessary, a solid lubricating film such as molybdenum disulfide is formed on the component surface.

しかしながら、近年では、機械構造部の高出力化、小型軽量化に対する要求が高まっており、これら動力伝達部に使用される機械構造部品にかかる負荷はますます増大する傾向にある。そのため、SCr、SCM、SNCM等の各種肌焼鋼を表面硬化処理した部品のみならず、固体潤滑皮膜を形成させたとしても、要求される耐ピッチング性を達成することが困難になりつつある。   However, in recent years, there is an increasing demand for higher output and smaller size and weight of the mechanical structure part, and the load on the mechanical structure parts used in these power transmission parts tends to increase more and more. For this reason, it is becoming difficult to achieve the required pitting resistance even if a solid lubricating film is formed as well as a component obtained by surface hardening treatment of various case-hardened steels such as SCr, SCM, and SNCM.

ところで、近年の環境負荷低減から生産量が拡大しつつある電気自動車においては、モータの回転を減速ギアに直接伝達するため、ガソリン車よりもこれらの部品が高回転下に曝されることになる。また、使用環境における動粘度がガソリン車よりも低い潤滑油が使用されるため、これら動力伝達部を構成する鋼部品の表面に形成される油膜が薄く、場合によっては油膜がほとんど形成されない箇所も局所的に発生する環境下にある。特に、高回転・高すべりとなるに伴い、油温も上昇し、潤滑油の動粘度が低下しやすくなり、ますます油膜切れが発生する部位が増える。そのため、これらの環境下では、鋼部品同士の金属接触による摩耗が生じやすく、また摩擦熱による温度上昇が生じて鋼部品の軟化も生じやすいため、焼付きが早期に発生する。   By the way, in an electric vehicle whose production volume is expanding due to a reduction in environmental load in recent years, since the rotation of the motor is directly transmitted to the reduction gear, these parts are exposed to a higher rotation than a gasoline vehicle. . In addition, since lubricating oil with a lower kinematic viscosity in the usage environment is used than in gasoline cars, the oil film formed on the surface of the steel parts that make up these power transmission parts is thin, and in some cases, the oil film is hardly formed. It is in a local environment. In particular, the oil temperature rises and the kinematic viscosity of the lubricating oil tends to decrease with higher rotation and higher slip, and more oil film breakage occurs. Therefore, in these environments, wear due to metal contact between steel parts tends to occur, and temperature rise due to frictional heat tends to cause softening of the steel parts, so seizure occurs early.

上記のような環境下で使用される鋼部材に関連する技術は、これまでにも種々提案されている。例えば、特許文献1では、C:0.7〜1.1%、Si:0.3〜0.7%、Mn:0.3〜0.8%、Ni:0.5〜1.2%、Cr:1.3〜1.8%、Mo:0.1〜0.7%およびV:0.2〜0.4%を含有し、残部鉄および不純物からなり、Si+Mn:1.0%以下、Ni+Cr:2.3%以上、Cr+Mo+V:3.0%以下である鋼から構成され、高炭素含有層が形成され、その表層部の硬度は725〜800Hv、表層部の炭化物の最大粒径は10μm以下、面積率は7〜20%、表層部は内部よりも炭素量が0.2〜0.4%だけ高く、表層部の窒素量は0.1〜0.5%である自動車電装・補機用転動部材が開示されている。   Various techniques related to steel members used in the above environment have been proposed. For example, in Patent Document 1, C: 0.7 to 1.1%, Si: 0.3 to 0.7%, Mn: 0.3 to 0.8%, Ni: 0.5 to 1.2% , Cr: 1.3-1.8%, Mo: 0.1-0.7% and V: 0.2-0.4%, consisting of the balance iron and impurities, Si + Mn: 1.0% Hereinafter, it is composed of steel with Ni + Cr: 2.3% or more and Cr + Mo + V: 3.0% or less, a high carbon content layer is formed, the hardness of the surface layer portion is 725 to 800 Hv, and the maximum particle size of the carbide of the surface layer portion Is 10 μm or less, the area ratio is 7 to 20%, the surface layer part has a carbon content higher by 0.2 to 0.4% than the inside, and the nitrogen content of the surface layer part is 0.1 to 0.5%. -Rolling members for auxiliary machinery are disclosed.

しかしながら、この技術を電気自動車用のモータに適用する場合、より焼付きが発生しやすい環境であるため、焼付きを抑制するためには、表層部の窒素量を0.5%程度にするだけでは不十分である。   However, when this technology is applied to a motor for an electric vehicle, it is an environment in which seizure is more likely to occur. Therefore, in order to suppress seizure, the amount of nitrogen in the surface layer is only about 0.5%. Is not enough.

特許文献2では、C:0.80〜1.70%、Si:0.70〜2.50%、Mn:0.30%未満、P:0.050%以下、S:0.050%以下、O:0.0030%以下、N:0.015%以下、残部鉄および不可避不純物からなる成分の鋼片、鋼材を、800℃以上、その鋼片、鋼材の固相線温度より50℃低い温度以下の温度に加熱し、熱間加工し、室温まで冷却し、得られた熱間加工鋼材に平均粒径0.5μm以上の黒鉛を100個/mm2以上析出させ、金属組織をパーライト主体とする快削性に優れた熱間加工鋼材および製品が開示されている。また、この技術では、必要によって、黒鉛析出促進元素、パーライト微細化元素、被削性向上元素、焼入れ促進元素等を適宜添加することが有用であることも開示されている。 In Patent Document 2, C: 0.80 to 1.70%, Si: 0.70 to 2.50%, Mn: less than 0.30%, P: 0.050% or less, S: 0.050% or less , O: 0.0030% or less, N: 0.015% or less, steel slab or steel material composed of the balance iron and inevitable impurities, 800 ° C. or higher, 50 ° C. lower than the solidus temperature of the steel slab or steel material Heated to a temperature below the temperature, hot worked, cooled to room temperature, precipitated graphite with an average particle size of 0.5μm or more on the obtained hot worked steel material, more than 100 pieces / mm 2 , the metal structure was mainly pearlite A hot-worked steel material and a product excellent in free-cutting property are disclosed. This technique also discloses that it is useful to appropriately add a graphite precipitation promoting element, a pearlite refinement element, a machinability improving element, a quenching promoting element, and the like as necessary.

しかしながらこの技術では、靭性を確保するためにパーライト主体の組織となっており、部品表層に炭化物が適切に制御されておらず、高すべり環境では良好な耐焼付き性を発揮することができない。   However, this technique has a pearlite-based structure in order to ensure toughness, and carbides are not properly controlled on the surface layer of the component, and good seizure resistance cannot be exhibited in a high slip environment.

一方、特許文献3では、C:0.60〜0.85%、Si:0.20〜1.50%、Mn:0.40〜1.60%、Cr:0.30超〜1.50%、V:0.05〜0.80%、Mo:0.05〜0.50%、更に、必要に応じ、Al:0.020〜0.100%、Ti:0.010〜0.100%、Nb:0.010〜0.100%、およびB:0.0005〜0.0050%から成る群から選んだ1種または2種以上、および/またはS:0.040〜0.130%、Pb:0.030〜0.350%、およびCa:0.0010〜0.0100%から成る群から選んだ1種または2種以上、を配合した軟窒化用鋼が提案されている。   On the other hand, in Patent Document 3, C: 0.60 to 0.85%, Si: 0.20 to 1.50%, Mn: 0.40 to 1.60%, Cr: more than 0.30 to 1.50 %, V: 0.05-0.80%, Mo: 0.05-0.50%, and further, if necessary, Al: 0.020-0.100%, Ti: 0.010-0.100 %, Nb: 0.010 to 0.100%, and B: 0.0005 to 0.0050%, one or more selected from the group consisting of, and / or S: 0.040 to 0.130% , Pb: 0.030 to 0.350%, and Ca: 0.0010 to 0.0100%, and one or more selected from the group consisting of 0.0010 to 0.0100% have been proposed.

しかしながらこの技術では、炭化物を適切に制御するための球状化処理がなされていないため、部品表層に球状炭化物が分散しておらず、高すべり環境で良好な耐焼付き性を発揮することができない。   However, in this technique, since the spheroidizing treatment for appropriately controlling the carbide is not performed, the spherical carbide is not dispersed in the surface layer of the component, and good seizure resistance cannot be exhibited in a high slip environment.

特開2009−1848号公報JP 2009-1848 A 特開平11−293386号公報JP-A-11-293386 特開平6−220579号公報Japanese Patent Laid-Open No. 6-220579

本発明はこうした従来技術における課題を解決する為になされたものであって、その目的は、高回転・高すべり、低い動粘度の潤滑油が使用される動力伝達部において、より優れた耐焼付き性を発揮し、電気自動車モータ用として有用な歯車を提供することにある。   The present invention has been made to solve such problems in the prior art, and its purpose is to achieve better seizure resistance in a power transmission section in which lubricating oil with high rotation / slip and low kinematic viscosity is used. It is to provide a gear useful for an electric vehicle motor.

上記課題を解決することのできた本発明の歯車とは、C:0.80%超〜1.30%(「質量%」の意味、化学成分組成について以下同じ)、Si:0.05〜1%、Mn:0.1〜1%、P:0.05%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Cr:0.9〜2%、Al:0.01〜0.1%、およびN:0.02%以下(0%を含まない)を夫々含有し、残部が鉄および不可避不純物からなり、焼戻しマルテンサイトおよび/または焼戻しベイナイトに、面積率5%超、30%以下の球状炭化物が析出している鋼材組織を有し、且つ表面から20μm深さにおける窒素濃度が2.0〜6.0%である点に要旨を有するものである。   The gears of the present invention that have solved the above problems are: C: more than 0.80% to 1.30% (meaning “mass%”, the same applies to the chemical composition), Si: 0.05-1 %, Mn: 0.1 to 1%, P: 0.05% or less (not including 0%), S: 0.05% or less (not including 0%), Cr: 0.9 to 2%, Al: 0.01 to 0.1% and N: 0.02% or less (excluding 0%), respectively, the balance consisting of iron and inevitable impurities, tempered martensite and / or tempered bainite, It has a steel structure in which spherical carbides with an area ratio exceeding 5% and 30% or less are precipitated, and has a gist in that the nitrogen concentration at a depth of 20 μm from the surface is 2.0 to 6.0%. is there.

本発明の歯車においては、必要によって更に(a)Mo:0.5%以下(0%を含まない)、(b)V:0.2%以下(0%を含まない)、Ti:0.1%以下(0%を含まない)およびNb:0.2%以下(0%を含まない)よりなる群から選ばれる1種以上、(c)Cu:5%以下(0%を含まない)および/またはNi:5%以下(0%を含まない)、等を含有させることも有効であり、含有される成分に応じて歯車の特性が更に改善される。   In the gear of the present invention, if necessary, (a) Mo: 0.5% or less (not including 0%), (b) V: 0.2% or less (not including 0%), Ti: 0.0. One or more selected from the group consisting of 1% or less (excluding 0%) and Nb: 0.2% or less (not including 0%), (c) Cu: 5% or less (not including 0%) It is also effective to include Ni: 5% or less (not including 0%), etc., and the characteristics of the gear are further improved depending on the components contained.

本発明の歯車においては、表面から20μm深さまでの表層部において、窒化鉄の濃度が80質量%以上である窒化層が存在しており、当該窒化層は、窒化鉄中のFe4Nの割合が20質量%以上であることも好ましい要件である。また本発明の歯車には、表面に潤滑皮膜が形成されたものも包含する。本発明の歯車は、電気自動車モータ用として有用である。 In the gear of the present invention, a nitride layer having an iron nitride concentration of 80% by mass or more exists in the surface layer portion from the surface to a depth of 20 μm, and the nitride layer is a ratio of Fe 4 N in the iron nitride. Is preferably 20% by mass or more. The gear of the present invention includes those having a lubricating film formed on the surface. The gear of the present invention is useful for an electric vehicle motor.

本発明では、化学成分組成を適切に調整すると共に、表層部における組織を、球状炭化物面積率を所定量確保しつつ焼戻しマルテンサイトおよび/または焼戻しベイナイトの組織とし、且つ表面から20μm深さにおける窒素濃度を2.0〜6.0%となるようにしたので、高回転・高すべり、低い動粘度の潤滑油が使用される動力伝達部において、より優れた耐焼付き性を発揮することができ、このような歯車は電気自動車モータ用として極めて有用である。   In the present invention, the chemical component composition is appropriately adjusted, and the structure in the surface layer portion is a tempered martensite and / or tempered bainite structure while securing a predetermined amount of spherical carbide area ratio, and nitrogen at a depth of 20 μm from the surface. Since the concentration is set to 2.0 to 6.0%, it is possible to exhibit better seizure resistance in a power transmission section in which a lubricating oil having high rotation / slip and low kinematic viscosity is used. Such gears are extremely useful for electric vehicle motors.

ローラーピッチング試験に用いた試験片の概略説明図である。It is a schematic explanatory drawing of the test piece used for the roller pitching test.

本発明の耐焼付き性に優れた歯車は、(i)歯車表面から20μm深さにおける窒素濃度が2.0〜6.0%であること、(ii)表層部における球状炭化物の面積率が5%超、30%以下であること、等を特徴としている。   The gear excellent in seizure resistance according to the present invention has (i) a nitrogen concentration of 2.0 to 6.0% at a depth of 20 μm from the gear surface, and (ii) an area ratio of spherical carbide in the surface layer portion of 5. More than 30% and 30% or less.

主としてガソリン車を対象として発生するピッチング損傷は、油膜切れによる歯車間の金属同士の接触によって摩擦熱が発生し、歯車が熱軟化することによると考えられてきた。そして、耐ピッチング性に優れる歯車部品を実現するには、部品そのものの表面、内部強度、或は焼戻し軟化抵抗の向上が有効であり、高強度化によって耐ピッチング性が改善されてきた。しかしながら、電気自動車モータ用歯車では、従来のガソリン車と比較して、歯面間のすべり速度が数倍以上になり、損傷メカニズムが焼付きへと変化するため、部品そのものの表面、内部強度、或は焼戻し軟化抵抗を向上させることの延長線上では改善指針を見出すことができない。   It has been thought that the pitching damage that occurs mainly in gasoline cars is due to the frictional heat generated by the metal-to-metal contact between the gears due to the oil film breakage, and the gears being thermally softened. In order to realize a gear part having excellent pitting resistance, it is effective to improve the surface of the part itself, the internal strength, or the temper softening resistance, and the pitting resistance has been improved by increasing the strength. However, in electric vehicle motor gears, compared to conventional gasoline cars, the slip speed between the tooth surfaces is several times more and the damage mechanism changes to seizure, so the surface of the part itself, the internal strength, Or the improvement guideline cannot be found on the extension line of improving the temper softening resistance.

本発明者らは、すべり速度が極めて高い領域での焼付き発生メカニズムを詳細に検討した。その結果、高温・高圧・高すべり下で摩耗が生じることによる原子間結合、即ち凝着摩耗が支配的であることが判明した。そして、更に検討を進めた結果、凝着摩耗が発生しやすい環境下においても原子間結合しにくくなるようにするためには、歯車表層部のN含有量(窒素濃度)を高めることが有効であり、また各種添加元素との窒素化合物よりも、鉄窒化物を多数形成させると共に、鉄窒化物の組成を適切に制御することが有効であることを見出した。加えて、所定量の球状炭化物を鋼中に分散させることも有効であり、これらの相乗効果によって、著しく耐焼付き性を向上させることができることを見出し、発明を完成した。   The present inventors have studied in detail the mechanism of seizure occurrence in a region where the sliding speed is extremely high. As a result, it was found that interatomic bonds, that is, adhesive wear due to wear occurring under high temperature, high pressure, and high slip, are dominant. As a result of further investigation, it is effective to increase the N content (nitrogen concentration) of the gear surface layer part in order to make it difficult to bond between atoms even in an environment where adhesion wear is likely to occur. In addition, it has been found that it is more effective to form a large number of iron nitrides and to appropriately control the composition of iron nitrides than to nitrogen compounds with various additive elements. In addition, it was effective to disperse a predetermined amount of spherical carbide in steel, and it was found that the seizure resistance can be remarkably improved by these synergistic effects, and the invention was completed.

本発明における耐焼付き性改善の推定メカニズムは、次のように考えられる。即ち、上記(i)のように表層部のN含有量(窒素濃度)を制御することは、Nを熱的により安定な鉄窒化物組成に制御することができ、金属接触部分でも原子間結合を抑制することができる。但し、金属接触部分では、凝着摩耗以外にも剥離鉄片によるアブレシブ摩耗の影響も加味されるので、(ii)のように表層部の球状炭化物量を制御することは、硬質の球状炭化物を分散させることによって、アブレシブ摩耗を抑制することができる。こうした効果は、(i)または(ii)のいずれか単独では耐焼付き性の著しい向上を発現させることができず、(i)および(ii)の相乗効果によって初めて、耐焼付き性に優れた歯車を実現することができる。これらの要件を規定したことによる具体的な作用効果は下記の通りである。   The presumed mechanism for improving seizure resistance in the present invention is considered as follows. In other words, controlling the N content (nitrogen concentration) of the surface layer as in (i) above can control N to a thermally more stable iron nitride composition, and the interatomic bond even at the metal contact portion. Can be suppressed. However, in the metal contact area, in addition to the adhesive wear, the influence of the abrasive wear due to the peeled iron pieces is also taken into account, so controlling the amount of spherical carbide in the surface layer as shown in (ii) disperses the hard spherical carbide By doing so, abrasive wear can be suppressed. Such an effect cannot produce a significant improvement in seizure resistance by either (i) or (ii) alone, and is a gear excellent in seizure resistance only because of the synergistic effect of (i) and (ii). Can be realized. Specific actions and effects by defining these requirements are as follows.

[(i)の要件]
歯車としての耐焼付き性を改善するためには、表面から20μm深さ位置での窒素濃度を2.0〜6.0%となるように制御する必要がある。この部分における窒素濃度が、2.0%未満になると、金属接触による原子間結合が発生しやすくなり、凝着摩耗が生じることになる。一方、窒素濃度が6.0%を超えると、表層近傍の窒化物の原子構造が変化してしまうため、却って凝着摩耗が生じやすくなる。この窒素濃度の好ましい下限は2.2%以上(より好ましくは2.5%以上)であり、好ましい上限は5.8%以下(より好ましくは5.5%以下)である。
[Requirements for (i)]
In order to improve seizure resistance as a gear, it is necessary to control the nitrogen concentration at a depth of 20 μm from the surface to be 2.0 to 6.0%. If the nitrogen concentration in this portion is less than 2.0%, interatomic bonds due to metal contact are likely to occur, and adhesive wear will occur. On the other hand, if the nitrogen concentration exceeds 6.0%, the atomic structure of the nitride in the vicinity of the surface layer is changed, so that adhesive wear tends to occur. The preferable lower limit of the nitrogen concentration is 2.2% or more (more preferably 2.5% or more), and the preferable upper limit is 5.8% or less (more preferably 5.5% or less).

[(ii)の要件]
部品表層に存在する球状炭化物は、高すべり環境下において耐焼付き性を向上させることができる。また、表層部に存在する球状炭化物は、窒化によって表層部に窒素を著しく濃化させることを援助する作用も有する。そのためには、表層部の球状炭化物の面積率は5%よりも多く(5%超)する必要がある。球状炭化物の面積率が5%以下の場合、表層部近傍の窒素の濃化が不十分になるだけでなく、炭化物自身による耐焼付き性改善効果も不足するため、所定の耐焼付き性を得られない。一方、球状炭化物の面積率が30%を超えると、表層部近傍に窒素が濃化しすぎて窒化物の構造が変化してしまうため、耐焼付き性が劣化する。ここで球状炭化物とは、焼きなまし、球状化焼鈍、焼入れ焼戻し等の処理によって鋼中に分散した状態で析出し、アスペクト比(短径/長径)が0.4以上(短径/長径≦1.0の範囲において)の炭化物のことを意味する。またその組成としては、Fe−C化合物や炭素と合金元素の化合物、Fe−C−合金元素の複合化合物等を含むものである。この球状炭化物の面積率の好ましい下限は6%以上(より好ましくは7%以上)であり、好ましい上限は28%以下(より好ましくは25%以下)である。
[Requirements for (ii)]
Spherical carbides present in the component surface layer can improve seizure resistance in a high slip environment. In addition, the spherical carbide existing in the surface layer portion also has an action of assisting the nitrogen concentration in the surface layer portion by nitriding. For this purpose, the area ratio of the spherical carbide in the surface layer portion needs to be more than 5% (more than 5%). When the area ratio of the spherical carbide is 5% or less, not only the concentration of nitrogen in the vicinity of the surface layer is insufficient, but also the effect of improving the seizure resistance by the carbide itself is insufficient, so that a predetermined seizure resistance can be obtained. Absent. On the other hand, when the area ratio of the spherical carbide exceeds 30%, nitrogen is excessively concentrated in the vicinity of the surface layer portion and the structure of the nitride is changed, so that the seizure resistance is deteriorated. Here, the spherical carbide is precipitated in a state dispersed in steel by annealing, spheroidizing annealing, quenching and tempering, and the aspect ratio (minor axis / major axis) is 0.4 or more (minor axis / major axis ≦ 1. (In the range of 0). The composition includes an Fe—C compound, a compound of carbon and an alloy element, a composite compound of Fe—C—alloy element, and the like. The preferable lower limit of the area ratio of the spherical carbide is 6% or more (more preferably 7% or more), and the preferable upper limit is 28% or less (more preferably 25% or less).

上記球状炭化物は、実質的に基地組織となる焼戻しマルテンサイトまたは焼戻しベイナイト、或はそれらの複合組織(焼戻しマルテンサイトおよび焼戻しベイナイトからなる組織)に析出している。窒化処理後には、鋼中にこれら基地組織以外の組織、例えばフェライトやパーライト、ベイニティックフェライト、焼入れままマルテンサイト、焼入れままベイナイト等の組織が形成される場合がある。これらの組織は、歯車の特性バラつき、耐焼付き性に悪影響を及ぼすため、極力生成しないことが望まれる。但し、フェライトやパーライト、ベイニティックフェライト、焼入れままマルテンサイト、焼入れままベイナイト等の組織が面積率で5%以下の割合で存在する場合に限って、本発明の作用に悪影響を与えないため、許容される。   The spherical carbide is precipitated in tempered martensite or tempered bainite, which is substantially a matrix structure, or a composite structure thereof (structure composed of tempered martensite and tempered bainite). After the nitriding treatment, a structure other than these base structures such as ferrite, pearlite, bainitic ferrite, as-quenched martensite, or as-quenched bainite may be formed in the steel. Since these structures adversely affect the characteristic variation and seizure resistance of the gear, it is desirable that these structures be not generated as much as possible. However, since the structure of ferrite, pearlite, bainitic ferrite, as-quenched martensite, as-quenched bainite and the like are present in a ratio of 5% or less in area ratio, it does not adversely affect the action of the present invention, Permissible.

本発明の歯車を得るための球状化処理(後述する)を行うと、球状炭化物の面積率は、鋼材全体で場所によらず一定となる。しかし、その後窒化処理を行うと、最表面には窒化鉄(鉄窒化物)ができて球状炭化物が見えなく(測定できなく)なる。このため、後の実施例においては、製品(窒化品)の最表面での球状炭化物の面積率が図れないので、窒化鉄ができない「表面から20μm深さ位置」での面積率を測り、この値が窒化前の表層での球状炭化物の面積率と同等であるとみなしている。   When the spheroidizing treatment (described later) for obtaining the gear of the present invention is performed, the area ratio of the spherical carbide becomes constant throughout the steel material regardless of the place. However, when nitriding is performed thereafter, iron nitride (iron nitride) is formed on the outermost surface, and spherical carbide is not visible (cannot be measured). For this reason, in the following examples, since the area ratio of the spherical carbide on the outermost surface of the product (nitrided product) cannot be achieved, the area ratio at the “20 μm depth position from the surface” where iron nitride cannot be obtained is measured. It is considered that the value is equivalent to the area ratio of the spherical carbide in the surface layer before nitriding.

本発明の歯車においては、最終製品(歯車部品)としての特性を発揮させるために、その化学成分組成をも適切に調整する必要がある。その化学成分組成における各成分(元素)による範囲限定理由は次の通りである。   In the gear of the present invention, it is necessary to appropriately adjust the chemical component composition in order to exhibit the characteristics as the final product (gear part). The reason for the range limitation by each component (element) in the chemical component composition is as follows.

[C:0.80%超〜1.30%]
Cは耐焼付き性を向上させる球状炭化物を所定量以上形成させるのに必要な元素である。また焼入れ硬さを増大させ、室温、高温における強度を維持して耐摩耗性を付与するためにも有効である。そのような効果を有効に発揮させるためには、少なくとも、0.80%よりも多く含有させる必要がある。しかしながら、C含有量が過剰になると、芯部に巨大炭化物が生成し易くなり、耐焼付き性が劣化するので1.30%以下とする必要がある。C含有量の好ましい下限は0.85%以上(より好ましくは0.95%以上)であり、好ましい上限は1.25%以下(より好ましくは1.15%以下)である。
[C: more than 0.80% to 1.30%]
C is an element necessary for forming a predetermined amount or more of a spherical carbide that improves seizure resistance. It is also effective in increasing the quenching hardness and maintaining the strength at room temperature and high temperature to impart wear resistance. In order to exhibit such an effect effectively, it is necessary to contain more than 0.80% at least. However, if the C content is excessive, giant carbides are likely to be formed in the core and the seizure resistance is deteriorated, so it is necessary to be 1.30% or less. The preferable lower limit of the C content is 0.85% or more (more preferably 0.95% or more), and the preferable upper limit is 1.25% or less (more preferably 1.15% or less).

[Si:0.05〜1%]
Siは、焼戻し軟化抵抗を高めて硬さの低下を抑制する効果を発揮する。こうした効果を発揮させるためには、0.05%以上含有させる必要がある。しかしながら、Si含有量が過剰になると、冷間鍛造時の金型寿命を低下させるとともに、被削性も劣化させるため、1%以下とする必要がある。Si含有量の好ましい下限は0.10%以上(より好ましくは0.15%以上)であり、好ましい上限は0.8%以下(より好ましくは0.5%以下)である。
[Si: 0.05 to 1%]
Si exhibits the effect of increasing the temper softening resistance and suppressing the decrease in hardness. In order to exhibit such an effect, it is necessary to contain 0.05% or more. However, when the Si content is excessive, the die life at the time of cold forging is reduced and the machinability is also deteriorated. The preferable lower limit of the Si content is 0.10% or more (more preferably 0.15% or more), and the preferable upper limit is 0.8% or less (more preferably 0.5% or less).

[Mn:0.1〜1%]
Mnは、マトリクスの固溶強化および焼入れ性を向上させる効果がある。この効果を発揮させるためには、0.1%以上含有させる必要がある。しかしながら、Mn含有量が過剰になると、低級酸化物であるMnO濃度が上昇し、疲労特性を悪化させる他、加工性や被削性が著しく低下するので、1%以下とする必要がある。Mn含有量の好ましい下限は0.15%以上(より好ましくは0.20%以上)であり、好ましい上限は0.95%以下(より好ましくは0.90%以下)である。
[Mn: 0.1 to 1%]
Mn has an effect of improving solid solution strengthening and hardenability of the matrix. In order to exhibit this effect, it is necessary to contain 0.1% or more. However, if the Mn content is excessive, the concentration of MnO, which is a lower oxide, is increased and the fatigue characteristics are deteriorated, and the workability and machinability are remarkably lowered. The preferable lower limit of the Mn content is 0.15% or more (more preferably 0.20% or more), and the preferable upper limit is 0.95% or less (more preferably 0.90% or less).

[P:0.05%以下(0%を含まない)]
Pは、結晶粒界に偏析して疲労寿命を短くするのでできるだけ低減する必要がある。特に、その含有量が0.05%を超えると、疲労寿命の低下が著しくなる。こうしたことから、P含有量は0.05%以下とした。P含有量は好ましくは0.045%以下であり、より好ましくは0.040%以下である。
[P: 0.05% or less (excluding 0%)]
P segregates at the grain boundaries and shortens the fatigue life, so it is necessary to reduce it as much as possible. In particular, when the content exceeds 0.05%, the fatigue life is significantly reduced. For these reasons, the P content is set to 0.05% or less. The P content is preferably 0.045% or less, more preferably 0.040% or less.

[S:0.05%以下(0%を含まない)]
Sは、硫化物を形成する元素であり、その含有量が0.05%を超えると、粗大な硫化物が生成するため疲労寿命を短くする。従って、Sの含有量は0.05%以下とする。S含有量は好ましくは0.045%以下であり、より好ましくは0.040%以下である。
[S: 0.05% or less (excluding 0%)]
S is an element that forms sulfides. If the content exceeds 0.05%, coarse sulfides are generated, and thus the fatigue life is shortened. Therefore, the S content is 0.05% or less. The S content is preferably 0.045% or less, and more preferably 0.040% or less.

[Cr:0.9〜2%]
Crは、焼入れ性の向上と安定な炭化物の形成を通じて、強度の向上および耐焼付き性を向上させるのに有効に作用する。こうした効果を発揮させるためには、Crは0.9%以上含有させる必要がある。しかしながら、Crの含有量が過剰になると、炭化物が粗大化し、疲労特性および切削性を低下させるため、その含有量は2%以下とする必要がある。Cr含有量の好ましい下限は1.0%以上(より好ましくは1.1%以上)であり、好ましい上限は1.9%以下(より好ましくは1.8%以下)である。
[Cr: 0.9-2%]
Cr effectively acts to improve strength and improve seizure resistance through improving hardenability and forming stable carbides. In order to exert such effects, it is necessary to contain Cr by 0.9% or more. However, if the Cr content is excessive, the carbides become coarse and the fatigue characteristics and machinability are deteriorated, so the content needs to be 2% or less. A preferable lower limit of the Cr content is 1.0% or more (more preferably 1.1% or more), and a preferable upper limit is 1.9% or less (more preferably 1.8% or less).

[Al:0.01〜0.1%]
Alは、脱酸剤として作用し、酸化物系介在物量を低減して鋼材の内部品質を高める作用を発揮するため適量添加することが好ましい。こうした観点から、Al含有量は0.01%以上とした。しかしながら、Al含有量が過剰になると、粗大で硬い介在物(Al23)が生成し、疲労特性を低下させるので0.1%以下とする必要がある。Al含有量の好ましい下限は0.015%以上(より好ましくは0.020%以上)であり、好ましい上限は0.08%以下(より好ましくは0.06%以下)である。
[Al: 0.01 to 0.1%]
Al is preferably added in an appropriate amount in order to act as a deoxidizer and to reduce the amount of oxide inclusions and enhance the internal quality of the steel material. From such a viewpoint, the Al content is set to 0.01% or more. However, if the Al content is excessive, coarse and hard inclusions (Al 2 O 3 ) are generated and the fatigue characteristics are deteriorated. The preferable lower limit of the Al content is 0.015% or more (more preferably 0.020% or more), and the preferable upper limit is 0.08% or less (more preferably 0.06% or less).

[N:0.02%以下(0%を含まない)]
Nは、Alと結合してAlNを形成し、結晶粒径を微細化する効果も有するが、その一方でN含有量が多すぎると、圧延時に割れが発生しやすくなるので0.02%以下に制限する必要がある。N含有量は、好ましくは0.018%以下であり、より好ましくは0.016%以下である。
[N: 0.02% or less (excluding 0%)]
N combines with Al to form AlN and has the effect of refining the crystal grain size. On the other hand, if the N content is too large, cracking is likely to occur during rolling, so 0.02% or less. It is necessary to limit to. The N content is preferably 0.018% or less, and more preferably 0.016% or less.

本発明の電気自動車モータ用歯車における基本成分は上記の通りであり、残部は鉄および不可避的不純物(例えば、Sb,Mg等)である。本発明の歯車には、必要によって、(a)Mo:0.5%以下(0%を含まない)、(b)V:0.2%以下(0%を含まない)、Ti:0.1%以下(0%を含まない)およびNb:0.2%以下(0%を含まない)よりなる群から選ばれる1種以上、(c)Cu:5%以下(0%を含まない)および/またはNi:5%以下(0%を含まない)、等を含有させてもよく、含有させる元素の種類に応じて、歯車の特性が更に改善される。これらの元素の好ましい範囲設定理由は下記の通りである。   The basic components in the electric vehicle motor gear of the present invention are as described above, and the balance is iron and inevitable impurities (for example, Sb, Mg, etc.). In the gear of the present invention, if necessary, (a) Mo: 0.5% or less (not including 0%), (b) V: 0.2% or less (not including 0%), Ti: 0.0. One or more selected from the group consisting of 1% or less (excluding 0%) and Nb: 0.2% or less (not including 0%), (c) Cu: 5% or less (not including 0%) And / or Ni: 5% or less (not including 0%), etc. may be included, and the characteristics of the gear are further improved depending on the type of element to be included. The reason for setting a preferable range of these elements is as follows.

[Mo:0.5%以下(0%を含まない)]
Moは、焼入れ時の焼入性を著しく向上させる効果を持つのに加え、衝撃強度の向上に有効な元素である。しかしながら、Mo含有量が過剰になると、素材硬さが高くなるため被削性が不良となり、更には高価な元素であるためコストアップの要因となることから0.5%以下とすることが好ましい。より好ましくは、0.45%以下であり、更に好ましくは0.40%以下である。尚、Moによる効果を有効に発揮させるためには、0.05%以上含有させることが好ましく、より好ましくは0.07%以上(更に好ましくは0.10%以上)である。
[Mo: 0.5% or less (excluding 0%)]
Mo is an element effective for improving the impact strength in addition to the effect of significantly improving the hardenability during quenching. However, if the Mo content is excessive, the material hardness increases and machinability becomes poor. Further, since it is an expensive element, it causes an increase in cost, so it is preferably 0.5% or less. . More preferably, it is 0.45% or less, More preferably, it is 0.40% or less. In order to effectively exhibit the effect of Mo, 0.05% or more is preferably contained, more preferably 0.07% or more (more preferably 0.10% or more).

[V:0.2%以下(0%を含まない)、Ti:0.1%以下(0%を含まない)およびNb:0.2%以下(0%を含まない)よりなる群から選ばれる1種以上]
V、TiおよびNbは、歯車の表面硬さを向上させることによって、耐焼付き性を向上させるのに有効な元素である。これらにおける詳細な作用効果は次の通りである。
[V: 0.2% or less (not including 0%), Ti: 0.1% or less (not including 0%) and Nb: 0.2% or less (not including 0%) One or more
V, Ti and Nb are effective elements for improving the seizure resistance by improving the surface hardness of the gear. The detailed effects of these are as follows.

Vは、軟窒化による侵入Nおよび侵入Cと結合して表面層に微細なV炭・窒化物(Vを含有する炭化物、窒化物若しくは炭窒化物)を析出することにより、表面硬さを向上させ、耐焼付き性を向上させる。しかしながら、V含有量が過剰になって0.2%を超えると、V炭・窒化物が粗大化しやすくなり、表面硬さを低下させるとともに、疲労強度を劣化させる。より好ましくは、0.19%以下であり、更に好ましくは0.18%以下である。尚、Vによる効果を有効に発揮させるためには、0.05%以上含有させることが好ましく、より好ましくは0.06%以上(更に好ましくは0.07%以上)である。   V improves surface hardness by combining with intrusion N and intrusion C due to soft nitriding to deposit fine V carbon / nitride (carbide, nitride or carbonitride containing V) on the surface layer. And improve seizure resistance. However, if the V content becomes excessive and exceeds 0.2%, the V charcoal / nitride tends to be coarsened, and the surface hardness is lowered and the fatigue strength is deteriorated. More preferably, it is 0.19% or less, More preferably, it is 0.18% or less. In order to effectively exhibit the effect of V, the content is preferably 0.05% or more, more preferably 0.06% or more (more preferably 0.07% or more).

Tiは、軟窒化による侵入Nおよび侵入Cと結合して表面層に微細なTi炭・窒化物(Tiを含有する炭化物、窒化物若しくは炭窒化物)を析出することにより表面硬さを向上させ、耐焼付き性を向上させる。しかしながら、Ti含有量が過剰になって0.1%を超えると、Ti炭・窒化物が粗大化しやすくなり、表面硬さを低下させるとともに、疲労強度を劣化させる。より好ましくは、0.09%以下であり、更に好ましくは0.08%以下である。尚、Tiによる効果を有効に発揮させるためには、0.03%以上含有させることが好ましく、より好ましくは0.04%以上(更に好ましくは0.05%以上)である。   Ti combines with intrusion N and intrusion C due to soft nitriding to improve surface hardness by precipitating fine Ti charcoal / nitride (Ti-containing carbide, nitride or carbonitride) on the surface layer. Improves seizure resistance. However, if the Ti content becomes excessive and exceeds 0.1%, Ti charcoal / nitride tends to be coarsened, and the surface hardness is lowered and the fatigue strength is deteriorated. More preferably, it is 0.09% or less, More preferably, it is 0.08% or less. In order to effectively exhibit the effect of Ti, the content is preferably 0.03% or more, more preferably 0.04% or more (more preferably 0.05% or more).

Nbは、軟窒化による侵入Nおよび侵入Cと結合して表面層に微細なNb炭・窒化物(Nbを含有する炭化物、窒化物若しくは炭窒化物)を析出することにより表面硬さを向上させ、耐焼付き性を向上させる。しかしながら、Nb含有量が過剰になって0.2%を超えると、Nb炭・窒化物が粗大化しやすくなり、表面硬さを低下させるとともに、疲労強度を劣化させる。より好ましくは、0.19%以下であり、更に好ましくは0.18%以下である。尚、Nbによる効果を有効に発揮させるためには、0.05%以上含有させることが好ましく、より好ましくは0.06%以上(更に好ましくは0.07%以上)である。   Nb combines with intrusion N and intrusion C by soft nitriding to improve surface hardness by precipitating fine Nb carbon / nitride (carbide, nitride or carbonitride containing Nb) on the surface layer. Improves seizure resistance. However, if the Nb content becomes excessive and exceeds 0.2%, the Nb charcoal / nitride tends to be coarsened, reducing the surface hardness and deteriorating the fatigue strength. More preferably, it is 0.19% or less, More preferably, it is 0.18% or less. In order to effectively exhibit the effect of Nb, it is preferably contained in an amount of 0.05% or more, more preferably 0.06% or more (more preferably 0.07% or more).

[Cu:5%以下(0%を含まない)および/またはNi:5%以下(0%を含まない)]
Cuは、鋼中に固溶し、表層および内部硬さを向上させ、耐焼付き性を向上させるのに有効に作用する。また窒化処理時に微細に析出して、鋼材を硬化させる作用を発揮する。しかしながら、Cu含有量が過剰になると、鋼材を脆化させるのでCu含有量は5%以下とすることが好ましい。より好ましくは4%以下であり、更に好ましくは3%以下である。
[Cu: 5% or less (not including 0%) and / or Ni: 5% or less (not including 0%)]
Cu dissolves in steel and effectively acts to improve the surface layer and internal hardness and to improve seizure resistance. Moreover, it precipitates finely at the time of nitriding, and exhibits the effect | action which hardens steel materials. However, when the Cu content is excessive, the steel material is embrittled, so the Cu content is preferably 5% or less. More preferably, it is 4% or less, More preferably, it is 3% or less.

Niは、鋼材を固溶強化させる作用を有する。また、Cuと複合添加することで、Cuの析出硬化作用をより発揮させることができる。しかしながら、Ni含有量が過剰になると、その効果が飽和するのでNi含有量は5%以下とすることが好ましい。より好ましくは4%以下であり、更に好ましくは3%以下である。   Ni has the effect of strengthening the solid solution of the steel material. Moreover, the Cu precipitation hardening effect | action can be exhibited more by compounding with Cu. However, if the Ni content is excessive, the effect is saturated, so the Ni content is preferably 5% or less. More preferably, it is 4% or less, More preferably, it is 3% or less.

本発明の歯車は、上記のような化学成分組成の鋼材を用い、球状化焼鈍した後、所定の歯車形状に加工し、焼入れ、焼戻しをした後、窒化処理を施すことで製造される。この製造工程において、歯車形状に加工するまでは一般的に用いられている方法を採用すればよく、歯車加工も熱間鍛造、冷間鍛造、温間鍛造等、各種鍛造・圧造、転造、或は切削、研削、これらの方法の組み合わせによって製造される。   The gear of the present invention is manufactured by using a steel material having the above-described chemical composition, spheroidizing annealing, processing into a predetermined gear shape, quenching and tempering, and then performing nitriding treatment. In this manufacturing process, it is only necessary to adopt a generally used method until it is processed into a gear shape, and the gear processing is also hot forging, cold forging, warm forging, various forging / forging, rolling, Alternatively, it is manufactured by cutting, grinding, or a combination of these methods.

焼入れは、組織均一化、窒化における炭化物析出のための固溶Cの増加を目的に実施される。焼入れは一般的な方法でよく、780℃以上まで加熱し(但し、加熱温度が高すぎるとオーステナイト粒が粗大化しすぎるため、上限を1100℃とする)、マルテンサイト変態開始温度Ms以下まで急冷する。   Quenching is performed for the purpose of increasing the solid solution C for homogenizing the structure and precipitating carbides during nitriding. Quenching may be performed by a general method, and is heated to 780 ° C. or higher (however, if the heating temperature is too high, the austenite grains are too coarsened, and the upper limit is set to 1100 ° C.), and rapidly cooled to the martensite transformation start temperature Ms or less .

加熱後は1〜180分程度までの保持によって、組織全体が均一になる。このときの加熱時間が長過ぎると、脱炭の影響などが顕著になるため、上限は180分とする。急冷速度は、フェライト変態、不完全焼きが出ない程度の冷却速度よりも速ければよく、特に上限は定めない。下限は上記の観点から、1℃/秒以上とする。尚、焼入れ時点で残留オーステナイトが残っていても、窒化処理時に分解できるため、特に問題は生じない。焼戻しは置き割れ防止の観点で行われる。焼入れ後、直ちに窒化処理する場合には、焼戻しを省略することも可能である。焼戻し処理は、例えば100〜300℃の温度範囲で1〜180分程度で行えば、置き割れを防止することができる。   After heating, the entire tissue becomes uniform by holding for about 1 to 180 minutes. If the heating time at this time is too long, the effect of decarburization becomes significant, so the upper limit is 180 minutes. The rapid cooling rate is not particularly limited as long as it is faster than a cooling rate that does not cause ferrite transformation and incomplete firing. From the above viewpoint, the lower limit is 1 ° C./second or more. Even if residual austenite remains at the time of quenching, it can be decomposed during the nitriding treatment, so that no particular problem occurs. Tempering is performed from the viewpoint of preventing cracking. When nitriding is performed immediately after quenching, tempering can be omitted. If the tempering process is performed in a temperature range of, for example, 100 to 300 ° C. for about 1 to 180 minutes, it is possible to prevent cracking.

本発明の歯車を製造する上で重要な工程は、(A)球状化焼鈍処理工程と、(B)窒化処理工程である。上記の化学成分組成の鋼材に対し、所定の球状化焼鈍処理と窒化処理を施すことで、所定の組織形態を得ることができ、耐焼付き性を改善することができる。   The important steps in producing the gear of the present invention are (A) spheroidizing annealing step and (B) nitriding step. By applying a predetermined spheroidizing annealing treatment and a nitriding treatment to the steel material having the chemical composition described above, a predetermined structure form can be obtained and seizure resistance can be improved.

[(A)球状化焼鈍処理工程]
球状化焼鈍処理工程では、窒化後の球状炭化物面積率を所定量に制御するため、前もって球状化組織を形成させておく必要がある。この球状化焼鈍工程は、公知のいずれの方法を適用してもよく、例えば、徐冷法、繰り返し法、高温焼戻し法等が挙げられる。尚、本発明においては、安定に球状炭化物を析出させるため、徐冷法を適用した。球状化焼鈍処理工程は、パーライトを分解し、球状化の核となる未固溶炭化物を残存させる加熱・保持工程と、球状炭化物を成長させる徐冷工程に細分される。
[(A) Spheroidizing annealing treatment step]
In the spheroidizing annealing process, it is necessary to form a spheroidized structure in advance in order to control the spherical carbide area ratio after nitriding to a predetermined amount. Any known method may be applied to the spheroidizing annealing step, and examples thereof include a slow cooling method, a repeating method, and a high temperature tempering method. In the present invention, a slow cooling method was applied in order to precipitate spherical carbide stably. The spheroidizing annealing process is subdivided into a heating / holding process in which pearlite is decomposed to leave undissolved carbides that become spheroidizing nuclei and a slow cooling process in which spherical carbides are grown.

上記の加熱温度は、750〜850℃の温度範囲に制御される。加熱温度が750℃未満になると、パーライトの分解が不足し、徐冷後も残存パーライトが存在することになるため、耐焼付き性抑制の観点からも適切でない。一方、この加熱温度が850℃を超えると、未固溶炭化物が著しく減少し、徐冷後に再生パーライトが生成することになるため、耐焼付き性抑制の観点でも適切でない。加熱後は2〜20時間程度で保持することよって、未固溶炭化物を球状炭化物の核として、適切な形に制御することができる。加熱後の保持時間が2時間よりも短いと、パーライトの分解が不足し、20時間を超えると未固溶炭化物が著しく減少してしまう。   Said heating temperature is controlled by the temperature range of 750-850 degreeC. When the heating temperature is less than 750 ° C., the decomposition of pearlite is insufficient, and residual pearlite is present even after slow cooling, which is not appropriate from the viewpoint of suppressing seizure resistance. On the other hand, when this heating temperature exceeds 850 ° C., undissolved carbides are remarkably reduced and regenerated pearlite is generated after slow cooling, which is not appropriate from the viewpoint of suppressing seizure resistance. By holding for about 2 to 20 hours after heating, the undissolved carbide can be controlled to be an appropriate shape as the core of the spherical carbide. When the holding time after heating is shorter than 2 hours, the decomposition of pearlite is insufficient, and when it exceeds 20 hours, undissolved carbides are remarkably reduced.

その後の徐冷工程では、球状炭化物を成長させるという観点からすれば、冷却速度は遅ければ遅いほど良いが、その分生産性を阻害することになる。また冷却速度が速過ぎる場合には、Ar変態点までに球状炭化物が十分に成長できないため、再生パーライトの生成を招くことになる。炭化物の成長と生産性を両立させるという観点からして、適正な冷却速度範囲は、1〜50℃/時間程度(好ましくは5〜30℃/時間程度)である。また冷却停止温度は、Ar1変態点以下であれば良いが、生産性の観点からして600〜700℃程度であることが好ましい。また冷却停止温度以降での冷却は、空冷、放冷、炉冷等、生産にあわせて適宜選択すればよい。 In the subsequent slow cooling process, from the viewpoint of growing spherical carbides, the slower the cooling rate, the better. However, the productivity is inhibited accordingly. On the other hand, when the cooling rate is too high, spherical carbides cannot be sufficiently grown up to the Ar 1 transformation point, leading to generation of regenerated pearlite. From the viewpoint of achieving both carbide growth and productivity, an appropriate cooling rate range is about 1 to 50 ° C./hour (preferably about 5 to 30 ° C./hour). The cooling stop temperature may be not higher than the Ar 1 transformation point, but is preferably about 600 to 700 ° C. from the viewpoint of productivity. Cooling after the cooling stop temperature may be appropriately selected according to production, such as air cooling, natural cooling, furnace cooling, and the like.

[(B)窒化処理工程]
窒化処理工程では、Nを鋼中に含侵させることが目的であるため、その方法は公知のいずれの方法を適用してもよい。例えば、ガス窒化、ガス軟窒化、塩浴窒化、塩浴浸炭窒化、イオン窒化、プラズマ窒化、タフライド処理、ガス浸炭窒化、等が挙げられる。尚、本発明においては、窒化処理の一例として、プラズマ軟窒化処理、およびプラズマ窒化処理を適用した。プラズマ軟窒化処理は、窒素―水素−炭素混合ガス中でグロー放電させることによって窒化処理するものであり、プラズマ窒化処理は、窒素―水素混合ガス中でグロー放電させることによって窒化処理するものである。機械加工等の仕上げ加工が必要な場合は、窒化処理前に行ってもよいし、窒化層に影響を与えない範囲においては、窒化処理後に行ってもよい。
[(B) Nitriding process]
In the nitriding treatment step, the purpose is to impregnate N into the steel, so that any known method may be applied. Examples thereof include gas nitriding, gas soft nitriding, salt bath nitriding, salt bath carbonitriding, ion nitriding, plasma nitriding, taffle treatment, gas carbonitriding, and the like. In the present invention, plasma soft nitriding treatment and plasma nitriding treatment are applied as an example of nitriding treatment. The plasma soft nitriding treatment is nitriding by glow discharge in a nitrogen-hydrogen-carbon mixed gas, and the plasma nitriding treatment is nitriding by glow discharging in a nitrogen-hydrogen mixed gas. . When finishing such as machining is required, it may be performed before nitriding, or after nitriding as long as it does not affect the nitrided layer.

(1)窒化処理温度:350〜650℃
本発明では、窒化処理において所定量の球状炭化物を析出させると共に、Nの鋼材への拡散を促進させ、原子間結合の発生しにくい鉄窒化物組成へと制御することによって、優れた耐焼付き性を得ることが可能となる。処理温度の下限を350℃としたのは、窒化処理温度が低過ぎる場合には、Nの拡散速度が低下してしまい、処理時間が長時間化すると共に、所定の球状炭化物を得る時間も長時間化し、生産性を阻害してしまうためである。また、上限を650℃としたのは、窒化処理温度が高過ぎる場合、炭化物の成長、Nの拡散促進のためには有効であるが、母相マトリクスの焼戻しが進行し過ぎて内部硬さが低下し、歯車部品としての特性を得られなくなること、および表層窒素の内部への拡散反応も大きくなるため、表層部で窒素を濃化するのを妨げることによる。従って、窒化温度を350〜650℃の範囲とすることにより、歯車部品としての諸特性を満足すると共に、電気自動車モータ等の高すべり環境下においても優れた耐焼付き性を発揮することができる。窒化温度のより好ましい下限は400℃以上(更に好ましくは450℃以上)であり、より好ましい上限は625℃以下(更に好ましくは600℃以下)である。
(1) Nitriding temperature: 350-650 ° C
In the present invention, a predetermined amount of spherical carbide is precipitated in the nitriding treatment, the diffusion of N into the steel material is promoted, and the iron nitride composition is controlled so that interatomic bonds are less likely to occur. Can be obtained. The lower limit of the processing temperature is set to 350 ° C., when the nitriding temperature is too low, the diffusion rate of N decreases, the processing time becomes longer, and the time for obtaining a predetermined spherical carbide is also longer. This is because the production time is hindered. The upper limit of 650 ° C. is effective for promoting the growth of carbide and diffusion of N when the nitriding temperature is too high, but the tempering of the matrix matrix has progressed too much and the internal hardness is low. This is because the characteristics as a gear part cannot be obtained and the diffusion reaction of the surface layer nitrogen into the interior is increased, thereby preventing the concentration of nitrogen in the surface layer portion. Therefore, by setting the nitriding temperature in the range of 350 to 650 ° C., various characteristics as a gear part can be satisfied, and excellent seizure resistance can be exhibited even in a high slip environment such as an electric vehicle motor. A more preferable lower limit of the nitriding temperature is 400 ° C. or higher (more preferably 450 ° C. or higher), and a more preferable upper limit is 625 ° C. or lower (more preferably 600 ° C. or lower).

(2)窒化処理時間:3〜30時間
窒化処理時間(窒化処理時の保持時間)は、炭化物を成長させると共に、Nを鋼中に拡散させ、鉄窒化物を形成させるために必要とされるものである。通常は温度と時間が連動して炭化物の量、Nの拡散量、鉄窒化物量が決まるものであるが、本発明では、安定に所定の組織を得るための範囲を温度、時間で夫々設定した。窒化処理時間を3〜30時間とすることで、所望の組織を得ることができ、電気自動車モータ等の高すべり環境下においても優れた耐焼付き性を発揮することができる。この窒化処理時間が3時間未満の短時間では、十分な球状炭化物と鉄窒化物を得ることができず、3時間未満で所望の組織を達成するため、温度を上げ過ぎると、母相マトリクスが軟質化してしまう弊害がある。一方、窒化処理時間が30時間を超える場合にも母相マトリクスが軟質化してしまい、これを防ぐために低温で処理しようとすると、球状炭化物が十分に析出せず、Nも十分に鋼中に拡散しない弊害がある。
(2) Nitriding time: 3 to 30 hours The nitriding time (holding time during nitriding) is required for growing carbide and diffusing N into the steel to form iron nitride. Is. Normally, the amount of carbide, the amount of N diffusion, and the amount of iron nitride are determined in conjunction with temperature and time, but in the present invention, ranges for obtaining a predetermined structure stably are set by temperature and time, respectively. . By setting the nitriding treatment time to 3 to 30 hours, a desired structure can be obtained, and excellent seizure resistance can be exhibited even in a high slip environment such as an electric vehicle motor. If the nitriding time is shorter than 3 hours, sufficient spherical carbide and iron nitride cannot be obtained, and in order to achieve the desired structure in less than 3 hours, if the temperature is raised too high, the matrix matrix There is a harmful effect of softening. On the other hand, even when the nitriding time exceeds 30 hours, the matrix matrix becomes soft, and when trying to treat at low temperature to prevent this, spherical carbide does not precipitate sufficiently, and N also diffuses sufficiently in the steel. There is no evil.

(3)窒化処理雰囲気:窒素ガス濃度30〜80%
窒化処理雰囲気における窒素ガス濃度(N2分率)は、Nを鋼中に拡散させ、原子間結合の発生しにくい鉄窒化物組成へと制御することによって、優れた耐焼付き性を得ることができる。雰囲気中のN2分率が30%未満では、Nを鋼中に十分拡散させることができず、所望の歯車特性が得られない。一方、N2分率が80%を超え、Nの拡散量が増え過ぎると、原子間結合しやすい鉄窒化物へと組成が再び変化するため、耐焼付き性を改善することができない。このN2分率のより好ましい下限は35%以上(更に好ましくは40%以上)であり、より好ましい上限は78%以下(更に好ましくは75%以下)である。
(3) Nitriding atmosphere: nitrogen gas concentration 30-80%
Nitrogen gas concentration (N 2 fraction) in the nitriding atmosphere can obtain excellent seizure resistance by diffusing N into the steel and controlling it to an iron nitride composition in which interatomic bonds are less likely to occur. it can. If the N 2 fraction in the atmosphere is less than 30%, N cannot be sufficiently diffused into the steel, and desired gear characteristics cannot be obtained. On the other hand, if the N 2 fraction exceeds 80% and the diffusion amount of N is excessively increased, the composition changes again to iron nitride that is easy to bond between atoms, and therefore seizure resistance cannot be improved. A more preferable lower limit of the N 2 fraction is 35% or more (more preferably 40% or more), and a more preferable upper limit is 78% or less (more preferably 75% or less).

上記のような窒化処理を行った電気自動車モータ用歯車においては、表面から20μm深さまでの表層部において、窒化鉄(鉄窒化物)の濃度が80質量%以上である窒化層が存在しており、当該窒化層は、窒化鉄中のFe4Nの割合が20質量%以上であることが好ましい。こうした要件を満足させることによって、耐焼付き性が更に向上するものとなる。こうした効果が発揮される理由は、次のように考えることができる。 In the electric vehicle motor gear subjected to the nitriding treatment as described above, a nitride layer having an iron nitride (iron nitride) concentration of 80% by mass or more exists in the surface layer portion from the surface to a depth of 20 μm. In the nitride layer, the proportion of Fe 4 N in iron nitride is preferably 20% by mass or more. Satisfaction resistance is further improved by satisfying these requirements. The reason why such an effect is exhibited can be considered as follows.

凝着摩耗は金属接触による原子間結合によって起こるが、窒化鉄の割合を増やすことで原子間結合が起こりにくくなり、凝着摩耗を抑制することができる。また、窒化処理によって表層に生成される窒化鉄にはFe2〜3N、Fe4N等などの種類があるが、この中でもっとも凝着摩耗を起こしにくいものがFe4Nであるため、Fe4Nの割合を増やすことで耐焼付き性は更に向上する。窒化層中の窒化鉄(鉄窒化物)の濃度は、より好ましくは85質量%以上であり、更に好ましくは90質量%以上である。また窒化鉄中のFe4Nの割合は、より好ましくは25質量%以上であり、更に好ましくは30質量%以上である。 Adhesion wear occurs due to interatomic bonds due to metal contact, but by increasing the proportion of iron nitride, interatomic bonds are less likely to occur and adhesion wear can be suppressed. Further, since the iron nitride produced in the surface layer by nitriding there are types such as Fe 2~3 N, Fe 4 N or the like, which hardly causes the most adhesive wear in this is Fe 4 N, The seizure resistance is further improved by increasing the proportion of Fe 4 N. The concentration of iron nitride (iron nitride) in the nitride layer is more preferably 85% by mass or more, and still more preferably 90% by mass or more. Moreover, the ratio of Fe 4 N in iron nitride is more preferably 25% by mass or more, and further preferably 30% by mass or more.

本発明の鋼材成分のうち、Cr,AlおよびMoは、窒素と結びつきやすい元素である。これらの元素の含有量が多くなると、窒素の拡散速度が遅くなり、Fe2〜3Nの量が多くなる。これらの元素を適量添加(Crで好ましくは1.3%以下、より好ましくは1.2%以下、Alで好ましくは0.040%以下、より好ましくは0.030%以下、Moで好ましくは0.30%以下、より好ましくは0.20%以下)することで、表層部はFe4Nが多い窒化層となり、凝着摩耗を防ぐことができる(例えば、後記実施例2の試験No.29〜31参照)。 Among the steel components of the present invention, Cr, Al and Mo are elements that are easily combined with nitrogen. When the content of these elements increases, the diffusion rate of nitrogen decreases , and the amount of Fe2-3N increases. Appropriate amounts of these elements added (Cr is preferably 1.3% or less, more preferably 1.2% or less, Al is preferably 0.040% or less, more preferably 0.030% or less, and Mo is preferably 0 or less. .30% or less, and more preferably 0.20% or less), the surface layer portion becomes a nitride layer containing a large amount of Fe 4 N, and adhesion wear can be prevented (for example, test No. 29 in Example 2 described later). ~ 31).

また軟窒化処理を行うと表層部の窒素濃度が高くなり、窒化処理に比べてFe2〜3Nができやすくなる。Fe4Nの割合を増やすためには、窒化処理を行う方が適している(後記実施例2の実験No.25と26を参照)。窒化温度を高めにすること(560〜625℃程度、好ましくは570〜600℃程度)で、窒素が適度に拡散し、Fe4Nの割合が増えることになる(後記実施例2の試験No.25と27を参照)。 Further, when the soft nitriding treatment is performed, the nitrogen concentration in the surface layer portion is increased, and Fe 2 to 3 N is easily formed as compared with the nitriding treatment. In order to increase the proportion of Fe 4 N, it is more suitable to perform nitriding (see Experiment Nos. 25 and 26 in Example 2 described later). By increasing the nitriding temperature (about 560 to 625 ° C., preferably about 570 to 600 ° C.), nitrogen diffuses moderately and the proportion of Fe 4 N increases (test No. 2 described later in Example 2). 25 and 27).

窒化処理条件におけるガス分率において、N2分率を多くするとFe2〜3Nが多くなり、減らしていくとFe4Nが増えることになる。好ましい窒化鉄量、およびFe4N量を確保するためには、適正なN2分率(35〜55%程度、好ましくは40〜45%程度)に調整することが好ましい(後記実施例2の試験No.25と28を参照)。 When the N 2 fraction is increased in the gas fraction under the nitriding conditions, Fe 2 to 3 N increases, and when it decreases, Fe 4 N increases. In order to secure a preferable amount of iron nitride and Fe 4 N, it is preferable to adjust to an appropriate N 2 fraction (about 35 to 55%, preferably about 40 to 45%) (see Example 2 below). See Test Nos. 25 and 28).

本発明の歯車においては、耐焼付き性を更に向上させるために、歯車表面に潤滑皮膜処理することも有効である。この潤滑皮膜処理は、金属接触を抑制し、温度上昇を抑制すると共に凝着摩耗の発生を抑制することができる。潤滑皮膜処理は、例えば、銅、亜鉛、鉛等の軟質金属、酸化鉛等の金属酸化物、二硫化モリブデン、二硫化タングステン等の硫化物、フッ化物、窒化物、グラファイト、リン酸マンガン等が代表的なものとして挙げられ、その処理の種類、処理方法は一般的なものが採用される。   In the gear of the present invention, it is also effective to treat the gear surface with a lubricating film in order to further improve the seizure resistance. This lubricating film treatment can suppress metal contact, suppress temperature rise, and suppress the occurrence of adhesive wear. Lubricant coating treatment includes, for example, soft metals such as copper, zinc and lead, metal oxides such as lead oxide, sulfides such as molybdenum disulfide and tungsten disulfide, fluorides, nitrides, graphite, manganese phosphate, etc. Typical examples are used, and general processing types and processing methods are adopted.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

(実施例1)
下記表1、2に示す各種化学成分組成の鋼塊を、溶解炉にて作製後、直径:32mmに熱間鍛造した。これらの鋼材を、760〜820℃の温度範囲で2〜8時間加熱・保持した後に、10〜200℃/時間の冷却速度で、625〜675℃まで冷却してから大気放冷する球状化焼鈍処理を実施した。その後、所定の形状に加工し、焼入れ(840℃×30分)、焼戻し(160℃×120分)、および窒化処理(プラズマ軟窒化処理)を実施した。熱処理後、仕上げ加工を行い、図1に示す試験片形状(ローラーピッチング試験片形状)に加工し、試験片とした。尚、プラズマ軟窒化処理の条件は、以下の範囲で実施した。
[プラズマ軟窒化条件]
窒化温度:300〜670℃
保持時間:1〜25時間
2分率:20〜85%、C混合ガス分率(C38):1%、(残部:H2分率)
Example 1
Steel ingots having various chemical composition compositions shown in Tables 1 and 2 below were produced in a melting furnace and then hot forged to a diameter of 32 mm. After these steel materials are heated and held in a temperature range of 760 to 820 ° C. for 2 to 8 hours and then cooled to 625 to 675 ° C. at a cooling rate of 10 to 200 ° C./hour, then spheroidizing annealing is performed. Processing was carried out. Thereafter, it was processed into a predetermined shape and subjected to quenching (840 ° C. × 30 minutes), tempering (160 ° C. × 120 minutes), and nitriding treatment (plasma soft nitriding treatment). After the heat treatment, finishing was performed, and the test piece shape (roller pitching test piece shape) shown in FIG. 1 was processed to obtain a test piece. The conditions for plasma soft nitriding were performed in the following range.
[Plasma soft nitriding conditions]
Nitriding temperature: 300-670 ° C
Retention time: 1 to 25 hours N 2 fraction: 20 to 85%, C mixed gas fraction (C 3 H 8 ): 1% (remainder: H 2 fraction)

Figure 0006111121
Figure 0006111121

Figure 0006111121
Figure 0006111121

このとき、各試験における球状化処理条件およびプラズマ軟窒化処理条件(以下、単に「窒化条件」と呼ぶことがある)を下記表3、4に示す(試験No.1〜24)。   At this time, the spheroidizing treatment conditions and plasma soft nitriding treatment conditions (hereinafter sometimes simply referred to as “nitriding conditions”) in each test are shown in Tables 3 and 4 below (Test Nos. 1 to 24).

Figure 0006111121
Figure 0006111121

Figure 0006111121
Figure 0006111121

得られた各試験片について、組織中の球状炭化物の面積率および表面から20μm深さの窒素濃度を、下記の方法で測定すると共に、部品特性(耐焼付き性)を下記の方法によって評価した。   About each obtained test piece, while measuring the area ratio of the spherical carbide | carbonized_material in a structure | tissue, and the nitrogen concentration of 20 micrometers depth from the surface by the following method, component characteristics (seizure resistance) were evaluated by the following method.

[球状炭化物の面積率の測定方法]
組織中(主組織は焼戻しマルテンサイトおよび/または焼戻しベイナイト)の球状炭化物の面積率は、試験片の表面から深さ20μmの位置を、走査型電子顕微鏡(SEM)を
用いて測定した。このとき、窒化処理後の試験片を横断面で切断、樹脂に埋め込み、鏡面研磨、エッチングしたサンプルを用いた。任意の9μm×12μmの視野を、倍率8000倍で観察し、画像解析ソフトでアスペクト比0.4以上を閾値とし、球状炭化物の部分を識別し、その面積率を求めた。測定は3視野行い、それら3視野の算術平均を炭化物の面積率とした。
[Measurement method of area ratio of spherical carbide]
The area ratio of the spherical carbide in the structure (the main structure is tempered martensite and / or tempered bainite) was measured using a scanning electron microscope (SEM) at a position 20 μm deep from the surface of the test piece. At this time, a sample obtained by cutting the test piece after nitriding in a cross section, embedding in a resin, mirror polishing, and etching was used. An arbitrary 9 μm × 12 μm visual field was observed at a magnification of 8000 times, and an aspect ratio of 0.4 or more was used as a threshold with image analysis software to identify a spherical carbide portion, and the area ratio was determined. The measurement was performed for 3 fields of view, and the arithmetic average of these 3 fields of view was defined as the area ratio of carbide.

[表面から20μm深さの窒素濃度の測定方法]
表層部(表面から20μm深さ位置)における窒素濃度は、前記試験片を横断面で切断、樹脂に埋め込み、研磨後、表層部から内部に向かって窒素濃度を、電子線マイクロプローブ分析計(Electron Probe Microanalyzer:EPMA)を用いた分析によって測定した。
[Method for measuring nitrogen concentration 20 μm deep from the surface]
The nitrogen concentration in the surface layer portion (20 μm depth position from the surface) was measured by cutting the test piece in a cross section, embedding it in a resin, polishing, and then polishing the nitrogen concentration from the surface layer portion to the inside. It was measured by analysis using a Probe Microanalyzer (EPMA).

[部品特性の評価方法]
部品特性の評価方法として、ローラーピッチング試験を実施した。ローラーピッチング試験は、前記試験片(小ローラー)と、高炭素クロム軸受鋼SUJ2で作製された大ローラー(相手材)とを用いて、ローラーピッチング試験機によって行った。試験条件は、回転速度:1000rpm、相対すべり率:700%、油温:90℃で行い、焼付きの発生によって生じた振動で試験装置が停止するまでの回転数を求めた。このとき20000×103回を上限とし、焼付き発生寿命とした。10000×103回までに焼付きが発生しなかったものを、耐焼付き性に優れると評価した。
[Part characteristics evaluation method]
As an evaluation method for component characteristics, a roller pitching test was performed. The roller pitching test was performed by a roller pitching tester using the test piece (small roller) and a large roller (counter material) made of high carbon chromium bearing steel SUJ2. The test conditions were as follows: rotational speed: 1000 rpm, relative slip ratio: 700%, oil temperature: 90 ° C., and the number of revolutions until the test apparatus stopped due to vibration caused by the occurrence of seizure was determined. At this time, 20000 × 10 3 times was set as the upper limit, and the seizure generation life was assumed. Those having no seizure up to 10,000 × 10 3 times were evaluated as having excellent seizure resistance.

これらの結果(球状炭化物面積率、表層部窒素濃度、焼付き発生寿命)を、潤滑皮膜(潤滑皮膜はリン酸マンガンを使用)の有無と共に、下記表5、6に示す。尚、表5の焼付き発生寿命の項において「>20000」と表示したのは、20000×103回においても焼付きが発生しなかったことを意味する。 These results (spherical carbide area ratio, surface layer nitrogen concentration, seizure generation life) are shown in Tables 5 and 6 below together with the presence or absence of a lubricating coating (the lubricating coating uses manganese phosphate). Note that “> 20,000” in the term of seizure life in Table 5 means that seizure did not occur even after 20000 × 10 3 times.

Figure 0006111121
Figure 0006111121

Figure 0006111121
Figure 0006111121

これらの結果から、次のように考察できる。まず試験No.1〜14は、鋼材の化学成分組成および製造条件が共に適正な範囲で制御されているため、球状炭化物面積率および表層部窒素濃度のいずれも本発明で規定する範囲内に制御することができる。その結果、凝着抑制効果に優れ、優れた耐焼付き性を発揮することができる。また、潤滑皮膜を形成しても、優れた耐焼付き性を得ることができることが分かる。   From these results, it can be considered as follows. First, test no. 1-14, since both the chemical composition of the steel material and the production conditions are controlled within an appropriate range, both the spherical carbide area ratio and the surface layer nitrogen concentration can be controlled within the range defined in the present invention. . As a result, the adhesion suppressing effect is excellent and excellent seizure resistance can be exhibited. It can also be seen that excellent seizure resistance can be obtained even if a lubricating film is formed.

これに対し、試験No.15〜24は、鋼材の化学成分組成や製造条件が適正な範囲で制御されていないため、いずれも耐焼付き性が劣化している。即ち、試験No.15は、C含有量が過剰な鋼種(鋼種O)を用いたものであり、表層に窒素が濃化しすぎて耐焼付き性が劣化している。試験No.16は、C含有量が少ない鋼種(鋼種P)を用いたものであり、球状炭化物面積率が確保できず、耐焼付き性が劣化している。   In contrast, test no. In Nos. 15 to 24, the chemical component composition and manufacturing conditions of the steel material are not controlled within an appropriate range, and therefore, seizure resistance is deteriorated in all cases. That is, test no. No. 15 uses a steel type having excessive C content (steel type O), and nitrogen is excessively concentrated on the surface layer, and the seizure resistance is deteriorated. Test No. No. 16 uses a steel type with a low C content (steel type P), the spherical carbide area ratio cannot be secured, and seizure resistance is deteriorated.

試験No.17は、Cr含有量が少ない鋼種(鋼種Q)を用いたものであり、製造条件が適切であっても、安定な球状炭化物が十分に析出せず、球状炭化物面積率、表層部窒素濃度が不足し、耐焼付き性が劣化している。試験No.18は、窒化処理の際の窒素ガス量(N2分率)が多過ぎるため、表層に窒素が濃化しすぎて耐焼付き性が劣化している。 Test No. No. 17 is a steel type with a low Cr content (steel type Q). Even if the production conditions are appropriate, stable spherical carbide does not sufficiently precipitate, and the spherical carbide area ratio and surface layer nitrogen concentration are low. Insufficient seizure resistance has deteriorated. Test No. No. 18 has an excessive amount of nitrogen gas (N 2 fraction) during nitriding, so that nitrogen is excessively concentrated on the surface layer and the seizure resistance is deteriorated.

試験No.19は、窒化処理の際の窒素ガス量(N2分率)が少な過ぎるため、表層部の窒素濃度が確保できず、耐焼付き性が劣化している。試験No.20は、窒化処理温度が低いため、球状炭化物面積率が確保できず、また表層部窒素濃度が不足し、耐焼付き性が劣化している。 Test No. In No. 19, since the amount of nitrogen gas (N 2 fraction) during nitriding is too small, the nitrogen concentration in the surface layer portion cannot be secured, and the seizure resistance is deteriorated. Test No. No. 20, since the nitriding temperature is low, the spherical carbide area ratio cannot be secured, the surface layer nitrogen concentration is insufficient, and the seizure resistance is deteriorated.

試験No.21は、窒化処理温度が高いため、表層部の窒素の内部拡散が進みやすく、表層部での窒素濃度が確保できず、耐焼付き性が劣化している。試験No.22は、窒化処理時の保持時間が短いため、表層部の窒素濃度が確保できす、耐焼付き性が劣化している。   Test No. No. 21 has a high nitriding temperature, so that the internal diffusion of nitrogen in the surface layer portion is easy to proceed, the nitrogen concentration in the surface layer portion cannot be secured, and the seizure resistance is deteriorated. Test No. No. 22 has a short retention time during the nitriding treatment, so that the nitrogen concentration in the surface layer portion can be secured, and the seizure resistance is deteriorated.

試験No.23は、球状化処理時の冷却速度が速すぎて、再生パーライト組織が組織全体にわたって形成されたため、球状炭化物面積率が確保できず、耐焼付き性が劣化している。試験No.24は、JIS SCM420相当鋼に、浸炭後、潤滑皮膜処理を行ったものであるが、球状化焼鈍処理および窒化処理を行っていないため、球状炭化物面積率が確保できず、また表層部の窒素濃度も低くなるため、耐焼付き性が極端に劣化している。   Test No. In No. 23, the cooling rate during the spheroidizing treatment was too fast, and the regenerated pearlite structure was formed over the entire structure, so that the spherical carbide area ratio could not be ensured, and the seizure resistance deteriorated. Test No. No. 24 is obtained by carburizing a JIS SCM420 equivalent steel and then carrying out a lubricating film treatment. However, since a spheroidizing annealing treatment and a nitriding treatment were not performed, a spherical carbide area ratio could not be secured, and nitrogen in the surface layer portion was not obtained. Since the concentration is also lowered, the seizure resistance is extremely deteriorated.

(実施例2)
下記表7に示す各種化学成分組成の鋼塊(鋼種N、AA、AB、AC:このうち鋼種Nは、前記表1に示した鋼種Nと同じ)を、溶解炉にて作製後、直径:32mmに熱間鍛造した。これらの鋼材を、760〜820℃の温度範囲で2〜8時間加熱・保持した後に、10〜200℃/時間の冷却速度で、625〜675℃まで冷却してから大気放冷する球状化焼鈍処理を実施した。その後、所定の形状に加工し、焼入れ(840℃×30分)、焼戻し(160℃×120分)、および窒化処理(プラズマ軟窒化処理またはプラズマ窒化処理)を実施した。熱処理後、仕上げ加工を行い、図1に示す試験片形状(ローラーピッチング試験片形状)に加工し、試験片とした。実施例1と同様にローラーピッチング試験を行なった。
(Example 2)
Steel ingots (steel types N, AA, AB, AC: among these, steel type N is the same as steel type N shown in Table 1) shown in Table 7 below were prepared in a melting furnace, and the diameter: Hot forged to 32 mm. After these steel materials are heated and held in a temperature range of 760 to 820 ° C. for 2 to 8 hours and then cooled to 625 to 675 ° C. at a cooling rate of 10 to 200 ° C./hour, then spheroidizing annealing is performed. Processing was carried out. Thereafter, it was processed into a predetermined shape and subjected to quenching (840 ° C. × 30 minutes), tempering (160 ° C. × 120 minutes), and nitriding treatment (plasma soft nitriding treatment or plasma nitriding treatment). After the heat treatment, finishing was performed, and the test piece shape (roller pitching test piece shape) shown in FIG. 1 was processed to obtain a test piece. A roller pitching test was conducted in the same manner as in Example 1.

Figure 0006111121
Figure 0006111121

このとき、各試験における球状化処理条件および窒化処理条件(プラズマ軟窒化処理またはプラズマ窒化処理)を下記表8に示す(試験No.25〜31)。   At this time, spheroidizing treatment conditions and nitriding treatment conditions (plasma soft nitriding treatment or plasma nitriding treatment) in each test are shown in Table 8 below (Test Nos. 25 to 31).

Figure 0006111121
Figure 0006111121

得られた各試験片について、組織中の球状炭化物の面積率および表面から20μm深さの窒素濃度、および部品特性(耐焼付き性)を、実施例1に示した方法によって測定すると共に、窒化層組成を下記の方法によって評価した。   About each obtained test piece, while measuring the area ratio of the spherical carbide | carbonized_material in a structure | tissue, the nitrogen density | concentration of 20 micrometers depth from the surface, and a component characteristic (seizure resistance) by the method shown in Example 1, nitride layer The composition was evaluated by the following method.

(窒化層組成の測定方法)
試験片の一部を採出し、試験片表層部(表面から20μm深さまでの表層部)において、以下に示す測定条件でX線回折を行った。
(Measurement method of nitride layer composition)
A part of the test piece was taken out, and X-ray diffraction was performed under the following measurement conditions in the surface portion of the test piece (surface layer portion from the surface to a depth of 20 μm).

(X線回折の測定条件)
分析装置:2次元微小部X線回折装置「RINT−RAPID II」株式会社リガク社製
(1)分析条件
管球:Co、単色化:モノクロメータを使用(Kα線)、管球出力:40kV−26mA、検出器:イメージングプレート(2次元)
(2)反射法
コリメータ:φ300μm、ω角(X線入射角):22°〜30°揺動(1°/秒)、
φ角(面内回転):固定、測定時間(露光):30分
(Measurement conditions for X-ray diffraction)
Analyzer: Two-dimensional micro X-ray diffractometer "RINT-RAPID II" manufactured by Rigaku Corporation (1) Analysis conditions Tube: Co, monochromatization: use of monochromator (Kα ray), tube output: 40 kV- 26 mA, detector: imaging plate (two-dimensional)
(2) Reflection method Collimator: φ300 μm, ω angle (X-ray incident angle): 22 ° -30 ° swing (1 ° / second),
φ angle (in-plane rotation): fixed, measurement time (exposure): 30 minutes

得られたX線回折プロファイルから、試験片表層に存在する化合物を同定した。また、同定された化合物(成分)について、ピーク分離による半定量方法により、各成分の相対濃度を得た。表層の窒化鉄割合とは、X線回折の結果確認された、試験片表層に存在する全ての成分の相対濃度の合計(100質量%)に対する、Fe4NとFe2〜3Nの合計相対濃度の割合(質量%)であり、窒化鉄中でのFe4Nとの割合とは、Fe4NとFe2〜3Nの合計相対濃度に対するFe4Nの相対濃度の割合(質量%)のことであり、以下の式によって値を算出したものである。尚、試験片表層に存在する全ての成分とは、Fe4N、Fe2〜3N、Fe52、Fe3C、γ−Fe、α−Fe等であり、基本的にはこれらの合計割合が100%となるのであるが、他の成分(例えば、Fe2C、Fe22C、Fe73等)が少量(5%以下)含まれていてもよい(含まれている場合には、これらの成分も合わせて100%となる)。
窒化鉄割合(質量%)={表層中のFe4Nの相対濃度(質量%)+表層中のFe2〜3Nの相対濃度(質量%)}
窒化鉄中でのFe4Nの割合(質量%)={Fe4Nの相対濃度(質量%)/[Fe4Nの相対濃度(質量%)+Fe2〜3Nの相対濃度(質量%)]}×100(%)
From the obtained X-ray diffraction profile, a compound present on the surface layer of the specimen was identified. For the identified compound (component), the relative concentration of each component was obtained by a semi-quantitative method using peak separation. The ratio of iron nitride in the surface layer is the total relative of Fe 4 N and Fe 2 to 3 N with respect to the total relative concentration (100% by mass) of all the components present in the surface layer of the specimen, which was confirmed as a result of X-ray diffraction. the concentration ratio of a (mass%), the ratio of the Fe 4 N on nitride in the iron, the proportion of Fe 4 N relative concentrations to the total relative concentration of Fe 4 N and Fe 2 to 3 N (wt%) The value is calculated by the following formula. Note that all components present on the surface layer of the specimen are Fe 4 N, Fe 2 to 3 N, Fe 5 C 2 , Fe 3 C, γ-Fe, α-Fe, etc. The total ratio is 100%, but other components (for example, Fe 2 C, Fe 22 C, Fe 7 C 3 etc.) may be contained in a small amount (5% or less). The total of these components is 100%).
Iron nitride ratio (% by mass) = {relative concentration of Fe 4 N in the surface layer (% by mass) + relative concentration of Fe 2 to 3 N in the surface layer (% by mass)}
Ratio of Fe 4 N in iron nitride (mass%) = {relative concentration of Fe 4 N (mass%) / [relative concentration of Fe 4 N (mass%) + relative concentration of Fe 2 to 3 N (mass%) ] X 100 (%)

その結果を、一括して下記表9に示す。   The results are collectively shown in Table 9 below.

Figure 0006111121
Figure 0006111121

この結果から明らかなように、いずれの場合においても、鋼材の化学成分組成および製造条件が共に適正な範囲で制御されているため、球状炭化物面積率および表層部窒素濃度のいずれも本発明で規定する範囲内に制御することができる。その結果、凝着抑制効果に優れ、優れた耐焼付き性を発揮することができる。このうち、特に試験No.26〜28、30、31では、窒化層組成の好ましい要件をも満足するものであり、特に優れた耐焼付き性を得られていることが分かる。   As is apparent from the results, in both cases, the chemical composition of the steel material and the production conditions are both controlled within an appropriate range, so that both the spherical carbide area ratio and the surface layer nitrogen concentration are specified in the present invention. Can be controlled within a range. As a result, the adhesion suppressing effect is excellent and excellent seizure resistance can be exhibited. Of these, in particular, test no. Nos. 26 to 28, 30, and 31 satisfy the preferable requirements for the composition of the nitride layer, and it is understood that particularly excellent seizure resistance is obtained.

Claims (7)

C:0.80%超〜1.30%(「質量%」の意味、化学成分組成について以下同じ)、Si:0.05〜1%、Mn:0.1〜1%、P:0.05%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Cr:0.9〜2%、Al:0.01〜0.1%、およびN:0.02%以下(0%を含まない)を夫々含有し、残部が鉄および不可避不純物からなり、焼戻しマルテンサイトおよび/または焼戻しベイナイトに、面積率5%超、30%以下の球状炭化物が析出している鋼材組織を有し、且つ表面から20μm深さにおける窒素濃度が2.0〜6.0%であり、
図1のローラーピッチング試験片(小ローラー)と、高炭素クロム軸受鋼SUJ2で作製された大ローラー(相手材)とを用いて、ローラーピッチング試験機により、回転速度:1000rpm、相対すべり率:700%、油温:90℃の条件でローラーピッチング試験を行い、焼付きの発生によって生じた振動で試験装置が停止するまでの回転数を求めたとき、10000×10 3 回までに焼付きが発生しないことを特徴とする耐焼付き性に優れた歯車。
C: more than 0.80% to 1.30% (meaning “mass%”, chemical composition is the same hereinafter), Si: 0.05 to 1%, Mn: 0.1 to 1%, P: 0.00. 05% or less (not including 0%), S: 0.05% or less (not including 0%), Cr: 0.9 to 2%, Al: 0.01 to 0.1%, and N: 0 0.02% or less (excluding 0%) respectively, and the balance consists of iron and inevitable impurities, and spherical carbides with an area ratio of more than 5% and less than 30% are precipitated on tempered martensite and / or tempered bainite. has been that the steel structure, the nitrogen concentration at 20μm depth from and surface Ri 2.0 to 6.0% der,
Using a roller pitching test piece (small roller) in FIG. 1 and a large roller (mating material) made of high carbon chrome bearing steel SUJ2, rotation speed: 1000 rpm, relative slip ratio: 700 %, Oil temperature: When the roller pitching test is performed under the conditions of 90 ° C. and the number of rotations until the test apparatus stops due to vibration caused by the occurrence of seizure, seizure occurs up to 10,000 × 10 3 times. A gear with excellent seizure resistance, characterized by not
更に、Mo:0.5%以下(0%を含まない)を含有する請求項1に記載の歯車。   The gear according to claim 1, further comprising Mo: 0.5% or less (not including 0%). 更に、V:0.2%以下(0%を含まない)、Ti:0.1%以下(0%を含まない)およびNb:0.2%以下(0%を含まない)よりなる群から選ばれる1種以上を含有する請求項1または2に記載の歯車。   Furthermore, V: 0.2% or less (excluding 0%), Ti: 0.1% or less (not including 0%), and Nb: 0.2% or less (not including 0%) The gear according to claim 1 or 2 containing one or more selected. 更に、Cu:5%以下(0%を含まない)および/またはNi:5%以下(0%を含まない)を含有する請求項1〜3のいずれかに記載の歯車。   The gear according to any one of claims 1 to 3, further containing Cu: 5% or less (excluding 0%) and / or Ni: 5% or less (excluding 0%). 表面から20μm深さまでの表層部において、窒化鉄の濃度が80質量%以上である窒化層が存在しており、当該窒化層は、窒化鉄中のFe4Nの割合が20質量%以上である請求項1〜4のいずれかに記載の歯車。 In the surface layer portion from the surface to a depth of 20 μm, there is a nitride layer having an iron nitride concentration of 80% by mass or more, and the nitride layer has a ratio of Fe 4 N in the iron nitride of 20% by mass or more. The gear according to any one of claims 1 to 4. 表面に潤滑皮膜が形成されたものである請求項1〜5のいずれかに記載の歯車。   The gear according to any one of claims 1 to 5, wherein a lubricating film is formed on the surface. 電気自動車モータ用である請求項1〜6のいずれかに記載の歯車。   The gear according to any one of claims 1 to 6, which is used for an electric vehicle motor.
JP2013075192A 2012-03-30 2013-03-29 Gears with excellent seizure resistance Active JP6111121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075192A JP6111121B2 (en) 2012-03-30 2013-03-29 Gears with excellent seizure resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012082614 2012-03-30
JP2012082614 2012-03-30
JP2013075192A JP6111121B2 (en) 2012-03-30 2013-03-29 Gears with excellent seizure resistance

Publications (2)

Publication Number Publication Date
JP2013227675A JP2013227675A (en) 2013-11-07
JP6111121B2 true JP6111121B2 (en) 2017-04-05

Family

ID=49260498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075192A Active JP6111121B2 (en) 2012-03-30 2013-03-29 Gears with excellent seizure resistance

Country Status (3)

Country Link
JP (1) JP6111121B2 (en)
TW (1) TWI507543B (en)
WO (1) WO2013147259A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101547442B1 (en) 2015-03-19 2015-09-01 윤석삼 Method for manufacuring a helical gear using powder metallugy
KR101522513B1 (en) * 2015-03-19 2015-05-26 윤석삼 Method for manufacuring a helical gear using powder metallugy
CN107217210A (en) * 2017-07-27 2017-09-29 陈海燕 A kind of pinion steel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183296A (en) * 1996-12-26 1998-07-14 Sumitomo Metal Ind Ltd Steel material for induction hardening, and its production
JP2000290752A (en) * 1999-02-01 2000-10-17 Nippon Steel Corp Tempered martensitic rail excellent in wear resistance and its production
JP2001165279A (en) * 1999-12-09 2001-06-19 Toyota Motor Corp Gear manufacturing method
JP2004052997A (en) * 2002-05-30 2004-02-19 Nsk Ltd Rolling device and manufacturing method
JP2004052067A (en) * 2002-07-23 2004-02-19 Sanyo Special Steel Co Ltd Method for producing rolling part
JP2005179704A (en) * 2003-12-16 2005-07-07 Nsk Ltd Steel-made gear
JP2005232543A (en) * 2004-02-20 2005-09-02 Nsk Ltd Ball screw
JP4857746B2 (en) * 2005-12-07 2012-01-18 日本精工株式会社 Rolling support device
JP2008057022A (en) * 2006-09-04 2008-03-13 Nsk Ltd Rack and pinion for electric power steering
JP2008174822A (en) * 2007-01-22 2008-07-31 Ntn Corp Thrust bearing
JP4757831B2 (en) * 2007-03-29 2011-08-24 新日本製鐵株式会社 Induction hardening part and manufacturing method thereof
JP2010185548A (en) * 2009-02-13 2010-08-26 Nsk Ltd Rolling bearing
JP5400590B2 (en) * 2009-11-30 2014-01-29 株式会社神戸製鋼所 Steel material with excellent rolling fatigue life
JP2012201933A (en) * 2011-03-25 2012-10-22 Nsk Ltd Planetary gear device

Also Published As

Publication number Publication date
WO2013147259A1 (en) 2013-10-03
JP2013227675A (en) 2013-11-07
TW201410881A (en) 2014-03-16
TWI507543B (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP6088322B2 (en) Gears with excellent seizure resistance
JP4956146B2 (en) Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
WO2012077705A1 (en) Gas-carburized steel component with excellent surface fatigue strength, gas-carburizing steel material, and process for producing gas-carburized steel component
JP2005068453A (en) High facial pressure resistant part and manufacturing method therefor
JP2007308772A (en) Carburized parts and manufacturing method therefor
JP5886119B2 (en) Case-hardened steel
JP5299118B2 (en) Vacuum carburizing steel and vacuum carburized parts
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
JP6241136B2 (en) Case-hardened steel
JP5260032B2 (en) Induction hardened steel excellent in cold workability, rolling member made of the steel, and linear motion device using the rolling member
JP4384592B2 (en) Rolled steel for carburizing with excellent high-temperature carburizing characteristics and hot forgeability
JP6111121B2 (en) Gears with excellent seizure resistance
JP2006348321A (en) Steel for nitriding treatment
JPH10306343A (en) Steel for soft-nitriding, excellent in cold forgeability and pitting resistance
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP5313042B2 (en) Nitriding sliding member, steel for sliding member, and method for manufacturing sliding member
JP6043078B2 (en) Electric car motor gear with excellent seizure resistance
JP6172378B2 (en) Case-hardened steel wire
WO2017122612A1 (en) Steel for carbonitriding and carbonitrided component
WO2017170435A1 (en) Environment-resistant bearing steel excellent in producibility and resistance to hydrogen embrittlement
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP2009079253A (en) Shaft and manufacturing method therefor
JP2024034953A (en) Steel materials and steel parts
JP2006161143A (en) Carburizing steel having excellent rolling fatigue life and high temperature carburizing property
JP2024034952A (en) Steel materials and steel parts for nitriding induction hardening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6111121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150