JP2022047458A - Composite inorganic oxide powder, powder coating composition containing composite inorganic oxide powder, toner composition for electrophotography containing composite inorganic oxide powder, and method for producing composite inorganic oxide powder - Google Patents

Composite inorganic oxide powder, powder coating composition containing composite inorganic oxide powder, toner composition for electrophotography containing composite inorganic oxide powder, and method for producing composite inorganic oxide powder Download PDF

Info

Publication number
JP2022047458A
JP2022047458A JP2020177541A JP2020177541A JP2022047458A JP 2022047458 A JP2022047458 A JP 2022047458A JP 2020177541 A JP2020177541 A JP 2020177541A JP 2020177541 A JP2020177541 A JP 2020177541A JP 2022047458 A JP2022047458 A JP 2022047458A
Authority
JP
Japan
Prior art keywords
inorganic oxide
composite inorganic
oxide powder
mass
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020177541A
Other languages
Japanese (ja)
Inventor
慶 石黒
Kei Ishiguro
行也 山下
Yukiya Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aerosil Co Ltd
Original Assignee
Nippon Aerosil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd filed Critical Nippon Aerosil Co Ltd
Publication of JP2022047458A publication Critical patent/JP2022047458A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Abstract

To provide a composite inorganic oxide powder that has negative chargeability sufficient to be used as a charge modifier, and demonstrates excellent environmental stability and electrification rising properties.SOLUTION: A composite inorganic oxide powder has gas phase-method composite inorganic oxide particles containing alumina and silica. The gas phase method composite inorganic oxide particles have an alumina content of 0.2 mass% or more and 20 mass% or less. The composite inorganic oxide powder has a volume resistivity of 1.0×1011 Ωcm or more and 9.0×1014 Ωcm or less in accordance with JIS K 6911.SELECTED DRAWING: None

Description

本発明は粉体の流動性改善、帯電量調整等の目的で、電子写真用トナーや粉体塗料等に外添剤として添加される複合無機酸化物粉体及びその製造方法並びに複合無機酸化物粉末を含有する粉体塗料組成物及び電子写真用トナー組成物に関する。特に、高温高湿または低温低湿環境下における帯電量の安定性、帯電立ち上がり特性に優れ、迅速な印刷、良好な画像品質を実現し得る複合無機酸化物粉体及びその製造方法並びに複合無機酸化物粉末を含有する粉体塗料組成物及び電子写真用トナー組成物に関するものである。 The present invention is a composite inorganic oxide powder added as an external additive to toner for electrophotographic photographs, powder coating materials, etc. for the purpose of improving the fluidity of the powder, adjusting the amount of charge, etc., a method for producing the same, and a composite inorganic oxide. The present invention relates to a powder coating composition containing a powder and a toner composition for electrophotographic photography. In particular, the composite inorganic oxide powder and its manufacturing method and the composite inorganic oxide that are excellent in the stability of the charge amount and the charge rise characteristic in a high temperature and high humidity or low temperature and low humidity environment and can realize quick printing and good image quality. It relates to a powder coating composition containing a powder and a toner composition for electrophotographic photography.

レーザープリンター、複写機などに用いられる電子写真方式では、一般的に、感光体に電荷を帯びさせる帯電プロセス、電荷を帯びた感光体にイメージデータに基づいてレーザー光を照射することで静電潜像を形成する露光プロセス、電荷を帯びたトナーを感光体に付着させ感光体上にイメージの鏡像を形成する現像プロセス、感光体上のトナーを紙等のメディアに転写する転写プロセス、メディア上のトナーを加熱と圧力によって定着させる定着プロセス等を経て印刷が行われる。 In the electrophotographic method used in laser printers, copiers, etc., in general, a charging process that charges the photoconductor, and electrostatic latency by irradiating the charged photoconductor with laser light based on image data. An exposure process that forms an image, a developing process that attaches charged toner to a photoconductor to form a mirror image of the image on the photoconductor, a transfer process that transfers the toner on the photoconductor to a medium such as paper, and a transfer process on the media. Printing is performed through a fixing process in which the toner is fixed by heating and pressure.

上記電子写真方式においては静電気力によって画像の形成が行われることから、摩擦帯電によってトナーに電荷を帯びさせるプロセスにおいて帯電が所望の強さであること、高温高湿、低温低湿などの条件の違いによる帯電量の差が小さいことが、画像品質に直結する。この為、トナーの電荷量を調整する目的で、従来から、シリカ、チタニア、アルミナなどの金属、無機酸化物粉末を外添剤として添加することが行われている。また、近年の印刷装置の小型化、高速化に伴い、トナーには、迅速な帯電が求められている。電子写真用トナーに対しては、シリカ、チタニア、アルミナなどの無機酸化物の表面処理品や有機微粒子が、流動性改善、帯電量調節の目的で広く用いられている。 In the above electrophotographic method, since the image is formed by electrostatic force, the charging is the desired strength in the process of charging the toner by triboelectric charging, and the conditions such as high temperature and high humidity and low temperature and low humidity are different. The small difference in the amount of charge due to the cause is directly linked to the image quality. Therefore, for the purpose of adjusting the charge amount of the toner, a metal such as silica, titania, or alumina, or an inorganic oxide powder has been conventionally added as an external additive. Further, as the printing apparatus becomes smaller and faster in recent years, the toner is required to be charged quickly. For electrophotographic toners, surface-treated products of inorganic oxides such as silica, titania, and alumina and organic fine particles are widely used for the purpose of improving fluidity and adjusting the amount of charge.

具体的には、流動性と安定した帯電性を得るために、疎水化処理された小粒径シリカの外添剤が用いられている。その結果、流動性は改善するものの、高温高湿、低温低湿条件などの厳しい環境の変化によっては、帯電量が影響を受けやすいという問題があった。 Specifically, in order to obtain fluidity and stable chargeability, a hydrophobized small particle size silica external additive is used. As a result, although the fluidity is improved, there is a problem that the amount of charge is easily affected by severe changes in the environment such as high temperature and high humidity and low temperature and low humidity conditions.

そこで、厳しい環境の変化に伴う帯電量の影響を小さくするべく、疎水性の高いシリコーンオイルで疎水化処理された小粒径シリカを外添剤として使用することが提案されている(特許文献1)。しかし、特許文献1の外添剤では、トナーの流動性、帯電立ち上がりは悪化するという問題があった。 Therefore, in order to reduce the influence of the amount of charge due to severe changes in the environment, it has been proposed to use small particle size silica hydrophobized with highly hydrophobic silicone oil as an external additive (Patent Document 1). ). However, the external additive of Patent Document 1 has a problem that the fluidity of the toner and the rise of charge are deteriorated.

一方、厳しい環境の変化に伴う帯電量の影響を小さくするために、チタニアなどの外添剤を用いることも提案されている(特許文献2、3)。しかし、特許文献2、3では、環境の変化に伴う帯電量の影響を小さくすることはできるものの、処方の複雑化、チタニアによる部材汚染、また、近年では、チタニアの発がん性懸念という安全性に関する問題などが生じている。 On the other hand, it has also been proposed to use an external additive such as titania in order to reduce the influence of the amount of charge due to severe changes in the environment (Patent Documents 2 and 3). However, although Patent Documents 2 and 3 can reduce the influence of the amount of charge due to changes in the environment, they relate to the complexity of prescription, contamination of parts by titania, and in recent years, safety of concern about carcinogenicity of titania. There is a problem.

また、近年では、高速印刷、印刷装置の小型化に向けた開発が進んでおり、当該目的においては、より短時間で効率的に、トナーの摩擦帯電値を安定させることが求められている。また、高温高湿下におけるトナーの帯電値と低温低湿下におけるトナーの帯電値の差は画像品質に直結することから、これらの差異をより小さくすることが帯電値の安定とともに引き続き求められている。 Further, in recent years, development for high-speed printing and miniaturization of printing equipment has been progressing, and for this purpose, it is required to stabilize the triboelectric charge value of the toner in a shorter time and more efficiently. In addition, since the difference between the toner charge value under high temperature and high humidity and the toner charge value under low temperature and low humidity is directly related to the image quality, it is continuously required to reduce these differences as well as to stabilize the charge value. ..

これらの課題を改善する一つの方法として、シリカアルミナ複合酸化物の提案がなされている(特許文献4)。特許文献4では、アルミナの比率が高いことによる環境安定性の改善がみられるものの、流動性、および帯電立ち上がり特性については改善の必要性があった。 As one method for improving these problems, a silica-alumina composite oxide has been proposed (Patent Document 4). In Patent Document 4, although the environmental stability is improved due to the high ratio of alumina, it is necessary to improve the fluidity and the charge rising characteristics.

さらには、シリカ表面にアルミナを付着させてトナー用の外添剤を製造する方法が提案されている(特許文献5)。しかし、特許文献5で作製されるアルミナを付着したシリカ粉末は、その帯電量が約―100~-120μC/gと、電荷調整剤として用いるには負帯電性が高すぎる問題がある。さらに、特許文献5の製造方法では、2段の製造プロセスが必要となり、製造工程が複雑である等の問題点がある。 Further, a method of adhering alumina to the surface of silica to produce an external additive for toner has been proposed (Patent Document 5). However, the silica powder to which alumina attached produced in Patent Document 5 has a charge amount of about -100 to -120 μC / g, and has a problem that the negative charge property is too high to be used as a charge adjuster. Further, the manufacturing method of Patent Document 5 requires a two-stage manufacturing process, and has a problem that the manufacturing process is complicated.

特開平5-165257号公報Japanese Unexamined Patent Publication No. 5-165257 特開平10-268550号公報Japanese Unexamined Patent Publication No. 10-268550 特開2009-42447号公報Japanese Unexamined Patent Publication No. 2009-42447 特許第4099748号公報Japanese Patent No. 4099748 特許第5020224号公報Japanese Patent No. 5020224

本発明者らは上記問題を鋭意検討することにより、所定範囲割合のアルミナを含んだ気相分解法を用いて製造された複合無機酸化物粉体が、所定範囲の体積抵抗値を示したときに、環境安定性と帯電立ち上がり特性を満たすことを新たに見出し、本発明をするに至った。すなわち、本発明の目的は、電荷調整剤として用いることができる程度の負帯電性を有し、且つ良好な環境安定性、及び帯電立ち上がり特性を有する複合無機酸化物粉体、複合無機酸化物粉体の製造方法、複合無機酸化物粉体を含有する粉体塗料組成物、複合無機酸化物粉体を含有する電子写真のトナー組成物を提供することにある。 By diligently studying the above problems, the present inventors have found that the composite inorganic oxide powder produced by the vapor phase decomposition method containing alumina in a predetermined range shows a volume resistance value in a predetermined range. In addition, they have newly found that they satisfy environmental stability and charge rise characteristics, and have come to the present invention. That is, an object of the present invention is a composite inorganic oxide powder or a composite inorganic oxide powder having a negative charge property that can be used as a charge adjuster, good environmental stability, and charge rise characteristics. It is an object of the present invention to provide a method for producing a body, a powder coating composition containing a composite inorganic oxide powder, and an electrophotographic toner composition containing the composite inorganic oxide powder.

本発明の構成の要旨は以下の通りである。
[1]アルミナとシリカを含む気相法複合無機酸化物粒子を有する複合無機酸化物粉体であり、
前記気相法複合無機酸化物粒子のアルミナ含有量が、0.2質量%以上20質量%以下であり、前記複合無機酸化物粉体のJIS K 6911に準拠した体積抵抗率が、1.0×1011Ω・cm以上9.0×1014Ω・cm以下である複合無機酸化物粉体。
[2]前記気相法複合無機酸化物粒子が、有機ケイ素化合物で表面処理されている[1]に記載の複合無機酸化物粉体。
[3]疎水化度が50%以上である[1]または[2]に記載の複合無機酸化物粉体。
[4]炭素含有量が、0.5質量%以上11.0質量%以下である[2]に記載の複合無機酸化物粉体。
[5]前記気相法複合無機酸化物粒子が、前記気相法複合無機酸化物粒子100質量部に対して、3.0質量部以上40質量部以下の前記有機ケイ素化合物にて表面処理されている[2]または[4]に記載の複合無機酸化物粉体。
[6]前記有機ケイ素化合物が、下記一般式(1)
SiR (4-n) (1)
(式中、Rは、炭素数1以上18以下の炭化水素基を表し、Rは、炭素数1以上18以下の炭化水素基、塩素原子、ヒドロキシ基または炭素数1~3のアルコキシ基を表し、nは1~3の整数を表す。)で示される有機ケイ素化合物、ヘキサメチルジシラザン及び/またはシリコーンオイルである[2]、[4]または[5]に記載の複合無機酸化物粉体。
[7]前記有機ケイ素化合物が、下記一般式(2)

Figure 2022047458000001
(式中、Rは、炭素数1以上18以下の炭化水素基を表し、R、R及びRは、それぞれ独立して塩素原子、ヒドロキシ基または炭素数1~3のアルコキシ基を表す。)で示される有機ケイ素化合物、ヘキサメチルジシラザン及び/またはシリコーンオイルである[2]、[4]または[5]に記載の複合無機酸化物粉体。
[8]平均一次粒子径が7.0nm以上100nm以下である[1]乃至[7]のいずれか1つに記載の複合無機酸化物粉体。
[9]粉体塗料の外添剤用または電子写真のトナーの外添剤用である[1]乃至[8]のいずれか1つに記載の複合無機酸化物粉体。
[10][1]乃至[9]のいずれか1つに記載の複合無機酸化物粉体を含有する粉体塗料組成物。
[11][1]乃至[9]のいずれか1つに記載の複合無機酸化物粉体を含有する電子写真のトナー組成物。
[12]シリカ原料とアルミナ原料を火炎中に導入して気相分解法にて、アルミナ含有量が0.2質量%以上20質量%以下の気相法複合無機酸化物粒子を得る、気相法複合無機酸化物粒子調製工程と、
前記気相法複合無機酸化物粒子の表面に有機ケイ素化合物を施与する、有機ケイ素化合物供給工程と、
前記有機ケイ素化合物が施与された前記気相法複合無機酸化物粒子を、100℃以上370℃以下の加熱温度、15分以上350分以下の加熱時間にて加熱する加熱工程と、
を含む複合無機酸化物粉体の製造方法。 The gist of the structure of the present invention is as follows.
[1] A composite inorganic oxide powder having a vapor phase method composite inorganic oxide particles containing alumina and silica.
The alumina content of the vapor phase method composite inorganic oxide particles is 0.2% by mass or more and 20% by mass or less, and the volume resistivity of the composite inorganic oxide powder according to JIS K 6911 is 1.0. A composite inorganic oxide powder having a size of × 10 11 Ω · cm or more and 9.0 × 10 14 Ω · cm or less.
[2] The composite inorganic oxide powder according to [1], wherein the vapor phase method composite inorganic oxide particles are surface-treated with an organosilicon compound.
[3] The composite inorganic oxide powder according to [1] or [2], which has a degree of hydrophobicity of 50% or more.
[4] The composite inorganic oxide powder according to [2], which has a carbon content of 0.5% by mass or more and 11.0% by mass or less.
[5] The vapor phase method composite inorganic oxide particles are surface-treated with the organosilicon compound of 3.0 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the vapor phase method composite inorganic oxide particles. The composite inorganic oxide powder according to [2] or [4].
[6] The organosilicon compound has the following general formula (1).
R 5 n SiR 6 (4-n) (1)
(In the formula, R 5 represents a hydrocarbon group having 1 or more and 18 or less carbon atoms, and R 6 is a hydrocarbon group having 1 or more and 18 or less carbon atoms, a chlorine atom, a hydroxy group or an alkoxy group having 1 to 3 carbon atoms. The composite inorganic oxide according to [2], [4] or [5], which is an organosilicon compound represented by (1), hexamethyldisilazane and / or a silicone oil. powder.
[7] The organosilicon compound has the following general formula (2).
Figure 2022047458000001
(In the formula, R 1 represents a hydrocarbon group having 1 or more carbon atoms and 18 or less carbon atoms, and R 2 , R 3 and R 4 each independently have a chlorine atom, a hydroxy group or an alkoxy group having 1 to 3 carbon atoms. The composite inorganic oxide powder according to [2], [4] or [5], which is an organosilicon compound, hexamethyldisilazane and / or a silicone oil represented by (represented).
[8] The composite inorganic oxide powder according to any one of [1] to [7], which has an average primary particle diameter of 7.0 nm or more and 100 nm or less.
[9] The composite inorganic oxide powder according to any one of [1] to [8], which is used as an external agent for powder paints or as an external agent for toners for electrophotographic photographs.
[10] A powder coating composition containing the composite inorganic oxide powder according to any one of [1] to [9].
[11] An electrophotographic toner composition containing the composite inorganic oxide powder according to any one of [1] to [9].
[12] A vapor phase method in which a silica raw material and an alumina raw material are introduced into a flame and a vapor phase decomposition method is used to obtain vapor phase composite inorganic oxide particles having an alumina content of 0.2% by mass or more and 20% by mass or less. Method Composite inorganic oxide particle preparation process and
An organosilicon compound supply step of applying an organosilicon compound to the surface of the vapor phase method composite inorganic oxide particles, and
A heating step of heating the vapor-phase composite inorganic oxide particles to which the organosilicon compound has been applied at a heating temperature of 100 ° C. or higher and 370 ° C. or lower and a heating time of 15 minutes or longer and 350 minutes or lower.
A method for producing a composite inorganic oxide powder containing.

本発明の複合無機酸化物粉体は、電荷調整剤として用いることができる程度の負帯電性を有し、且つ良好な環境安定性、及び帯電立ち上がり特性を有する。 The composite inorganic oxide powder of the present invention has a negative charge property that can be used as a charge adjuster, and has good environmental stability and charge rise characteristics.

本発明は、アルミナとシリカを含む気相法複合無機酸化物粒子を有する複合無機酸化物粉体であって、アルミナ含有量が0.2質量%以上20質量%以下である気相法複合無機酸化物粒子を有し、好ましくは、疎水化剤である有機ケイ素化合物にて気相法複合無機酸化物粒子の表面が改質された複合無機酸化物粉体である。また、好ましくは、複合無機酸化物粉体の疎水化度が50%以上である。アルミナ含有量が0.2質量%以上20質量%以下である気相法複合無機酸化物粒子は、シリカ由来の良好な流動性を保ちつつ適切な量のアルミナが気相法複合無機酸化物粒子表面に含まれることによって、体積抵抗率がシリカより低いアルミナによって帯電のリークによる過剰な帯電の防止効果が得られる。アルミナ含有量が0.2質量%以上20質量%以下である気相法複合無機酸化物粒子は、例えば、表面処理シリカによる過剰な帯電を抑制し、適切な帯電量へと調整される。 The present invention is a composite inorganic oxide powder having gas phase composite inorganic oxide particles containing alumina and silica, and the alumina content is 0.2% by mass or more and 20% by mass or less. It is a composite inorganic oxide powder having oxide particles and preferably having the surface of the vapor phase method composite inorganic oxide particles modified with an organic silicon compound which is a hydrophobic agent. Further, preferably, the degree of hydrophobicity of the composite inorganic oxide powder is 50% or more. In the vapor phase composite inorganic oxide particles having an alumina content of 0.2% by mass or more and 20% by mass or less, an appropriate amount of alumina is contained in the vapor phase composite inorganic oxide particles while maintaining good fluidity derived from silica. By being contained in the surface, the effect of preventing excessive charge due to charge leakage can be obtained by alumina having a volume resistance lower than that of silica. The vapor phase composite inorganic oxide particles having an alumina content of 0.2% by mass or more and 20% by mass or less suppress, for example, excessive charging due to the surface-treated silica, and are adjusted to an appropriate charging amount.

また、アルミナ含有量が0.2質量%以上20質量%以下である気相法複合無機酸化物粒子は、シリカに対し相対的に少量であるアルミナ粒子がシリカ粒子に隣接するかたちで存在しており、アルミナ粒子とシリカ粒子の間で電荷の移動が生じる。その結果、本発明の複合無機酸化物粉体は、良好な帯電立ち上がり特性を示すものと考えられる。 Further, in the vapor phase method composite inorganic oxide particles having an alumina content of 0.2% by mass or more and 20% by mass or less, alumina particles having a relatively small amount with respect to silica exist in a form adjacent to the silica particles. The transfer of charge occurs between the alumina particles and the silica particles. As a result, it is considered that the composite inorganic oxide powder of the present invention exhibits good charge rise characteristics.

先ず、本発明の複合無機酸化物粉体について、以下、詳細に説明する。本発明の複合無機酸化物粉体は、アルミナとシリカを含む気相法複合無機酸化物粒子を有する複合無機酸化物粉体であり、前記気相法複合無機酸化物粒子のアルミナ含有量が、0.2質量%以上20質量%以下であり、前記複合無機酸化物粉体のJIS K 6911に準拠した体積抵抗率が、1.0×1011Ω・cm以上9.0×1014Ω・cm以下である。気相法複合無機酸化物粒子は、気相法で製造された複合無機酸化物粉末である。 First, the composite inorganic oxide powder of the present invention will be described in detail below. The composite inorganic oxide powder of the present invention is a composite inorganic oxide powder having gas phase method composite inorganic oxide particles containing alumina and silica, and the alumina content of the vapor phase method composite inorganic oxide particles is high. It is 0.2% by mass or more and 20% by mass or less, and the volume resistance of the composite inorganic oxide powder according to JIS K 6911 is 1.0 × 10 11 Ω · cm or more and 9.0 × 10 14 Ω ·. It is less than cm. The vapor phase method composite inorganic oxide particles are composite inorganic oxide powders produced by the vapor phase method.

上記アルミナ含有量と体積抵抗率を有する複合無機酸化物粉体は、電荷調整剤として用いることができる程度の負帯電性を有し、且つ良好な環境安定性及び帯電立ち上がり特性を発揮する。具体的には、本発明の複合無機酸化物粉体は、環境安定性として、環境変動比が0.48以上である。複合無機酸化物粉体の環境変動比が0.48未満の場合、高温高湿下と低温低湿下の帯電量の差が大きくなり、複合無機酸化物粉体をトナー成分に添加したときに、画像不良などの品質問題が生じやすい。複合無機酸化物粉体の帯電立ち上がり特性は0.36以上である。複合無機酸化物粉体の帯電立ち上がり特性が0.36未満の場合、複合無機酸化物粉体をトナー成分に添加したときに、印刷可能となるまでに長時間を要するという問題がある。なお、「環境変動比」と「帯電立ち上がり特性」の測定方法については、後述する。 The composite inorganic oxide powder having an alumina content and a volume resistivity has a negative charge property that can be used as a charge adjuster, and exhibits good environmental stability and charge rise characteristics. Specifically, the composite inorganic oxide powder of the present invention has an environmental fluctuation ratio of 0.48 or more in terms of environmental stability. When the environmental fluctuation ratio of the composite inorganic oxide powder is less than 0.48, the difference in the amount of charge between high temperature and high humidity and low temperature and low humidity becomes large, and when the composite inorganic oxide powder is added to the toner component, Quality problems such as image defects are likely to occur. The charge rise characteristic of the composite inorganic oxide powder is 0.36 or more. When the charge rise characteristic of the composite inorganic oxide powder is less than 0.36, there is a problem that it takes a long time before printing becomes possible when the composite inorganic oxide powder is added to the toner component. The method for measuring the "environmental fluctuation ratio" and the "charge rise characteristic" will be described later.

アルミナ含有量が0.2質量%以上20質量%以下である気相法複合無機酸化物粒子は、シリカと気相法複合無機酸化物粒子100質量%中に0.2質量%以上20質量%以下のアルミナとを含んでいれば、その成分組成は、特に限定されないが、シリカと0.2質量%以上20質量%以下のアルミナからなる気相法複合無機酸化物粒子が好ましい。シリカと0.2質量%以上20質量%以下のアルミナからなる気相法複合無機酸化物粒子は、気相法複合無機酸化物粒子100質量%中に、0.2質量%以上20質量%以下のアルミナと80質量%以上99.8質量%以下のシリカを含んでいる。 The vapor phase composite inorganic oxide particles having an alumina content of 0.2% by mass or more and 20% by mass or less are 0.2% by mass or more and 20% by mass in 100% by mass of silica and the vapor phase method composite inorganic oxide particles. The composition of the components is not particularly limited as long as it contains the following alumina, but vapor phase composite inorganic oxide particles composed of silica and 0.2% by mass or more and 20% by mass or less of alumina are preferable. The vapor phase method composite inorganic oxide particles composed of silica and 0.2% by mass or more and 20% by mass or less of alumina are 0.2% by mass or more and 20% by mass or less in 100% by mass of the gas phase method composite inorganic oxide particles. Alumina and silica of 80% by mass or more and 99.8% by mass or less are contained.

気相法複合無機酸化物粒子のアルミナ含有量は0.2質量%以上20質量%以下であれば、特に限定されないが、その下限値は、帯電量の環境安定性と帯電立ち上がり特性をさらに向上させる点から、0.3質量%が好ましく、0.5質量%がより好ましく、0.8質量%が特に好ましい。一方で、アルミナ含有量の上限値は、帯電量の環境安定性と帯電立ち上がり特性をさらに向上させる点から、18質量%が好ましく、15質量%がより好ましく、10質量%が特に好ましい。気相法複合無機酸化物粒子において、アルミナ含有量が0.2質量%未満では複合無機酸化物としての性質が発揮されずにシリカに似た挙動を示し、20質量%超では複合無機酸化物としての性質は発揮されずアルミナの影響を強く受け、その結果、負帯電性が非常に弱くなる。 The alumina content of the vapor-phase composite inorganic oxide particles is not particularly limited as long as it is 0.2% by mass or more and 20% by mass or less, but the lower limit thereof further improves the environmental stability of the charge amount and the charge rise characteristic. 0.3% by mass is preferable, 0.5% by mass is more preferable, and 0.8% by mass is particularly preferable. On the other hand, the upper limit of the alumina content is preferably 18% by mass, more preferably 15% by mass, and particularly preferably 10% by mass, from the viewpoint of further improving the environmental stability of the charged amount and the charging rising characteristic. In the vapor phase method composite inorganic oxide particles, when the alumina content is less than 0.2% by mass, the properties as a composite inorganic oxide are not exhibited and the behavior resembles silica, and when the alumina content exceeds 20% by mass, the composite inorganic oxide behaves. As a result, the negative chargeability becomes very weak as a result of being strongly influenced by alumina without exhibiting the above-mentioned properties.

本発明の複合無機酸化物粉体は、JIS K 6911に準拠した体積抵抗率が、1.0×1011Ω・cm以上9.0×1014Ω・cm以下である。複合無機酸化物粉体の体積抵抗率は、1.0×1011Ω・cm以上9.0×1014Ω・cm以下であれば、特に限定されないが、その下限値は、帯電量を確実に維持する点から、5.0×1011Ω・cmが好ましく、1.0×1012Ω・cmが特に好ましい、一方で、複合無機酸化物粉体の体積抵抗率の上限値は、トナー等の外添剤として適切な負帯電性を得る点から、5.0×1014Ω・cmが好ましく、1.0×1014Ω・cmが特に好ましい。体積抵抗率が1.0×1011Ω・cm未満の場合には、適切な帯電量を維持することが難しくなり、体積抵抗率が9.0×1014Ω・cm超の場合には、負帯電性が強くなりすぎる問題が生じる。 The composite inorganic oxide powder of the present invention has a volume resistivity according to JIS K 6911 of 1.0 × 10 11 Ω · cm or more and 9.0 × 10 14 Ω · cm or less. The volume resistivity of the composite inorganic oxide powder is not particularly limited as long as it is 1.0 × 10 11 Ω · cm or more and 9.0 × 10 14 Ω · cm or less, but the lower limit thereof ensures the amount of charge. 5.0 × 10 11 Ω · cm is preferable, and 1.0 × 10 12 Ω · cm is particularly preferable, while the upper limit of the volume resistivity of the composite inorganic oxide powder is the toner. 5.0 × 10 14 Ω · cm is preferable, and 1.0 × 10 14 Ω · cm is particularly preferable, from the viewpoint of obtaining appropriate negative chargeability as an external additive such as. When the volume resistivity is less than 1.0 × 10 11 Ω · cm, it becomes difficult to maintain an appropriate amount of charge, and when the volume resistivity is more than 9.0 × 10 14 Ω · cm, it becomes difficult to maintain an appropriate amount of charge. The problem that the negative resistivity becomes too strong arises.

なお、気相法シリカ粒子は、体積抵抗率が1.0×1015Ω・cm以上になり、適切な負帯電性を得ることができない。また、気相法アルミナ粒子は、体積抵抗率が1.0×10Ω・cm以下となり、所望の帯電量を得ることができない。ゾルゲル法で製造されたシリカ単体も、体積抵抗率が1.0×1015Ω・cm以上となってしまう。 The volume resistivity of the vapor phase silica particles is 1.0 × 10 15 Ω · cm or more, and an appropriate negative charge property cannot be obtained. Further, the vapor phase method alumina particles have a volume resistivity of 1.0 × 108 Ω · cm or less, and a desired charge amount cannot be obtained. Silica alone produced by the sol-gel method also has a volume resistivity of 1.0 × 10 15 Ω · cm or more.

アルミナ含有量が0.2質量%以上20質量%以下である気相法複合無機酸化物粒子のBET比表面積は、特に限定されないが、流動性とトナー粒子に対する埋没の抑制をバランスよく得る点から、好ましくは10~500m/g、特に好ましくは20~400m/gである。本発明の複合無機酸化物粉体をトナーに添加したときの帯電量の絶対値は、比表面積が小さいほど、またトナーに対する被覆率が高いほど大きくなる。また、優れた環境安定性、帯電立ち上がり特性といった物性は、比表面積にあまり影響されないが、実際の電子写真プロセスにおいては、高比表面積、すなわち、複合無機酸化物粉体の粒子径が小さいほどトナー粒子に埋没しやすいものの、流動性改善効果は高く、複合無機酸化物粉体の粒子径が大きいほどトナーの流動性は低下するものの、トナー粒子に対する埋没は抑制される傾向にある。従って、複合無機酸化物粉体に求められる物性に応じて、適切な比表面積の気相法複合無機酸化物粒子を選ぶことができる。また、複合無機酸化物粉体の帯電量に関しても、同一重量の複合無機酸化物粉体をトナーに添加した場合は、小粒子径である、すなわち、比表面積の大きい気相法複合無機酸化物粒子の方が強負帯電性を示すため、複合無機酸化物粉体に求められる物性に応じて、適宜、適切な粒子径、添加量を選択することができる。 The BET specific surface area of the vapor-phase composite inorganic oxide particles having an alumina content of 0.2% by mass or more and 20% by mass or less is not particularly limited, but from the viewpoint of obtaining a good balance between fluidity and suppression of burial in toner particles. It is preferably 10 to 500 m 2 / g, and particularly preferably 20 to 400 m 2 / g. The absolute value of the amount of charge when the composite inorganic oxide powder of the present invention is added to the toner increases as the specific surface area decreases and the coverage with respect to the toner increases. In addition, physical properties such as excellent environmental stability and charge rise characteristics are not so affected by the specific surface area, but in an actual electrophotographic process, the higher the specific surface area, that is, the smaller the particle size of the composite inorganic oxide powder, the more the toner. Although it is easily buried in the particles, the effect of improving the fluidity is high, and the larger the particle size of the composite inorganic oxide powder, the lower the fluidity of the toner, but the burial in the toner particles tends to be suppressed. Therefore, the vapor phase method composite inorganic oxide particles having an appropriate specific surface area can be selected according to the physical properties required for the composite inorganic oxide powder. Regarding the charge amount of the composite inorganic oxide powder, when the composite inorganic oxide powder of the same weight is added to the toner, the vapor phase composite inorganic oxide has a small particle size, that is, a large specific surface area. Since the particles show stronger negative chargeability, an appropriate particle size and addition amount can be appropriately selected according to the physical properties required for the composite inorganic oxide powder.

また、本発明の複合無機酸化物粉体の疎水化度は、特に限定されないが、環境安定性を確実に向上させる点から、疎水化度は50%以上が好ましく、60%以上がより好ましく、70%以上が特に好ましい。なお、疎水化度とは、後述するように、複合無機酸化物粉体と純水との混合物について光の透過率を分光光度計にて測定した疎水化度を意味する。 The degree of hydrophobicity of the composite inorganic oxide powder of the present invention is not particularly limited, but the degree of hydrophobicity is preferably 50% or more, more preferably 60% or more, from the viewpoint of surely improving environmental stability. 70% or more is particularly preferable. As will be described later, the degree of hydrophobicity means the degree of hydrophobicity obtained by measuring the light transmittance of a mixture of a composite inorganic oxide powder and pure water with a spectrophotometer.

本発明の複合無機酸化物粉体では、気相法複合無機酸化物粒子は、有機ケイ素化合物で表面処理されていてもよい。すなわち、気相法複合無機酸化物粒子は、有機ケイ素化合物で表面改質されていてもよい。この場合、有機ケイ素化合物は、気相法複合無機酸化物粒子の表面改質剤として機能する。気相法複合無機酸化物粒子の表面が有機ケイ素化合物で改質されていることで、気相法複合無機酸化物粒子の表面が十分に疎水化、すなわち、複合無機酸化物粉体に十分な疎水性が付与される。気相法複合無機酸化物粒子の表面が十分に疎水化されることで、複合無機酸化物粉体は、高い水分吸着阻害効果を有して、より確実に良好な環境安定性と帯電立ち上がり特性を発揮する。 In the composite inorganic oxide powder of the present invention, the vapor phase method composite inorganic oxide particles may be surface-treated with an organosilicon compound. That is, the vapor phase method composite inorganic oxide particles may be surface-modified with an organosilicon compound. In this case, the organosilicon compound functions as a surface modifier for the vapor phase method composite inorganic oxide particles. Since the surface of the gas phase method composite inorganic oxide particles is modified with an organosilicon compound, the surface of the gas phase method composite inorganic oxide particles is sufficiently hydrophobic, that is, sufficient for the composite inorganic oxide powder. Hydrophobicity is imparted. Gas phase method By sufficiently hydrophobizing the surface of the composite inorganic oxide particles, the composite inorganic oxide powder has a high moisture adsorption inhibitory effect, and more reliably has good environmental stability and charge rise characteristics. Demonstrate.

気相法複合無機酸化物粒子の表面改質の態様としては、例えば、気相法複合無機酸化物粒子の表面の一部領域または全体が、有機ケイ素化合物の層で被覆されていてもよい。この場合、気相法複合無機酸化物粒子がコア粒子、有機ケイ素化合物がシェルを形成しており、複合無機酸化物粉体は、コアシェル構造となっている。 As an aspect of surface modification of the gas phase method composite inorganic oxide particles, for example, a part or the whole of the surface of the gas phase method composite inorganic oxide particles may be coated with a layer of an organosilicon compound. In this case, the vapor phase method composite inorganic oxide particles form core particles, the organosilicon compound forms a shell, and the composite inorganic oxide powder has a core-shell structure.

表面改質剤として機能する有機ケイ素化合物としては、例えば、下記一般式(1)
SiR (4-n) (1)
(式中、Rは、炭素数1以上18以下の炭化水素基を表し、Rは、炭素数1以上18以下の炭化水素基、塩素原子、ヒドロキシ基または炭素数1~3のアルコキシ基、好ましくは炭素数1~2のアルコキシ基を表し、nは1~3の整数を表す。)で示される有機ケイ素化合物が挙げられる。一般式(1)におけるRは、窒素、酸素、リン等のヘテロ原子は含まず、炭素と水素のみのアルキル基である。一般式(1)の有機ケイ素化合物は、その化学構造中に窒素を有すると、帯電量特性に悪影響を与える場合がある。また、一般式(1)の有機ケイ素化合物は、その化学構造中に酸素を有すると、十分な疎水性が得られない可能性がある。Rのアルコキシ基は炭素数1~3であり、炭素数が4以上であると、反応性の低下により表面改質に長時間を要する。さらに、アルコキシ基の炭素数が4以上の有機ケイ素化合物は、一般的に工業的な入手が困難である。
Examples of the organosilicon compound that functions as a surface modifier include the following general formula (1).
R 5 n SiR 6 (4-n) (1)
(In the formula, R 5 represents a hydrocarbon group having 1 or more and 18 or less carbon atoms, and R 6 is a hydrocarbon group having 1 or more and 18 or less carbon atoms, a chlorine atom, a hydroxy group or an alkoxy group having 1 to 3 carbon atoms. , Preferably represents an alkoxy group having 1 to 2 carbon atoms, and n represents an integer of 1 to 3). R 5 in the general formula (1) is an alkyl group containing only carbon and hydrogen without containing heteroatoms such as nitrogen, oxygen and phosphorus. If the organosilicon compound of the general formula (1) has nitrogen in its chemical structure, it may adversely affect the charge amount characteristics. Further, if the organosilicon compound of the general formula (1) has oxygen in its chemical structure, sufficient hydrophobicity may not be obtained. The alkoxy group of R 6 has 1 to 3 carbon atoms, and when the number of carbon atoms is 4 or more, it takes a long time to modify the surface due to a decrease in reactivity. Further, organosilicon compounds having an alkoxy group having 4 or more carbon atoms are generally difficult to obtain industrially.

一般式(1)で示される有機ケイ素化合物のうち、表面改質剤として機能する有機ケイ素化合物としては、例えば、下記一般式(2)

Figure 2022047458000002
(式中、Rは、炭素数1以上18以下の炭化水素基を表し、R、R及びRは、それぞれ独立して塩素原子、ヒドロキシ基、または炭素数1~3のアルコキシ基、好ましくは、炭素数1~2のアルコキシ基を表す。)で示される有機ケイ素化合物が好ましい。一般式(2)におけるRは、窒素、酸素、リン等のヘテロ原子は含まず、炭素と水素のみのアルキル基である。一般式(2)の有機ケイ素化合物は、その化学構造中に窒素を有すると、帯電量特性に悪影響を与える場合がある。また、一般式(2)の有機ケイ素化合物は、その化学構造中に酸素を有すると、十分な疎水性が得られない可能性がある。R、R及びRのアルコキシ基は炭素数1~3であり、炭素数が4以上であると、反応性の低下により表面改質に長時間を要する。さらに、アルコキシ基の炭素数が4以上の有機ケイ素化合物は、一般的に工業的な入手が困難である。 Among the organosilicon compounds represented by the general formula (1), the organosilicon compound that functions as a surface modifier is, for example, the following general formula (2).
Figure 2022047458000002
(In the formula, R 1 represents a hydrocarbon group having 1 or more carbon atoms and 18 or less carbon atoms, and R 2 , R 3 and R 4 each independently have a chlorine atom, a hydroxy group, or an alkoxy group having 1 to 3 carbon atoms. , Preferably, the organosilicon compound represented by (representing an alkoxy group having 1 to 2 carbon atoms) is preferable. R 1 in the general formula (2) is an alkyl group containing only carbon and hydrogen without containing heteroatoms such as nitrogen, oxygen and phosphorus. If the organosilicon compound of the general formula (2) has nitrogen in its chemical structure, it may adversely affect the charge amount characteristics. Further, if the organosilicon compound of the general formula (2) has oxygen in its chemical structure, sufficient hydrophobicity may not be obtained. The alkoxy groups of R 2 , R 3 and R 4 have 1 to 3 carbon atoms, and when the number of carbon atoms is 4 or more, surface modification takes a long time due to a decrease in reactivity. Further, organosilicon compounds having an alkoxy group having 4 or more carbon atoms are generally difficult to obtain industrially.

また、表面改質剤として機能する有機ケイ素化合物としては、ヘキサメチルジシラザン等が挙げられる。 Examples of the organosilicon compound that functions as a surface modifier include hexamethyldisilazane and the like.

また、表面改質剤として機能する有機ケイ素化合物として、例えば、シリコーンオイルが挙げられる。シリコーンオイルの25℃における動粘度は、例えば、0.65mm/s~10000mm/sが挙げられる。シリコーンオイルに対して均一な表面改質を行う場合、シリコーンオイルを適当な溶媒に溶解させる必要があり、シリコーンオイルの動粘度が10000mm/s超の場合、表面改質を行うにあたり大過剰の溶媒量を必要とする。これは工程の複雑化およびコストアップ、さらには溶媒を揮発させる際には、複合無機酸化物粉体の凝集を生じさせやすいといった問題がある。 Further, examples of the organosilicon compound that functions as a surface modifier include silicone oil. The kinematic viscosity of the silicone oil at 25 ° C. is, for example, 0.65 mm 2 / s to 10000 mm 2 / s. When performing uniform surface modification to silicone oil, it is necessary to dissolve the silicone oil in an appropriate solvent, and when the kinematic viscosity of the silicone oil exceeds 10,000 mm 2 / s, a large excess is required for surface modification. Requires solvent amount. This has problems that the process is complicated, the cost is increased, and the composite inorganic oxide powder is likely to be aggregated when the solvent is volatilized.

本発明において、気相法複合無機酸化物粒子と表面改質剤を反応せしめる方法は、特に限定されず、一般的な例として、通常の表面改質法を用いることができる。具体的な例としては、表面改質剤を蒸発させて気相法複合無機酸化物粒子と接触させる方法、気相法複合無機酸化物粒子を流動させながら表面改質剤を気相法複合無機酸化物粒子の表面にスプレー等で噴霧する方法(乾式接触法)、表面改質剤を所定の溶媒に溶解させ、気相法複合無機酸化物粒子を、表面改質剤を溶解させた溶媒中に分散させる方法等が挙げられる。このうち、乾式接触法が複合無機酸化物粉体の凝集を防ぎ均一に処理する点で好適である。 In the present invention, the method for reacting the vapor phase method composite inorganic oxide particles with the surface modifier is not particularly limited, and a usual surface modification method can be used as a general example. Specific examples include a method of evaporating the surface modifier to bring it into contact with the gas phase composite inorganic oxide particles, and a method of flowing the vapor phase composite inorganic oxide particles while using the surface modifier as the vapor phase composite inorganic oxide. A method of spraying the surface of the oxide particles with a spray or the like (dry contact method), a surface modifier is dissolved in a predetermined solvent, and the vapor phase method composite inorganic oxide particles are dissolved in the solvent in which the surface modifier is dissolved. There is a method of dispersing in. Of these, the dry contact method is preferable in that it prevents the composite inorganic oxide powder from agglomerating and uniformly treats the composite inorganic oxide powder.

本発明における表面改質された気相法複合無機酸化物粒子(すなわち、気相法複合無機酸化物粒子の疎水化処理により得られた複合無機酸化物粉体)の炭素含有量は、特に限定されないが、適切な環境安定性と帯電性を確実に得つつ、水分等の吸着を防止する点から、0.5質量%以上11.0質量%以下が好ましい。気相法複合無機酸化物粒子の疎水化処理により得られた複合無機酸化物粉体の炭素含有量が0.5質量%未満である場合、表面改質剤による表面被覆が少ないことを示しており、適切な環境安定性、帯電性を確実に得ることができなくなる傾向がある。一方で、気相法複合無機酸化物粒子の疎水化処理により得られた複合無機酸化物粉体の炭素含有量が11.0重量%超では、過剰の表面改質剤の存在により反応しなかった表面改質剤が気相法複合無機酸化物粒子表面に多量に存在することを示し、反応しなかった表面改質剤に水分が吸着する、あるいは反応しなかった表面改質剤がその他の部材を汚染するなどの可能性がある。 The carbon content of the surface-modified surface-modified vapor phase composite inorganic oxide particles (that is, the composite inorganic oxide powder obtained by the hydrophobic treatment of the vapor phase composite inorganic oxide particles) in the present invention is particularly limited. However, it is preferably 0.5% by mass or more and 11.0% by mass or less from the viewpoint of preventing the adsorption of water and the like while surely obtaining appropriate environmental stability and chargeability. When the carbon content of the composite inorganic oxide powder obtained by the hydrophobic treatment of the vapor phase method composite inorganic oxide particles is less than 0.5% by mass, it indicates that the surface coating with the surface modifier is small. Therefore, it tends to be impossible to surely obtain appropriate environmental stability and chargeability. On the other hand, when the carbon content of the composite inorganic oxide powder obtained by the hydrophobization treatment of the vapor phase method composite inorganic oxide particles exceeds 11.0% by weight, the reaction does not occur due to the presence of an excess surface modifier. It is shown that a large amount of the surface modifier is present on the surface of the vapor-phase composite inorganic oxide particles, and water is adsorbed on the surface modifier that did not react, or the surface modifier that did not react is the other surface modifier. There is a possibility of contaminating the parts.

気相法複合無機酸化物粒子の表面処理に用いる表面改質剤である有機ケイ素化合物の使用量は、気相法複合無機酸化物粒子100質量部に対して、適切な環境安定性と帯電性を確実に得つつ、水分等の吸着を防止する点から、3.0質量部以上40質量部以下が好ましく、5.0質量部以上35質量部以下が特に好ましい。 The amount of the organic silicon compound, which is a surface modifier used for the surface treatment of the gas phase method composite inorganic oxide particles, is appropriate environmental stability and chargeability with respect to 100 parts by mass of the gas phase method composite inorganic oxide particles. From the viewpoint of preventing the adsorption of water and the like while reliably obtaining the above, 3.0 parts by mass or more and 40 parts by mass or less are preferable, and 5.0 parts by mass or more and 35 parts by mass or less are particularly preferable.

また、本発明における複合無機酸化物粉体の平均一次粒子径は、特に限定されないが、その下限値は、トナー粒子に埋没しやすくなって安定的な帯電挙動を示さなくなることを確実に防止する点から、7.0nmが好ましく、10nmが特に好ましい。一方で、複合無機酸化物粉体の平均一次粒子径の上限値は、トナー粒子に適度に埋没することができずにトナー粒子から離脱して安定した帯電挙動を示さなくなることを確実に防止する点から、100nmが好ましく、80nmが特に好ましい。 Further, the average primary particle diameter of the composite inorganic oxide powder in the present invention is not particularly limited, but the lower limit thereof reliably prevents the composite inorganic oxide powder from being easily buried in the toner particles and not exhibiting stable charging behavior. From the point of view, 7.0 nm is preferable, and 10 nm is particularly preferable. On the other hand, the upper limit of the average primary particle diameter of the composite inorganic oxide powder reliably prevents the composite inorganic oxide powder from being unable to be appropriately buried in the toner particles and detaching from the toner particles to exhibit stable charging behavior. From the point of view, 100 nm is preferable, and 80 nm is particularly preferable.

次に、本発明の複合無機酸化物粉体の製造方法について説明する。ここでは、気相法複合無機酸化物粒子の疎水化処理により得られる複合無機酸化物粉体の製造方法について説明する。 Next, the method for producing the composite inorganic oxide powder of the present invention will be described. Here, a method for producing a composite inorganic oxide powder obtained by hydrophobizing the vapor phase method composite inorganic oxide particles will be described.

本発明の上記複合無機酸化物粉体の製造方法は、シリカ原料とアルミナ原料を火炎中に導入して気相分解法にて、アルミナ含有量が0.2質量%以上20質量%以下の気相法複合無機酸化物粒子を得る、気相法複合無機酸化物粒子調製工程と、気相法複合無機酸化物粒子の表面に表面改質剤である有機ケイ素化合物を施与する、有機ケイ素化合物供給工程と、気相法複合無機酸化物粒子と表面改質剤である有機ケイ素化合物を反応させる反応工程と、有機ケイ素化合物が施与されて該有機ケイ素化合物を反応させた気相法複合無機酸化物粒子を、100℃以上370℃以下の加熱温度、15分以上350分以下の加熱時間にて加熱する加熱工程と、を含む。 The method for producing the above-mentioned composite inorganic oxide powder of the present invention is a gas phase decomposition method in which a silica raw material and an alumina raw material are introduced into a flame, and the alumina content is 0.2% by mass or more and 20% by mass or less. A vapor phase composite inorganic oxide particle preparation step for obtaining a phase composite inorganic oxide particle, and an organic silicon compound for applying an organic silicon compound as a surface modifier to the surface of the gas phase composite inorganic oxide particle. A supply step, a reaction step of reacting a gas phase composite inorganic oxide particle with an organic silicon compound as a surface modifier, and a vapor phase composite inorganic in which an organic silicon compound is applied and the organic silicon compound is reacted. A heating step of heating the oxide particles at a heating temperature of 100 ° C. or higher and 370 ° C. or lower and a heating time of 15 minutes or longer and 350 minutes or lower is included.

本発明の上記複合無機酸化物粉体を製造するにあたり、上記加熱工程では、不活性ガス雰囲気下、気相法複合無機酸化物粒子を熱処理温度100℃以上370℃以下、好ましくは100℃以上350℃以下、特に好ましくは150℃以上250℃以下、加熱時間15分以上350分以下、好ましくは15分以上300分以下、特に好ましくは30分以上120分以下で熱処理する必要がある。不活性ガスは、特に限定されないが、窒素、ヘリウム、アルゴン等の酸素を含まないガスを用いる必要がある。不活性ガス雰囲気下とするのは、加熱中に表面改質剤と酸素との反応による燃焼を防止する為である。また、不活性ガス雰囲気下とするのは、酸素が存在することにより表面酸化によって改質後の複合無機酸化物粉体が変色するなどの問題が生じることを防止するためである。 In producing the composite inorganic oxide powder of the present invention, in the heating step, the gas phase composite inorganic oxide particles are heat-treated at a heat treatment temperature of 100 ° C. or higher and 370 ° C. or lower, preferably 100 ° C. or higher and 350 ° C. or higher in an inert gas atmosphere. It is necessary to heat-treat at ° C. or lower, particularly preferably 150 ° C. or higher and 250 ° C. or lower, and a heating time of 15 minutes or longer and 350 minutes or shorter, preferably 15 minutes or longer and 300 minutes or shorter, and particularly preferably 30 minutes or longer and 120 minutes or shorter. The inert gas is not particularly limited, but it is necessary to use a gas containing no oxygen such as nitrogen, helium, and argon. The atmosphere of the inert gas is to prevent combustion due to the reaction between the surface modifier and oxygen during heating. Further, the reason why the atmosphere is an inert gas is to prevent problems such as discoloration of the modified composite inorganic oxide powder due to surface oxidation due to the presence of oxygen.

上記加熱工程における熱処理温度が100℃未満の場合、反応が十分に進行せず所定の疎水化度が得られないという問題がある。一方、熱処理温度が370℃を超えると表面改質剤の分解が生じ、表面改質により得られる上記複合無機酸化物粉体に変色が生じるという問題がある。上記加熱工程における加熱時間が15分未満の場合、反応が十分に進行せず、また、溶媒や副生成物が、得られた上記複合無機酸化物粉体に残留する可能性がある。一方、上記加熱工程における加熱時間が350分超でも、350分以下の場合と比較して特性に顕著な相違は見られず、製造時間、製造コスト等の観点から350分以下の範囲で行うことが好ましい。 When the heat treatment temperature in the heating step is less than 100 ° C., there is a problem that the reaction does not proceed sufficiently and a predetermined degree of hydrophobicity cannot be obtained. On the other hand, when the heat treatment temperature exceeds 370 ° C., there is a problem that the surface modifier is decomposed and the composite inorganic oxide powder obtained by the surface modification is discolored. If the heating time in the heating step is less than 15 minutes, the reaction may not proceed sufficiently, and the solvent and by-products may remain in the obtained composite inorganic oxide powder. On the other hand, even if the heating time in the above heating step exceeds 350 minutes, no significant difference in characteristics is observed as compared with the case of 350 minutes or less, and the heating time should be within the range of 350 minutes or less from the viewpoint of manufacturing time, manufacturing cost and the like. Is preferable.

次に、本発明の複合無機酸化物粉体に関する諸物性の測定方法について、以下に説明する。 Next, a method for measuring various physical properties of the composite inorganic oxide powder of the present invention will be described below.

〔アルミナ含有量の測定〕
エネルギー分散型蛍光X線分析装置を用いて気相法複合無機酸化物粒子の元素分析を行い、アルミナ含有量の測定を行う。
[Measurement of alumina content]
Elemental analysis of the gas phase method composite inorganic oxide particles is performed using an energy dispersive fluorescent X-ray analyzer, and the alumina content is measured.

〔疎水化度の測定〕
複合無機酸化物粉体1gを200mLの分液ロートに量り取り、これに純水100mLを加えて栓をし、ターブラーミキサーにて90rpmで10分間振とう後、10分間静置する。静置後、下層の混合液を10mm石英セルに採取し、純水をブランクとして、波長500nmの光の透過率を分光光度計にて測定し、この値を疎水化度とする。
[Measurement of hydrophobicity]
Weigh 1 g of the composite inorganic oxide powder into a 200 mL separatory funnel, add 100 mL of pure water to the funnel, plug it, shake it at 90 rpm at 90 rpm for 10 minutes, and let it stand for 10 minutes. After standing, the lower mixed solution is collected in a 10 mm quartz cell, the transmittance of light having a wavelength of 500 nm is measured with a spectrophotometer using pure water as a blank, and this value is taken as the degree of hydrophobicity.

〔体積抵抗率の測定(JIS K 6911)〕
複合無機酸化物粉体0.5gを粉体抵抗測定システム(株式会社三菱ケミカルアナリテック社:MCP―PD51型)の粉体用プローブユニットに投入し、5kNの圧力下にて株式会社三菱ケミカルアナリテック製抵抗率測定装置(商品名:ハイレスターUX)にて体積抵抗率の測定を行う。
[Measurement of volume resistivity (JIS K 6911)]
0.5 g of composite inorganic oxide powder was put into a probe unit for powder of a powder resistivity measurement system (Mitsubishi Chemical Analytech Co., Ltd .: MCP-PD51 type), and Mitsubishi Chemical Analyst Co., Ltd. under a pressure of 5 kN. The volume resistivity is measured with a tech resistivity measuring device (trade name: High Lester UX).

〔帯電量の測定〕
複合無機酸化物粉体1gと負帯電性トナー100gとをミキサーにて攪拌混合してトナー組成物を得、このトナー組成物2gと鉄粉キャリア48gとをガラス容器(75ml容量)に入れ、HH環境下およびLL環境下に40時間以上静置する。ここでHH環境下とは温度32.5℃、湿度80%の雰囲気、LL環境下とは温度10℃、湿度10%の雰囲気を意味する。上記条件にて調製されたサンプルをターブラーミキサーで振とうさせ、トナー組成物と鉄粉キャリアの混合物を0.05g採取し、トレックジャパン株式会社製吸引ブローオフ型Q/mメーター(商品名:MODEL230TO)で10秒間ブローオフした後の値をトナー組成物の帯電量とする。
[Measurement of charge amount]
1 g of the composite inorganic oxide powder and 100 g of the negatively charged toner are stirred and mixed with a mixer to obtain a toner composition, and 2 g of the toner composition and 48 g of the iron powder carrier are placed in a glass container (75 ml capacity) and HH. Let stand in the environment and LL environment for 40 hours or more. Here, the HH environment means an atmosphere having a temperature of 32.5 ° C. and a humidity of 80%, and the LL environment means an atmosphere having a temperature of 10 ° C. and a humidity of 10%. The sample prepared under the above conditions is shaken with a turbulator mixer to collect 0.05 g of a mixture of the toner composition and the iron powder carrier, and a suction blow-off type Q / m meter manufactured by Trek Japan Co., Ltd. (trade name: MODEL230TO). ) Is blown off for 10 seconds, and the value is taken as the charge amount of the toner composition.

〔環境安定性(環境変動比)の評価〕
上記帯電量のHH環境下とLL環境下の比(HH/LL)を環境変動比とし環境変動比が0.48以上のものを環境差が小さく環境安定性に優れるとした。
[Evaluation of environmental stability (ratio of environmental fluctuation)]
The ratio (HH / LL) of the charge amount under the HH environment and the LL environment was defined as the environmental fluctuation ratio, and the ratio of the environmental fluctuation ratio of 0.48 or more was considered to have a small environmental difference and excellent environmental stability.

〔帯電立ち上がり特性の評価〕
上記帯電量のLL環境下における1分間ターブラーミキサーにて振とうを行ったときの値を30分間振とうしたときの値で除した値を帯電立ち上がりの数値とする。帯電立ち上がりの値が1に近いほど短い振とう時間で十分に帯電していることを示す。帯電立ち上がりの数値が0.36以上のものを帯電立ち上がり特性に優れるとした。
[Evaluation of charge rise characteristics]
The value obtained by dividing the value when shaking with a turbobler mixer for 1 minute under the LL environment of the above-mentioned charge amount by the value when shaking for 30 minutes is taken as the value of the charge rise. The closer the value of the charge rise is to 1, the shorter the shaking time is, and the more the charge is sufficiently charged. Those with a charge rise value of 0.36 or more are considered to have excellent charge rise characteristics.

〔炭素含有量の測定〕
表面改質剤で表面処理して得られた複合無機酸化物粉体の炭素含有量は、炭素分析装置(株式会社住化分析センター製、商品名:SUMIGRAPH NC-22)を用いて、次の条件により測定することができる。
検出器の条件:「INJ/DET」=100℃、「COL」=70℃
ガス流速:O=350ml/min、He=80ml/min
[Measurement of carbon content]
The carbon content of the composite inorganic oxide powder obtained by surface-treating with a surface modifier was determined by using a carbon analyzer (manufactured by Sumika Chemical Analysis Service, Inc., trade name: SUMIGRAPH NC-22) as follows. It can be measured depending on the conditions.
Detector conditions: "INJ / DET" = 100 ° C, "COL" = 70 ° C
Gas flow rate: O 2 = 350 ml / min, He = 80 ml / min

〔平均一次粒子径の測定〕
透過型電子顕微鏡にて撮影した画像を解析して求めた。具体的には視野を変えて50の画像を撮影し、2500個の複合無機酸化物粉体についてその平均一次粒子径を画像解析し、個数平均にて算出する。
[Measurement of average primary particle size]
It was obtained by analyzing the image taken with a transmission electron microscope. Specifically, 50 images are taken with different fields of view, the average primary particle size of 2500 composite inorganic oxide powders is image-analyzed, and the number is averaged.

本発明の複合無機酸化物粉体は、粉体塗料の外添剤用または電子写真のトナーの外添剤用として使用することができる。 The composite inorganic oxide powder of the present invention can be used as an external agent for powder coating materials or as an external agent for toners for electrophotographic photographs.

本発明の複合無機酸化物粉体が粉体塗料の外添剤として用いられることで、本発明の複合無機酸化物粉体を含有する粉体塗料組成物が得られる。また、本発明の複合無機酸化物粉体が電子写真のトナーの外添剤として用いられることで、本発明の複合無機酸化物粉体を含有する電子写真のトナー組成物が得られる。 By using the composite inorganic oxide powder of the present invention as an external additive for a powder coating material, a powder coating composition containing the composite inorganic oxide powder of the present invention can be obtained. Further, by using the composite inorganic oxide powder of the present invention as an external additive for the toner for electrophotographic, an electrophotographic toner composition containing the composite inorganic oxide powder of the present invention can be obtained.

以下に、本発明の複合無機酸化物粉体を含有する電子写真用トナー組成物の製造方法について説明する。 Hereinafter, a method for producing an electrophotographic toner composition containing the composite inorganic oxide powder of the present invention will be described.

本発明の電子写真用トナー組成物の製造にあたり、本発明の複合無機酸化物粉体の添加量は、所望の特性向上効果が得られるような添加量であれば良く、特に制限されないが、電子写真用トナー組成物中に、本発明の複合無機酸化物粉体が0.1質量%~6.0質量%含有されていることが好ましい。電子写真用トナー組成物中の本発明の複合無機酸化物粉体の含有量が0.1質量%未満では、この複合無機酸化物粉体を添加したことによる帯電に関する諸効果が十分に得られない。また複合無機酸化物粉体の含有量が6.0質量%を超えるとトナー表面から脱離して複合無機酸化物粉体が単体で存在するようになり、画像特性やクリーニング特性に問題が生じてくる。 In the production of the toner composition for electrophotographic of the present invention, the amount of the composite inorganic oxide powder of the present invention added may be any amount as long as it can obtain the desired effect of improving the characteristics, and is not particularly limited. It is preferable that the composite inorganic oxide powder of the present invention is contained in the photographic toner composition in an amount of 0.1% by mass to 6.0% by mass. When the content of the composite inorganic oxide powder of the present invention in the toner composition for electrophotographic is less than 0.1% by mass, various effects related to charging due to the addition of this composite inorganic oxide powder can be sufficiently obtained. do not have. Further, when the content of the composite inorganic oxide powder exceeds 6.0% by mass, the composite inorganic oxide powder is separated from the toner surface and the composite inorganic oxide powder exists as a single substance, which causes problems in image characteristics and cleaning characteristics. come.

電子写真用トナー組成物中の本発明の複合無機酸化物粉体の含有量S(質量%)は、原料粉末の平均一次粒子径R(nm)に対して、R/40≦S≦R/7の範囲であることが好ましく、R/25≦S≦R/15の範囲であることがより好ましく、特にS=R/20であることが好ましい。 The content S (mass%) of the composite inorganic oxide powder of the present invention in the toner composition for electrophotographic is R / 40 ≦ S ≦ R / with respect to the average primary particle diameter R (nm) of the raw material powder. It is preferably in the range of 7, more preferably in the range of R / 25 ≦ S ≦ R / 15, and particularly preferably S = R / 20.

電子写真用トナー組成物には、一般に、熱可塑性樹脂の他、少量の顔料及び電荷制御剤、その他の外添剤が含まれている。本発明では、上記複合無機酸化物粉体が配合されていれば、他の成分は従来と同様で良く、磁性、非磁性の1成分系トナー、2成分系トナーのいずれでも良い。また、負帯電性トナー、正帯電性トナーのいずれでも良く、モノクロ、カラーのいずれでも良い。 The electrophotographic toner composition generally contains a thermoplastic resin, as well as a small amount of pigment, a charge control agent, and other external additives. In the present invention, as long as the composite inorganic oxide powder is blended, the other components may be the same as those in the prior art, and may be either magnetic or non-magnetic one-component toner or two-component toner. Further, either negatively charged toner or positively charged toner may be used, and either monochrome or color may be used.

なお、本発明の電子写真用トナー組成物の製造にあたり、外添剤としての本発明の複合無機酸化物粉体は単独で使用されるに限られず、目的に応じて他の金属酸化物粒子等と併用しても良い。例えば、上記複合無機酸化物粉体と、他の表面改質された乾式シリカ微粒子や表面改質された乾式酸化チタン微粒子や改質された湿式酸化チタン微粒子等を併用することができる。 In the production of the toner composition for electrophotographic of the present invention, the composite inorganic oxide powder of the present invention as an external additive is not limited to being used alone, and other metal oxide particles or the like may be used depending on the purpose. May be used in combination with. For example, the above-mentioned composite inorganic oxide powder can be used in combination with other surface-modified dry silica fine particles, surface-modified dry titanium oxide fine particles, modified wet titanium oxide fine particles, and the like.

次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、実施例の態様に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to the embodiments of the examples as long as the gist of the present invention is not exceeded.

<実施例1>
複合無機酸化物の製造を以下のようにして行った。気相法複合無機酸化物粒子の製造装置として、炎管と、炎管の上部に鉛直に伸延した、水素、空気、ガス状のSiCl及びガス状のAlClを炎管に供給する二重壁の原料供給管と、炎管の上部に斜め方向に伸延した、付加的に空気を供給する空気供給管と、を備えた装置(欧州特許第0585544号明細書の実施例1に記載されている公知の製造装置)を用いた。上記製造装置を用いて、核水素または反応水素1.4Nm/h、空気5.5Nm/hおよびあらかじめ蒸発させたガス状のSiCl3.60kg/hと一緒に混合した。この約200℃の熱混合物中に、更にあらかじめ蒸発させたガス状のAlCl 0.04kg/hを付加的に供給した。得られた混合物を炎管中で燃焼させ、その際にこれらの炎管中に付加的に空気12Nm/hを供給した。炎管通過後に生じた粉末をフィルターまたはサイクロン中で、塩酸含有ガスから分離した。付着した塩酸残留物を高温で処理することによって得られた気相法複合無機酸化物粒子をフィルターまたはサイクロンから分離した。気相法複合無機酸化物粒子は次の分析データを有していた。
<Example 1>
The composite inorganic oxide was produced as follows. Gas phase method As a device for producing composite inorganic oxide particles, a flame tube and a double that supplies hydrogen, air, gaseous SiC4 and gaseous AlCl 3 vertically extended to the upper part of the flame tube to the flame tube. Described in Example 1 of Japanese Patent No. 0585544, an apparatus comprising a wall material supply tube and an air supply tube that extends diagonally above the flame tube to additionally supply air. A known manufacturing device) was used. Using the above production equipment, nuclear hydrogen or reactive hydrogen 1.4 Nm 3 / h, air 5.5 Nm 3 / h and pre-evaporated gaseous SiC 4 3.60 kg / h were mixed together. Further, pre-evaporated gaseous AlCl 3 0.04 kg / h was additionally supplied to the thermal mixture at about 200 ° C. The obtained mixture was burned in the flame tubes, and an additional 12 Nm 3 / h of air was supplied into these flame tubes. The powder generated after passing through the flame tube was separated from the hydrochloric acid-containing gas in a filter or cyclone. The vapor phase composite inorganic oxide particles obtained by treating the adhering hydrochloric acid residue at high temperature were separated from the filter or cyclone. The vapor phase composite inorganic oxide particles had the following analytical data.

BET比表面積40m/g、4質量%分散液のpH値4.5、かさ密度50g/l、気相法複合無機酸化物粒子の組成Al 1質量%、SiO 99質量%。 BET specific surface area 40 m 2 / g, pH value of 4 mass% dispersion liquid 4.5, bulk density 50 g / l, composition of gas phase method composite inorganic oxide particles Al 2 O 3 1 mass%, SiO 2 99 mass%.

このようにして得られた気相法複合無機酸化物粒子を原料粉末として用い、イソブチルトリメトキシシラン(エボニック インダストリーズAG製 商品名「Dynasylan(商標登録)IBTMO」)を表面改質剤として用いた。気相法複合無機酸化物粒子100質量部を反応容器に入れ、窒素雰囲気下、攪拌により気相法複合無機酸化物粒子を流動状態とし、表面改質剤5質量部を噴霧した。攪拌を継続した状態で室温から150℃まで昇温させ、150℃で30分間保持した。その後、冷却することにより、表面改質された気相法複合無機酸化物粒子である複合無機酸化物粉体を得た。このようにして得られた複合無機酸化物粉体について、上記した測定方法により、平均一次粒子径、炭素含有量、体積抵抗率、疎水化度(疎水率)の測定を行った。 The vapor phase method composite inorganic oxide particles thus obtained were used as a raw material powder, and isobutyltrimethoxysilane (trade name "Dynasylan (trademark) IBTMO" manufactured by Evonik Industries AG) was used as a surface modifier. 100 parts by mass of the vapor phase composite inorganic oxide particles were placed in a reaction vessel, and the vapor phase composite inorganic oxide particles were made to flow by stirring under a nitrogen atmosphere, and 5 parts by mass of the surface modifier was sprayed. The temperature was raised from room temperature to 150 ° C. with continuous stirring, and the temperature was maintained at 150 ° C. for 30 minutes. Then, by cooling, a composite inorganic oxide powder which is a surface-modified vapor phase composite inorganic oxide particle was obtained. With respect to the composite inorganic oxide powder thus obtained, the average primary particle size, carbon content, volume resistivity, and hydrophobicity (hydrophobicity) were measured by the above-mentioned measuring methods.

また、このようにして得られた複合無機酸化物粉体1質量部を、ポリエステルを含有するトナー100質量部に添加してトナー組成物を得た。得られたトナー組成物について、所定条件における帯電量である環境安定性(環境変動比)と帯電立ち上がり特性を、上記した測定方法により評価した。 Further, 1 part by mass of the composite inorganic oxide powder thus obtained was added to 100 parts by mass of the toner containing polyester to obtain a toner composition. With respect to the obtained toner composition, the environmental stability (environmental fluctuation ratio), which is the amount of charge under predetermined conditions, and the charge rise characteristic were evaluated by the above-mentioned measuring method.

上記項目の測定結果を表1に示す。 The measurement results of the above items are shown in Table 1.

<実施例2>
表面改質剤の添加量を10質量部とした以外は実施例1と同様の処理を行って複合無機酸化物粉体を得た。
<Example 2>
The same treatment as in Example 1 was carried out except that the amount of the surface modifier added was 10 parts by mass to obtain a composite inorganic oxide powder.

<実施例3>
気相法複合無機酸化物粒子のBET比表面積が80m/gであり、表面改質剤量を10質量部とした以外は実施例1と同様の処理を行った。
<Example 3>
The same treatment as in Example 1 was carried out except that the BET specific surface area of the vapor-phase composite inorganic oxide particles was 80 m 2 / g and the amount of the surface modifier was 10 parts by mass.

<実施例4>
気相法複合無機酸化物粒子のBET比表面積が80m/gであり表面改質剤量を20質量部とした以外は実施例1と同様の処理を行った。
<Example 4>
The same treatment as in Example 1 was carried out except that the BET specific surface area of the vapor-phase composite inorganic oxide particles was 80 m 2 / g and the amount of the surface modifier was 20 parts by mass.

<実施例5>
気相法複合無機酸化物粒子のBET比表面積が170m/gであり、表面改質剤量を15質量部とした以外は実施例1と同様の処理を行った。
<Example 5>
The same treatment as in Example 1 was carried out except that the BET specific surface area of the vapor-phase composite inorganic oxide particles was 170 m 2 / g and the amount of the surface modifier was 15 parts by mass.

<実施例6>
気相法複合無機酸化物粒子のBET比表面積が170m/gであり、表面改質剤量を30質量部、処理温度を200℃とした以外は実施例1と同様の処理を行った。
<Example 6>
The same treatment as in Example 1 was carried out except that the BET specific surface area of the vapor-phase composite inorganic oxide particles was 170 m 2 / g, the amount of the surface modifier was 30 parts by mass, and the treatment temperature was 200 ° C.

<実施例7>
気相法複合無機酸化物粒子中のアルミナ成分が0.3質量%であり、BET比表面積が110m/gであり、表面改質剤量を12質量部、処理時間を60分とした以外は実施例1と同様の処理を行った。
<Example 7>
Except that the alumina component in the vapor phase composite inorganic oxide particles was 0.3% by mass, the BET specific surface area was 110 m 2 / g, the amount of the surface modifier was 12 parts by mass, and the treatment time was 60 minutes. Performed the same processing as in Example 1.

<実施例8>
気相法複合無機酸化物粒子中のアルミナ成分が0.3質量%であり、BET比表面積が110m/gであり、表面改質剤量を24質量部とした以外は実施例1と同様の処理を行った。
<Example 8>
Gas phase method Same as Example 1 except that the alumina component in the composite inorganic oxide particles is 0.3% by mass, the BET specific surface area is 110 m 2 / g, and the amount of the surface modifier is 24 parts by mass. Was processed.

<実施例9>
気相法複合無機酸化物粒子のBET比表面積が200m/gであり、ヘキサデシルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)9116」)25質量部を表面改質剤として用い、処理温度を200℃とした以外は実施例1と同様の処理を行った。
<Example 9>
The BET specific surface area of the vapor-phase composite inorganic oxide particles is 200 m 2 / g, and 25 parts by mass of hexadecyltrimethoxysilane (trade name "Dynasylan (trademark registration) 9116" manufactured by Evonik Industries AG) is used as a surface modifier. The same treatment as in Example 1 was carried out except that the treatment temperature was set to 200 ° C.

<実施例10>
気相法複合無機酸化物粒子中のアルミナ成分が5質量%であり、BET比表面積が200m/gであり、ヘキサデシルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)9116」)25質量部を表面改質剤として用いた以外は実施例1と同様の処理を行った。
<Example 10>
Gas phase method The alumina component in the composite inorganic oxide particles is 5% by mass, the BET specific surface area is 200 m 2 / g, and hexadecyltrimethoxysilane (trade name "Dynasylan (registered trademark) 9116" manufactured by Ebony Industries AG). ) The same treatment as in Example 1 was carried out except that 25 parts by mass was used as the surface modifier.

<実施例11>
気相法複合無機酸化物粒子中のアルミナ成分が7質量%であり、BET比表面積が200m/gであり、ヘキサデシルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)9116」)25質量部を表面改質剤として用いた以外は実施例1と同様の処理を行った。
<Example 11>
Gas phase method The alumina component in the composite inorganic oxide particles is 7% by mass, the BET specific surface area is 200 m 2 / g, and hexadecyltrimethoxysilane (trade name "Dynasylan (registered trademark) 9116" manufactured by Ebony Industries AG). ) The same treatment as in Example 1 was carried out except that 25 parts by mass was used as the surface modifier.

<実施例12>
気相法複合無機酸化物粒子のBET比表面積が170m/gであり、ヘキサデシルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)9116」)25質量部を表面改質剤として用いた以外は実施例1と同様の処理を行った。
<Example 12>
The BET specific surface area of the vapor-phase composite inorganic oxide particles is 170 m 2 / g, and 25 parts by mass of hexadecyltrimethoxysilane (trade name "Dynasylan (trademark registration) 9116" manufactured by Evonik Industries AG) is used as a surface modifier. The same treatment as in Example 1 was performed except that it was used.

<実施例13>
気相法複合無機酸化物粒子のBET比表面積が170m/gであり、ヘキサメチルジシラザン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)HMDS」)25質量部を表面改質剤として用いた以外は実施例1と同様の処理を行った。
<Example 13>
The BET specific surface area of the vapor-phase composite inorganic oxide particles is 170 m 2 / g, and 25 parts by mass of hexamethyldisilazane (trade name "Dynasylan (trademark) HMDS" manufactured by Evonik Industries AG) is used as a surface modifier. The same treatment as in Example 1 was performed except that the particles were present.

<実施例14>
気相法複合無機酸化物粒子中のアルミナ成分が18質量%であり、BET比表面積が170m/gであり、シリコーンオイル(ポリジメチルシロキサン;信越化学工業株式会社製 商品名「KF96-50cs」)15質量部を表面改質剤として用い、処理時間を20分とした以外は実施例1と同様の処理を行った。
<Example 14>
Gas phase method The alumina component in the composite inorganic oxide particles is 18% by mass, the BET specific surface area is 170 m 2 / g, and silicone oil (polydimethylsiloxane; manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KF96-50cs"". ) 15 parts by mass was used as a surface modifier, and the same treatment as in Example 1 was carried out except that the treatment time was set to 20 minutes.

<実施例15>
気相法複合無機酸化物粒子中のアルミナ成分が5質量%であり、BET比表面積が80m/gであり、イソブチルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)IBTMO」)15質量部を表面改質剤として用い、処理温度を120℃、処理時間を300分とした以外は実施例1と同様の処理を行った。
<Example 15>
Gas phase method The alumina component in the composite inorganic oxide particles is 5% by mass, the BET specific surface area is 80 m 2 / g, and isobutyltrimethoxysilane (trade name "Dynasylan (registered trademark) IBTMO" manufactured by Ebony Industries AG). Using 15 parts by mass as a surface modifier, the same treatment as in Example 1 was carried out except that the treatment temperature was 120 ° C. and the treatment time was 300 minutes.

<実施例16>
気相法複合無機酸化物粒子中のアルミナ成分が5質量%であり、BET比表面積が80m/gであり、シリコーンオイル(ポリジメチルシロキサン;信越化学工業株式会社製商品名「KF96-50cs」)10質量部を表面改質剤として用い、処理温度を320℃、処理時間を20分とした以外は実施例1と同様の処理を行った。
<Example 16>
The alumina component in the vapor phase method composite inorganic oxide particles is 5% by mass, the BET specific surface area is 80 m 2 / g, and silicone oil (polydimethylsiloxane; trade name "KF96-50cs" manufactured by Shin-Etsu Chemical Co., Ltd. " ) 10 parts by mass was used as a surface modifier, and the same treatment as in Example 1 was carried out except that the treatment temperature was 320 ° C. and the treatment time was 20 minutes.

<比較例1>
処理時間を10分とした以外は実施例1と同様の処理を行った。
<Comparative Example 1>
The same treatment as in Example 1 was performed except that the treatment time was set to 10 minutes.

<比較例2>
原料粉末に、気相法複合無機酸化物粒子に代えてフュームドシリカ粉末(日本アエロジル株式会社製 商品名「AEROSIL(商標登録)200」)を用い、ヘキサデシルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)9116」)40質量部、処理時間を200分とした以外は実施例1と同様の処理を行った。
<Comparative Example 2>
Hexadecyltrimethoxysilane (Evonik Industries AG product) uses fumed silica powder (trade name "AEROSIL (registered trademark) 200" manufactured by Nippon Aerosil Co., Ltd.) instead of vapor phase composite inorganic oxide particles as the raw material powder. The same treatment as in Example 1 was carried out except that the name “Dynasylan (registered trademark) 9116”) was 40 parts by mass and the treatment time was 200 minutes.

<比較例3>
原料粉末に、気相法複合無機酸化物粒子に代えてフュームドシリカ粉末(日本アエロジル株式会社製 商品名「AEROSIL(商標登録)200」)を用い、シリコーンオイル(ポリジメチルシロキサン;信越化学工業株式会社製 商品名「KF96-50cs」)20質量部を表面改質剤として用い、処理温度を300℃、処理時間を300分とした以外は実施例1と同様の処理を行った。
<Comparative Example 3>
Silicone oil (polydimethylsiloxane; Shin-Etsu Chemical Co., Ltd.) is used as the raw material powder instead of fumed silica powder (trade name "AEROSIL (registered trademark) 200" manufactured by Nippon Aerosil Co., Ltd.) instead of the vapor phase composite inorganic oxide particles. Company-manufactured product name “KF96-50cs”) 20 parts by mass was used as a surface modifier, and the same treatment as in Example 1 was carried out except that the treatment temperature was 300 ° C. and the treatment time was 300 minutes.

<比較例4>
原料粉末に、気相法複合無機酸化物粒子に代えてフュームドアルミナ粉末(エボニック インダストリーズAG製 商品名「AEROXIDE(商標登録)AluC」)を用い、オクチルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)OCTMO」)13質量部を表面改質剤として用い、処理時間を130分とした以外は実施例1と同様の処理を行った。
<Comparative Example 4>
Fumed alumina powder (trade name "AEROXIDE (trademark) AluC" manufactured by Evonik Industries AG) is used as the raw material powder instead of the vapor-phase composite inorganic oxide particles, and octyltrimethoxysilane (trade name "AEVONIC Industries AG"). Dynasylan (registered trademark) OCTMO ”) 13 parts by mass was used as a surface modifier, and the same treatment as in Example 1 was carried out except that the treatment time was set to 130 minutes.

<比較例5>
原料粉末に、気相法複合無機酸化物粒子に代えてフュームドチタニア粉末(日本アエロジル株式会社製 商品名「AEROXIDE(商標登録)TiOP90」)を用い、イソブチルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)IBTMO」)15質量部を表面改質剤として用い、処理時間を150分とした以外は実施例1と同様の処理を行った。
<Comparative Example 5>
As the raw material powder, fumed titania powder (trade name "AEROXIDE (trademark) TiO 2 P90" manufactured by Nippon Aerosil Co., Ltd.) is used instead of the vapor phase method composite inorganic oxide particles, and isobutyltrimethoxysilane (manufactured by Evonik Industries AG). The same treatment as in Example 1 was carried out except that 15 parts by mass of the product name “Dynasylan (registered trademark) IBTMO”) was used as a surface modifier and the treatment time was set to 150 minutes.

<比較例6>
処理温度を400℃、処理時間を120分とした以外は実施例1と同様の処理を行った。
<Comparative Example 6>
The same treatment as in Example 1 was carried out except that the treatment temperature was 400 ° C. and the treatment time was 120 minutes.

<比較例7>
処理温度を80℃、処理時間を150分とした以外は実施例1と同様の処理を行った。
<Comparative Example 7>
The same treatment as in Example 1 was carried out except that the treatment temperature was 80 ° C. and the treatment time was 150 minutes.

<比較例8>
表面改質剤としてシリコーンオイル(ポリジメチルシロキサン;信越化学工業株式会社製 商品名「KF96-50cs 」)20質量部を表面改質剤として用い、処理温度を80℃、処理時間を10分とした以外は実施例1と同様の処理を行った。
<Comparative Example 8>
As a surface modifier, 20 parts by mass of silicone oil (polydimethylsiloxane; trade name "KF96-50cs" manufactured by Shin-Etsu Chemical Co., Ltd.) was used as a surface modifier, and the treatment temperature was 80 ° C. and the treatment time was 10 minutes. Except for the above, the same treatment as in Example 1 was performed.

上記実施例及び比較例に記載の処理条件を下記表1に、表面改質剤の対応表を下記表2に、物性データおよび応用特性を下記表3にまとめて記載する。 The treatment conditions described in the above Examples and Comparative Examples are summarized in Table 1 below, the correspondence table of surface modifiers is shown in Table 2 below, and the physical property data and application characteristics are summarized in Table 3 below.

Figure 2022047458000003
Figure 2022047458000003

Figure 2022047458000004
Figure 2022047458000004

Figure 2022047458000005
Figure 2022047458000005

上記表1、3から、実施例と比較例1、6、7、8とを比較することにより、気相法複合無機酸化物粒子が適切な加熱条件で処理された実施例の複合無機酸化物粉体は、良好な環境変動比(すなわち、環境安定性)と良好な帯電立ち上がり特性を示した。また、実施例では、体積抵抗率が1.0×1011Ω・cm以上9.0×1014Ω・cm以下であり、適切な帯電量とすることができることが判明した。一方で、比較例1、6、7では、体積抵抗率が1.0×1011Ω・cm未満であり、また、良好な環境変動比(すなわち、環境安定性)と良好な帯電立ち上がり特性を両立させることができなかった。 From Tables 1 and 3 above, by comparing Examples with Comparative Examples 1, 6, 7, and 8, the composite inorganic oxide of Examples in which the vapor phase method composite inorganic oxide particles were treated under appropriate heating conditions. The powder showed a good environmental variation ratio (ie, environmental stability) and good charge rise characteristics. Further, in the examples, it was found that the volume resistivity was 1.0 × 10 11 Ω · cm or more and 9.0 × 10 14 Ω · cm or less, and an appropriate charge amount could be obtained. On the other hand, in Comparative Examples 1, 6 and 7, the volume resistivity is less than 1.0 × 10 11 Ω · cm, and a good environmental fluctuation ratio (that is, environmental stability) and a good charge rise characteristic are obtained. I couldn't make it compatible.

実施例と比較例2、3、4の比較から、気相法複合無機酸化物粒子に代えてフュームドシリカおよびフュームドアルミナを用いると、体積抵抗率が1.0×1011Ω・cm未満または体積抵抗率が1.0×1015Ω・cm以上となり、適切な帯電量とすることができないことが判明した。また、比較例2、3、4では、良好な環境変動比は得られたものの、帯電立ち上がり特性についてはやや劣る傾向にあることが確認された。 From the comparison between Examples and Comparative Examples 2, 3 and 4, when fumed silica and fumed alumina are used instead of the vapor phase method composite inorganic oxide particles, the volume resistivity is less than 1.0 × 10 11 Ω · cm. Alternatively, it was found that the volume resistivity became 1.0 × 10 15 Ω · cm or more, and it was not possible to obtain an appropriate charge amount. Further, in Comparative Examples 2, 3 and 4, it was confirmed that although a good environmental fluctuation ratio was obtained, the charge rise characteristic tended to be slightly inferior.

また、比較例5から、気相法複合無機酸化物粒子に代えてフュームチタニアを用いると、環境変動比および帯電立ち上がり特性について良好な結果を示したが、体積抵抗率が1.0×1011Ω・cm未満であり、適切な帯電量とすることができないことが判明した。 Further, from Comparative Example 5, when fumtitania was used instead of the vapor phase method composite inorganic oxide particles, good results were shown in terms of environmental change ratio and charge rise characteristics, but the volume resistivity was 1.0 × 10 11 . It was found that the charge amount was less than Ω · cm and the appropriate charge amount could not be obtained.

本発明の複合無機酸化物粉体は、適切な帯電量を維持でき、良好な環境安定性と良好な帯電立ち上がり特性を有するので、例えば、粉体塗料の外添剤用または電子写真のトナーの外添剤用の分野で利用可能であり、特に、高速印刷、小型化された印刷装置の分野で利用価値が高い。
Since the composite inorganic oxide powder of the present invention can maintain an appropriate charge amount, has good environmental stability and good charge rise characteristics, for example, it is used as an external additive for powder coating materials or as an electrophotographic toner. It can be used in the field of external additives, and is particularly valuable in the fields of high-speed printing and miniaturized printing equipment.

Claims (12)

アルミナとシリカを含む気相法複合無機酸化物粒子を有する複合無機酸化物粉体であり、
前記気相法複合無機酸化物粒子のアルミナ含有量が、0.2質量%以上20質量%以下であり、前記複合無機酸化物粉体のJIS K 6911に準拠した体積抵抗率が、1.0×1011Ω・cm以上9.0×1014Ω・cm以下である複合無機酸化物粉体。
It is a composite inorganic oxide powder having a vapor phase method composite inorganic oxide particles containing alumina and silica.
The alumina content of the vapor phase method composite inorganic oxide particles is 0.2% by mass or more and 20% by mass or less, and the volume resistivity of the composite inorganic oxide powder according to JIS K 6911 is 1.0. A composite inorganic oxide powder having a size of × 10 11 Ω · cm or more and 9.0 × 10 14 Ω · cm or less.
前記気相法複合無機酸化物粒子が、有機ケイ素化合物で表面処理されている請求項1に記載の複合無機酸化物粉体。 The composite inorganic oxide powder according to claim 1, wherein the vapor phase method composite inorganic oxide particles are surface-treated with an organosilicon compound. 疎水化度が50%以上である請求項1または2に記載の複合無機酸化物粉体。 The composite inorganic oxide powder according to claim 1 or 2, wherein the degree of hydrophobization is 50% or more. 炭素含有量が、0.5質量%以上11.0質量%以下である請求項2に記載の複合無機酸化物粉体。 The composite inorganic oxide powder according to claim 2, wherein the carbon content is 0.5% by mass or more and 11.0% by mass or less. 前記気相法複合無機酸化物粒子が、前記気相法複合無機酸化物粒子100質量部に対して、3.0質量部以上40質量部以下の前記有機ケイ素化合物にて表面処理されている請求項2または4に記載の複合無機酸化物粉体。 Claimed that the vapor phase method composite inorganic oxide particles are surface-treated with the organosilicon compound of 3.0 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the vapor phase method composite inorganic oxide particles. Item 2. The composite inorganic oxide powder according to Item 2 or 4. 前記有機ケイ素化合物が、下記一般式(1)
SiR (4-n) (1)
(式中、Rは、炭素数1以上18以下の炭化水素基を表し、Rは、炭素数1以上18以下の炭化水素基、塩素原子、ヒドロキシ基または炭素数1~3のアルコキシ基を表し、nは1~3の整数を表す。)で示される有機ケイ素化合物、ヘキサメチルジシラザン及び/またはシリコーンオイルである請求項2、4または5に記載の複合無機酸化物粉体。
The organosilicon compound has the following general formula (1).
R 5 n SiR 6 (4-n) (1)
(In the formula, R 5 represents a hydrocarbon group having 1 or more and 18 or less carbon atoms, and R 6 is a hydrocarbon group having 1 or more and 18 or less carbon atoms, a chlorine atom, a hydroxy group or an alkoxy group having 1 to 3 carbon atoms. The composite inorganic oxide powder according to claim 2, 4 or 5, wherein n represents an integer of 1 to 3), which is an organosilicon compound, a hexamethyldisilazane and / or a silicone oil.
前記有機ケイ素化合物が、下記一般式(2)
Figure 2022047458000006
(式中、Rは、炭素数1以上18以下の炭化水素基を表し、R、R及びRは、それぞれ独立して塩素原子、ヒドロキシ基または炭素数1~3のアルコキシ基を表す。)で示される有機ケイ素化合物、ヘキサメチルジシラザン及び/またはシリコーンオイルである請求項2、4または5に記載の複合無機酸化物粉体。
The organosilicon compound has the following general formula (2).
Figure 2022047458000006
(In the formula, R 1 represents a hydrocarbon group having 1 or more carbon atoms and 18 or less carbon atoms, and R 2 , R 3 and R 4 each independently have a chlorine atom, a hydroxy group or an alkoxy group having 1 to 3 carbon atoms. The composite inorganic oxide powder according to claim 2, 4 or 5, which is an organosilicon compound, hexamethyldisilazane and / or a silicone oil represented by (represented).
平均一次粒子径が7.0nm以上100nm以下である請求項1乃至7のいずれか1項に記載の複合無機酸化物粉体。 The composite inorganic oxide powder according to any one of claims 1 to 7, wherein the average primary particle size is 7.0 nm or more and 100 nm or less. 粉体塗料の外添剤用または電子写真のトナーの外添剤用である請求項1乃至8のいずれか1項に記載の複合無機酸化物粉体。 The composite inorganic oxide powder according to any one of claims 1 to 8, which is used as an external agent for powder paints or as an external agent for toners for electrophotographic photographs. 請求項1乃至9のいずれか1項に記載の複合無機酸化物粉体を含有する粉体塗料組成物。 A powder coating composition containing the composite inorganic oxide powder according to any one of claims 1 to 9. 請求項1乃至9のいずれか1項に記載の複合無機酸化物粉体を含有する電子写真のトナー組成物。 An electrophotographic toner composition containing the composite inorganic oxide powder according to any one of claims 1 to 9. シリカ原料とアルミナ原料を火炎中に導入して気相分解法にて、アルミナ含有量が0.2質量%以上20質量%以下の気相法複合無機酸化物粒子を得る、気相法複合無機酸化物粒子調製工程と、
前記気相法複合無機酸化物粒子の表面に有機ケイ素化合物を施与する、有機ケイ素化合物供給工程と、
前記有機ケイ素化合物が施与された前記気相法複合無機酸化物粒子を、100℃以上370℃以下の加熱温度、15分以上350分以下の加熱時間にて加熱する加熱工程と、
を含む複合無機酸化物粉体の製造方法。
A vapor phase composite inorganic oxide particle obtained by introducing a silica raw material and an alumina raw material into a flame and obtaining vapor phase composite inorganic oxide particles having an alumina content of 0.2% by mass or more and 20% by mass or less by a vapor phase decomposition method. Oxide particle preparation process and
An organosilicon compound supply step of applying an organosilicon compound to the surface of the vapor phase method composite inorganic oxide particles, and
A heating step of heating the vapor-phase composite inorganic oxide particles to which the organosilicon compound has been applied at a heating temperature of 100 ° C. or higher and 370 ° C. or lower and a heating time of 15 minutes or longer and 350 minutes or lower.
A method for producing a composite inorganic oxide powder containing.
JP2020177541A 2020-09-11 2020-10-22 Composite inorganic oxide powder, powder coating composition containing composite inorganic oxide powder, toner composition for electrophotography containing composite inorganic oxide powder, and method for producing composite inorganic oxide powder Pending JP2022047458A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020153015 2020-09-11
JP2020153015 2020-09-11

Publications (1)

Publication Number Publication Date
JP2022047458A true JP2022047458A (en) 2022-03-24

Family

ID=80780357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020177541A Pending JP2022047458A (en) 2020-09-11 2020-10-22 Composite inorganic oxide powder, powder coating composition containing composite inorganic oxide powder, toner composition for electrophotography containing composite inorganic oxide powder, and method for producing composite inorganic oxide powder

Country Status (1)

Country Link
JP (1) JP2022047458A (en)

Similar Documents

Publication Publication Date Title
EP1477532B1 (en) Spherical silica-titania-based fine particles surface-treated with silane, production process therefor, and external additive for electrostatically charged image developing toner using same
JP4674936B2 (en) Hydrophobic fine particles and their applications
JP4615952B2 (en) Modified hydrophobized silica and method for producing the same
JP3417291B2 (en) Method for producing external additive for electrophotographic toner
KR101544826B1 (en) Surface-modified complex oxide particle
US20030077533A1 (en) Fine metal oxide powder having high dispersibility and toner composition comprising the same
JP2001281914A (en) Surface modified metal oxide fine powder, method for manufacturing the same and use thereof
JPH06227810A (en) Hydrophobic silica powder, its production and electrophotographic developer
JP4578400B2 (en) Toner external additive for electrophotography
JP2007099582A (en) Highly hydrophobic spherical sol-gel silica fine particle, method for producing the same, toner external additive for electrostatic charge image development composed of the fine particle, and developer using the toner external additive
JP2009292915A (en) Surface-modified inorganic oxide powder and toner composition for electrophotography
JP2014209254A (en) Toner composition and method of preparing the same
JP3278278B2 (en) Hydrophobic titanium oxide fine powder
JP2000128534A (en) Hydrophobic rutile type titanium oxide and its production and application
JP3319114B2 (en) Hydrophobic silica powder, its production method and electrophotographic developer containing it
EP3178887B1 (en) Hydrophobic silica for electrophotographic toner composition
JP2022047458A (en) Composite inorganic oxide powder, powder coating composition containing composite inorganic oxide powder, toner composition for electrophotography containing composite inorganic oxide powder, and method for producing composite inorganic oxide powder
JP2022098318A (en) New complex inorganic oxide powder, powder coating material composition containing complex inorganic oxide powder, electrophotographic toner composition containing complex inorganic oxide powder, and production method of complex inorganic oxide powder
JP2014162681A (en) Surface-treated silica powder and method for manufacturing the same
JP4099748B2 (en) Surface modified inorganic oxide powder
JP2013249215A (en) Surface treatment method of hydrophilic sol-gel silica particle
JP4318070B2 (en) Surface-modified silica fine powder
JP5683101B2 (en) Surface-treated silica
JP4936237B2 (en) Positively charged hydrophobic titanium oxide fine powder and its production and use
JPH11322306A (en) Production of surface-modified metal oxide fine powder, and production of toner composition for electrophotography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528