JP2022050047A - ガス導入構造及び処理装置 - Google Patents

ガス導入構造及び処理装置 Download PDF

Info

Publication number
JP2022050047A
JP2022050047A JP2020156410A JP2020156410A JP2022050047A JP 2022050047 A JP2022050047 A JP 2022050047A JP 2020156410 A JP2020156410 A JP 2020156410A JP 2020156410 A JP2020156410 A JP 2020156410A JP 2022050047 A JP2022050047 A JP 2022050047A
Authority
JP
Japan
Prior art keywords
gas
processing container
nozzle
discharge
introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020156410A
Other languages
English (en)
Other versions
JP7486388B2 (ja
Inventor
啓樹 入宇田
Hiroki Iriuda
玲太 五十嵐
Reita Igarashi
訓康 坂下
Noriyasu Sakashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2020156410A priority Critical patent/JP7486388B2/ja
Priority to KR1020210118323A priority patent/KR20220037350A/ko
Priority to CN202111051005.3A priority patent/CN114203532A/zh
Priority to US17/472,959 priority patent/US11885024B2/en
Publication of JP2022050047A publication Critical patent/JP2022050047A/ja
Application granted granted Critical
Publication of JP7486388B2 publication Critical patent/JP7486388B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H01L21/205
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

Figure 2022050047000001
【課題】多段に配置される基板に均一にガスを供給できるガス導入構造及び処理装置を提供する。
【解決手段】トーナメントノズル100は、略円筒形状の処理容器の長さ方向に延在して該処理容器10内にガスを供給するガス導入構造であって、導入室111を区画する導入部110と、複数の吐出室121を区画し、複数の吐出室121a~121hの各々が処理容器内にガスを吐出する複数のガス孔122a~121hを含む吐出部120と、導入室111に接続すると共にトーナメント状に複数の吐出室の数に対応して分岐して複数の吐出室に接続する分岐室131、132あ、132b、133a~133dを区画する分岐部130と、を有する。
【選択図】図4

Description

本開示は、ガス導入構造及び処理装置に関する。
円筒体状の処理容器の側壁内側に沿って鉛直方向に延設し、ウエハボートのウエハ支持範囲に対応する上下方向の長さに亘って複数のガス吐出孔が形成されたガス分散ノズルを有する成膜装置が知られている(例えば、特許文献1参照)。
特開2011-135044号公報
本開示は、多段に配置される基板に均一にガスを供給できる技術を提供する。
本開示の一態様によるガス導入構造は、略円筒形状の処理容器の長さ方向に延在して該処理容器内にガスを供給するガス導入構造であって、導入室を区画する導入部と、複数の吐出室を区画する吐出部であり、前記複数の吐出室の各々が前記処理容器内にガスを吐出する複数のガス孔を含む吐出部と、前記導入室に接続すると共にトーナメント状に前記複数の吐出室の数に対応して分岐して前記複数の吐出室に接続する分岐室を区画する分岐部と、を有する。
本開示によれば、多段に配置される基板に均一にガスを供給できる。
実施形態の処理装置の一例を示す概略図 分散ノズルの一例を示す図 分散ノズルの高さ方向の位置と反応活性種の濃度との関係を示す図 トーナメントノズルの一例を示す図 トーナメントノズルの具体例を示す図 トーナメントノズルの具体例を示す図 トーナメントノズルの別の具体例を示す図 トーナメントノズルの別の具体例を示す図 トーナメントノズルの更に別の具体例を示す図 HCDガスの質量流量の分布を解析した結果を示す図 SiClのモル分率の分布を解析した結果を示す図
以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。
〔処理装置〕
図1を参照し、実施形態の処理装置の一例について説明する。図1は、実施形態の処理装置の一例を示す概略図である。
処理装置1は、処理容器10、ガス供給部30、排気部50、加熱部70及び制御部90を備える。
処理容器10は、内管11及び外管12を含む。内管11は、インナーチューブとも称され、下端が開放された有天井の略円筒形状に形成されている。内管11は、天井部11aが例えば平坦に形成されている。外管12は、アウターチューブとも称され、下端が開放されて内管11の外側を覆う有天井の略円筒形状に形成されている。内管11及び外管12は、同軸状に配置されて二重管構造となっている。内管11及び外管12は、例えば石英等の耐熱材料により形成されている。
内管11の一側には、その長さ方向(鉛直方向)に沿ってガスノズルを収容する収容部13が形成されている。収容部13は、内管11の側壁の一部を外側へ向けて突出させて凸部14を形成し、凸部14内を収容部13として形成している。
収容部13に対向させて内管11の反対側の側壁には、その長さ方向(鉛直方向)に沿って矩形状の排気スリット15が形成されている。排気スリット15は、内管11内のガスを排気する。排気スリット15の長さは、後述するボート16の長さと同じであるか、又は、ボート16の長さよりも長く上下方向へそれぞれ延びるようにして形成されている。
処理容器10は、ボート16を収容する。ボート16は、複数の基板を鉛直方向に間隔を有して略水平に保持する。基板は、例えば半導体ウエハ(以下「ウエハW」という。)であってよい。
処理容器10の下端は、例えばステンレス鋼により形成される略円筒形状のマニホールド17によって支持されている。マニホールド17の上端にはフランジ18が形成されており、フランジ18上に外管12の下端を設置して支持するようになっている。フランジ18と外管12の下端との間にはOリング等のシール部材19を介在させて外管12内を気密状態にしている。
マニホールド17の上部の内壁には、円環形状の支持部20が設けられている。支持部20は、内管11の下端を支持する。マニホールド17の下端の開口には、蓋体21がOリング等のシール部材22を介して気密に取り付けられている。蓋体21は、処理容器10の下端の開口、即ち、マニホールド17の開口を気密に塞ぐ。蓋体21は、例えばステンレス鋼により形成されている。
蓋体21の中央には、磁性流体シール23を介してボート16を回転可能に支持する回転軸24が貫通させて設けられている。回転軸24の下部は、ボートエレベータよりなる昇降機構25のアーム25aに回転自在に支持されている。
回転軸24の上端には回転プレート26が設けられている。回転プレート26上には、石英製の保温台27を介してウエハWを保持するボート16が載置される。従って、昇降機構25を昇降させることによって蓋体21とボート16とは一体として上下動し、ボート16を処理容器10内に対して挿脱できるようになっている。
ガス供給部30は、トーナメントノズル100及び分散ノズル31を有する。トーナメントノズル100及び分散ノズル31は、内管11の収容部13内に周方向に沿って配置されている。
トーナメントノズル100は、内管11の長さ方向に延在して該内管11内に原料ガスを吐出する。原料ガスは、例えばシリコン(Si)や金属を含有するガスであってよい。トーナメントノズル100の詳細については後述する。
分散ノズル31は、内管11内にその長さ方向に沿って設けられると共に、その基端がL字状に屈曲されてマニホールド17を貫通するようにして支持されている。分散ノズル31には、その長さ方向に沿って所定の間隔を空けて複数のガス孔31aが設けられている。複数のガス孔31aは、例えば内管11の中心C側(ウエハW側)に配向する。
分散ノズル31は、反応ガス、エッチングガス、パージガスを、複数のガス孔31aからウエハWに向かって略水平に吐出する。反応ガスは、原料ガスと反応して反応生成物を生成するためのガスであり、例えば酸素又は窒素を含有するガスであってよい。エッチングガスは、各種の膜をエッチングするためのガスであり、例えばフッ素、塩素、臭素等のハロゲンを含有するガスであってよい。パージガスは、処理容器10内に残留する原料ガスや反応ガスをパージするためのガスであり、例えば不活性ガスであってよい。
排気部50は、内管11内から排気スリット15を介して排出され、内管11と外管12との間の空間P1を介してガス出口28から排出されるガスを排気する。ガス出口28は、マニホールド17の上部の側壁であって、支持部20の上方に形成されている。ガス出口28には、排気通路51が接続されている。排気通路51には、圧力調整弁52及び真空ポンプ53が順次介設されて、処理容器10内を排気できるようになっている。
加熱部70は、外管12の周囲に設けられている。加熱部70は、例えばベースプレート(図示せず)上に設けられている。加熱部70は、外管12を覆うように略円筒形状を有する。加熱部70は、例えば発熱体を含み、処理容器10内のウエハWを加熱する。
制御部90は、処理装置1の各部の動作を制御する。制御部90は、例えばコンピュータであってよい。処理装置1の各部の動作を行うコンピュータのプログラムは、記憶媒体に記憶されている。記憶媒体は、例えばフレキシブルディスク、コンパクトディスク、ハードディスク、フラッシュメモリ、DVD等であってよい。
〔ノズル〕
まず、図2を参照し、分散ノズルについて説明する。図2は、分散ノズルの一例を示す図である。図2において、矢印は、ガスの流れを示し、ガス流量が大きいほど太く示す。
バッチ式の縦型熱処理装置において、全てのウエハに均一に原料ガスを供給することを目的として、各ウエハに対応する位置に複数のガス孔を設けた分散ノズルが用いられている。例えば図2に示されるように、分散ノズルNdは垂直に伸びる管材であり、例えば石英により形成されている。分散ノズルNdの垂直部分には、ウエハ支持範囲に対応する上下方向の長さに亘って、複数のガス孔Hが形成されている。これにより、各ガス孔Hから水平方向に各ウエハの表面に向けて原料ガスを吐出できる。
しかしながら、分散ノズルNdでは、ガスの流れの上流側(分散ノズルNdの下部)から順に原料ガスが分配されてガスの流れの下流側(分散ノズルNdの上部)ほどガス流量が小さくなる。よって、経路長の違いのほかに、下流側ほど流速が遅くなる。経路長が短く流速が早い上流側に比べて、経路長が長く流速が遅い上流側では、原料ガスの滞留時間が長くなり、原料ガスの分解度合いが急激に高まる。そのため、ガスの流れの下流側では、反応活性種の濃度が高くなりやすい。
図3は、分散ノズルNdの高さ方向の位置と反応活性種の濃度との関係を示す図である。図3において、横軸は分散ノズルNdの高さ方向の位置を示し、縦軸は分散ノズルNdの内部の反応活性種の濃度を示す。図3に示されるように、分散ノズルNdから原料ガスを吐出すると、分散ノズルNdの上部ほど反応活性種の濃度が高くなる。分散ノズルNdの内径を小さくすると、分散ノズルNdの上部と下部との間の反応活性種の濃度の差が小さくなるが、分散ノズルNdの上部から下部までの全範囲において均一な反応活性種の濃度分布を形成することは困難である。
次に、図4を参照し、図1の処理装置1におけるトーナメントノズル100について説明する。
トーナメントノズル100は、原料ガス供給源(図示せず)から導入される原料ガスを内管11内に供給する。トーナメントノズル100は、導入部110、吐出部120及び分岐部130を含む。
導入部110は、導入室111を区画する。導入室111には、原料ガス供給源から原料ガスが導入される。
吐出部120は、8つの吐出室121a~121hを区画する。8つの吐出室121a~121hは、処理容器10の長さ方向に沿ってこの順に配置されている。吐出室121aには、内管11内に原料ガスを吐出する複数のガス孔122aが設けられている。複数のガス孔122aは、処理容器10の長さ方向に沿って間隔を有して配置されている。複数のガス孔122aは、例えば内管11の中心C側に配向し、吐出室121aに導入された原料ガスをウエハWに向けて吐出する。吐出室121b~121hにも吐出室121aと同様に、それぞれ複数のガス孔122b~122hが設けられている。
分岐部130は、分岐室131、132a、132b、133a~133dを区画する。分岐室131、132a、132b、133a~133dは、導入室111に接続すると共にトーナメント状に8つの吐出室121a~121hの数に対応して分岐して8つの吐出室121a~121hに接続する。
分岐室131は、ガスの流れの上流側において導入室111と連通し、ガスの流れの下流側において分岐室132a、132bと連通しており、導入室111から導入される原料ガスを2つの分岐室132a、132bに分岐する。以下、分岐室131と導入室111とが連通する部分を連通部A1と称し、分岐室131と分岐室132a、132bとが連通する部分をそれぞれ連通部A2、A3と称する。分岐室131は、連通部A1から連通部A2に至る経路のコンダクタンスと連通部A1から連通部A3に至る経路のコンダクタンスとが同じになるように形成されていることが好ましく、例えば連通部A1を含む水平面に対して対称構造を有する。これにより、分岐室131に導入される原料ガスを、分岐室132aと分岐室132bとに均等に分岐できる。
分岐室132aは、ガスの流れの上流側において連通部A2を介して分岐室131と連通し、ガスの流れの下流側において分岐室133a、133bと連通する。以下、分岐室132aと分岐室133a、133bとが連通する部分をそれぞれ連通部A4、A5と称する。分岐室132aは、連通部A2から連通部A4に至る経路のコンダクタンスと連通部A2から連通部A5に至る経路のコンダクタンスとが同じになるように形成されていることが好ましく、例えば連通部A2を含む水平面に対して対称構造を有する。これにより、分岐室132aに導入される原料ガスを、分岐室133aと分岐室133bとに均等に分岐できる。
分岐室132bは、分岐室132aの下方に位置する。分岐室132bは、ガスの流れの上流側において連通部A3を介して分岐室131と連通し、ガスの流れの下流側において分岐室133c、133dと連通する。以下、分岐室132bと分岐室133c、133dとが連通する部分をそれぞれ連通部A6、A7と称する。分岐室132bは、連通部A3から連通部A6に至る経路のコンダクタンスと連通部A3から連通部A7に至る経路のコンダクタンスとが同じになるように形成されていることが好ましく、例えば連通部A3を含む水平面に対して対称構造を有する。これにより、分岐室132bに導入される原料ガスを、分岐室133cと分岐室133dとに均等に分岐できる。
分岐室133aは、ガスの流れの上流側において連通部A4を介して分岐室132aと連通し、ガスの流れの下流側において吐出室121a、121bと連通する。以下、分岐室133aと吐出室121a、121bとが連通する部分をそれぞれ連通部A8、A9と称する。分岐室133aは、連通部A4から連通部A8に至る経路のコンダクタンスと連通部A4から連通部A9に至る経路のコンダクタンスとが同じになるように形成されていることが好ましく、例えば連通部A4を含む水平面に対して対称構造を有する。これにより、分岐室133aに導入される原料ガスを、吐出室121aと吐出室121bとに均等に分岐できる。
分岐室133bは、分岐室133aの下方に位置する。分岐室133bは、ガスの流れの上流側において連通部A5を介して分岐室132aと連通し、ガスの流れの下流側において吐出室121c、121dと連通する。以下、分岐室133bと吐出室121c、121dとが連通する部分をそれぞれ連通部A10、A11と称する。分岐室133bは、連通部A5から連通部A10に至る経路のコンダクタンスと連通部A5から連通部A11に至る経路のコンダクタンスとが同じになるように形成されていることが好ましく、例えば連通部A5を含む水平面に対して対称構造を有する。これにより、分岐室133bに導入される原料ガスを、吐出室121cと吐出室121dとに均等に分岐できる。
分岐室133cは、分岐室133bの下方に位置する。分岐室133cは、ガスの流れの上流側において連通部A6を介して分岐室132bと連通し、ガスの流れの下流側において吐出室121e、121fと連通する。以下、分岐室133cと吐出室121e、121fとが連通する部分をそれぞれ連通部A12、A13と称する。分岐室133cは、連通部A6から連通部A12に至る経路のコンダクタンスと連通部A6から連通部A13に至る経路のコンダクタンスとが同じになるように形成されていることが好ましく、例えば連通部A6を含む水平面に対して対称構造を有する。これにより、分岐室133cに導入される原料ガスを、吐出室121eと吐出室121fとに均等に分岐できる。
分岐室133dは、分岐室133cの下方に位置する。分岐室133dは、ガスの流れの上流側において連通部A7を介して分岐室132bと連通し、ガスの流れの下流側において吐出室121g、121hと連通する。以下、分岐室133dと吐出室121g、121hとが連通する部分をそれぞれ連通部A14、A15と称する。分岐室133dは、連通部A7から連通部A14に至る経路のコンダクタンスと連通部A7から連通部A15に至る経路のコンダクタンスとが同じになるように形成されていることが好ましく、例えば連通部A7を含む水平面に対して対称構造を有する。これにより、分岐室133dに導入される原料ガスを、吐出室121gと吐出室121hとに均等に分岐できる。
以上に説明したトーナメントノズル100によれば、8つの吐出室121a~121hに導入された時点での原料ガスは同じ経路を辿っているため、各吐出室121a~121hにおける原料ガスの質量流量及び分解度合いは均一となる。その結果、内管11の長さ方向における原料ガスの質量流量及び分解度合いを均一にできる。
なお、図示の例では、導入室111に導入された原料ガスをトーナメント状に8つの吐出室121a~121hに分岐する場合を説明したが、本開示はこれに限定されない。例えば、導入室111に導入された原料ガスをトーナメント状に16個の吐出室に分岐してもよく、32個の吐出室に分岐してもよい。このように、導入室111に導入された原料ガスをトーナメント状に2の累乗の数の吐出室に分岐してもよい。分岐する吐出室の数を大きくすることにより、複数の吐出室から吐出される原料ガスの質量流量及び分解度合いの均一性をより高めることができる。
また、トーナメントノズル100においては、原料ガスの淀みの発生を抑制するという観点から、導入室111における連通部A1よりも上方の空間の容積を極力小さくすることが好ましい。同様の観点から、分岐室131における連通部A2よりも上方の空間、分岐室131における連通部A3よりも下方の空間の容積を極力小さくすることが好ましい。また、同様に、分岐室132a、132b、133a~133dにおける端部(上方及び下方)の空間の容積を極力小さくすることが好ましい。
次に、図5及び図6を参照し、実施形態のトーナメントノズル100の具体例について説明する。図5は、処理容器10の横断面であり、トーナメントノズル100を含む断面を示す。図6は、処理容器10の周方向に沿った断面であり、トーナメントノズル100を含む断面を示す。
トーナメントノズル100は、内管11の収容部13内に設けられる。トーナメントノズル100は、導入部110、吐出部120及び分岐部130を有する。
導入部110、分岐部130及び吐出部120は、内管11の収容部13内にこの順に周方向に沿って一列になるように配置されている。
導入部110は、板材115を内管11の内壁に溶接することにより、導入室111を区画する。板材115は、耐熱性を有する材料、例えば石英により形成されている。導入室111は、下端が開口し、開口がガスノズル112の先端を覆うように形成されている。
吐出部120は、板材125を内管11の内壁に溶接することにより、8つの吐出室121a~121hを区画する。板材125は、例えば板材115と同じ材料により形成されている。複数のガス孔122a~122hは、処理容器10の長さ方向に沿って間隔を有して配置されている。複数のガス孔122a~122hが設けられる高さ範囲は、例えばウエハ搭載領域AWの高さ範囲と同じであってよい。複数のガス孔122a~122hは、例えば内管11の中心Cと排気スリット15の中心とを結ぶ直線L上に配置されている。
分岐部130は、板材135を内管11の内壁及び板材115、125に溶接することにより、分岐室131、132a、132b、133a~133dを区画する。板材135は、例えば板材115と同じ材料により形成されている。
以上に説明したように、実施形態のトーナメントノズル100は、板材115、125、135を溶接することにより製造できる。
次に、図7及び図8を参照し、実施形態のトーナメントノズル100の別の具体例について説明する。図8において、矢印は、ガスの流れを示す。
トーナメントノズル100は、内管11の収容部13内に設けられる。トーナメントノズル100は、導入部110、吐出部120及び分岐部130を有する。
吐出部120及び分岐部130は、導入部110の周囲に配置されている。
導入部110は、管材116により、導入室111を区画する。管材116は、耐熱性を有する材料、例えば石英により形成されている。
分岐部130は、管材136a~136cにより、分岐室131、132a、132b、133a~133dを区画する。管材136aは、内部に1つの空間を含み、該空間が分岐室131を構成する。管材136bは、内部にその長さ方向において分離された2つの空間を含み、該2つの空間が分岐室132a、132bを構成する。管材136cは、内部にその長さ方向において分離された4つの空間を含み、該4つの空間が分岐室133a~133dを構成する。管材136a~136cは、例えば管材116と同じ材料により形成されている。
管材136aは、管材116と隣接して配置され、接続管141を介して管材116に溶接されている。接続管141は、連通部A1として機能する。
管材136bは、管材116及び管材136aと隣接して配置され、接続管142を介して管材136aに溶接されている。接続管142は、連通部A2、A3として機能する。
管材136cは、管材116及び管材136bと隣接して配置され、接続管143を介して管材136bに溶接されている。接続管143は、連通部A4~A7として機能する。
吐出部120は、管材126により、8つの吐出室121a~121hを区画する。管材126は、内部にその長さ方向において8つの分離された空間を含み、該8つの空間が吐出室121a~121hを構成する。管材126は、例えば管材116と同じ材料により形成されている。管材126は、管材116及び管材136cと隣接して配置され、接続管144を介して管材136cに溶接されている。接続管144は、連通部A8~A15として機能する。
以上に説明したように、実施形態のトーナメントノズル100は、管材116、126、136a~136cを溶接することにより製造できる。また、実施形態のトーナメントノズル100は、管材116を中心として、管材116の周囲に管材126、136a~136cを設けているので、トーナメントノズル100が占有するスペースを小さくできる。
次に、図9を参照し、実施形態のトーナメントノズル100の更に別の具体例について説明する。図9において、矢印は、ガスの流れを示す。
トーナメントノズル100は、内管11の収容部13内に設けられる。トーナメントノズル100は、導入部110、吐出部120及び分岐部130を有する。
吐出部120及び分岐部130は、導入部110の周囲に配置されている。
導入部110、吐出部120及び分岐部130は、1本の管材117の内部を仕切材118で仕切ることにより、導入室111、吐出室121a~121h及び分岐室131、132a、132b、133a~133dを区画する。管材117及び仕切材118は、耐熱性を有する材料、例えば石英により形成されている。仕切材118には、貫通孔(図示せず)が形成され、該貫通孔が連通部A1~A15として機能する。
以上に説明したように、実施形態のトーナメントノズル100は、1本の管材117の内部を仕切材118で仕切ることにより製造できる。また、実施形態のトーナメントノズル100は、1本の管材117の内部を仕切材118で仕切ることにより製造されるので、トーナメントノズル100が占有するスペースを小さくできる。
〔処理方法〕
実施形態の処理方法の一例として、図1に示される処理装置1を用いて原子層堆積(ALD:Atomic Layer Deposition)法により、ウエハWにシリコン酸化膜を成膜する方法について説明する。
まず、制御部90は、昇降機構25を制御して、複数のウエハWを保持したボート16を処理容器10内に搬入し、蓋体21により処理容器10の下端の開口を気密に塞ぎ、密閉する。
続いて、制御部90は、原料ガスを供給する工程S1、パージする工程S2、反応ガスを供給する工程S3及びパージする工程S4を含むサイクルを、予め定めた回数繰り返すことにより、複数のウエハWに所望の膜厚を有するシリコン酸化膜を成膜する。
工程S1では、トーナメントノズル100から処理容器10内に原料ガスであるシリコン含有ガスを吐出することにより、複数のウエハWにシリコン含有ガスを吸着させる。
工程S2では、ガス置換及び真空引きを繰り返すサイクルパージにより、処理容器10内に残留するシリコン含有ガス等を排出する。ガス置換は、分散ノズル31から処理容器10内にパージガスを供給する動作である。真空引きは、真空ポンプ53により処理容器10内を排気する動作である。なお、ガス置換では、トーナメントノズル100から処理容器10内にパージガスを供給してもよい。
工程S3では、分散ノズル31から処理容器10内に反応ガスである酸化ガスを吐出することにより、酸化ガスにより複数のウエハWに吸着したシリコン原料ガスを酸化させる。
工程S4では、ガス置換及び真空引きを繰り返すサイクルパージにより、処理容器10内に残留する酸化ガス等を排出する。工程S4は、工程S2と同じであってよい。
工程S1~S4を含むALDサイクルが予め定めた回数繰り返された後、制御部90は、昇降機構25を制御して、ボート16を処理容器10内から搬出する。
実施形態の処理方法の別の一例として、図1に示される処理装置1を用いて化学気相堆積(CVD:Chemical Vapor Deposition)法により、ウエハWにシリコン膜を成膜する方法について説明する。
まず、制御部90は、昇降機構25を制御して、複数のウエハWを保持したボート16を処理容器10内に搬入し、蓋体21により処理容器10の下端の開口を気密に塞ぎ、密閉する。
続いて、制御部90は、トーナメントノズル100から処理容器10内に原料ガスであるシリコン含有ガスを吐出することにより、ウエハW上に所望の膜厚を有するシリコン膜を成膜する。
続いて、制御部90は、昇降機構25を制御して、ボート16を処理容器10内から搬出する。
以上に説明した実施形態によれば、内管11内に原料ガスを吐出する際、トーナメントノズル100からガスを吐出する。トーナメントノズル100によれば、8つの吐出室121a~121hに導入された時点での原料ガスは同じ経路を辿っているため、各吐出室121a~121hにおける原料ガスの質量流量及び分解度合いは均一となる。そのため、内管11の長さ方向における原料ガスの質量流量及び分解度合いを均一にできる。その結果、処理容器10内に多段に収容された複数のウエハW間における膜厚の均一性(面間均一性)が向上する。
〔シミュレーション結果〕
実施形態のトーナメントノズル100の効果を確認するために、トーナメントノズルから吐出される原料ガスの質量流量及びトーナメントノズル近傍の反応活性種のモル分率について、熱流体解析によるシミュレーションを実施した。なお、反応活性種の濃度分布を解析の対象としたのは、ウエハW上に成膜される所定の膜の膜厚は、原料ガスが熱分解して生成される反応活性種の濃度に起因することを考慮したことによる。
本シミュレーションでは、比較対象として、内径が16mmの分散ノズル及び内径が6.4mmの分散ノズルについても、同様に熱流体解析によるシミュレーションを実施した。本シミュレーションでは、トーナメントノズルに対して導入する原料ガスの流量、内径が16mmの分散ノズルに対して導入する原料ガスの流量、及び内径が6.4mmの分散ノズルに対して導入する原料ガスの流量を同じ流量に設定した。また、原料ガスとしては、ヘキサクロロジシラン(HCD)ガスを用いる場合について解析した。
図10は、HCDガスの質量流量の分布を解析した結果を示す図である。図10において、横軸はガス孔の位置を示し、縦軸はHCDガスの質量流量[kg/s]を示す。また、図10において、菱形印は内径が6.4mmの分散ノズルの結果を示し、四角印は内径が16mmの分散ノズルの結果を示し、三角印は内径が6.4mmのトーナメントノズルの結果を示す。
図10に示されるように、トーナメントノズル及び内径が16mmの分散ノズルでは、ノズルの先端(上端)から基端(下端)までの全ての範囲において略同じ質量流量になっている。これに対し、内径が6.4mmの分散ノズルでは、ノズルの先端から基端に向かうにつれて質量流量が大きくなっている。
図11は、SiClのモル分率の分布を解析した結果を示す図である。図11において、横軸はガス孔の位置を示し、縦軸はSiClのモル分率を示す。また、図11において、菱形印は内径が6.4mmの分散ノズルの結果を示し、四角印は内径が16mmの分散ノズルの結果を示し、三角印は内径が6.4mmのトーナメントノズルの結果を示す。
図11に示されるように、トーナメントノズルでは、ノズルの先端から基端までの全ての範囲において、SiClのモル分率が0.025~0.04の範囲に含まれていることから、HCDガスの分解度合いのバラツキが小さい。これに対し、内径が6.4mmの分散ノズルでは、ノズルの先端のSiClのモル分率は0.03であり、ノズルの基端のSiClのモル分率は0.003であり、ノズルの先端から基端に向かうにつれてSiClのモル分率が小さくなっている。また、内径が16mmの分散ノズルでは、ノズルの先端のSiClのモル分率は0.58であり、ノズルの基端側のSiClのモル分率は0.14であり、ノズルの先端から基端に向かうにつれてSiClのモル分率が小さくなっている。
以上に説明した図10及び図11の結果から、トーナメントノズルを用いることにより、ノズルの先端から基端までの全ての範囲において、HCDガスの質量流量を均一にでき、かつ、HCDガスの分解度合いのバラツキを小さくできることが示された。これに対し、分散ノズルを用いる場合、内径を6.4mmから16mmへと大きくすると、HCDガスの質量流量の均一性を高めることができるが、HCDガスの分解度合いのバラツキが大きくなることが示された。すなわち、分散ノズルを用いる場合、HCDガスの質量流量の均一性とHCDガスの分解度合いのバラツキとがトレードオフの関係にあることが示された。
なお、上記の実施形態において、トーナメントノズル100はガス導入構造の一例である。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
上記の実施形態では、トーナメントノズルから原料ガスを供給する場合を説明したが、本開示はこれに限定されない。例えば、トーナメントノズルから反応ガス、エッチングガス、パージガスを供給するようにしてもよい。
上記の実施形態では、分散ノズルがL字管である場合を例に挙げて説明したが、本開示はこれに限定されない。例えば、分散ノズルは、内管の側壁の内側において、内管の長さ方向に沿って延設し、下端がノズル支持部(図示せず)に挿入されて支持されるストレート管であってもよい。
上記の実施形態では、処理装置が処理容器の長さ方向に沿って配置した分散ノズルからガスを供給し、該分散ノズルと対向して配置した排気スリットからガスを排気する装置である場合を説明したが、本開示はこれに限定されない。例えば、処理装置はボートの長さ方向に沿って配置したガスノズルからガスを供給し、該ボートの上方又は下方に配置したガス出口からガスを排気する装置であってもよい。
上記の実施形態では、処理容器が内管及び外管を有する二重管構造の容器である場合を説明したが、本開示はこれに限定されない。例えば、処理容器は単管構造の容器であってもよい。
上記の実施形態では、処理装置が非プラズマ装置である場合を説明したが、本開示はこれに限定されない。例えば、処理装置は、容量結合型プラズマ装置、誘導結合型プラズマ装置等のプラズマ装置であってもよい。
1 処理装置
10 処理容器
70 加熱部
100 トーナメントノズル
110 導入部
111 導入室
120 吐出部
121a~121h 吐出室
122a~122h ガス孔
130 分岐部
131、132a、132b、133a~133d 分岐室
W ウエハ

Claims (11)

  1. 略円筒形状の処理容器の長さ方向に延在して該処理容器内にガスを供給するガス導入構造であって、
    導入室を区画する導入部と、
    複数の吐出室を区画する吐出部であり、前記複数の吐出室の各々が前記処理容器内にガスを吐出する複数のガス孔を含む吐出部と、
    前記導入室に接続すると共にトーナメント状に前記複数の吐出室の数に対応して分岐して前記複数の吐出室に接続する分岐室を区画する分岐部と、
    を有する、ガス導入構造。
  2. 前記複数の吐出室は、前記処理容器の長さ方向に沿って配置されている、
    請求項1に記載のガス導入構造。
  3. 前記複数の吐出室の数は、2の累乗である、
    請求項1又は2に記載のガス導入構造。
  4. 前記複数のガス孔は、前記処理容器の長さ方向に沿って間隔を有して配置されている、
    請求項1乃至3のいずれか一項に記載のガス導入構造。
  5. 前記複数のガス孔は、前記処理容器の中心側に配向する、
    請求項1乃至4のいずれか一項に記載のガス導入構造。
  6. 前記分岐室は、前記導入室から前記複数の吐出室の各々までの経路のコンダクタンスが同じである、
    請求項1乃至5のいずれか一項に記載のガス導入構造。
  7. 前記導入部、前記分岐部及び前記吐出部は、前記処理容器の周方向に沿ってこの順に配置されている、
    請求項1乃至6のいずれか一項に記載のガス導入構造。
  8. 前記分岐部及び前記吐出部は、前記導入部の周囲に配置されている、
    請求項1乃至6のいずれか一項に記載のガス導入構造。
  9. 前記処理容器内には、複数の基板が前記処理容器の長さ方向に間隔を有して多段に収容される、
    請求項1乃至8のいずれか一項に記載のガス導入構造。
  10. 前記処理容器は、該処理容器の周囲に設けられる略円筒形状の加熱部により加熱される、
    請求項1乃至9のいずれか一項に記載のガス導入構造。
  11. 略円筒形状の処理容器と、
    前記処理容器の長さ方向に延在して該処理容器内にガスを供給するガス導入構造と、
    を備え、
    前記ガス導入構造は、
    導入室を区画する導入部と、
    複数の吐出室を区画する吐出部であり、前記複数の吐出室の各々が前記処理容器内にガスを吐出する複数のガス孔を含む吐出部と、
    前記導入室に接続すると共にトーナメント状に前記複数の吐出室の数に対応して分岐して前記複数の吐出室に接続する分岐室を区画する分岐部と、
    を有する、
    処理装置。
JP2020156410A 2020-09-17 2020-09-17 ガス導入構造及び処理装置 Active JP7486388B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020156410A JP7486388B2 (ja) 2020-09-17 2020-09-17 ガス導入構造及び処理装置
KR1020210118323A KR20220037350A (ko) 2020-09-17 2021-09-06 가스 도입 구조 및 처리 장치
CN202111051005.3A CN114203532A (zh) 2020-09-17 2021-09-08 气体导入构造和处理装置
US17/472,959 US11885024B2 (en) 2020-09-17 2021-09-13 Gas introduction structure and processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020156410A JP7486388B2 (ja) 2020-09-17 2020-09-17 ガス導入構造及び処理装置

Publications (2)

Publication Number Publication Date
JP2022050047A true JP2022050047A (ja) 2022-03-30
JP7486388B2 JP7486388B2 (ja) 2024-05-17

Family

ID=80625840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020156410A Active JP7486388B2 (ja) 2020-09-17 2020-09-17 ガス導入構造及び処理装置

Country Status (4)

Country Link
US (1) US11885024B2 (ja)
JP (1) JP7486388B2 (ja)
KR (1) KR20220037350A (ja)
CN (1) CN114203532A (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829327B1 (ko) * 2002-04-05 2008-05-13 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치 및 반응 용기
JP2004010990A (ja) 2002-06-10 2004-01-15 Sony Corp 薄膜形成装置
JP4239520B2 (ja) 2002-08-21 2009-03-18 ソニー株式会社 成膜装置およびその製造方法、並びにインジェクタ
WO2005015619A1 (ja) * 2003-08-07 2005-02-17 Hitachi Kokusai Electric Inc. 基板処理装置および半導体装置の製造方法
US20050223985A1 (en) * 2004-04-08 2005-10-13 Blomiley Eric R Deposition apparatuses, methods of assessing the temperature of semiconductor wafer substrates within deposition apparatuses, and methods for deposition of epitaxial semiconductive material
JP5250600B2 (ja) 2009-11-27 2013-07-31 東京エレクトロン株式会社 成膜方法および成膜装置
WO2011074604A1 (ja) * 2009-12-18 2011-06-23 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及び半導体装置
JP5771372B2 (ja) 2010-08-02 2015-08-26 株式会社アルバック プラズマ処理装置及び前処理方法
US20130255784A1 (en) * 2012-03-30 2013-10-03 Applied Materials, Inc. Gas delivery systems and methods of use thereof
TW201409688A (zh) * 2012-08-03 2014-03-01 Tokyo Electron Ltd 形成化合物半導體膜之方法及設備
JP6590735B2 (ja) 2016-03-04 2019-10-16 東京エレクトロン株式会社 混合ガス複数系統供給システム及びこれを用いた基板処理装置
JP7014055B2 (ja) 2018-06-15 2022-02-01 東京エレクトロン株式会社 真空処理装置、真空処理システム、及び真空処理方法

Also Published As

Publication number Publication date
JP7486388B2 (ja) 2024-05-17
KR20220037350A (ko) 2022-03-24
US11885024B2 (en) 2024-01-30
US20220081775A1 (en) 2022-03-17
CN114203532A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
JP6432507B2 (ja) 成膜装置
CN111755355A (zh) 半导体装置的制造方法、基板处理装置和记录介质
US11725281B2 (en) Gas introduction structure, thermal processing apparatus and gas supply method
US11581201B2 (en) Heat treatment apparatus and film deposition method
JP6665726B2 (ja) 成膜装置
KR102630574B1 (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
CN111850512A (zh) 成膜方法和成膜装置
JP2022050047A (ja) ガス導入構造及び処理装置
JP2023005462A (ja) 成膜装置
JP7471972B2 (ja) 処理装置及び処理方法
US20220081768A1 (en) Processing apparatus
JP7386732B2 (ja) 成膜方法
US20220243327A1 (en) Processing apparatus and processing method
JP2022050045A (ja) 処理装置及び処理方法
JP2022002253A (ja) ガスノズル、基板処理装置及び基板処理方法
KR20240041238A (ko) 기판 처리 장치 및 기판 처리 방법
JP2022152978A (ja) シリコン膜の形成方法及び処理装置
JP2022118629A (ja) 処理装置及び処理方法
KR20210082079A (ko) 성막 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240507

R150 Certificate of patent or registration of utility model

Ref document number: 7486388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150