JP2022046417A - Method for producing chromium-containing molten iron - Google Patents
Method for producing chromium-containing molten iron Download PDFInfo
- Publication number
- JP2022046417A JP2022046417A JP2021127994A JP2021127994A JP2022046417A JP 2022046417 A JP2022046417 A JP 2022046417A JP 2021127994 A JP2021127994 A JP 2021127994A JP 2021127994 A JP2021127994 A JP 2021127994A JP 2022046417 A JP2022046417 A JP 2022046417A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- chromium
- molten iron
- furnace
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 97
- 239000011651 chromium Substances 0.000 title claims abstract description 57
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910052804 chromium Inorganic materials 0.000 title claims abstract description 54
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 239000002893 slag Substances 0.000 claims abstract description 116
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910000423 chromium oxide Inorganic materials 0.000 claims abstract description 45
- 239000002994 raw material Substances 0.000 claims abstract description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 23
- 239000001301 oxygen Substances 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 20
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000007664 blowing Methods 0.000 claims abstract description 10
- 238000009628 steelmaking Methods 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000002923 metal particle Substances 0.000 claims description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 7
- 238000005261 decarburization Methods 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 239000002699 waste material Substances 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000007791 liquid phase Substances 0.000 description 11
- 238000006722 reduction reaction Methods 0.000 description 10
- 230000009467 reduction Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 238000007670 refining Methods 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910000604 Ferrochrome Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture Of Iron (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
本発明は、製鋼用電気炉を用いて含クロム溶鉄を製造する方法に関する。 The present invention relates to a method for producing chromium-containing molten iron using an electric furnace for steelmaking.
含クロム溶鉄の精錬工程においては、含クロム原料を含む原料を溶解したのちに、酸素を供給して脱炭吹錬を行い、酸素吹止後にSi含有原料もしくはAl含有原料などの還元材を添加することで、炭素の酸化と同時に生成するクロム酸化物から有価金属であるクロム分を溶鉄中に回収してから出湯する方法が主流である。 In the chromium-containing molten iron refining process, after the raw material containing the chromium-containing raw material is melted, oxygen is supplied to perform decarburization and blowing, and after the oxygen is blown off, a reducing material such as a Si-containing raw material or an Al-containing raw material is added. By doing so, the mainstream method is to recover the valuable metal chromium content in the molten iron from the chromium oxide generated at the same time as the oxidation of carbon, and then discharge the hot water.
生成したクロム酸化物の還元には、化学等量分の還元材が必要であり、高価なSi合金もしくはAl合金を相当量必要とする。また上記に加えて、クロム酸化物の還元時に生成するSiO2やAl2O3に対してスラグ組成を調整するためにCaOの添加も必要であり、石灰コストの上昇、および、発生スラグ量の増大を招く。特にこの工程において発生するスラグは、酸化クロム濃度が一定量存在するため、副生成物として路盤材や骨材として利用する際に6価クロムの溶出可能性があるなどの課題がある。 In order to reduce the produced chromium oxide, a chemical equal amount of reducing agent is required, and an expensive Si alloy or Al alloy is required in a considerable amount. In addition to the above, it is also necessary to add CaO to adjust the slag composition for SiO 2 and Al 2 O 3 generated during the reduction of chromium oxide, which increases the lime cost and the amount of generated slag. Invite an increase. In particular, since the slag generated in this step has a certain amount of chromium oxide concentration, there is a problem that hexavalent chromium may be eluted when used as a roadbed material or an aggregate as a by-product.
Si含有原料もしくはAl含有原料の使用量を減らすため、クロム酸化物含有スラグを還元せずに処理を終了し、別途溶銑もしくは炭素含有原料を用いて還元する方法が検討されてきた。例えば、特許文献1では酸素吹止後に還元を行うことなく排滓もしくは除滓し、そのスラグを電気炉にて炭素やケイ素で還元処理することで、クロムを溶鉄中に回収する方法などが開示されている。
In order to reduce the amount of the Si-containing raw material or the Al-containing raw material used, a method of terminating the treatment without reducing the chromium oxide-containing slag and separately using a hot metal or a carbon-containing raw material to reduce the slag has been studied. For example,
また、特許文献2では、クロム酸化物含有スラグ生成後、還元することなく出湯し、精錬炉内に溶銑を装入して炭材の添加と吹酸を行うことで、クロムを溶鉄中に回収する方法が開示されている。
Further, in
また、特許文献3では、クロム酸化物含有スラグ生成後、還元することなく炭酸カルシウムを添加してスラグを固化することで、溶鉄だけを出湯し、クロム酸化物含有スラグを別途排滓して電気炉に装入して還元処理することでクロムを溶鉄中に回収する方法などが開示されている。
Further, in
しかしながら、上記従来技術には以下の問題がある。
特許文献1に記載の方法では、クロム酸化物含有スラグを排滓後に別の精錬容器に再度装入する必要があり、熱ロスが大きく電力コストもしくは炭材などの昇熱コストが大きくなるといった課題があった。
However, the above-mentioned prior art has the following problems.
In the method described in
また、特許文献2に記載の方法では、クロム酸化物含有スラグを残したまま排滓する際に、炉壁、炉口、出湯孔付近にスラグが固着してしまい、操業が悪化する課題があった。とりわけ電気炉においては、固相率の高いスラグでの操業が可能な機械撹拌を備えた鍋容器や転炉型反応容器とは異なり、攪拌力を大きくすることが難しく、スラグの流動性を確保することが困難である。
Further, in the method described in
また、特許文献3に記載の方法では、クロム酸化物含有スラグを固化させることで、上記スラグ固着の課題は解決できるが、炭酸カルシウムの分解反応は吸熱反応であり、スラグの温度が下がってしまうため、クロムの回収工程にて電力コストもしくは炭材などの昇熱コストが大きくなる課題があった。
Further, in the method described in
本発明は、このような事情に鑑みてなされたものであって、操業に影響を与えることなく、安価かつ廃棄物の生成が少ない含クロム溶鉄の製造方法を提案することを目的としている。 The present invention has been made in view of such circumstances, and an object of the present invention is to propose a method for producing chromium-containing molten iron which is inexpensive and produces less waste without affecting the operation.
発明者らは、上記課題を解決すべく、種々実験を重ねた結果、酸素供給後のクロム酸化物含有スラグは、その塩基度により固相率および粘性が大きく変化することに着目し、クロム酸化物含有スラグを炉内に残留させ、同一精錬炉内で新たに添加する炭素源もしくは金属源によって還元することで、操業に影響を与えることなく、安価かつ廃棄物の生成が少ない含クロム溶鉄が製造可能であることを知見した。本発明は上記知見に基づきなされたものであり、その要旨は以下のとおりである。 As a result of repeating various experiments in order to solve the above problems, the inventors focused on the fact that the solid phase ratio and viscosity of the chromium oxide-containing slag after oxygen supply greatly change depending on its basicity, and chromium oxidation By leaving the substance-containing slag in the furnace and reducing it with a carbon source or metal source newly added in the same refining furnace, chrome-containing molten iron that is inexpensive and produces less waste without affecting the operation can be obtained. It was found that it can be manufactured. The present invention has been made based on the above findings, and the gist thereof is as follows.
上記課題を有利に解決する本発明の含クロム溶鉄の製造方法は、製鋼用電気炉を用いて、含クロム原料を含む原料の溶解と酸素の吹込みによる粗脱炭とを行う含クロム溶鉄の製造方法において、スラグの塩基度を1.5以上1.7未満または1.9以上3.5以下の範囲内に調整したうえで、酸素の吹込みにより生成したクロム酸化物含有スラグを炉内に残したまま出湯する第一工程と、同一の炉内に新たに添加する炭素源または金属源により残留した前記クロム酸化物含有スラグを還元し、クロムを溶鉄中に回収する第二工程と、を有する、ここで、スラグの塩基度とは、スラグ中の質量基準で、CaO濃度をSiO2濃度で除したものとすることを特徴とする。 The method for producing chromium-containing molten iron of the present invention, which advantageously solves the above problems, is a method for producing chromium-containing molten iron, which uses an electric furnace for steelmaking to melt raw materials including chromium-containing raw materials and to perform crude decarburization by blowing oxygen. In the manufacturing method, after adjusting the basicity of the slag to the range of 1.5 or more and less than 1.7 or 1.9 or more and 3.5 or less, the chromium oxide-containing slag produced by blowing oxygen is placed in the furnace. The first step of discharging hot water while leaving it in the same furnace, and the second step of reducing the slag containing chromium oxide remaining by the carbon source or metal source newly added in the same furnace and recovering the chromium in the molten iron. Here, the basicity of the slag is characterized by dividing the CaO concentration by the SiO 2 concentration on the basis of the mass in the slag.
なお、本発明にかかる含クロム溶鉄の製造方法は、
(1)前記第一工程において、酸素吹込み後にSi含有原料およびAl含有原料のうちから選ばれる1種または2種を用いて、スラグ中のクロム酸化物濃度が5mass%以上50mass%以下となるように調整すること、
(2)前記第一工程において、炉壁に付着したスラグおよび金属粒を酸素吹込み後に落とし込むことにより、溶鉄上へ添加すること、
などがより好ましい解決手段になり得るものと考えられる。
The method for producing chromium-containing molten iron according to the present invention is as follows.
(1) In the first step, the chromium oxide concentration in the slag is 5 mass% or more and 50 mass% or less by using one or two selected from the Si-containing raw material and the Al-containing raw material after oxygen is blown. To adjust,
(2) In the first step, slag and metal particles adhering to the furnace wall are added onto molten iron by dropping them after oxygen is blown.
Etc. may be a more preferable solution.
本発明によれば、操業に影響を与えることなくクロム酸化物含有スラグを炉内に残留させ、同一精錬炉内で新たに添加する炭素源もしくは金属源によって還元することで、安価かつ、生成スラグが少なく含クロム溶鉄を製造することが可能となり、環境負荷の軽減に寄与する。 According to the present invention, chromium oxide-containing slag remains in the furnace without affecting the operation and is reduced by a carbon source or a metal source newly added in the same refining furnace, so that the slag is inexpensive and produced. It is possible to produce chromium-containing molten iron with less slag, which contributes to the reduction of environmental load.
本発明を知見するに至った考え方を説明する。
酸化クロムの融点は2300℃と非常に高い。含クロム溶湯に酸素を供給した後のクロム酸化物含有スラグの温度は、1700℃程度であり、かつ、酸化クロムを多量に含むため、液相率が低く、粘度が非常に高い。そのため、クロム酸化物含有スラグを還元することなく溶鉄のみを出湯した場合、そのスラグが炉壁、炉口、または出湯孔付近に固着スラグとして大量に残留し、操業を阻害してしまう。
The idea that led to the discovery of the present invention will be described.
The melting point of chromium oxide is as high as 2300 ° C. The temperature of the chromium oxide-containing slag after supplying oxygen to the chromium-containing molten metal is about 1700 ° C., and since it contains a large amount of chromium oxide, the liquid phase ratio is low and the viscosity is very high. Therefore, when only molten iron is discharged without reducing the chromium oxide-containing slag, a large amount of the slag remains as fixed slag near the furnace wall, the furnace mouth, or the hot water hole, which hinders the operation.
たとえば、電気炉のような比較的容積の小さい炉においては、傾動時に付着したスラグが、送酸ランスからの酸素ガスの経路を遮蔽してしまったり、出湯時にスラグが出湯孔をふさいでしまったりといった操業阻害が起こる。 For example, in a relatively small-volume furnace such as an electric furnace, the slag attached during tilting may block the path of oxygen gas from the acid feed lance, or the slag may block the hot water outlet hole when hot water is discharged. Such an operation obstruction occurs.
そこで、発明者らは、炉体へのスラグの付着力は、スラグの液相部分の粘度の影響が大きいこと、また酸化性雰囲気下における、クロム酸化物含有スラグが、その塩基度が1.7以上1.9より小さい範囲で局所的に固相率が高くなり、また、高塩基度領域で粘性の低いスラグ状態を確保できることに着目した。そして、操業に影響を与えることなくクロム酸化物含有スラグを炉内に残留させる方法を見出した。すなわち、同一精錬炉内で新たに添加する炭素源もしくは金属源によって還元することで、安価かつ、生成スラグの少ない含クロム溶鉄の製造方法を開発した。 Therefore, the inventors have stated that the adhesive force of slag to the furnace body is greatly affected by the viscosity of the liquid phase portion of the slag, and that the basicity of the chromium oxide-containing slag in an oxidizing atmosphere is 1. We focused on the fact that the solid phase ratio is locally high in the range of 7 or more and smaller than 1.9, and that a slag state with low viscosity can be secured in the high basicity region. Then, he found a method for leaving the chromium oxide-containing slag in the furnace without affecting the operation. That is, we have developed a method for producing chromium-containing molten iron that is inexpensive and produces less slag by reducing it with a carbon source or a metal source newly added in the same refining furnace.
図1に本発明の一実施形態にかかる含クロム溶鉄の製造方法の基本構成フロー図を示す。まず、第一工程として、製鋼用電気炉を用いて、含クロム原料を含む原料を溶解(S0)し、酸素の吹込みによる粗脱炭(S1)を行う。この第一工程では、スラグの塩基度を1.5以上1.7未満または1.9以上3.5以下の範囲内に調整したうえで、酸素の吹込みにより生成したクロム酸化物含有スラグを炉内に残したまま出湯(S2)する。ここで、スラグの塩基度とは、スラグ中の質量基準で、CaO濃度をSiO2濃度で除したものとする。 FIG. 1 shows a basic configuration flow chart of a method for producing chromium-containing molten iron according to an embodiment of the present invention. First, as a first step, a raw material containing a chromium-containing raw material is melted (S0) using an electric furnace for steelmaking, and rough decarburization (S1) is performed by blowing oxygen. In this first step, the basicity of the slag is adjusted within the range of 1.5 or more and less than 1.7 or 1.9 or more and 3.5 or less, and then the chromium oxide-containing slag produced by blowing oxygen is used. Leave the hot water in the furnace (S2). Here, the basicity of the slag is based on the mass in the slag, and the CaO concentration is divided by the SiO 2 concentration.
次に、第二工程として、同一の炉内に新たに添加する炭素源、または金属源により、その炉内に残留させたクロム酸化物含有スラグを還元し、クロムを溶鉄中に回収する(S3)ことで効果的に含クロム溶鉄を製造できる。 Next, as a second step, the chromium oxide-containing slag remaining in the furnace is reduced by a carbon source or a metal source newly added in the same furnace, and chromium is recovered in the molten iron (S3). ) Therefore, chromium-containing molten iron can be effectively produced.
第一工程において、酸素吹込み後にSi含有原料およびAl含有原料のうちから選ばれる1種または2種を用いて、スラグ中の酸化クロム(Cr2O3)濃度を5mass%以上50mass%以下に調整する弱還元工程(S4)を実施することで、より安定的に含クロム溶鉄を製造できる。また、出湯前に炉壁、炉口、出湯孔周りに付着したスラグおよび金属粒を押し込む工程(S5)を実施することで、より安定的に含クロム溶鉄を製造できる。 In the first step, the chromium oxide (Cr 2 O 3 ) concentration in the slag is reduced to 5 mass% or more and 50 mass% or less by using one or two kinds selected from the Si-containing raw material and the Al-containing raw material after oxygen injection. By carrying out the weak reduction step (S4) to be adjusted, chromium-containing molten iron can be produced more stably. Further, by carrying out the step (S5) of pushing in the slag and metal particles adhering to the furnace wall, the furnace mouth, and the vicinity of the hot water hole before the hot water is discharged, the chromium-containing molten iron can be produced more stably.
以下に本発明の詳細について説明する。
酸化クロム濃度が高いスラグにおける、液相線温度の報告が不足しているため、発明者らは、開発に先立って、酸化クロム濃度が高いスラグにおいて、塩基度と固相率の関係を30kg規模溶解炉にて鋭意調査を行った。事前にAl2O3濃度が5~10質量%、Cr2O3濃度が5~50質量%、MgO濃度が0~10質量%であり、CaOとSiO2の比率が1.0~3.0の間で変化するようにCaO、SiO2、Al2O3、Cr2O3、MgO試薬を混合したものを作成した。そして、MgOるつぼ内にそれぞれを添加し、1700℃まで上昇させて溶解させた。一度溶解したスラグサンプルを急冷し、破砕したのちに、粒径が2.0~4.0mmの範囲のスラグ粒のみ分級したものを、1600℃に加熱した溶鋼の上に添加し、30分後のスラグ外観を観察した。スラグの組成により液相率は異なるものの、スラグの塩基度が1.7以上1.9より小さいスラグにおいては、炉壁への付着やスラグ粒同士の凝集により溶解速度が著しく遅いことが観察された。特に、1.9以上の高塩基度ではスピネル化合物であるMgCr2O4の生成が抑制され、液相の生成量が大きくなった。また、発明者らは、酸化クロム濃度が高いスラグにおいて、生成する液相の熱力学的検討を行った。図2にスラグ中の酸化クロム濃度20、30、40、50および60mass%ごとに、熱力学計算ソフトFactsageを用いて算出した1700℃における、スラグの塩基度と生成する液相の塩基度の関係をグラフで示す。ここで、液相中の塩基度とは、液相中の質量基準で、CaO濃度をSiO2濃度で除したものとする。スラグ中のMgO濃度およびAl2O3濃度をそれぞれ10mass%および10mass%とおいた。このMgO濃度とAl2O3濃度は一般的な精錬炉におけるスラグの組成であり、この濃度の大小は、計算結果に大きな影響を与えない。
The details of the present invention will be described below.
Due to the lack of reports on the liquidus temperature in slag with a high concentration of chromium oxide, the inventors prior to the development of the relationship between basicity and solid phase ratio in slag with a high concentration of chromium oxide on the scale of 30 kg. An diligent investigation was conducted in the melting furnace. In advance, the Al 2 O 3 concentration is 5 to 10% by mass, the Cr 2 O 3 concentration is 5 to 50% by mass, the MgO concentration is 0 to 10% by mass, and the ratio of CaO to SiO 2 is 1.0 to 3. A mixture of CaO, SiO 2 , Al 2 O 3 , Cr 2 O 3 , and MgO reagent was prepared so as to change between 0. Then, each was added into the MgO crucible, and the temperature was raised to 1700 ° C. to dissolve it. Once the melted slag sample is rapidly cooled and crushed, only slag grains with a particle size in the range of 2.0 to 4.0 mm are classified and added onto molten steel heated to 1600 ° C. 30 minutes later. The appearance of the slag was observed. Although the liquid phase ratio varies depending on the composition of the slag, it has been observed that the dissolution rate of slag with a basicity of 1.7 or more and less than 1.9 is extremely slow due to adhesion to the furnace wall and aggregation of slag particles. rice field. In particular, at a high basicity of 1.9 or higher, the formation of MgCr 2 O 4 , which is a spinel compound, was suppressed, and the amount of liquid phase formed increased. In addition, the inventors conducted a thermodynamic study of the liquid phase produced in slag having a high chromium oxide concentration. FIG. 2 shows the relationship between the basicity of the slag and the basicity of the liquid phase produced at 1700 ° C. calculated using the thermodynamic calculation software Factsage for each of the chromium oxide concentrations of 20, 30, 40, 50 and 60 mass% in the slag. Is shown in a graph. Here, the basicity in the liquid phase is based on the mass in the liquid phase, and the CaO concentration is divided by the SiO 2 concentration. The MgO concentration and the Al2O3 concentration in the slag were set to 10 mass% and 10 mass%, respectively. The MgO concentration and the Al2O3 concentration are the compositions of slag in a general smelting furnace, and the magnitude of these concentrations does not significantly affect the calculation result.
一般に、スラグの塩基度が1.2未満の組成では、粘度が急激に上がる現象が確認されている。よって、液相組成中の塩基度を1.2以上に保つことで、炉壁へのスラグ付着を抑制することができる。特にスラグの塩基度が1.5未満の場合には、スラグ相内で不均一状態になる可能性があり、局所的にスラグの粘度が大きくなってしまい、操業を阻害してしまうおそれがある。 In general, it has been confirmed that the viscosity of slag increases sharply when the basicity of the slag is less than 1.2. Therefore, by keeping the basicity in the liquid phase composition at 1.2 or more, slag adhesion to the furnace wall can be suppressed. In particular, when the basicity of the slag is less than 1.5, a non-uniform state may occur in the slag phase, and the viscosity of the slag may increase locally, which may hinder the operation. ..
また、スラグの塩基度が3.5を超えた場合は、スラグ中に6価クロムが生成してしまうため、環境問題の観点から、スラグの塩基度は3.5以下とする必要がある。操業の変化による酸化クロム濃度の変化を鑑みると、スラグの塩基度は2.0以上3.5以下の範囲とすることがより望ましい。 Further, when the basicity of the slag exceeds 3.5, hexavalent chromium is generated in the slag, so from the viewpoint of environmental problems, the basicity of the slag needs to be 3.5 or less. Considering the change in the chromium oxide concentration due to the change in operation, it is more desirable that the basicity of the slag is in the range of 2.0 or more and 3.5 or less.
また、酸化クロムの濃度が60mass%程度となると、スラグ塩基度を増加させても液相部分の塩基度があまり上がらないことから、スラグ中の酸化クロムの濃度を50mass%以下とすることが望ましい。また、スラグ中の酸化クロム濃度が5mass%未満である場合、新しく装入される炭素源または金属源によって回収できるクロムのメリットよりも、スラグのボリュームが増加してしまうデメリットの方が大きくなる可能性がある。したがって、スラグ中の酸化クロム濃度として、5mass%以上を確保することが望ましい。酸素供給後に、Si含有原料やAl含有原料を適正量添加し、弱還元することで、酸化クロムの濃度をこの範囲に調整することができる。この場合は、Si含有原料の添加により、送酸後と弱還元後のスラグ塩基度が変化するが、送酸後および弱還元後のスラグ塩基度のどちらも1.5以上1.7未満または1.9以上3.5以下の範囲とすることが望ましい。 Further, when the concentration of chromium oxide is about 60 mass%, the basicity of the liquid phase portion does not increase so much even if the slag basicity is increased, so it is desirable to set the concentration of chromium oxide in the slag to 50 mass% or less. .. Also, if the chromium oxide concentration in the slag is less than 5 mass%, the demerit of increasing the volume of the slag may outweigh the advantages of chromium that can be recovered by the newly charged carbon or metal source. There is sex. Therefore, it is desirable to secure 5 mass% or more of the chromium oxide concentration in the slag. After supplying oxygen, an appropriate amount of Si-containing raw material or Al-containing raw material is added and weakly reduced to adjust the concentration of chromium oxide within this range. In this case, the slag basicity after acid transfer and after weak reduction changes depending on the addition of the Si-containing raw material, but both the slag basicity after acid transfer and after weak reduction are 1.5 or more and less than 1.7 or It is desirable that the range is 1.9 or more and 3.5 or less.
スラグの塩基度を1.5以上1.7未満または1.9以上3.5以下の範囲に調整した場合、スラグの炉壁への付着力は大きく低減されるが、全く付着しなくなるわけではない。しかしながら、これらの付着スラグおよびその中に抱き込まれた金属粒、たとえば、クロム濃度の高い粒鉄は、物理的な力により炉壁から剥離されることが好ましい。このとき、酸素濃度の高い溶鉄の上に酸化性スラグが落下するため、大きなガス発生反応は起こらない。この付着したスラグおよび金属粒は、冷却されると炉壁に付着する力が大きくなってしまうため、炉内に溶鉄が存在している比較的高温の状況でスラグおよび金属粒を剥離することが望ましい。炉壁からスラグおよび金属粒を剥離するには、重機などを用いて実施すればよい。炉壁からスラグおよび金属粒を剥離することを出湯前に行うことで、出湯後に新しく添加する炭素源もしくは金属源を用いて、高効率にクロムを還元回収することができる。 When the basicity of the slag is adjusted to the range of 1.5 or more and less than 1.7 or 1.9 or more and 3.5 or less, the adhesive force of the slag to the furnace wall is greatly reduced, but it does not mean that the slag does not adhere at all. do not have. However, it is preferable that these adhered slags and the metal particles encapsulated therein, for example, granular iron having a high chromium concentration, are peeled off from the furnace wall by a physical force. At this time, since the oxidizing slag falls on the molten iron having a high oxygen concentration, a large gas generation reaction does not occur. When the attached slag and metal particles are cooled, the force attached to the furnace wall increases, so that the slag and metal particles may be peeled off in a relatively high temperature condition where molten iron is present in the furnace. desirable. To peel off the slag and metal particles from the furnace wall, a heavy machine or the like may be used. By exfoliating the slag and metal particles from the furnace wall before the hot water is discharged, chromium can be reduced and recovered with high efficiency by using a carbon source or a metal source newly added after the hot water is discharged.
炉内にクロム酸化物含有スラグを残留している場合、新しくそこに炭素源もしくは金属源を添加することで、クロムを還元回収することができる。炭素源としては、別途用意した溶銑や、高炭素含有フェロクロム、炭材などがあげられる。金属源としては、フェロシリコンや、アルミペレット、アルミドロスなどがあげられる。炭素による酸化クロムの還元反応は吸熱反応であるため、熱を供給するために酸素を供給する、もしくは通電を実施してもよい。その後の工程では再度スラグの組成を調整してクロム酸化物含有スラグを炉内に残留させたまま出湯してもよいし、金属還元材を添加して一度排滓を行ってから出湯してもよい。 If chromium oxide-containing slag remains in the furnace, chromium can be reduced and recovered by adding a new carbon source or metal source to the slag. Examples of the carbon source include hot metal prepared separately, high carbon-containing ferrochrome, and carbonaceous material. Examples of the metal source include ferrosilicon, aluminum pellets, and aluminum dross. Since the reduction reaction of chromium oxide by carbon is an endothermic reaction, oxygen may be supplied or energization may be carried out to supply heat. In the subsequent steps, the composition of the slag may be adjusted again and the hot water may be discharged while the chromium oxide-containing slag remains in the furnace, or the hot water may be discharged after adding a metal reducing agent and draining once. good.
発明者らは、50t規模電気炉にクロム含有スクラップおよび、高炭素フェロクロムを装入し、通電溶解および送酸脱炭後に出湯を実施した。出湯後に、炉内にフェロクロムおよびスクラップを追加装入して再度通電溶解を実施することで、含クロム溶鉄を溶製した。表1に実験条件を示す。表1には、送酸脱炭後の溶融金属組成として、C濃度とCr濃度を記載した。残部はFeおよび不可避不純物である。また、表1には、送酸脱炭後および出湯前のスラグ組成およびスラグ塩基度を記載した。処理条件No.1および4では、従来と同様、強還元として、化学量論的に、スラグ中酸化クロムを全量還元する量の還元材を添加した。 The inventors charged chromium-containing scrap and high-carbon ferrochrome into a 50-ton scale electric furnace, and carried out hot water discharge after electric dissolution and acid transfer decarburization. After the hot water was discharged, ferrochrome and scrap were additionally charged into the furnace and melted by energization again to melt the chromium-containing molten iron. Table 1 shows the experimental conditions. Table 1 shows the C concentration and the Cr concentration as the molten metal composition after acid transfer decarburization. The balance is Fe and unavoidable impurities. In addition, Table 1 shows the slag composition and slag basicity after acid decarburization and before hot water discharge. Processing condition No. In Nos. 1 and 4, as in the conventional case, as a strong reduction, a reducing agent was added in an amount that chemically reduces the total amount of chromium oxide in the slag.
次に、表1で示した実験条件に対して、炉壁および出湯孔の状況を確認し、操業影響の評価を行った。結果を表2に示した。ここで、操業安定性評価では、炉壁付着が著しく酸素ガス供給路を遮蔽していた、もしくは出湯中もしくは出湯前に出湯孔が閉塞し、除去できなかった場合を×と評価した。また、付着度合いが軽度であり、除去可能であった場合を〇とし、また、その付着除去作業が20分以内であった場合を◎と評価した。また、還元材使用量評価として、金属還元材の使用量、つまり、使用したフェロシリコンやアルミペレットの量が従来と同じ場合に×と評価し、従来より減少した場合に○と評価した。さらに、クロム回収率として、第二工程において回収できたクロムの割合を評価した。ここで、クロムの回収率は、質量基準で、(溶融金属のクロム濃度(%)×出湯量(t)/100-添加クロム量(t))/炉内残存クロム量(t)と計算した。また、クロム回収率が、0.3未満を×と評価し、0.3以上0.5未満を〇と評価し、0.5以上を◎と評価した。総合評価として、操業安定性評価、還元材使用量評価およびクロム回収率のいずれかが×と評価されたものを×と評価し、その余の内、操業安定性評価およびクロム回収率がいずれも◎と評価されたものを◎と評価し、それ以外の条件は〇と評価した。 Next, under the experimental conditions shown in Table 1, the conditions of the furnace wall and the hot water outlet were confirmed, and the operational impact was evaluated. The results are shown in Table 2. Here, in the operational stability evaluation, the case where the adhesion to the furnace wall was remarkable and the oxygen gas supply path was obstructed, or the hot water outlet hole was blocked during or before the hot water was discharged and could not be removed was evaluated as x. In addition, the case where the degree of adhesion was mild and could be removed was evaluated as ◯, and the case where the adhesion removal work was within 20 minutes was evaluated as ⊚. In addition, as an evaluation of the amount of reducing material used, when the amount of metal reducing material used, that is, the amount of ferrosilicon or aluminum pellets used was the same as the conventional one, it was evaluated as x, and when it was reduced from the conventional one, it was evaluated as ◯. Furthermore, as the chromium recovery rate, the proportion of chromium recovered in the second step was evaluated. Here, the chromium recovery rate was calculated as (chromium concentration (%) of molten metal x amount of hot water (t) / 100-added chromium amount (t)) / amount of residual chromium in the furnace (t) on a mass basis. .. Further, when the chromium recovery rate was less than 0.3, it was evaluated as x, when it was 0.3 or more and less than 0.5, it was evaluated as 〇, and when it was 0.5 or more, it was evaluated as ⊚. As a comprehensive evaluation, those evaluated as x in any of the operation stability evaluation, the reducing agent usage evaluation and the chromium recovery rate are evaluated as x, and among the rest, the operation stability evaluation and the chromium recovery rate are all evaluated. Those evaluated as ◎ were evaluated as ◎, and other conditions were evaluated as 〇.
発明例である処理条件No.6~15ではすべての条件で安定操業可能であり、還元材使用量を低減することができた。また、さらにスラグの塩基度を2.0~3.5の範囲にし、スラグ中の酸化クロム濃度を5mass%以上50mass%以下の範囲となるように調整した処理条件No.9、10、12および15では、比較的炉壁付着物の除去作業が軽度となった。さらに、重機を用いて、出湯前に炉壁に付着したスラグおよび金属粒を押し込んだ処理条件No.13~15ではクロムの回収率が上昇した。 Processing condition No. which is an example of the invention. In 6 to 15, stable operation was possible under all conditions, and the amount of reducing agent used could be reduced. Further, the treatment condition No. was adjusted so that the basicity of the slag was in the range of 2.0 to 3.5 and the concentration of chromium oxide in the slag was in the range of 5 mass% or more and 50 mass% or less. In 9, 10, 12 and 15, the work of removing the deposits on the furnace wall was relatively light. Furthermore, using a heavy machine, the slag and metal particles adhering to the furnace wall were pushed in before the hot water was discharged. In 13 to 15, the recovery rate of chromium increased.
上記例では、安価かつ操業影響なく安定的に含クロム溶鉄を溶製する例を示したが、本発明により出湯された含クロム溶鉄は、溶鉄中の酸素濃度が高いため、吸窒しにくくなるので、高純度の溶鉄を得る方法としても有用である。また、この方法で出湯された溶鉄は、溶鉄中の酸素濃度が高いために、硫黄濃度が比較的高い状態で出湯されるが、後工程にて還元処理を施すことで問題なく脱硫処理が可能である。加えて、スラグ中の酸化物を還元する必要がないので、Si含有原料やAl含有原料といった合金還元材の使用量が大幅に低減される。また、この方法で出湯された溶鉄と、別の精錬容器にて溶製した溶鉄とを合わせることで所定の成分濃度の溶鉄を溶製することも有用である。 In the above example, an example of melting chromium-containing molten iron inexpensively and stably without any influence of operation is shown, but the chromium-containing molten iron produced by the present invention has a high oxygen concentration in the molten iron, so that it is difficult to absorb nitrogen. Therefore, it is also useful as a method for obtaining high-purity molten iron. In addition, the molten iron discharged by this method is discharged with a relatively high sulfur concentration due to the high oxygen concentration in the molten iron, but desulfurization can be performed without problems by performing a reduction treatment in a subsequent process. Is. In addition, since it is not necessary to reduce the oxide in the slag, the amount of the alloy reducing material such as the Si-containing raw material and the Al-containing raw material used is significantly reduced. It is also useful to melt the molten iron having a predetermined component concentration by combining the molten iron discharged by this method and the molten iron melted in another refining container.
本発明の含クロム溶鉄の製造方法は、安価かつ生成スラグを抑制でき、環境負荷を軽減できるので、産業上有用である。
The method for producing chromium-containing molten iron of the present invention is industrially useful because it is inexpensive, can suppress slag produced, and can reduce the environmental load.
Claims (3)
スラグの塩基度を1.5以上1.7未満または1.9以上3.5以下の範囲内に調整したうえで、酸素の吹込みにより生成したクロム酸化物含有スラグを炉内に残したまま出湯する第一工程と、
同一の炉内に新たに添加する炭素源または金属源により残留した前記クロム酸化物含有スラグを還元し、クロムを溶鉄中に回収する第二工程と、を有する、
ここで、スラグの塩基度とは、スラグ中の質量基準で、CaO濃度をSiO2濃度で除したものとすることを特徴とする含クロム溶鉄の製造方法。 In a method for producing chromium-containing molten iron, in which a raw material containing a chromium-containing raw material is melted and crude decarburization is performed by blowing oxygen using an electric furnace for steelmaking.
After adjusting the basicity of the slag to the range of 1.5 or more and less than 1.7 or 1.9 or more and 3.5 or less, the chromium oxide-containing slag produced by blowing oxygen remains in the furnace. The first step of hot water and
It has a second step of reducing the chromium oxide-containing slag remaining by a carbon source or a metal source newly added in the same furnace and recovering the chromium in the molten iron.
Here, the basicity of slag is a method for producing chromium-containing molten iron, characterized in that the CaO concentration is divided by the SiO 2 concentration based on the mass in the slag.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020151808 | 2020-09-10 | ||
JP2020151808 | 2020-09-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022046417A true JP2022046417A (en) | 2022-03-23 |
JP7338663B2 JP7338663B2 (en) | 2023-09-05 |
Family
ID=80779900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021127994A Active JP7338663B2 (en) | 2020-09-10 | 2021-08-04 | Method for producing chromium-containing molten iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7338663B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0987722A (en) * | 1995-09-26 | 1997-03-31 | Nippon Steel Corp | Refining method for stainless steel |
JP2001294926A (en) * | 2000-04-12 | 2001-10-26 | Nippon Steel Corp | Refining method using slag containing chromium oxide |
-
2021
- 2021-08-04 JP JP2021127994A patent/JP7338663B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0987722A (en) * | 1995-09-26 | 1997-03-31 | Nippon Steel Corp | Refining method for stainless steel |
JP2001294926A (en) * | 2000-04-12 | 2001-10-26 | Nippon Steel Corp | Refining method using slag containing chromium oxide |
Also Published As
Publication number | Publication date |
---|---|
JP7338663B2 (en) | 2023-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5408369B2 (en) | Hot metal pretreatment method | |
TWI550092B (en) | Converter steelmaking method | |
US20080156144A1 (en) | Method for reducing to metallic chromium the chromium oxide in slag from stainless steel processing | |
JP5408379B2 (en) | Hot metal pretreatment method | |
JP5360174B2 (en) | How to remove hot metal | |
JP4150194B2 (en) | Desulfurization method by mechanical stirring of hot metal | |
JP6451462B2 (en) | Method for recovering chromium from chromium-containing slag | |
JP2022046417A (en) | Method for producing chromium-containing molten iron | |
JP4829225B2 (en) | Chromium reduction method for metallurgical slag | |
JP3711835B2 (en) | Sintering agent for hot metal dephosphorization and hot metal dephosphorization method | |
CN101389771A (en) | Method of dephosphorization of molten iron | |
JP7243861B2 (en) | Method for producing chromium-containing molten iron | |
JP5412994B2 (en) | How to remove hot metal | |
JP3636693B2 (en) | Electric furnace steelmaking | |
JP4630031B2 (en) | Methods for reducing and dissolving iron raw materials containing iron oxide | |
JP2000345224A (en) | Method for desulfurizing molten iron | |
JP3063537B2 (en) | Stainless steel manufacturing method | |
KR102763155B1 (en) | Method for manufacturing chromium iron | |
JP7107099B2 (en) | Hot metal refining method | |
JP2564604B2 (en) | Electric furnace refining method for chromium-containing steel | |
JP2012017521A (en) | Dephosphorization method of molten iron using dust | |
JP4218172B2 (en) | Method for refining molten iron alloy | |
JP6731763B2 (en) | Method for producing molten iron containing chromium | |
JP3994988B2 (en) | Method of recovering and using metal components contained in slag slag containing chromium | |
JP3297997B2 (en) | Hot metal removal method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230807 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7338663 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |