JP2022098318A - New complex inorganic oxide powder, powder coating material composition containing complex inorganic oxide powder, electrophotographic toner composition containing complex inorganic oxide powder, and production method of complex inorganic oxide powder - Google Patents

New complex inorganic oxide powder, powder coating material composition containing complex inorganic oxide powder, electrophotographic toner composition containing complex inorganic oxide powder, and production method of complex inorganic oxide powder Download PDF

Info

Publication number
JP2022098318A
JP2022098318A JP2020211790A JP2020211790A JP2022098318A JP 2022098318 A JP2022098318 A JP 2022098318A JP 2020211790 A JP2020211790 A JP 2020211790A JP 2020211790 A JP2020211790 A JP 2020211790A JP 2022098318 A JP2022098318 A JP 2022098318A
Authority
JP
Japan
Prior art keywords
inorganic oxide
composite inorganic
oxide powder
mass
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020211790A
Other languages
Japanese (ja)
Other versions
JP7548806B2 (en
Inventor
慶 石黒
Kei Ishiguro
行也 山下
Yukiya Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aerosil Co Ltd
Original Assignee
Nippon Aerosil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd filed Critical Nippon Aerosil Co Ltd
Priority to JP2020211790A priority Critical patent/JP7548806B2/en
Publication of JP2022098318A publication Critical patent/JP2022098318A/en
Application granted granted Critical
Publication of JP7548806B2 publication Critical patent/JP7548806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

To provide a complex inorganic oxide powder which has a property of negatively charging to such a degree as to be able to be used as a charge adjustment agent and has good environmental stability and a charging rising property.SOLUTION: A complex inorganic oxide powder has a gas phase method complex inorganic oxide particle including alumina and silica. The gas phase method complex inorganic oxide particle has an alumina content of 80 mass% or more and 99 mass% or less. The complex inorganic oxide powder has a volume resistivity in accordance with JIS K 6911 of 1.0×1011Ωcm or more and 9.0×1014Ωcm or less.SELECTED DRAWING: None

Description

本発明は粉体の流動性改善、帯電量調整等の目的で、電子写真用トナーや粉体塗料等に外添剤として添加される複合無機酸化物粉体及びその製造方法並びに複合無機酸化物粉末を含有する粉体塗料組成物及び電子写真用トナー組成物に関する。特に、高温高湿または低温低湿環境下における帯電量の安定性、優れた帯電立ち上がり特性を有し、迅速な印刷、良好な画像品質を実現し得る複合無機酸化物粉体及びその製造方法並びに複合無機酸化物粉末を含有する粉体塗料組成物及び電子写真用トナー組成物に関するものである。 The present invention is a composite inorganic oxide powder added as an external additive to toner for electrophotographic photographs, powder coating materials, etc. for the purpose of improving the fluidity of the powder, adjusting the amount of charge, etc., a method for producing the same, and a composite inorganic oxide. The present invention relates to a powder coating composition containing a powder and a toner composition for electrophotographic photography. In particular, composite inorganic oxide powders having stable charge amount in high temperature and high humidity or low temperature and low humidity environment, excellent charge rise characteristics, rapid printing, and good image quality, and composite inorganic oxide powders and their production methods and composites. It relates to a powder coating composition containing an inorganic oxide powder and a toner composition for electrophotographic photography.

レーザープリンター、複写機などに用いられる電子写真方式では、一般的に、感光体に電荷を帯びさせる帯電プロセス、電荷を帯びた感光体にイメージデータに基づいてレーザー光を照射することで静電潜像を形成する露光プロセス、電荷を帯びたトナーを感光体に付着させ感光体上にイメージの鏡像を形成する現像プロセス、感光体上のトナーを紙等のメディアに転写する転写プロセス、メディア上のトナーを加熱と圧力によって定着させる定着プロセス等を経て印刷が行われる。 In the electrophotographic method used in laser printers, copiers, etc., in general, a charging process that charges the photoconductor, and electrostatic latency by irradiating the charged photoconductor with laser light based on image data. An exposure process that forms an image, a development process that attaches charged toner to a photoconductor to form a mirror image of the image on the photoconductor, a transfer process that transfers the toner on the photoconductor to a medium such as paper, and a transfer process on the media. Printing is performed through a fixing process in which the toner is fixed by heating and pressure.

上記電子写真方式においては静電気力によって画像の形成が行われることから、摩擦帯電によってトナーに電荷を帯びさせるプロセスにおいて帯電が所望の強さであること、高温高湿、低温低湿などの条件の違いによる帯電量の差が小さいことが、画像品質に直結する。この為、トナーの電荷量を調整する目的で、従来から、シリカ、チタニア、アルミナなどの金属、無機酸化物粉末を外添剤として添加することが行われている。また、近年の印刷装置の小型化、高速化に伴い、トナーには、迅速な帯電が求められている。電子写真用トナーに対しては、シリカ、チタニア、アルミナなどの無機酸化物の表面処理品や有機微粒子が、流動性改善、帯電量調節の目的で広く用いられている。 In the above electrophotographic method, since the image is formed by electrostatic force, the charging is the desired strength in the process of charging the toner by triboelectric charging, and the conditions such as high temperature and high humidity and low temperature and low humidity are different. The small difference in the amount of charge due to the cause is directly linked to the image quality. Therefore, for the purpose of adjusting the charge amount of the toner, a metal such as silica, titania, or alumina, or an inorganic oxide powder has been conventionally added as an external additive. Further, as the printing apparatus becomes smaller and faster in recent years, the toner is required to be charged quickly. For electrophotographic toners, surface-treated products of inorganic oxides such as silica, titania, and alumina and organic fine particles are widely used for the purpose of improving fluidity and adjusting the amount of charge.

具体的には、流動性と安定した帯電性を得るために、疎水化処理された小粒径シリカの外添剤が用いられている。その結果、流動性は改善するものの、高温高湿、低温低湿条件などの厳しい環境の変化によっては、帯電量が影響を受けやすいという問題があった。 Specifically, in order to obtain fluidity and stable chargeability, a hydrophobized small particle size silica external additive is used. As a result, although the fluidity is improved, there is a problem that the amount of charge is easily affected by severe changes in the environment such as high temperature and high humidity and low temperature and low humidity conditions.

そこで、厳しい環境の変化に伴う帯電量の影響を小さくするべく、疎水性の高いシリコーンオイルで疎水化処理された小粒径シリカを外添剤として使用することが提案されている(特許文献1)。しかし、特許文献1の外添剤では、トナーの流動性、帯電立ち上がりは悪化するという問題があった。 Therefore, in order to reduce the influence of the amount of charge due to severe changes in the environment, it has been proposed to use small particle size silica hydrophobized with highly hydrophobic silicone oil as an external additive (Patent Document 1). ). However, the external additive of Patent Document 1 has a problem that the fluidity of the toner and the rise of charge are deteriorated.

一方、厳しい環境の変化に伴う帯電量の影響を小さくするために、チタニアなどの外添剤を用いることも提案されている(特許文献2、3)。しかし、特許文献2、3では、環境の変化に伴う帯電量の影響を小さくすることはできるものの、処方の複雑化、チタニアによる部材汚染、また、近年では、チタニアの発がん性懸念という安全性に関する問題などが生じている。 On the other hand, it has also been proposed to use an external additive such as titania in order to reduce the influence of the amount of charge due to severe changes in the environment (Patent Documents 2 and 3). However, although Patent Documents 2 and 3 can reduce the influence of the amount of charge due to changes in the environment, they relate to the safety of complicated prescription, contamination of parts by titania, and in recent years, concern about carcinogenicity of titania. There is a problem.

また、近年では、高速印刷、印刷装置の小型化に向けた開発が進んでおり、当該目的においては、より短時間で効率的に、トナーの摩擦帯電値を安定させることが求められている。また、高温高湿下におけるトナーの帯電値と低温低湿下におけるトナーの帯電値の差は画像品質に直結することから、これらの差異をより小さくすることが帯電値の安定とともに引き続き求められている。 Further, in recent years, development for high-speed printing and miniaturization of printing equipment has been progressing, and for this purpose, it is required to stabilize the triboelectric charge value of the toner in a shorter time and more efficiently. In addition, since the difference between the toner charge value under high temperature and high humidity and the toner charge value under low temperature and low humidity is directly related to the image quality, it is continuously required to reduce these differences as well as to stabilize the charge value. ..

これらの課題を改善する一つの方法として、シリカアルミナ複合酸化物の提案がなされている(特許文献4)。特許文献4では、アルミナの比率が高いことによる環境安定性の改善がみられるものの、流動性、および帯電立ち上がり特性については改善の必要性があった。 As one method for improving these problems, a silica-alumina composite oxide has been proposed (Patent Document 4). In Patent Document 4, although the environmental stability is improved due to the high ratio of alumina, it is necessary to improve the fluidity and the charge rising characteristics.

さらには、シリカ表面にアルミナを付着させてトナー用の外添剤を製造する方法が提案されている(特許文献5)。しかし、特許文献5で作製されるアルミナを付着したシリカ粉末は、その帯電量が約―100~-120μC/gと、電荷調整剤として用いるには負帯電性が高すぎる問題がある。さらに、特許文献5の製造方法では、2段の製造プロセスが必要となり、製造工程が複雑である等の問題点がある。 Further, a method of adhering alumina to the surface of silica to produce an external additive for toner has been proposed (Patent Document 5). However, the silica powder to which alumina attached produced in Patent Document 5 has a charge amount of about -100 to -120 μC / g, and has a problem that the negative charge property is too high to be used as a charge adjuster. Further, the manufacturing method of Patent Document 5 requires a two-stage manufacturing process, and has a problem that the manufacturing process is complicated.

特開平5-165257号公報Japanese Unexamined Patent Publication No. 5-165257 特開平10-268550号公報Japanese Unexamined Patent Publication No. 10-268550 特開2009-42447号公報Japanese Unexamined Patent Publication No. 2009-42447 特許第4099748号公報Japanese Patent No. 4099748 特許第5020224号公報Japanese Patent No. 5020224

本発明者らは上記問題を鋭意検討することにより、所定範囲割合のアルミナを含んだ気相分解法を用いて製造された複合無機酸化物粉体が、所定範囲の体積抵抗値を示したときに、環境安定性と優れた帯電立ち上がり特性を有することを新たに見出し、本発明をするに至った。すなわち、本発明の目的は、電荷調整剤として用いることができる程度の負帯電性を有し、且つ良好な環境安定性、及び優れた帯電立ち上がり特性を有する複合無機酸化物粉体、複合無機酸化物粉体の製造方法、複合無機酸化物粉体を含有する粉体塗料組成物、複合無機酸化物粉体を含有する電子写真のトナー組成物を提供することにある。 By diligently studying the above problems, the present inventors when the composite inorganic oxide powder produced by the vapor phase decomposition method containing alumina in a predetermined range shows a volume resistance value in a predetermined range. In addition, they have newly found that they have environmental stability and excellent charge rising characteristics, and have come to the present invention. That is, an object of the present invention is a composite inorganic oxide powder or composite inorganic oxidation having a negative charge property that can be used as a charge adjuster, good environmental stability, and excellent charge rise characteristics. It is an object of the present invention to provide a method for producing a physical powder, a powder coating composition containing a composite inorganic oxide powder, and an electrophotographic toner composition containing the composite inorganic oxide powder.

本発明の構成の要旨は以下の通りである。
[1]アルミナとシリカを含む気相法複合無機酸化物粒子を有する複合無機酸化物粉体であり、
記気相法複合無機酸化物粒子のアルミナ含有量が、80質量%以上99質量%以下であり、前記複合無機酸化物粉体のJIS K 6911に準拠した体積抵抗率が、1.0×1011Ω・cm以上9.0×1014Ω・cm以下である複合無機酸化物粉体。
[2]前記気相法複合無機酸化物粒子の温度10℃、湿度10%の雰囲気条件下において1分攪拌後の帯電量値を30分攪拌後の帯電量値で除した値が1.5以上である[1]に記載の複合無機酸化物粉体。
[3]前記気相法複合無機酸化物粒子の10分攪拌後の温度32.5℃、湿度80%の雰囲気下における帯電値を10分攪拌後の温度10℃、湿度10%の雰囲気下における帯電値で除した値が0.48以上である[1]または[2]に記載の複合無機酸化物粉体。
[4]前記気相法複合無機酸化物粒子が、有機ケイ素化合物で表面処理されている[1]乃至[3]のいずれか1つに記載の複合無機酸化物粉体。
[5]疎水化度が50%以上である[1]乃至[4]のいずれか1つに記載の複合無機酸化物粉体。
[6]炭素含有量が、0.5質量%以上11.0質量%以下である[1]乃至[5]のいずれか1つに記載の複合無機酸化物粉体。
[7]前記気相法複合無機酸化物粒子が、前記気相法複合無機酸化物粒子100質量部に対して、3.0質量部以上40質量部以下の前記有機ケイ素化合物にて表面処理されている[4]に記載の複合無機酸化物粉体。
[8]前記有機ケイ素化合物が、下記一般式(1)
(1)R SiR (4-n)
(式中、Rは、炭素数1以上18以下の炭化水素基を表し、Rは、炭素数1以上18以下の炭化水素基、塩素原子、ヒドロキシ基または炭素数1~3のアルコキシ基、nは1~3の整数を表す。)で示される有機ケイ素化合物、ヘキサメチルジシラザン及び/またはシリコーンオイルである[4]または[7]に記載の複合無機酸化物粉体。
[9]平均一次粒子径が3.0nm以上100nm以下である[1]乃至[8]のいずれか1つに記載の複合無機酸化物粉体。
[10]粉体塗料の外添剤用または電子写真のトナーの外添剤用である[1]乃至[9]のいずれか1つに記載の複合無機酸化物粉体。
[11][1]乃至[10]のいずれか1つに記載の複合無機酸化物粉体を含有する粉体塗料組成物。
[12][1]乃至[10]のいずれか1つに記載の複合無機酸化物粉体を含有する電子写真のトナー組成物。
「13」[1]乃至[10]のいずれか1つに記載の複合無機酸化物粉体と流動性改善剤とを複合外添し、攪拌時間30秒から30分までにおける帯電量値で表される環境変動比の値が0.8以上である[12]に記載の電子写真のトナー組成物。
[14]シリカ原料とアルミナ原料を火炎中に導入して気相分解法にて、アルミナ含有量が80質量%以上99質量%以下の気相法複合無機酸化物粒子を得る、気相法複合無機酸化物粒子調製工程と、前記気相法複合無機酸化物粒子の表面に有機ケイ素化合物を施与する、有機ケイ素化合物供給工程と、前記有機ケイ素化合物が施与された前記気相法複合無機酸化物粒子を、80℃以上370℃以下の加熱温度、15分以上350分以下の加熱時間にて加熱する加熱工程と、を含む複合無機酸化物粉体の製造方法。
The gist of the structure of the present invention is as follows.
[1] A composite inorganic oxide powder having a vapor phase method composite inorganic oxide particles containing alumina and silica.
Water phase method The alumina content of the composite inorganic oxide particles is 80% by mass or more and 99% by mass or less, and the volume resistivity of the composite inorganic oxide powder according to JIS K 6911 is 1.0 × 10. A composite inorganic oxide powder having a size of 11 Ω · cm or more and 9.0 × 10 14 Ω · cm or less.
[2] The value obtained by dividing the charge amount value after stirring for 1 minute by the charge amount value after stirring for 30 minutes under the atmospheric conditions of the vapor phase method composite inorganic oxide particles at a temperature of 10 ° C. and a humidity of 10% is 1.5. The composite inorganic oxide powder according to [1] above.
[3] The charge value of the vapor-phase composite inorganic oxide particles in an atmosphere of 10 minutes stirring at a temperature of 32.5 ° C. and a humidity of 80% is measured in an atmosphere of a temperature of 10 ° C. and a humidity of 10% after stirring for 10 minutes. The composite inorganic oxide powder according to [1] or [2], wherein the value divided by the charge value is 0.48 or more.
[4] The composite inorganic oxide powder according to any one of [1] to [3], wherein the vapor phase method composite inorganic oxide particles are surface-treated with an organosilicon compound.
[5] The composite inorganic oxide powder according to any one of [1] to [4], which has a degree of hydrophobicity of 50% or more.
[6] The composite inorganic oxide powder according to any one of [1] to [5], wherein the carbon content is 0.5% by mass or more and 11.0% by mass or less.
[7] The vapor phase method composite inorganic oxide particles are surface-treated with the organic silicon compound of 3.0 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the vapor phase method composite inorganic oxide particles. [4] The composite inorganic oxide powder according to [4].
[8] The organosilicon compound has the following general formula (1).
(1) R 1 n SiR 2 (4-n)
(In the formula, R 1 represents a hydrocarbon group having 1 or more and 18 or less carbon atoms, and R 2 is a hydrocarbon group having 1 or more and 18 or less carbon atoms, a chlorine atom, a hydroxy group or an alkoxy group having 1 to 3 carbon atoms. , N represents an integer of 1 to 3). The composite inorganic oxide powder according to [4] or [7], which is an organic silicon compound, hexamethyldisilazane and / or silicone oil.
[9] The composite inorganic oxide powder according to any one of [1] to [8], which has an average primary particle size of 3.0 nm or more and 100 nm or less.
[10] The composite inorganic oxide powder according to any one of [1] to [9], which is used as an external agent for powder paints or as an external agent for toners for electrophotographic photographs.
[11] A powder coating composition containing the composite inorganic oxide powder according to any one of [1] to [10].
[12] An electrophotographic toner composition containing the composite inorganic oxide powder according to any one of [1] to [10].
The composite inorganic oxide powder according to any one of "13" [1] to [10] and the fluidity improving agent are compositely externally added, and the charging amount values are shown in the stirring time from 30 seconds to 30 minutes. The electrophotographic toner composition according to [12], wherein the value of the environmental change ratio is 0.8 or more.
[14] Gas phase method composite in which a silica raw material and an alumina raw material are introduced into a flame and an alumina content of 80% by mass or more and 99% by mass or less is obtained by a gas phase decomposition method. Inorganic oxide particle preparation step, organic silicon compound supply step of applying an organic silicon compound to the surface of the vapor phase method composite inorganic oxide particles, and the gas phase method composite inorganic to which the organic silicon compound is applied. A method for producing a composite inorganic oxide powder, which comprises a heating step of heating the oxide particles at a heating temperature of 80 ° C. or higher and 370 ° C. or lower and a heating time of 15 minutes or longer and 350 minutes or lower.

本発明の複合無機酸化物粉体は、電荷調整剤として用いることができる程度の負帯電性を有し、且つ良好な環境安定性、及び優れた帯電立ち上がり特性を有する。 The composite inorganic oxide powder of the present invention has a negative charge property that can be used as a charge adjuster, has good environmental stability, and has excellent charge rise characteristics.

本発明は、アルミナとシリカを含む気相法複合無機酸化物粒子を有する複合無機酸化物粉体であって、アルミナ含有量が80質量%以上99質量%以下である気相法複合無機酸化物粒子を有し、好ましくは、疎水化剤である有機ケイ素化合物にて気相法複合無機酸化物粒子の表面が改質された複合無機酸化物粉体である。また、好ましくは、複合無機酸化物粉体の疎水化度が50%以上である。アルミナ含有量が80質量%以上99質量%以下である気相法複合無機酸化物粒子は、アルミナ由来のシリカより低い体積抵抗率によって帯電のリークによる過剰な帯電の防止効果を得つつ適切な量のシリカが気相法複合無機酸化物粒子表面に含まれることによって、適切な負帯電量及び良好な流動性を得られる。アルミナ含有量が80質量%以上99質量%以下である気相法複合無機酸化物粒子は、例えば、表面処理シリカによる過剰な帯電を抑制し、適切な帯電量へと調整される。 The present invention is a composite inorganic oxide powder having a vapor phase composite inorganic oxide particle containing alumina and silica, and the alumina content is 80% by mass or more and 99% by mass or less. It is a composite inorganic oxide powder having particles and preferably having the surface of the gas phase method composite inorganic oxide particles modified with an organic silicon compound which is a hydrophobic agent. Further, preferably, the degree of hydrophobicity of the composite inorganic oxide powder is 50% or more. The vapor phase composite inorganic oxide particles having an alumina content of 80% by mass or more and 99% by mass or less have an appropriate amount while obtaining an effect of preventing excessive charge due to charge leakage due to a lower volume resistance than silica derived from alumina. By including the silica in the vapor phase method on the surface of the composite inorganic oxide particles, an appropriate negative charge amount and good fluidity can be obtained. The vapor phase composite inorganic oxide particles having an alumina content of 80% by mass or more and 99% by mass or less suppress, for example, excessive charge due to the surface-treated silica, and are adjusted to an appropriate charge amount.

また、アルミナ含有量が80質量%以上99質量%以下である気相法複合無機酸化物粒子は、アルミナに対し相対的に少量であるシリカ粒子がアルミナ粒子に隣接するかたちで存在しており、アルミナ粒子とシリカ粒子の間で電荷の移動が生じる。その結果、本発明の複合無機酸化物粉体は、優れた帯電立ち上がり特性を示しつつも相対的に多量であるアルミナ粒子がもつ正帯電性の影響を受け帯電量は低く抑えられると考えらえる。 Further, in the vapor phase composite inorganic oxide particles having an alumina content of 80% by mass or more and 99% by mass or less, silica particles having a relatively small amount with respect to alumina are present adjacent to the alumina particles. Charge transfer occurs between the alumina particles and the silica particles. As a result, it can be considered that the composite inorganic oxide powder of the present invention is affected by the positive chargeability of the alumina particles, which is relatively large in quantity, while exhibiting excellent charge rise characteristics, and the charge amount can be suppressed to a low level. ..

先ず、本発明の複合無機酸化物粉体について、以下、詳細に説明する。本発明の複合無機酸化物粉体は、アルミナとシリカを含む気相法複合無機酸化物粒子を有する複合無機酸化物粉体であり、前記気相法複合無機酸化物粒子のアルミナ含有量が、80質量%以上99質量%以下であり、前記複合無機酸化物粉体のJIS K 6911に準拠した体積抵抗率が、1.0×1011Ω・cm以上9.0×1014Ω・cm以下である。気相法複合無機酸化物粒子は、気相法で製造された複合無機酸化物粉末である。 First, the composite inorganic oxide powder of the present invention will be described in detail below. The composite inorganic oxide powder of the present invention is a composite inorganic oxide powder having gas phase method composite inorganic oxide particles containing alumina and silica, and the alumina content of the vapor phase method composite inorganic oxide particles is high. It is 80% by mass or more and 99% by mass or less, and the volume resistance of the composite inorganic oxide powder according to JIS K 6911 is 1.0 × 10 11 Ω · cm or more and 9.0 × 10 14 Ω · cm or less. Is. The vapor phase method composite inorganic oxide particles are composite inorganic oxide powders produced by the vapor phase method.

上記アルミナ含有量と体積抵抗率を有する複合無機酸化物粉体は、電荷調整剤として用いることができる程度の負帯電性を有し、且つ良好な環境安定性及び優れた帯電立ち上がり特性を発揮する。具体的には、本発明の複合無機酸化物粉体は、環境安定性として、環境変動比が0.48以上である。複合無機酸化物粉体の環境変動比が0.48未満の場合、高温高湿下と低温低湿下の帯電量の差が大きくなり、複合無機酸化物粉体をトナー成分に添加したときに、画像不良などの品質問題が生じやすい。複合無機酸化物粉体の帯電立ち上がり特性は1.50以上である。複合無機酸化物粉体の帯電立ち上がり特性が1.50未満の場合、複合無機酸化物粉体をトナー成分に添加したときに、印刷可能となるまでに長時間を要するという問題がある。また複合無機酸化物粉体と流動性改善剤とを複合外添し攪拌時間30秒から30分までにおける環境変動比の値は0.8以上である。この値が0.8未満の場合、印刷が短時間である場合と長時間である場合で環境変動比が異なることを意味し、画像特性に悪影響を及ぼす。なお、「環境変動比」、「帯電立ち上がり特性」、「流動性改善剤と複合外添したときの環境安定性(環境変動比)」の測定方法については、後述する。 The composite inorganic oxide powder having the above alumina content and volume resistivity has a negative charge property that can be used as a charge adjuster, and exhibits good environmental stability and excellent charge rise characteristics. .. Specifically, the composite inorganic oxide powder of the present invention has an environmental fluctuation ratio of 0.48 or more in terms of environmental stability. When the environmental fluctuation ratio of the composite inorganic oxide powder is less than 0.48, the difference in the amount of charge between high temperature and high humidity and low temperature and low humidity becomes large, and when the composite inorganic oxide powder is added to the toner component, Quality problems such as image defects are likely to occur. The charge rise characteristic of the composite inorganic oxide powder is 1.50 or more. When the charge rising characteristic of the composite inorganic oxide powder is less than 1.50, there is a problem that it takes a long time before printing becomes possible when the composite inorganic oxide powder is added to the toner component. Further, the value of the environmental fluctuation ratio is 0.8 or more when the composite inorganic oxide powder and the fluidity improver are compositely externally added and the stirring time is from 30 seconds to 30 minutes. When this value is less than 0.8, it means that the environmental fluctuation ratio differs depending on whether printing is performed for a short time or for a long time, which adversely affects the image characteristics. The measurement method of "environmental fluctuation ratio", "charge rising characteristic", and "environmental stability (environmental fluctuation ratio) when composite externally added with a fluidity improving agent" will be described later.

アルミナ含有量が80質量%以上99質量%以下である気相法複合無機酸化物粒子は、シリカと気相法複合無機酸化物粒子100質量%中に80質量%以上99質量%以下のアルミナとを含んでいれば、その成分組成は、特に限定されないが、シリカと80質量%以上99質量%以下のアルミナからなる気相法複合無機酸化物粒子が好ましい。シリカと80質量%以上99質量%以下のアルミナからなる気相法複合無機酸化物粒子は、気相法複合無機酸化物粒子100質量%中に、80質量%以上99質量%以下のアルミナと1質量%以上20質量%以下のシリカを含んでいる。 The vapor phase composite inorganic oxide particles having an alumina content of 80% by mass or more and 99% by mass or less include silica and alumina of 80% by mass or more and 99% by mass or less in 100% by mass of the vapor phase composite inorganic oxide particles. However, the composition thereof is not particularly limited, but vapor phase composite inorganic oxide particles composed of silica and alumina of 80% by mass or more and 99% by mass or less are preferable. The vapor phase method composite inorganic oxide particles composed of silica and 80% by mass or more and 99% by mass or less of alumina are 1 by mass of 80% by mass or more and 99% by mass or less of alumina in 100% by mass of the vapor phase method composite inorganic oxide particles. Contains 20% by mass or more and 20% by mass or less of silica.

気相法複合無機酸化物粒子のアルミナ含有量は80質量%以上99質量%以下であれば、特に限定されないが、その下限値は、帯電量の環境安定性をさらに向上させる点から、82質量%が好ましく、85質量%がより好ましく、87質量%が特に好ましい。一方で、アルミナ含有量の上限値は、帯電量の環境安定性と帯電立ち上がり特性をさらに向上させる点から、98質量%が好ましく、96質量%がより好ましく、95質量%が特に好ましい。気相法複合無機酸化物粒子において、アルミナ含有量が80質量%未満では複合無機酸化物としての性質が発揮されずにシリカに似た挙動を示し、99質量%超では複合無機酸化物としての性質は発揮されずアルミナの影響を強く受け、その結果、負帯電性が非常に弱くなる。 The alumina content of the vapor-phase composite inorganic oxide particles is not particularly limited as long as it is 80% by mass or more and 99% by mass or less, but the lower limit thereof is 82% by mass from the viewpoint of further improving the environmental stability of the charged amount. % Is preferable, 85% by mass is more preferable, and 87% by mass is particularly preferable. On the other hand, the upper limit of the alumina content is preferably 98% by mass, more preferably 96% by mass, and particularly preferably 95% by mass from the viewpoint of further improving the environmental stability of the charged amount and the charging rising characteristic. In the vapor phase method composite inorganic oxide particles, when the alumina content is less than 80% by mass, the properties as a composite inorganic oxide are not exhibited and the behavior is similar to silica, and when the alumina content exceeds 99% by mass, the composite inorganic oxide is exhibited. The property is not exhibited and it is strongly influenced by alumina, and as a result, the negative chargeability becomes very weak.

本発明の複合無機酸化物粉体は、JIS K 6911に準拠した体積抵抗率が、1.0×1011Ω・cm以上9.0×1014Ω・cm以下である。複合無機酸化物粉体の体積抵抗率は、1.0×1011Ω・cm以上9.0×1014Ω・cm以下であれば、特に限定されないが、その下限値は、帯電量を確実に維持する点から、5.0×1011Ω・cmが好ましく、1.0×1012Ω・cmが特に好ましい、一方で、複合無機酸化物粉体の体積抵抗率の上限値は、トナー等の外添剤として適切な負帯電性を得る点から、5.0×1014Ω・cmが好ましく、1.0×1014Ω・cmが特に好ましい。体積抵抗率が1.0×1011Ω・cm未満の場合には、適切な帯電量を維持することが難しくなり、体積抵抗率が9.0×1014Ω・cm超の場合には、負帯電性が強くなりすぎる問題が生じる。 The composite inorganic oxide powder of the present invention has a volume resistivity according to JIS K 6911 of 1.0 × 10 11 Ω · cm or more and 9.0 × 10 14 Ω · cm or less. The volume resistivity of the composite inorganic oxide powder is not particularly limited as long as it is 1.0 × 10 11 Ω · cm or more and 9.0 × 10 14 Ω · cm or less, but the lower limit thereof ensures the amount of charge. 5.0 × 10 11 Ω · cm is preferable, and 1.0 × 10 12 Ω · cm is particularly preferable, while the upper limit of the volume resistivity of the composite inorganic oxide powder is the toner. 5.0 × 10 14 Ω · cm is preferable, and 1.0 × 10 14 Ω · cm is particularly preferable, from the viewpoint of obtaining appropriate negative chargeability as an external additive such as. When the volume resistivity is less than 1.0 × 10 11 Ω · cm, it becomes difficult to maintain an appropriate amount of charge, and when the volume resistivity is more than 9.0 × 10 14 Ω · cm, it becomes difficult to maintain an appropriate amount of charge. There arises a problem that the negative resistivity becomes too strong.

なお、気相法シリカ粒子は、体積抵抗率が1.0×1015Ω・cm以上になり、負帯電性が強くなりすぎ、トナー等の外添剤として適切な負帯電性を得ることができない。また、気相法アルミナ粒子は、体積抵抗率が1.0×10Ω・cm以下となり、所望の帯電量を得ることができない。 The vapor resistivity of the silica particles has a volume resistivity of 1.0 × 10 15 Ω · cm or more, and the negative charge property becomes too strong, so that an appropriate negative charge property can be obtained as an external additive such as toner. Can not. Further, the vapor phase method alumina particles have a volume resistivity of 1.0 × 108 Ω · cm or less, and a desired charge amount cannot be obtained.

アルミナ含有量が80質量%以上99質量%以下である気相法複合無機酸化物粒子のBET比表面積は、特に限定されないが、流動性とトナー粒子に対する埋没の抑制をバランスよく得る点から、好ましくは10~500m/g、特に好ましくは20~400m/gである。本発明の複合無機酸化物粉体をトナーに添加したときの帯電量の絶対値は、比表面積が小さいほど、またトナーに対する被覆率が高いほど大きくなる。また、優れた環境安定性、帯電立ち上がり特性といった物性は、比表面積にあまり影響されないが、実際の電子写真プロセスにおいては、高比表面積、すなわち、複合無機酸化物粉体の粒子径が小さいほどトナー粒子に埋没しやすいものの、流動性改善効果は高く、複合無機酸化物粉体の粒子径が大きいほどトナーの流動性は低下するものの、トナー粒子に対する埋没は抑制される傾向にある。従って、複合無機酸化物粉体に求められる物性に応じて、適切な比表面積の気相法複合無機酸化物粒子を選ぶことができる。また、複合無機酸化物粉体の帯電量に関しても、同一重量の複合無機酸化物粉体をトナーに添加した場合は、小粒子径である、すなわち、比表面積の大きい気相法複合無機酸化物粒子の方が強負帯電性を示すため、複合無機酸化物粉体に求められる物性に応じて、適宜、適切な粒子径、添加量を選択することができる。 The BET specific surface area of the vapor-phase composite inorganic oxide particles having an alumina content of 80% by mass or more and 99% by mass or less is not particularly limited, but is preferable from the viewpoint of obtaining a good balance between fluidity and suppression of burial in toner particles. Is 10 to 500 m 2 / g, particularly preferably 20 to 400 m 2 / g. The absolute value of the amount of charge when the composite inorganic oxide powder of the present invention is added to the toner increases as the specific surface area decreases and the coverage with respect to the toner increases. In addition, physical properties such as excellent environmental stability and charge rise characteristics are not so affected by the specific surface area, but in an actual electrophotographic process, the higher the specific surface area, that is, the smaller the particle size of the composite inorganic oxide powder, the more the toner. Although it is easily buried in the particles, the effect of improving the fluidity is high, and the larger the particle size of the composite inorganic oxide powder, the lower the fluidity of the toner, but the burial in the toner particles tends to be suppressed. Therefore, the vapor phase method composite inorganic oxide particles having an appropriate specific surface area can be selected according to the physical properties required for the composite inorganic oxide powder. Regarding the charge amount of the composite inorganic oxide powder, when the composite inorganic oxide powder of the same weight is added to the toner, the vapor phase composite inorganic oxide has a small particle size, that is, a large specific surface area. Since the particles show stronger negative chargeability, an appropriate particle size and addition amount can be appropriately selected according to the physical properties required for the composite inorganic oxide powder.

また、本発明の複合無機酸化物粉体の疎水化度は、特に限定されないが、環境安定性を確実に向上させる点から、疎水化度は50%以上が好ましく、60%以上がより好ましく、70%以上が特に好ましい。なお、疎水化度とは、後述するように、複合無機酸化物粉体と純水との混合物について光の透過率を分光光度計にて測定した疎水化度を意味する。 The degree of hydrophobicity of the composite inorganic oxide powder of the present invention is not particularly limited, but the degree of hydrophobicity is preferably 50% or more, more preferably 60% or more, from the viewpoint of surely improving environmental stability. 70% or more is particularly preferable. As will be described later, the degree of hydrophobicity means the degree of hydrophobicity obtained by measuring the light transmittance of a mixture of a composite inorganic oxide powder and pure water with a spectrophotometer.

本発明の複合無機酸化物粉体では、気相法複合無機酸化物粒子は、有機ケイ素化合物で表面処理されていてもよい。すなわち、気相法複合無機酸化物粒子は、有機ケイ素化合物で表面改質されていてもよい。この場合、有機ケイ素化合物は、気相法複合無機酸化物粒子の表面改質剤として機能する。気相法複合無機酸化物粒子の表面が有機ケイ素化合物で改質されていることで、気相法複合無機酸化物粒子の表面が十分に疎水化、すなわち、複合無機酸化物粉体に十分な疎水性が付与される。気相法複合無機酸化物粒子の表面が十分に疎水化されることで、複合無機酸化物粉体は、高い水分吸着阻害効果を有して、より確実に良好な環境安定性と帯電立ち上がり特性を発揮する。 In the composite inorganic oxide powder of the present invention, the vapor phase method composite inorganic oxide particles may be surface-treated with an organosilicon compound. That is, the vapor phase method composite inorganic oxide particles may be surface-modified with an organosilicon compound. In this case, the organosilicon compound functions as a surface modifier for the vapor phase method composite inorganic oxide particles. Since the surface of the gas phase method composite inorganic oxide particles is modified with an organosilicon compound, the surface of the gas phase method composite inorganic oxide particles is sufficiently hydrophobic, that is, sufficient for the composite inorganic oxide powder. Hydrophobicity is imparted. Gas phase method By sufficiently hydrophobizing the surface of the composite inorganic oxide particles, the composite inorganic oxide powder has a high moisture adsorption inhibitory effect, and more reliably has good environmental stability and charge rise characteristics. Demonstrate.

気相法複合無機酸化物粒子の表面改質の態様としては、例えば、気相法複合無機酸化物粒子の表面の一部領域または全体が、有機ケイ素化合物の層で被覆されていてもよい。この場合、気相法複合無機酸化物粒子がコア粒子、有機ケイ素化合物がシェルを形成しており、複合無機酸化物粉体は、コアシェル構造となっている。 As an aspect of surface modification of the gas phase method composite inorganic oxide particles, for example, a part or the whole of the surface of the gas phase method composite inorganic oxide particles may be coated with a layer of an organosilicon compound. In this case, the vapor phase method composite inorganic oxide particles form core particles, the organosilicon compound forms a shell, and the composite inorganic oxide powder has a core-shell structure.

表面改質剤として機能する有機ケイ素化合物としては、例えば、下記一般式(1)
SiR (4-n) (1)
(式中、Rは、炭素数1以上18以下の炭化水素基を表し、Rは炭素数1以上18以下の炭化水素基、塩素原子、ヒドロキシ基または炭素数1~3のアルコキシ基、好ましくは炭素数1~2のアルコキシ基を表し、nは1~3の整数を表す。)で示される有機ケイ素化合物が挙げられる。一般式(1)におけるRは、窒素、酸素、リン等のヘテロ原子は含まず、炭素と水素のみのアルキル基である。一般式(1)の有機ケイ素化合物は、その化学構造中に窒素を有すると、帯電量特性に悪影響を与える場合がある。また、一般式(1)の有機ケイ素化合物は、その化学構造中に酸素を有すると、十分な疎水性が得られない可能性がある。Rのアルコキシ基は炭素数1~3であり、炭素数が4以上であると、反応性の低下により表面改質に長時間を要する。さらに、アルコキシ基の炭素数が4以上の有機ケイ素化合物は、一般的に工業的な入手が困難である。
Examples of the organosilicon compound that functions as a surface modifier include the following general formula (1).
R 1 n SiR 2 (4-n) (1)
(In the formula, R 1 represents a hydrocarbon group having 1 or more and 18 or less carbon atoms, and R 2 is a hydrocarbon group having 1 or more and 18 or less carbon atoms, a chlorine atom, a hydroxy group or an alkoxy group having 1 to 3 carbon atoms. Preferred are organosilicon compounds represented by an alkoxy group having 1 to 2 carbon atoms and n representing an integer of 1 to 3). R 1 in the general formula (1) is an alkyl group containing only carbon and hydrogen without containing heteroatoms such as nitrogen, oxygen and phosphorus. If the organosilicon compound of the general formula (1) has nitrogen in its chemical structure, it may adversely affect the charge amount characteristics. Further, if the organosilicon compound of the general formula (1) has oxygen in its chemical structure, sufficient hydrophobicity may not be obtained. The alkoxy group of R2 has 1 to 3 carbon atoms, and when the number of carbon atoms is 4 or more, surface modification takes a long time due to a decrease in reactivity. Further, organosilicon compounds having an alkoxy group having 4 or more carbon atoms are generally difficult to obtain industrially.

また、表面改質剤として機能する有機ケイ素化合物としては、ヘキサメチルジシラザン等が挙げられる。 Examples of the organosilicon compound that functions as a surface modifier include hexamethyldisilazane and the like.

また、表面改質剤として機能する有機ケイ素化合物として、例えば、シリコーンオイルが挙げられる。シリコーンオイルの25℃における動粘度は、例えば、0.65mm/s~10000mm/sが挙げられる。シリコーンオイルに対して均一な表面改質を行う場合、シリコーンオイルを適当な溶媒に溶解させる必要があり、シリコーンオイルの動粘度が10000mm/s超の場合、表面改質を行うにあたり大過剰の溶媒量を必要とする。これは工程の複雑化およびコストアップ、さらには溶媒を揮発させる際には、複合無機酸化物粉体の凝集を生じさせやすいといった問題がある。 Further, examples of the organosilicon compound that functions as a surface modifier include silicone oil. The kinematic viscosity of the silicone oil at 25 ° C. is, for example, 0.65 mm 2 / s to 10000 mm 2 / s. When performing uniform surface modification to silicone oil, it is necessary to dissolve the silicone oil in an appropriate solvent, and when the kinematic viscosity of the silicone oil exceeds 10,000 mm 2 / s, a large excess is required for surface modification. Requires solvent amount. This has problems that the process is complicated, the cost is increased, and the composite inorganic oxide powder is likely to be aggregated when the solvent is volatilized.

本発明において、気相法複合無機酸化物粒子と表面改質剤を反応せしめる方法は、特に限定されず、一般的な例として、通常の表面改質法を用いることができる。具体的な例としては、表面改質剤を蒸発させて気相法複合無機酸化物粒子と接触させる方法、気相法複合無機酸化物粒子を流動させながら表面改質剤を気相法複合無機酸化物粒子の表面にスプレー等で噴霧する方法(乾式接触法)、表面改質剤を所定の溶媒に溶解させ、気相法複合無機酸化物粒子を、表面改質剤を溶解させた溶媒中に分散させる方法等が挙げられる。このうち、乾式接触法が複合無機酸化物粉体の凝集を防ぎ均一に処理する点で好適である。 In the present invention, the method for reacting the vapor phase method composite inorganic oxide particles with the surface modifier is not particularly limited, and a usual surface modification method can be used as a general example. Specific examples include a method in which the surface modifier is evaporated and brought into contact with the gas phase composite inorganic oxide particles, and a method in which the surface modifier is applied to the vapor phase composite inorganic oxide while flowing the vapor phase composite inorganic oxide particles. A method of spraying the surface of the oxide particles with a spray or the like (dry contact method), a surface modifier is dissolved in a predetermined solvent, and the vapor phase method composite inorganic oxide particles are dissolved in a solvent in which the surface modifier is dissolved. A method of dispersing in the solvent can be mentioned. Of these, the dry contact method is preferable in that it prevents the composite inorganic oxide powder from agglomerating and uniformly treats the composite inorganic oxide powder.

本発明における表面改質された気相法複合無機酸化物粒子(すなわち、気相法複合無機酸化物粒子の疎水化処理により得られた複合無機酸化物粉体)の炭素含有量は、特に限定されないが、適切な環境安定性と帯電性を確実に得つつ、水分等の吸着を防止する点から、0.5質量%以上11.0質量%以下が好ましい。気相法複合無機酸化物粒子の疎水化処理により得られた複合無機酸化物粉体の炭素含有量が0.5質量%未満である場合、表面改質剤による表面被覆が少ないことを示しており、適切な環境安定性、帯電性を確実に得ることができなくなる傾向がある。一方で、気相法複合無機酸化物粒子の疎水化処理により得られた複合無機酸化物粉体の炭素含有量が11.0重量%超では、過剰の表面改質剤の存在により反応しなかった表面改質剤が気相法複合無機酸化物粒子表面に多量に存在することを示し、反応しなかった表面改質剤に水分が吸着する、あるいは反応しなかった表面改質剤がその他の部材を汚染するなどの可能性がある。 The carbon content of the surface-modified surface-modified vapor phase composite inorganic oxide particles (that is, the composite inorganic oxide powder obtained by the hydrophobic treatment of the vapor phase composite inorganic oxide particles) in the present invention is particularly limited. However, it is preferably 0.5% by mass or more and 11.0% by mass or less from the viewpoint of preventing the adsorption of water and the like while surely obtaining appropriate environmental stability and chargeability. When the carbon content of the composite inorganic oxide powder obtained by the hydrophobic treatment of the vapor phase method composite inorganic oxide particles is less than 0.5% by mass, it indicates that the surface coating with the surface modifier is small. Therefore, it tends to be impossible to surely obtain appropriate environmental stability and chargeability. On the other hand, when the carbon content of the composite inorganic oxide powder obtained by the hydrophobization treatment of the vapor phase method composite inorganic oxide particles exceeds 11.0% by weight, the reaction does not occur due to the presence of an excess surface modifier. It was shown that a large amount of the surface modifier was present on the surface of the vapor-phase composite inorganic oxide particles, and the surface modifier that did not react was adsorbed by water, or the surface modifier that did not react was the other surface modifier. There is a possibility of contaminating the parts.

気相法複合無機酸化物粒子の表面処理に用いる表面改質剤である有機ケイ素化合物の使用量は、気相法複合無機酸化物粒子100質量部に対して、適切な環境安定性と帯電性を確実に得つつ、水分等の吸着を防止する点から、3.0質量部以上40質量部以下が好ましく、4.0質量部以上35質量部以下がより好ましく、5.0質量部以上25質量部以下が特に好ましい。 The amount of the organic silicon compound, which is a surface modifier used for the surface treatment of the vapor phase composite inorganic oxide particles, is appropriate for 100 parts by mass of the vapor phase composite inorganic oxide particles, and has appropriate environmental stability and chargeability. 3.0 parts by mass or more and 40 parts by mass or less are preferable, 4.0 parts by mass or more and 35 parts by mass or less are more preferable, and 5.0 parts by mass or more and 25 parts by mass or less are preferable from the viewpoint of preventing the adsorption of water and the like. More than parts by mass is particularly preferable.

また、本発明における複合無機酸化物粉体の平均一次粒子径は、特に限定されないが、その下限値は、トナー粒子に埋没しやすくなって安定的な帯電挙動を示さなくなることを確実に防止する点から、3.0nmが好ましく、5.0nmが特に好ましい。一方で、複合無機酸化物粉体の平均一次粒子径の上限値は、トナー粒子に適度に埋没することができずにトナー粒子から離脱して安定した帯電挙動を示さなくなることを確実に防止する点から、100nmが好ましく、85nmが特に好ましい。 Further, the average primary particle diameter of the composite inorganic oxide powder in the present invention is not particularly limited, but the lower limit thereof reliably prevents the composite inorganic oxide powder from being easily buried in the toner particles and not exhibiting stable charging behavior. From the point of view, 3.0 nm is preferable, and 5.0 nm is particularly preferable. On the other hand, the upper limit of the average primary particle size of the composite inorganic oxide powder reliably prevents the composite inorganic oxide powder from being unable to be appropriately buried in the toner particles and detaching from the toner particles to exhibit stable charging behavior. From the point of view, 100 nm is preferable, and 85 nm is particularly preferable.

次に、本発明の複合無機酸化物粉体の製造方法について説明する。ここでは、気相法複合無機酸化物粒子の疎水化処理により得られる複合無機酸化物粉体の製造方法について説明する。 Next, the method for producing the composite inorganic oxide powder of the present invention will be described. Here, a method for producing a composite inorganic oxide powder obtained by hydrophobizing the vapor phase method composite inorganic oxide particles will be described.

本発明の上記複合無機酸化物粉体の製造方法は、シリカ原料とアルミナ原料を火炎中に導入して気相分解法にて、アルミナ含有量が80質量%以上99質量%以下の気相法複合無機酸化物粒子を得る、気相法複合無機酸化物粒子調製工程と、気相法複合無機酸化物粒子の表面に表面改質剤である有機ケイ素化合物を施与する、有機ケイ素化合物供給工程と、気相法複合無機酸化物粒子と表面改質剤である有機ケイ素化合物を反応させる反応工程と、有機ケイ素化合物が施与されて該有機ケイ素化合物を反応させた気相法複合無機酸化物粒子を、100℃以上370℃以下の加熱温度、15分以上350分以下の加熱時間にて加熱する加熱工程と、を含む。 The method for producing the composite inorganic oxide powder of the present invention is a vapor phase decomposition method in which a silica raw material and an alumina raw material are introduced into a flame, and the alumina content is 80% by mass or more and 99% by mass or less. A gas phase method composite inorganic oxide particle preparation step for obtaining the composite inorganic oxide particles, and an organic silicon compound supply step for applying an organic silicon compound as a surface modifier to the surface of the gas phase method composite inorganic oxide particles. And the reaction step of reacting the gas phase method composite inorganic oxide particles with the organic silicon compound which is a surface modifier, and the gas phase method composite inorganic oxide in which the organic silicon compound is applied and the organic silicon compound is reacted. It comprises a heating step of heating the particles at a heating temperature of 100 ° C. or higher and 370 ° C. or lower and a heating time of 15 minutes or longer and 350 minutes or lower.

本発明の上記複合無機酸化物粉体を製造するにあたり、上記加熱工程では、不活性ガス雰囲気下、気相法複合無機酸化物粒子を熱処理温度80℃以上370℃以下、好ましくは100℃以上350℃以下、特に好ましくは150℃以上250℃以下、加熱時間15分以上350分以下、好ましくは15分以上300分以下、特に好ましくは30分以上120分以下で熱処理する必要がある。不活性ガスは、特に限定されないが、窒素、ヘリウム、アルゴン等の酸素を含まないガスを用いる必要がある。不活性ガス雰囲気下とするのは、加熱中に表面改質剤と酸素との反応による燃焼を防止する為である。また、不活性ガス雰囲気下とするのは、酸素が存在することにより表面酸化によって改質後の複合無機酸化物粉体が変色するなどの問題が生じることを防止するためである。 In producing the composite inorganic oxide powder of the present invention, in the heating step, the gas phase composite inorganic oxide particles are heat-treated at a heat treatment temperature of 80 ° C. or higher and 370 ° C. or lower, preferably 100 ° C. or higher and 350 ° C. or higher in an inert gas atmosphere. It is necessary to heat-treat at ° C. or lower, particularly preferably 150 ° C. or higher and 250 ° C. or lower, and a heating time of 15 minutes or longer and 350 minutes or shorter, preferably 15 minutes or longer and 300 minutes or shorter, and particularly preferably 30 minutes or longer and 120 minutes or shorter. The inert gas is not particularly limited, but it is necessary to use a gas containing no oxygen such as nitrogen, helium, and argon. The atmosphere of the inert gas is to prevent combustion due to the reaction between the surface modifier and oxygen during heating. Further, the reason why the atmosphere is an inert gas is to prevent problems such as discoloration of the modified composite inorganic oxide powder due to surface oxidation due to the presence of oxygen.

上記加熱工程における熱処理温度が80℃未満の場合、反応が十分に進行せず所定の疎水化度が得られないという問題がある。一方、熱処理温度が370℃を超えると表面改質剤の分解が生じ、表面改質により得られる上記複合無機酸化物粉体に変色が生じるという問題がある。上記加熱工程における加熱時間が15分未満の場合、反応が十分に進行せず、また、溶媒や副生成物が、得られた上記複合無機酸化物粉体に残留する可能性がある。一方、上記加熱工程における加熱時間が350分超でも、350分以下の場合と比較して特性に顕著な相違は見られず、製造時間、製造コスト等の観点から350分以下の範囲で行うことが好ましい。 When the heat treatment temperature in the heating step is less than 80 ° C., there is a problem that the reaction does not proceed sufficiently and a predetermined degree of hydrophobicity cannot be obtained. On the other hand, when the heat treatment temperature exceeds 370 ° C., there is a problem that the surface modifier is decomposed and the composite inorganic oxide powder obtained by the surface modification is discolored. If the heating time in the heating step is less than 15 minutes, the reaction may not proceed sufficiently, and the solvent and by-products may remain in the obtained composite inorganic oxide powder. On the other hand, even if the heating time in the above heating step exceeds 350 minutes, no significant difference in characteristics is observed as compared with the case of 350 minutes or less, and the heating time should be within the range of 350 minutes or less from the viewpoint of manufacturing time, manufacturing cost and the like. Is preferable.

次に、本発明の複合無機酸化物粉体に関する諸物性の測定方法について、以下に説明する。 Next, a method for measuring various physical properties of the composite inorganic oxide powder of the present invention will be described below.

〔アルミナ含有量の測定〕
エネルギー分散型蛍光X線分析装置を用いて気相法複合無機酸化物粒子の元素分析を行い、アルミナ含有量の測定を行う。
[Measurement of alumina content]
Elemental analysis of the gas phase method composite inorganic oxide particles is performed using an energy dispersive fluorescent X-ray analyzer, and the alumina content is measured.

〔疎水化度の測定〕
複合無機酸化物粉体1gを200mLの分液ロートに量り取り、これに純水100mLを加えて栓をし、ターブラーミキサーにて90rpmで10分間振とう後、10分間静置する。静置後、下層の混合液を10mm石英セルに採取し、純水をブランクとして、波長500nmの光の透過率を分光光度計にて測定し、この値を疎水化度とする。
[Measurement of hydrophobicity]
Weigh 1 g of the composite inorganic oxide powder into a 200 mL separatory funnel, add 100 mL of pure water to it, plug it, shake it at 90 rpm for 10 minutes with a turbobler mixer, and let it stand for 10 minutes. After standing, the lower mixed solution is collected in a 10 mm quartz cell, the transmittance of light having a wavelength of 500 nm is measured with a spectrophotometer using pure water as a blank, and this value is taken as the degree of hydrophobicity.

〔体積抵抗率の測定(JIS K 6911)〕
複合無機酸化物粉体0.5gを粉体抵抗測定システム(三菱ケミカルアナリテック社:MCP―PD51型)の粉体用プローブユニットに投入し、5kNの圧力下にて三菱ケミカルアナリテック社製抵抗率測定装置(商品名:ハイレスターUX)にて体積抵抗率の測定を行う。
[Measurement of volume resistivity (JIS K 6911)]
0.5 g of composite inorganic oxide powder was put into the powder probe unit of the powder resistivity measurement system (Mitsubishi Chemical Analytech Co., Ltd .: MCP-PD51 type), and the resistance manufactured by Mitsubishi Chemical Analytec Co., Ltd. was applied under a pressure of 5 kN. The volume resistivity is measured with a rate measuring device (trade name: High Lester UX).

〔帯電量の測定〕
複合無機酸化物粉体1gと負帯電性トナー100gとをミキサーにて攪拌混合してトナー組成物を得、このトナー組成物2gと鉄粉キャリア48gとをガラス容器(75ml容量)に入れ、HH環境下およびLL環境下に40時間以上静置する。ここでHH環境下とは温度32.5℃、湿度80%の雰囲気、LL環境下とは温度10℃、湿度10%の雰囲気を意味する。上記条件にて調製されたサンプルをターブラーミキサーで10分間振とうさせ、トナー組成物と鉄粉キャリアの混合物を0.05g採取し、トレックジャパン株式会社製吸引ブローオフ型Q/mメーター(商品名:MODEL230TO)で10秒間ブローオフした後の値をトナー組成物の帯電量とする。
[Measurement of charge amount]
1 g of the composite inorganic oxide powder and 100 g of the negatively charged toner are stirred and mixed with a mixer to obtain a toner composition, and 2 g of the toner composition and 48 g of the iron powder carrier are placed in a glass container (75 ml capacity) and HH. Let stand in the environment and LL environment for 40 hours or more. Here, the HH environment means an atmosphere having a temperature of 32.5 ° C. and a humidity of 80%, and the LL environment means an atmosphere having a temperature of 10 ° C. and a humidity of 10%. The sample prepared under the above conditions was shaken with a turbulator mixer for 10 minutes, 0.05 g of a mixture of the toner composition and the iron powder carrier was collected, and a suction blow-off type Q / m meter manufactured by Trek Japan Co., Ltd. (trade name). : The value after blow-off with MODEL230TO) for 10 seconds is taken as the charge amount of the toner composition.

〔環境安定性(環境変動比)の評価〕
上記帯電量のHH環境下とLL環境下の比(HH/LL)を環境変動比とし環境変動比が0.48以上のものを環境差が小さく環境安定性に優れるとした。
[Evaluation of environmental stability (ratio of environmental fluctuations)]
The ratio of the charged amount under the HH environment to the LL environment (HH / LL) was defined as the environmental fluctuation ratio, and the ratio of the environmental fluctuation ratio of 0.48 or more was considered to have a small environmental difference and excellent environmental stability.

〔帯電立ち上がり特性の評価〕
上記帯電量のLL環境下における1分間ターブラーミキサーにて振とうを行ったときの値を30分間振とうしたときの値で除した値を帯電立ち上がりの数値とする。帯電立ち上がりの値が大きい値であるほど短い振とう時間で十分に帯電していることを示す。帯電立ち上がりの数値が1.50以上のものを帯電立ち上がり特性に優れるとした。
[Evaluation of charge rise characteristics]
The value obtained by dividing the value when shaking with a turbobler mixer for 1 minute under the LL environment of the above-mentioned charge amount by the value when shaking for 30 minutes is taken as the value of the charge rise. The larger the value of the charge rise, the shorter the shaking time, and the more the charge is sufficiently charged. Those with a charge rise value of 1.50 or more are considered to have excellent charge rise characteristics.

〔流動性改善剤と複合外添したときの環境安定性(環境変動比)の評価〕
複合無機酸化物粉体1gと流動性改善剤(日本アエロジル株式会社製、フュームドシリカ粉末、商品名「AEROSIL(商標登録)RX200」)1gと負帯電性トナー100gとをミキサーにて攪拌混合してトナー組成物を得、このトナー組成物2gと鉄粉キャリア48gとをガラス容器(75ml容量)に入れ、上記〔帯電量の測定〕と同様に、HH環境下およびLL環境下に40時間以上静置する。上記条件にて調製したサンプルをターブラーミキサーで30秒、1分、2分、5分、10分、30分間振とうさせ、各時間におけるトナー組成物と鉄粉キャリアの混合物を0.05g採取し、トレックジャパン株式会社製吸引ブローオフ型Q/mメーター(商品名:MODEL230TO)で10秒間ブローオフした後の値をそれぞれ流動性改善剤と複合外添したときの帯電量とし、同様に、上記帯電量のHH環境下とLL環境下の比(HH/LL)を環境変動比とし、環境変動比がいずれの攪拌時間においても0.8以上のものを環境差が小さく環境安定性に優れるとした。
[Evaluation of environmental stability (environmental change ratio) when compound externally added with a fluidity improver]
Mix 1 g of composite inorganic oxide powder, 1 g of fluidity improver (Fumed silica powder manufactured by Nippon Aerosil Co., Ltd., trade name "AEROSIL (registered trademark) RX200") and 100 g of negatively charged toner with a mixer. Toner composition is obtained, and 2 g of the toner composition and 48 g of iron powder carrier are placed in a glass container (75 ml capacity), and similarly to the above [Measurement of charge amount], 40 hours or more under HH environment and LL environment. Stand still. The sample prepared under the above conditions was shaken with a turbulator mixer for 30 seconds, 1 minute, 2 minutes, 5 minutes, 10 minutes and 30 minutes, and 0.05 g of the mixture of the toner composition and the iron powder carrier at each time was collected. Then, the value after blow-off for 10 seconds with a suction blow-off type Q / m meter (trade name: MODEL230TO) manufactured by Trek Japan Co., Ltd. is used as the charge amount when combined with the fluidity improver and externally added. The ratio of the amount under the HH environment to the LL environment (HH / LL) was defined as the environmental fluctuation ratio, and those with an environmental fluctuation ratio of 0.8 or more at any stirring time were considered to have a small environmental difference and excellent environmental stability. ..

〔炭素含有量の測定〕
表面改質剤で表面処理して得られた複合無機酸化物粉体の炭素含有量は、炭素分析装置(株式会社住化分析センター製、商品名:SUMIGRAPH NC-22)を用いて、次の条件により測定することができる。
検出器の条件:「INJ/DET」=100℃、「COL」=70℃
ガス流速:O=350ml/min、He=80ml/min
[Measurement of carbon content]
The carbon content of the composite inorganic oxide powder obtained by surface-treating with a surface modifier was determined by using a carbon analyzer (manufactured by Sumika Chemical Analysis Service, Inc., trade name: SUMIGRAPH NC-22) as follows. It can be measured depending on the conditions.
Detector conditions: "INJ / DET" = 100 ° C, "COL" = 70 ° C
Gas flow rate: O 2 = 350 ml / min, He = 80 ml / min

〔平均一次粒子径の測定〕
透過型電子顕微鏡にて撮影した画像を解析して求めた。具体的には視野を変えて50の画像を撮影し、2500個の複合無機酸化物粉体についてその平均一次粒子径を画像解析し、個数平均にて算出する。
[Measurement of average primary particle size]
It was obtained by analyzing an image taken with a transmission electron microscope. Specifically, 50 images are taken with different fields of view, the average primary particle size of 2500 composite inorganic oxide powders is image-analyzed, and the number is averaged.

本発明の複合無機酸化物粉体は、粉体塗料の外添剤用または電子写真のトナーの外添剤用として使用することができる。 The composite inorganic oxide powder of the present invention can be used as an external agent for powder coating materials or as an external agent for toners for electrophotographic photographs.

本発明の複合無機酸化物粉体が粉体塗料の外添剤として用いられることで、本発明の複合無機酸化物粉体を含有する粉体塗料組成物が得られる。また、本発明の複合無機酸化物粉体が電子写真のトナーの外添剤として用いられることで、本発明の複合無機酸化物粉体を含有する電子写真のトナー組成物が得られる。 When the composite inorganic oxide powder of the present invention is used as an external additive for a powder coating material, a powder coating composition containing the composite inorganic oxide powder of the present invention can be obtained. Further, by using the composite inorganic oxide powder of the present invention as an external additive for the toner for electrophotographic, an electrophotographic toner composition containing the composite inorganic oxide powder of the present invention can be obtained.

以下に、本発明の複合無機酸化物粉体を含有する電子写真用トナー組成物の製造方法について説明する。 Hereinafter, a method for producing an electrophotographic toner composition containing the composite inorganic oxide powder of the present invention will be described.

本発明の電子写真用トナー組成物の製造にあたり、本発明の複合無機酸化物粉体の添加量は、所望の特性向上効果が得られるような添加量であれば良く、特に制限されないが、電子写真用トナー組成物中に、本発明の複合無機酸化物粉体が0.1質量%~6.0質量%含有されていることが好ましい。電子写真用トナー組成物中の本発明の複合無機酸化物粉体の含有量が0.1質量%未満では、この複合無機酸化物粉体を添加したことによる帯電に関する諸効果が十分に得られない。また複合無機酸化物粉体の含有量が6.0質量%を超えるとトナー表面から脱離して複合無機酸化物粉体が単体で存在するようになり、画像特性やクリーニング特性に問題が生じてくる。 In the production of the toner composition for electrophotographic of the present invention, the amount of the composite inorganic oxide powder of the present invention added may be any amount as long as it can obtain the desired effect of improving the characteristics, and is not particularly limited. It is preferable that the composite inorganic oxide powder of the present invention is contained in the photographic toner composition in an amount of 0.1% by mass to 6.0% by mass. When the content of the composite inorganic oxide powder of the present invention in the toner composition for electrophotographic is less than 0.1% by mass, various effects related to charging due to the addition of this composite inorganic oxide powder can be sufficiently obtained. do not have. Further, when the content of the composite inorganic oxide powder exceeds 6.0% by mass, the composite inorganic oxide powder is separated from the toner surface and the composite inorganic oxide powder exists as a single substance, which causes problems in image characteristics and cleaning characteristics. come.

電子写真用トナー組成物中の本発明の複合無機酸化物粉体の含有量S(質量%)は、原料粉末の平均一次粒子径R(nm)に対して、R/40≦S≦R/7の範囲であることが好ましく、R/25≦S≦R/15の範囲であることがより好ましく、特にS=R/20であることが好ましい。 The content S (% by mass) of the composite inorganic oxide powder of the present invention in the toner composition for electrophotographic is R / 40 ≦ S ≦ R / with respect to the average primary particle size R (nm) of the raw material powder. It is preferably in the range of 7, more preferably in the range of R / 25 ≦ S ≦ R / 15, and particularly preferably S = R / 20.

電子写真用トナー組成物には、一般に、熱可塑性樹脂の他、少量の顔料及び電荷制御剤、その他の外添剤が含まれている。本発明では、上記複合無機酸化物粉体が配合されていれば、他の成分は従来と同様で良く、磁性、非磁性の1成分系トナー、2成分系トナーのいずれでも良い。また、負帯電性トナー、正帯電性トナーのいずれでも良く、モノクロ、カラーのいずれでも良い。 The electrophotographic toner composition generally contains a thermoplastic resin, as well as a small amount of pigment, a charge control agent, and other external additives. In the present invention, as long as the composite inorganic oxide powder is blended, the other components may be the same as those of the conventional ones, and may be either magnetic or non-magnetic one-component toners or two-component toners. Further, either negatively charged toner or positively charged toner may be used, and either monochrome or color may be used.

なお、本発明の電子写真用トナー組成物の製造にあたり、外添剤としての本発明の複合無機酸化物粉体は単独で使用されるに限られず、目的に応じて他の金属酸化物粒子等と併用しても良い。例えば、上記複合無機酸化物粉体と、他の表面改質された乾式シリカ微粒子や表面改質された乾式酸化チタン微粒子や改質された湿式酸化チタン微粒子等を併用することができる。 In the production of the toner composition for electrophotographic of the present invention, the composite inorganic oxide powder of the present invention as an external additive is not limited to being used alone, and other metal oxide particles or the like may be used depending on the purpose. May be used in combination with. For example, the above-mentioned composite inorganic oxide powder can be used in combination with other surface-modified dry silica fine particles, surface-modified dry titanium oxide fine particles, modified wet titanium oxide fine particles, and the like.

次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、実施例の態様に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to the embodiments of the examples as long as the gist of the present invention is not exceeded.

<実施例1>
複合無機酸化物の製造を以下のようにして行った。気相法複合無機酸化物粒子の製造装置として、炎管と、炎管の上部に鉛直に伸延した、水素、空気、ガス状のSiCl及びガス状のAlClを炎管に供給する二重壁の原料供給管と、炎管の上部に斜め方向に伸延した、付加的に空気を供給する空気供給管と、を備えた装置(欧州特許第0585544号明細書の実施例1に記載されている公知の製造装置)を用いた。上記製造装置を用いて、核水素または反応水素1.4Nm/h、空気5.5Nm/hおよびあらかじめ蒸発させたガス状のAlCl 3.20kg/hと一緒に混合した。この約200℃の熱混合物中に、更にあらかじめ蒸発させたガス状のSiCl 0.48kg/hを付加的に供給した。得られた混合物を炎管中で燃焼させ、その際にこれらの炎管中に付加的に空気12Nm/hを供給した。炎管通過後に生じた粉末をフィルターまたはサイクロン中で、塩酸含有ガスから分離した。付着した塩酸残留物を高温で処理することによって得られた気相法複合無機酸化物粒子をフィルターまたはサイクロンから分離した。気相法複合無機酸化物粒子は次の分析データを有していた。
<Example 1>
The composite inorganic oxide was produced as follows. Gas phase method As a device for producing composite inorganic oxide particles, a flame tube and a double that supplies hydrogen, air, gaseous SiC4 and gaseous AlCl 3 vertically extended to the upper part of the flame tube to the flame tube. Described in Example 1 of Japanese Patent No. 0585544, an apparatus comprising a wall material supply tube and an air supply tube that extends diagonally above the flame tube to additionally supply air. A known manufacturing device) was used. Using the above production equipment, nuclear hydrogen or reactive hydrogen 1.4 Nm 3 / h, air 5.5 Nm 3 / h and pre-evaporated gaseous AlCl 3 3.20 kg / h were mixed together. Further, pre-evaporated gaseous SiC 4 0.48 kg / h was additionally supplied to the thermal mixture at about 200 ° C. The obtained mixture was burned in the flame tubes, and an additional 12 Nm 3 / h of air was supplied into these flame tubes. The powder generated after passing through the flame tube was separated from the hydrochloric acid-containing gas in a filter or cyclone. The vapor phase composite inorganic oxide particles obtained by treating the adhering hydrochloric acid residue at high temperature were separated from the filter or cyclone. The vapor phase composite inorganic oxide particles had the following analytical data.

BET比表面積60m/g、4質量%分散液のpH値4.6、かさ密度50g/l、気相法複合無機酸化物粒子の組成Al 95質量%、SiO 5質量%。 BET specific surface area 60 m 2 / g, pH value of 4 mass% dispersion, bulk density 50 g / l, composition of vapor phase composite inorganic oxide particles Al 2 O 3 95 mass%, SiO 25 mass%.

このようにして得られた気相法複合無機酸化物粒子を原料粉末として用い、イソブチルトリメトキシシラン(エボニック インダストリーズAG製 商品名「Dynasylan(商標登録)IBTMO」)を表面改質剤として用いた。気相法複合無機酸化物粒子100質量部を反応容器に入れ、窒素雰囲気下、攪拌により気相法複合無機酸化物粒子を流動状態とし、表面改質剤9質量部を噴霧した。攪拌を継続した状態で室温から150℃まで昇温させ、150℃で60分間保持した。その後、冷却することにより、表面改質された気相法複合無機酸化物粒子である複合無機酸化物粉体を得た。このようにして得られた複合無機酸化物粉体について、上記した測定方法により、平均一次粒子径、炭素含有量、体積抵抗率、疎水化度(疎水率)の測定を行った。 The vapor phase method composite inorganic oxide particles thus obtained were used as a raw material powder, and isobutyltrimethoxysilane (trade name "Dynasylan (trademark) IBTMO" manufactured by Evonik Industries AG) was used as a surface modifier. 100 parts by mass of the vapor phase method composite inorganic oxide particles were placed in a reaction vessel, and the gas phase method composite inorganic oxide particles were made to flow by stirring under a nitrogen atmosphere, and 9 parts by mass of a surface modifier was sprayed. The temperature was raised from room temperature to 150 ° C. with continuous stirring, and the temperature was maintained at 150 ° C. for 60 minutes. Then, by cooling, a composite inorganic oxide powder which is a surface-modified vapor phase composite inorganic oxide particle was obtained. With respect to the composite inorganic oxide powder thus obtained, the average primary particle size, carbon content, volume resistivity, and hydrophobicity (hydrophobicity) were measured by the above-mentioned measuring methods.

また、このようにして得られた複合無機酸化物粉体1質量部を、ポリエステルを含有するトナー100質量部に添加してトナー組成物を得た。得られたトナー組成物について、所定条件における帯電量である環境安定性(環境変動比)と帯電立ち上がり特性を、上記した測定方法により評価した。 Further, 1 part by mass of the composite inorganic oxide powder thus obtained was added to 100 parts by mass of the toner containing polyester to obtain a toner composition. With respect to the obtained toner composition, the environmental stability (environmental fluctuation ratio), which is the amount of charge under predetermined conditions, and the charge rise characteristic were evaluated by the above-mentioned measuring method.

<実施例2>
気相法複合無機酸化物粒子のBET比表面積が90m/gであり、表面改質剤量を14質量部とした以外は実施例1と同様の処理を行った。
<Example 2>
The same treatment as in Example 1 was carried out except that the BET specific surface area of the vapor-phase composite inorganic oxide particles was 90 m 2 / g and the amount of the surface modifier was 14 parts by mass.

<実施例3>
気相法複合無機酸化物粒子のBET比表面積が90m/gであり、表面改質剤の添加量を12質量部とした以外は実施例1と同様の処理を行って複合無機酸化物粉体を得た。
<Example 3>
The composite inorganic oxide powder was subjected to the same treatment as in Example 1 except that the BET specific surface area of the vapor-phase composite inorganic oxide particles was 90 m 2 / g and the amount of the surface modifier added was 12 parts by mass. I got a body.

<実施例4>
気相法複合無機酸化物粒子のBET比表面積が90m/gであり、表面改質剤の添加量を9質量部とした以外は実施例1と同様の処理を行って複合無機酸化物粉体を得た。
<Example 4>
The composite inorganic oxide powder was subjected to the same treatment as in Example 1 except that the BET specific surface area of the vapor-phase composite inorganic oxide particles was 90 m 2 / g and the amount of the surface modifier added was 9 parts by mass. I got a body.

<実施例5>
気相法複合無機酸化物粒子中のアルミナ成分が99質量%であり、BET比表面積が190m/gであり、表面改質剤量を20質量部とし、処理温度を200℃、処理時間を30分とした以外は実施例1と同様の処理を行った。
<Example 5>
Gas phase method The alumina component in the composite inorganic oxide particles is 99% by mass, the BET specific surface area is 190 m 2 / g, the amount of the surface modifier is 20 parts by mass, the treatment temperature is 200 ° C., and the treatment time is set. The same treatment as in Example 1 was performed except that the time was 30 minutes.

<実施例6>
気相法複合無機酸化物粒子中のアルミナ成分が82質量%であり、BET比表面積が15m/gであり、表面改質剤量を5質量部、処理温度を250℃とした以外は実施例1と同様の処理を行った。
<Example 6>
Gas phase method Implemented except that the alumina component in the composite inorganic oxide particles is 82% by mass, the BET specific surface area is 15 m 2 / g, the amount of the surface modifier is 5 parts by mass, and the treatment temperature is 250 ° C. The same processing as in Example 1 was performed.

<実施例7>
気相法複合無機酸化物粒子のBET比表面積が40m/gであり、オクチルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)OCTMO」)8質量部を表面改質剤として用い、処理温度を100℃、処理時間を300分とした以外は実施例1と同様の処理を行った。
<Example 7>
The BET specific surface area of the vapor-phase composite inorganic oxide particles is 40 m 2 / g, and 8 parts by mass of octyltrimethoxysilane (trade name "Dynasylan (trademark) OCTMO" manufactured by Evonik Industries AG) is used as a surface modifier. The same treatment as in Example 1 was carried out except that the treatment temperature was 100 ° C. and the treatment time was 300 minutes.

<実施例8>
ヘキサメチルジシラザン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録) HMDS 」)10質量部を表面改質剤として用い、処理温度を200℃とした以外は実施例1と同様の処理を行った。
<Example 8>
Hexamethyldisilazane (trade name "Dynasylan (trademark) HMDS" manufactured by Evonik Industries AG) was used as a surface modifier, and the same treatment as in Example 1 was carried out except that the treatment temperature was set to 200 ° C. ..

<実施例9>
気相法複合無機酸化物粒子のBET比表面積が90m/gであり、ヘキサデシルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)9116」)14質量部を表面改質剤として用い、処理温度を200℃とした以外は実施例1と同様の処理を行った。
<Example 9>
The BET specific surface area of the vapor-phase composite inorganic oxide particles is 90 m 2 / g, and 14 parts by mass of hexadecyltrimethoxysilane (trade name "Dynasylan (trademark registration) 9116" manufactured by Evonik Industries AG) is used as a surface modifier. The same treatment as in Example 1 was carried out except that the treatment temperature was set to 200 ° C.

<実施例10>
気相法複合無機酸化物粒子中のアルミナ成分が80質量%であり、BET比表面積が25m/gであり、シリコーンオイル(ポリジメチルシロキサン;信越化学工業株式会社製 商品名「KF96-50cs」)7質量部を表面改質剤として用い、処理温度を350℃、処理時間を20分とした以外は実施例1と同様の処理を行った。
<Example 10>
Gas phase method The alumina component in the composite inorganic oxide particles is 80% by mass, the BET specific surface area is 25 m 2 / g, and the silicone oil (polydimethylsiloxane; manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KF96-50cs"" ) 7 parts by mass was used as a surface modifier, and the same treatment as in Example 1 was carried out except that the treatment temperature was 350 ° C. and the treatment time was 20 minutes.

<実施例11>
実施例1で作製した複合無機酸化物粉体1gと流動性改善剤(日本アエロジル株式会社製、フュームドシリカ粉末、商品名「AEROSIL(商標登録)RX200」)1gと負帯電性トナー100gとをミキサーにて攪拌混合してトナー組成物を得、このトナー組成物2gと鉄粉キャリア48gとをガラス容器(75ml容量)に入れ、上記〔帯電量の測定〕と同様の条件にて調製した。得られたトナー組成物について〔流動性改善剤と複合外添したときの環境安定性(環境変動比)の評価〕を、上記した測定方法により評価した。
<Example 11>
1 g of the composite inorganic oxide powder produced in Example 1, 1 g of a fluidity improver (fumed silica powder manufactured by Nippon Aerosil Co., Ltd., trade name "AEROSIL (registered trademark) RX200"), and 100 g of negatively charged toner. A toner composition was obtained by stirring and mixing with a mixer, and 2 g of the toner composition and 48 g of the iron powder carrier were placed in a glass container (75 ml capacity) and prepared under the same conditions as in the above [Measurement of Charge Amount]. The obtained toner composition [evaluation of environmental stability (environmental fluctuation ratio) when composite externally added with a fluidity improving agent] was evaluated by the above-mentioned measuring method.

<実施例12>
実施例2で作製した複合無機酸化物粉体1gと流動性改善剤(日本アエロジル株式会社製、フュームドシリカ粉末、商品名「AEROSIL(商標登録)RX200」)1gと負帯電性トナー100gとをミキサーにて攪拌混合してトナー組成物を得、このトナー組成物2gと鉄粉キャリア48gとをガラス容器(75ml容量)に入れ、上記〔帯電量の測定〕と同様の条件にて調製した。得られたトナー組成物について〔流動性改善剤と複合外添したときの環境安定性(環境変動比)の評価〕を、上記した測定方法により評価した。
<Example 12>
1 g of the composite inorganic oxide powder produced in Example 2, 1 g of a fluidity improver (fumed silica powder manufactured by Nippon Aerosil Co., Ltd., trade name "AEROSIL (registered trademark) RX200"), and 100 g of negatively charged toner. A toner composition was obtained by stirring and mixing with a mixer, and 2 g of the toner composition and 48 g of the iron powder carrier were placed in a glass container (75 ml capacity) and prepared under the same conditions as in the above [Measurement of Charge Amount]. The obtained toner composition [evaluation of environmental stability (environmental fluctuation ratio) when composite externally added with a fluidity improving agent] was evaluated by the above-mentioned measuring method.

<比較例1>
原料粉末に、気相法複合無機酸化物粒子に代えてフュームドシリカ粉末(日本アエロジル株式会社製 商品名「AEROSIL(商標登録)50」)を用い、イソブチルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)IBTMO」)15質量部を表面改質剤として用い、処理温度を200℃、処理時間を150分とした以外は実施例1と同様の処理を行った。
<Comparative Example 1>
Fumed silica powder (trade name "AEROSIL (trademark registration) 50" manufactured by Nippon Aerosil Co., Ltd.) is used as the raw material powder instead of the vapor phase composite inorganic oxide particles, and isobutyltrimethoxysilane (trade name manufactured by Evonik Industries AG). "Dynasylan (registered trademark) IBTMO") 15 parts by mass was used as a surface modifier, and the same treatment as in Example 1 was carried out except that the treatment temperature was 200 ° C. and the treatment time was 150 minutes.

<比較例2>
原料粉末に、気相法複合無機酸化物粒子に代えてフュームドシリカ粉末(日本アエロジル株式会社製 商品名「AEROSIL(商標登録)200」)を用い、ヘキサメチルジシラザン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)HMDS」)20質量部を表面改質剤として用い、処理時間を120分とした以外は実施例1と同様の処理を行った。
<Comparative Example 2>
Hexamethyl disilazane (trade name of Evonik Industries AG) is used as the raw material powder instead of fumed silica powder (trade name "AEROSIL (trademark registration) 200" manufactured by Nippon Aerosil Co., Ltd.) instead of the vapor phase composite inorganic oxide particles. “Dynasylan (trademark) HMDS”) 20 parts by mass was used as a surface modifier, and the same treatment as in Example 1 was carried out except that the treatment time was 120 minutes.

<比較例3>
原料粉末に、気相法複合無機酸化物粒子に代えてフュームドアルミナ粉末(エボニック インダストリーズAG製 商品名「AEROXIDE(商標登録)AluC」)を用い、ヘキサデシルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)9116」)20質量部を表面改質剤として用い、処理温度を200℃とした以外は実施例1と同様の処理を行った。
<Comparative Example 3>
Hexadecyltrimethoxysilane (trade name of Ebonic Industries AG) is used as the raw material powder instead of fumed alumina powder (trade name "AEROXIDE (trademark) AluC" manufactured by Ebonic Industries AG) instead of the vapor-phase composite inorganic oxide particles. “Dynasylan (registered trademark) 9116”) 20 parts by mass was used as a surface modifier, and the same treatment as in Example 1 was carried out except that the treatment temperature was set to 200 ° C.

<比較例4>
原料粉末に、気相法複合無機酸化物粒子に代えてフュームドチタニア粉末(日本アエロジル社製 商品名「AEROXIDE(商標登録)TiOP90」)を用い、イソブチルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)IBTMO」)15質量部を表面改質剤として用い、処理時間を80分とした以外は実施例1と同様の処理を行った。
<Comparative Example 4>
Isobutyltrimethoxysilane (Ebonic Industries AG product) uses fumed titania powder (trade name "AEROXIDE (trademark) TiO 2 P90" manufactured by Aerosil Japan Co., Ltd.) instead of vapor phase composite inorganic oxide particles as the raw material powder. Name "Dynasylan (registered trademark) IBTMO") 15 parts by mass was used as a surface modifier, and the same treatment as in Example 1 was carried out except that the treatment time was 80 minutes.

<比較例5>
原料粉末に、気相法複合無機酸化物粒子に代えてフュームドシリカ粉末(日本アエロジル社製 商品名「AEROSIL(商標登録)90」)にフュームドアルミナ粉末(エボニックインダストリーズAG製 商品名「AEROXIDE(商標登録)AluC」)を1質量%となるように混合した混合無機酸化物粒子を用い、イソブチルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)IBTMO」)15質量部を表面改質剤として用い、処理時間を400分とした以外は実施例1と同様の処理を行った。
<Comparative Example 5>
In addition to the raw material powder, fumed silica powder (trade name "AEROSIL (trademark registration) 90" manufactured by Nippon Aerosil Co., Ltd.) and fumed alumina powder (trade name "AEROXIDE" manufactured by Evonik Industries AG) are used instead of the vapor-phase composite inorganic oxide particles. 15 parts by mass of isobutyltrimethoxysilane (trademark "Dynasylan (registered trademark) IBTMO" manufactured by Evonik Industries AG) was surface-modified using mixed inorganic oxide particles mixed with AluC ") so as to be 1% by mass. The same treatment as in Example 1 was carried out except that it was used as a quality agent and the treatment time was 400 minutes.

<比較例6>
気相法複合無機酸化物粒子中のアルミナ成分が1質量%であり、BET比表面積が170m/gであり、表面改質剤量を20質量部とした以外は実施例1と同様の処理を行った。
<Comparative Example 6>
Gas phase method The same treatment as in Example 1 except that the alumina component in the composite inorganic oxide particles was 1% by mass, the BET specific surface area was 170 m 2 / g, and the amount of the surface modifier was 20 parts by mass. Was done.

<比較例7>
気相法複合無機酸化物粒子中のアルミナ成分が1質量%であり、BET比表面積が80m/gであり、表面改質剤量を10質量部とした以外は実施例1と同様の処理を行った。
<Comparative Example 7>
Gas phase method The same treatment as in Example 1 except that the alumina component in the composite inorganic oxide particles was 1% by mass, the BET specific surface area was 80 m 2 / g, and the amount of the surface modifier was 10 parts by mass. Was done.

<比較例8>
気相法複合無機酸化物粒子中のアルミナ成分が50質量%であり、BET比表面積が45m/gであり、オクチルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)OCTMO」)13質量部を表面改質剤として用い、処理温度を200℃、処理時間を120分とした以外は実施例1と同様の処理を行った。
<Comparative Example 8>
The alumina component in the vapor-phase composite inorganic oxide particles is 50% by mass, the BET specific surface area is 45 m 2 / g, and octyltrimethoxysilane (trade name "Dynasylan (trademark) OCTMO" manufactured by Ebony Industries AG). Using 13 parts by mass as a surface modifier, the same treatment as in Example 1 was carried out except that the treatment temperature was 200 ° C. and the treatment time was 120 minutes.

<比較例9>
気相法複合無機酸化物粒子中のアルミナ成分が25質量%であり、BET比表面積が80m/gであり、オクチルトリメトキシシラン(エボニックインダストリーズAG製 商品名「Dynasylan(商標登録)OCTMO」)15質量部を表面改質剤として用い、処理温度を200℃、処理時間を30分とした以外は実施例1と同様の処理を行った。
<Comparative Example 9>
The alumina component in the vapor-phase composite inorganic oxide particles is 25% by mass, the BET specific surface area is 80 m 2 / g, and octyltrimethoxysilane (trade name "Dynasylan (trademark) OCTMO" manufactured by Ebony Industries AG). Using 15 parts by mass as a surface modifier, the same treatment as in Example 1 was carried out except that the treatment temperature was 200 ° C. and the treatment time was 30 minutes.

<比較例10>
表面改質剤の処理部数を12質量部、処理温度を80℃とした以外は実施例1と同様の処理を行った。
<Comparative Example 10>
The same treatment as in Example 1 was carried out except that the number of treated parts of the surface modifier was 12 parts by mass and the treatment temperature was 80 ° C.

<比較例11>
表面改質剤を12質量部、処理温度を400℃とした以外は実施例1と同様の処理を行った。
<Comparative Example 11>
The same treatment as in Example 1 was carried out except that the surface modifier was 12 parts by mass and the treatment temperature was 400 ° C.

<比較例12>
表面改質剤を12質量部、処理時間を10分とした以外は実施例1と同様の処理を行った。
<Comparative Example 12>
The same treatment as in Example 1 was carried out except that the surface modifier was 12 parts by mass and the treatment time was 10 minutes.

<比較例13>
比較例4で作製したフュームドチタニア粉末1gと流動性改善剤(日本アエロジル株式会社製、フュームドシリカ粉末、商品名「AEROSIL(商標登録)RX200」)1gと負帯電性トナー100gとをミキサーにて攪拌混合してトナー組成物を得、このトナー組成物2gと鉄粉キャリア48gとをガラス容器(75ml容量)に入れ、上記〔帯電量の測定〕と同様の条件にて調製した。得られたトナー組成物について〔流動性改善剤と複合外添したときの環境安定性(環境変動比)の評価〕を、上記した測定方法により評価した。
<Comparative Example 13>
1 g of fumed titania powder produced in Comparative Example 4, 1 g of fluidity improver (fumed silica powder manufactured by Nippon Aerosil Co., Ltd., trade name "AEROSIL (registered trademark) RX200") and 100 g of negatively charged toner are used in a mixer. Toner composition was obtained by stirring and mixing, and 2 g of the toner composition and 48 g of iron powder carrier were placed in a glass container (75 ml capacity) and prepared under the same conditions as in the above [Measurement of Charge Amount]. The obtained toner composition [evaluation of environmental stability (environmental fluctuation ratio) when composite externally added with a fluidity improving agent] was evaluated by the above-mentioned measuring method.

<比較例14>
比較例3で作製したフュームドアルミナ粉末1gと流動性改善剤(日本アエロジル株式会社製、フュームドシリカ粉末、商品名「AEROSIL(商標登録)RX200」)1gと負帯電性トナー100gとをミキサーにて攪拌混合してトナー組成物を得、このトナー組成物2gと鉄粉キャリア48gとをガラス容器(75ml容量)に入れ、上記〔帯電量の測定〕と同様の条件にて調製した。得られたトナー組成物について〔流動性改善剤と複合外添したときの環境安定性(環境変動比)の評価〕を、上記した測定方法により評価した。
<Comparative Example 14>
1 g of fumed alumina powder produced in Comparative Example 3, 1 g of fluidity improver (Fumed silica powder manufactured by Nippon Aerosil Co., Ltd., trade name "AEROSIL (trademark) RX200") and 100 g of negatively charged toner are used in a mixer. Toner composition was obtained by stirring and mixing, and 2 g of the toner composition and 48 g of iron powder carrier were placed in a glass container (75 ml capacity) and prepared under the same conditions as in the above [Measurement of Charge Amount]. The obtained toner composition [evaluation of environmental stability (environmental fluctuation ratio) when composite externally added with a fluidity improving agent] was evaluated by the above-mentioned measuring method.

<比較例15>
比較例1で作製したフュームドシリカ粉末1gと流動性改善剤(日本アエロジル株式会社製、フュームドシリカ粉末、商品名「AEROSIL(商標登録)RX200」)1gと負帯電性トナー100gとをミキサーにて攪拌混合してトナー組成物を得、このトナー組成物2gと鉄粉キャリア48gとをガラス容器(75ml容量)に入れ、上記〔帯電量の測定〕と同様の条件にて調製した。得られたトナー組成物について〔流動性改善剤と複合外添したときの環境安定性(環境変動比)の評価〕を、上記した測定方法により評価した。
<Comparative Example 15>
1 g of fumed silica powder produced in Comparative Example 1, 1 g of fluidity improver (Fumed silica powder manufactured by Nippon Aerosil Co., Ltd., trade name "AEROSIL (registered trademark) RX200") and 100 g of negatively charged toner are used in a mixer. Toner composition was obtained by stirring and mixing, and 2 g of the toner composition and 48 g of iron powder carrier were placed in a glass container (75 ml capacity) and prepared under the same conditions as in the above [Measurement of Charge Amount]. The obtained toner composition [evaluation of environmental stability (environmental fluctuation ratio) when composite externally added with a fluidity improving agent] was evaluated by the above-mentioned measuring method.

<比較例16>
比較例7で作製した気相法複合無機酸化物粒子1gと流動性改善剤(日本アエロジル株式会社製、フュームドシリカ粉末、商品名「AEROSIL(商標登録)RX200」)1gと負帯電性トナー100gとをミキサーにて攪拌混合してトナー組成物を得、このトナー組成物2gと鉄粉キャリア48gとをガラス容器(75ml容量)に入れ、上記〔帯電量の測定〕と同様の条件にて調製した。得られたトナー組成物について〔流動性改善剤と複合外添したときの環境安定性(環境変動比)の評価〕を、上記した測定方法により評価した。
<Comparative Example 16>
1 g of vapor-phase composite inorganic oxide particles produced in Comparative Example 7, 1 g of fluidity improver (Fumed silica powder manufactured by Nippon Aerosil Co., Ltd., trade name "AEROSIL (registered trademark) RX200"), and 100 g of negatively charged toner. Toner composition is obtained by stirring and mixing with a mixer, and 2 g of this toner composition and 48 g of iron powder carrier are placed in a glass container (75 ml capacity) and prepared under the same conditions as the above [Measurement of charged amount]. did. The obtained toner composition [evaluation of environmental stability (environmental fluctuation ratio) when composite externally added with a fluidity improving agent] was evaluated by the above-mentioned measuring method.

上記実施例1-10及び比較例1-12に記載の処理条件を下記表1に、表面改質剤の対応表を表2に、物性データおよび応用特性を下記表3に、実施例11-12及び比較例13-16に記載の〔流動性改善剤と複合外添したときの環境安定性(環境変動比)の評価〕を表4にまとめて記載する。 The treatment conditions described in Examples 1-10 and Comparative Example 1-12 are shown in Table 1 below, the correspondence table of surface modifiers is shown in Table 2, and the physical property data and application characteristics are shown in Table 3 below. Table 4 summarizes [evaluation of environmental stability (environmental change ratio) when composite externally added with a fluidity improver] described in 12 and Comparative Examples 13-16.

Figure 2022098318000001
Figure 2022098318000001

Figure 2022098318000002
Figure 2022098318000002

Figure 2022098318000003
Figure 2022098318000003

Figure 2022098318000004
Figure 2022098318000004

上記表1、3から、実施例と比較例10、11、12とを比較することにより、気相法複合無機酸化物粒子が適切な加熱条件で処理された実施例の複合無機酸化物粉体は、良好な環境変動比(すなわち、環境安定性)と良好な帯電立ち上がり特性を示した。また、実施例では、体積抵抗率が1.0×1011Ω・cm以上9.0×1014Ω・cm以下であり、適切な帯電量とすることができることが判明した。一方で、比較例10、11、12では、体積抵抗率が1.0×1010Ω・cm以下と1.0×1011Ω・cm未満の体積抵抗率であった。また、比較例10、11、12では、環境変動比が0.31以下、帯電立ち上がり特性が0.51以下と、良好な環境変動比(すなわち、環境安定性)も良好な帯電立ち上がり特性も得られなかった。 From Tables 1 and 3 above, by comparing Examples and Comparative Examples 10, 11 and 12, the composite inorganic oxide powder of the example in which the vapor phase method composite inorganic oxide particles were treated under appropriate heating conditions. Showed a good environmental variation ratio (ie, environmental stability) and good charge rise characteristics. Further, in the examples, it was found that the volume resistivity was 1.0 × 10 11 Ω · cm or more and 9.0 × 10 14 Ω · cm or less, and an appropriate charge amount could be obtained. On the other hand, in Comparative Examples 10, 11 and 12, the volume resistivity was 1.0 × 10 10 Ω · cm or less and 1.0 × 10 11 Ω · cm or less. Further, in Comparative Examples 10, 11 and 12, the environmental fluctuation ratio was 0.31 or less and the charge rise characteristic was 0.51 or less, so that a good environmental fluctuation ratio (that is, environmental stability) and a good charge rise characteristic were obtained. I couldn't.

実施例と比較例1、2、3の比較から、気相法複合無機酸化物粒子に代えてフュームドシリカおよびフュームドアルミナを用いると、体積抵抗率が1.0×1015Ω・cm以上または体積抵抗率が1.0×1011Ω・cm未満となり、適切な帯電量とすることができないことが判明した。また、比較例1、2、3では、良好な環境変動比は得られたものの、帯電立ち上がり特性が0.49以下と、良好な帯電立ち上がり特性は得られなかった。 From the comparison between Examples and Comparative Examples 1, 2 and 3, when fumed silica and fumed alumina are used instead of the vapor phase method composite inorganic oxide particles, the volume resistivity is 1.0 × 10 15 Ω · cm or more. Alternatively, it was found that the volume resistivity was less than 1.0 × 10 11 Ω · cm, and it was not possible to obtain an appropriate charge amount. Further, in Comparative Examples 1, 2 and 3, although a good environmental fluctuation ratio was obtained, a good charge rise characteristic was not obtained with a charge rise characteristic of 0.49 or less.

また、比較例4から、気相法複合無機酸化物粒子に代えてフュームチタニアを用いると、環境変動比および帯電立ち上がり特性について良好な結果を示したが、体積抵抗率が1.0×1011Ω・cm未満であり、適切な帯電量とすることができないことが判明した。 Further, from Comparative Example 4, when fumtitania was used instead of the vapor phase method composite inorganic oxide particles, good results were shown in terms of environmental variation ratio and charge rise characteristics, but the volume resistivity was 1.0 × 10 11 . It was found that it was less than Ω · cm and the amount of charge could not be adjusted appropriately.

また、実施例と比較例5~9の比較から、アルミナ含有量が80質量%以上99質量%以下のアルミナとシリカを含む気相法複合無機酸化物粒子に代えて、アルミナ含有量が50質量%以下の、アルミナとシリカを含む気相法複合無機酸化物粒子またはフュームドシリカ粉末にフュームドアルミナ粉末を混合した混合無機酸化物粒子を用いると、良好な帯電立ち上がり特性は得られなかった。 Further, from the comparison between Examples and Comparative Examples 5 to 9, the alumina content was 50% by mass instead of the vapor phase method composite inorganic oxide particles containing alumina and silica having an alumina content of 80% by mass or more and 99% by mass or less. When vapor-phase composite inorganic oxide particles containing alumina and silica or mixed inorganic oxide particles obtained by mixing fumed alumina powder with fumed silica powder having a value of% or less were used, good charge rise characteristics could not be obtained.

また、上記表4の実施例11、12から、アルミナ含有量が80質量%以上99質量%以下であり体積抵抗率が1.0×1011Ω・cm以上9.0×1014Ω・cm以下である実施例1、2のアルミナとシリカを含む気相法複合無機酸化物粒子と流動性改善剤とを複合外添して得たトナー組成物は、良好な環境安定性(環境変動比)を得ることができた。一方で、実施例1、2の気相法複合無機酸化物粒子に代えて、比較例1のフュームドシリカ粉末、比較例3のフュームドアルミナ粉末、比較例4のフュームドチタニア粉末、比較例7の気相法複合無機酸化物粒子を用いて、流動性改善剤と複合外添して得たトナー組成物である比較例13~16では、良好な環境安定性(環境変動比)を得ることができなかった。 Further, from Examples 11 and 12 in Table 4 above, the alumina content is 80% by mass or more and 99% by mass or less, and the volume resistivity is 1.0 × 10 11 Ω · cm or more and 9.0 × 10 14 Ω · cm. The toner composition obtained by composite externally adding the vapor-phase composite inorganic oxide particles containing alumina and silica and the fluidity improving agent of Examples 1 and 2 below has good environmental stability (environmental change ratio). ) Was obtained. On the other hand, instead of the vapor-phase composite inorganic oxide particles of Examples 1 and 2, the fumed silica powder of Comparative Example 1, the fumed alumina powder of Comparative Example 3, the fumed titania powder of Comparative Example 4, and the comparative example. In Comparative Examples 13 to 16, which are toner compositions obtained by composite externally adding a fluidity improving agent using the vapor phase method composite inorganic oxide particles of No. 7, good environmental stability (environmental fluctuation ratio) is obtained. I couldn't.

本発明の複合無機酸化物粉体は、適切な帯電量を維持でき、良好な環境安定性と良好な帯電立ち上がり特性を有するので、例えば、粉体塗料の外添剤用または電子写真のトナーの外添剤用の分野で利用可能であり、特に、高速印刷、小型化された印刷装置の分野で利用価値が高い。
Since the composite inorganic oxide powder of the present invention can maintain an appropriate charge amount, has good environmental stability and good charge rise characteristics, for example, it is used as an external additive for powder coating materials or as an electrophotographic toner. It can be used in the field of external additives, and is particularly valuable in the fields of high-speed printing and miniaturized printing equipment.

Claims (14)

アルミナとシリカを含む気相法複合無機酸化物粒子を有する複合無機酸化物粉体であり、
前記気相法複合無機酸化物粒子のアルミナ含有量が、80質量%以上99質量%以下であり、前記複合無機酸化物粉体のJIS K 6911に準拠した体積抵抗率が、1.0×1011Ω・cm以上9.0×1014Ω・cm以下である複合無機酸化物粉体。
It is a composite inorganic oxide powder having a vapor phase method composite inorganic oxide particles containing alumina and silica.
The alumina content of the vapor phase method composite inorganic oxide particles is 80% by mass or more and 99% by mass or less, and the volume resistivity of the composite inorganic oxide powder according to JIS K 6911 is 1.0 × 10. A composite inorganic oxide powder having a size of 11 Ω · cm or more and 9.0 × 10 14 Ω · cm or less.
前記気相法複合無機酸化物粒子の温度10℃、湿度10%の雰囲気下において1分攪拌後の帯電量値を30分攪拌後の帯電量値で除した値が1.5以上である請求項1に記載の複合無機酸化物粉体。 Claimed that the value obtained by dividing the charge amount value after stirring for 1 minute by the charge amount value after stirring for 30 minutes in an atmosphere of 10 ° C. and 10% humidity of the vapor phase method composite inorganic oxide particles is 1.5 or more. Item 2. The composite inorganic oxide powder according to Item 1. 前記気相法複合無機酸化物粒子の10分攪拌後の温度32.5℃、湿度80%の雰囲気下における帯電値を10分攪拌後の温度10℃、湿度10%の雰囲気下における帯電値で除した値が0.48以上である請求項1または2に記載の複合無機酸化物粉体。 The charge value of the vapor-phase composite inorganic oxide particles after stirring for 10 minutes at a temperature of 32.5 ° C. and a humidity of 80% is the charge value after stirring for 10 minutes at a temperature of 10 ° C. and a humidity of 10%. The composite inorganic oxide powder according to claim 1 or 2, wherein the divided value is 0.48 or more. 前記気相法複合無機酸化物粒子が、有機ケイ素化合物で表面処理されている請求項1乃至3のいずれか1項に記載の複合無機酸化物粉体。 The composite inorganic oxide powder according to any one of claims 1 to 3, wherein the vapor phase method composite inorganic oxide particles are surface-treated with an organosilicon compound. 疎水化度が50%以上である請求項1乃至4のいずれか1項に記載の複合無機酸化物粉体。 The composite inorganic oxide powder according to any one of claims 1 to 4, wherein the degree of hydrophobization is 50% or more. 炭素含有量が、0.5質量%以上11.0質量%以下である請求項1乃至5のいずれか1項に記載の複合無機酸化物粉体。 The composite inorganic oxide powder according to any one of claims 1 to 5, wherein the carbon content is 0.5% by mass or more and 11.0% by mass or less. 前記気相法複合無機酸化物粒子が、前記気相法複合無機酸化物粒子100質量部に対して、3.0質量部以上40質量部以下の前記有機ケイ素化合物にて表面処理されている請求項4に記載の複合無機酸化物粉体。 Claimed that the vapor phase method composite inorganic oxide particles are surface-treated with the organic silicon compound of 3.0 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the vapor phase method composite inorganic oxide particles. Item 4. The composite inorganic oxide powder according to Item 4. 前記有機ケイ素化合物が、下記一般式(1)
(1)R SiR (4-n)
(式中、Rは、炭素数1以上18以下の炭化水素基を表し、Rは、炭素数1以上18以下の炭化水素基、塩素原子、ヒドロキシ基または炭素数1~3のアルコキシ基、nは1~3の整数を表す。)で示される有機ケイ素化合物、ヘキサメチルジシラザン及び/またはシリコーンオイルである請求項4または7に記載の複合無機酸化物粉体。
The organosilicon compound has the following general formula (1).
(1) R 1 n SiR 2 (4-n)
(In the formula, R 1 represents a hydrocarbon group having 1 or more and 18 or less carbon atoms, and R 2 is a hydrocarbon group having 1 or more and 18 or less carbon atoms, a chlorine atom, a hydroxy group or an alkoxy group having 1 to 3 carbon atoms. , N represents an integer of 1 to 3). The composite inorganic oxide powder according to claim 4 or 7, which is an organic silicon compound, hexamethyldisilazane and / or silicone oil.
平均一次粒子径が3.0nm以上100nm以下である請求項1乃至8のいずれか1項に記載の複合無機酸化物粉体。 The composite inorganic oxide powder according to any one of claims 1 to 8, wherein the average primary particle size is 3.0 nm or more and 100 nm or less. 粉体塗料の外添剤用または電子写真のトナーの外添剤用である請求項1乃至9のいずれか1項に記載の複合無機酸化物粉体。 The composite inorganic oxide powder according to any one of claims 1 to 9, which is used as an external agent for powder paints or as an external agent for toners for electrophotographic photographs. 請求項1乃至10のいずれか1項に記載の複合無機酸化物粉体を含有する粉体塗料組成物。 A powder coating composition containing the composite inorganic oxide powder according to any one of claims 1 to 10. 請求項1乃至10のいずれか1項に記載の複合無機酸化物粉体を含有する電子写真のトナー組成物。 An electrophotographic toner composition containing the composite inorganic oxide powder according to any one of claims 1 to 10. 請求項1乃至10のいずれか1項に記載の複合無機酸化物粉体と流動性改善剤とを複合外添し、攪拌時間30秒から30分までにおける帯電量値で表される環境変動比の値が0.8以上である請求項12に記載の電子写真のトナー組成物。 The composite inorganic oxide powder according to any one of claims 1 to 10 and the fluidity improving agent are compositely externally added, and the environmental fluctuation ratio represented by the charge amount value from a stirring time of 30 seconds to 30 minutes. 12. The electrophotographic toner composition according to claim 12, wherein the value of is 0.8 or more. シリカ原料とアルミナ原料を火炎中に導入して気相分解法にて、アルミナ含有量が80質量%以上99質量%以下の気相法複合無機酸化物粒子を得る、気相法複合無機酸化物粒子調製工程と、
前記気相法複合無機酸化物粒子の表面に有機ケイ素化合物を施与する、有機ケイ素化合物供給工程と、
前記有機ケイ素化合物が施与された前記気相法複合無機酸化物粒子を、80℃以上370℃以下の加熱温度、15分以上350分以下の加熱時間にて加熱する加熱工程と、
を含む複合無機酸化物粉体の製造方法。

Gas phase composite inorganic oxide particles obtained by introducing silica raw material and alumina raw material into a flame and obtaining vapor phase composite inorganic oxide particles having an alumina content of 80% by mass or more and 99% by mass or less by a vapor phase decomposition method. Particle preparation process and
An organosilicon compound supply step of applying an organosilicon compound to the surface of the vapor phase method composite inorganic oxide particles, and
A heating step of heating the vapor-phase composite inorganic oxide particles to which the organosilicon compound has been applied at a heating temperature of 80 ° C. or higher and 370 ° C. or lower and a heating time of 15 minutes or longer and 350 minutes or lower.
A method for producing a composite inorganic oxide powder containing.

JP2020211790A 2020-12-21 2020-12-21 NOVEL COMPOSITE INORGANIC OXIDE POWDER, POWDER COATING COMPOSITION CONTAINING COMPOSITE INORGANIC OXIDE POWDER, ELECTROPHOTOGRAPH TONER COMPOSITION CONTAINING COMPOSITE INORGANIC OXIDE POWDER, AND METHOD FOR PRODUCING COMPOSITE INORGANIC OXIDE POWDER Active JP7548806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020211790A JP7548806B2 (en) 2020-12-21 2020-12-21 NOVEL COMPOSITE INORGANIC OXIDE POWDER, POWDER COATING COMPOSITION CONTAINING COMPOSITE INORGANIC OXIDE POWDER, ELECTROPHOTOGRAPH TONER COMPOSITION CONTAINING COMPOSITE INORGANIC OXIDE POWDER, AND METHOD FOR PRODUCING COMPOSITE INORGANIC OXIDE POWDER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020211790A JP7548806B2 (en) 2020-12-21 2020-12-21 NOVEL COMPOSITE INORGANIC OXIDE POWDER, POWDER COATING COMPOSITION CONTAINING COMPOSITE INORGANIC OXIDE POWDER, ELECTROPHOTOGRAPH TONER COMPOSITION CONTAINING COMPOSITE INORGANIC OXIDE POWDER, AND METHOD FOR PRODUCING COMPOSITE INORGANIC OXIDE POWDER

Publications (2)

Publication Number Publication Date
JP2022098318A true JP2022098318A (en) 2022-07-01
JP7548806B2 JP7548806B2 (en) 2024-09-10

Family

ID=82165549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020211790A Active JP7548806B2 (en) 2020-12-21 2020-12-21 NOVEL COMPOSITE INORGANIC OXIDE POWDER, POWDER COATING COMPOSITION CONTAINING COMPOSITE INORGANIC OXIDE POWDER, ELECTROPHOTOGRAPH TONER COMPOSITION CONTAINING COMPOSITE INORGANIC OXIDE POWDER, AND METHOD FOR PRODUCING COMPOSITE INORGANIC OXIDE POWDER

Country Status (1)

Country Link
JP (1) JP7548806B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705035B2 (en) 1999-09-08 2005-10-12 東洋インキ製造株式会社 Positively chargeable magnetic developer and image forming method
JP4099748B2 (en) 2001-12-28 2008-06-11 日本アエロジル株式会社 Surface modified inorganic oxide powder
DE10320854A1 (en) 2003-05-09 2004-12-09 Degussa Ag Dispersion for chemical mechanical polishing
JP4292386B2 (en) 2003-07-16 2009-07-08 セイコーエプソン株式会社 Negatively chargeable toner, method for producing the same, and full-color image forming apparatus using the negatively chargeable toner
JP4191635B2 (en) 2004-03-04 2008-12-03 シャープ株式会社 One-component development method
JP4610603B2 (en) 2007-12-28 2011-01-12 シャープ株式会社 Toner, two-component developer, developing device and image forming apparatus
JP2018095496A (en) 2016-12-12 2018-06-21 日本アエロジル株式会社 Inorganic oxide powder with processed surface and method for surface treatment of inorganic oxide powder

Also Published As

Publication number Publication date
JP7548806B2 (en) 2024-09-10

Similar Documents

Publication Publication Date Title
EP1477532B1 (en) Spherical silica-titania-based fine particles surface-treated with silane, production process therefor, and external additive for electrostatically charged image developing toner using same
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
EP1249474B1 (en) Fine metal oxide powder having high dispersibility and toner composition comprising the same
JP4674936B2 (en) Hydrophobic fine particles and their applications
JP3417291B2 (en) Method for producing external additive for electrophotographic toner
JP4615952B2 (en) Modified hydrophobized silica and method for producing the same
JPH06227810A (en) Hydrophobic silica powder, its production and electrophotographic developer
JP2001281914A (en) Surface modified metal oxide fine powder, method for manufacturing the same and use thereof
EP2239229A1 (en) Surface-modified complex oxide particle
JP2009292915A (en) Surface-modified inorganic oxide powder and toner composition for electrophotography
JP2016006547A (en) Toner composition and method of preparing the same
JP2022047458A (en) Composite inorganic oxide powder, powder coating composition containing composite inorganic oxide powder, toner composition for electrophotography containing composite inorganic oxide powder, and method for producing composite inorganic oxide powder
JP3278278B2 (en) Hydrophobic titanium oxide fine powder
JP3319114B2 (en) Hydrophobic silica powder, its production method and electrophotographic developer containing it
JP2000128534A (en) Hydrophobic rutile type titanium oxide and its production and application
JP4099748B2 (en) Surface modified inorganic oxide powder
JP7548806B2 (en) NOVEL COMPOSITE INORGANIC OXIDE POWDER, POWDER COATING COMPOSITION CONTAINING COMPOSITE INORGANIC OXIDE POWDER, ELECTROPHOTOGRAPH TONER COMPOSITION CONTAINING COMPOSITE INORGANIC OXIDE POWDER, AND METHOD FOR PRODUCING COMPOSITE INORGANIC OXIDE POWDER
EP3178887B1 (en) Hydrophobic silica for electrophotographic toner composition
JP2014162681A (en) Surface-treated silica powder and method for manufacturing the same
JP4318070B2 (en) Surface-modified silica fine powder
JP5683101B2 (en) Surface-treated silica
JP4936237B2 (en) Positively charged hydrophobic titanium oxide fine powder and its production and use
WO2022176388A1 (en) Method for manufacturing surface-treated vapor phase silica particles, surface-treated vapor phase silica particles, and external additive for toner for electrostatic charge image development
JPH11322329A (en) Hydrophobic metal oxide particle and its production, and toner composition for electrophotography
JP2023056202A (en) Surface-modified inorganic oxide, and toner composition containing surface-modified inorganic oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240829

R150 Certificate of patent or registration of utility model

Ref document number: 7548806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150