JP2022044405A - 荷電粒子加速装置及び荷電粒子加速方法 - Google Patents

荷電粒子加速装置及び荷電粒子加速方法 Download PDF

Info

Publication number
JP2022044405A
JP2022044405A JP2020150015A JP2020150015A JP2022044405A JP 2022044405 A JP2022044405 A JP 2022044405A JP 2020150015 A JP2020150015 A JP 2020150015A JP 2020150015 A JP2020150015 A JP 2020150015A JP 2022044405 A JP2022044405 A JP 2022044405A
Authority
JP
Japan
Prior art keywords
axis
charged particle
electromagnetic wave
hollow container
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020150015A
Other languages
English (en)
Other versions
JP7497870B2 (ja
Inventor
浩樹 神田
Hiroki Kanda
隆文 原
Takafumi Hara
光宏 福田
Mitsuhiro Fukuda
哲彦 依田
Tetsuhiko Yoda
勉 篠塚
Tsutomu Shinozuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2020150015A priority Critical patent/JP7497870B2/ja
Publication of JP2022044405A publication Critical patent/JP2022044405A/ja
Application granted granted Critical
Publication of JP7497870B2 publication Critical patent/JP7497870B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Abstract

【課題】場面や場所、電力効率等の要請に応じた様々なバリエーションで利用することが可能な荷電粒子加速装置及び荷電粒子加速方法を提供すること。【解決手段】荷電粒子加速装置(1)は、空洞容器(10)と、空洞容器の軸方向に相当するz軸に沿って第1の荷電粒子のビームを入射させるビーム供給部(20)と、z軸に沿って磁場を形成し、且つ前記z軸に沿って前記磁場の強さを可変する電磁石(30)と、z軸に対して直交するx軸及びy軸にて形成される空洞容器内のxy平面に、第1電磁波(W1)と、第1電磁波に対してπ/2の位相差を有する第2電磁波(W2)と、を供給し、xy平面内に第1の荷電粒子を加速する回転電場を形成する電磁波供給部(40)と、を具備する。【選択図】 図1

Description

本出願において開示された技術は、荷電粒子加速装置及び荷電粒子加速方法に関する。
荷電粒子を加速する装置としてサイクロトロンが知られている。サイクロトロンは、磁場によって荷電粒子を円運動させるとともに、電極に高周波電圧が印加されることによって形成される電場によって、当該荷電粒子を加速させるものである。つまり、電極に印加される高周波電圧の周波数と、荷電粒子の円運動の周波数とが一致するサイクロトロン共鳴を利用して、荷電粒子を円周方向に加速するものである。
このようなサイクロトロン共鳴を利用した技術は従来から種々報告されている。例えば、特許文献1及び特許文献2には、ソレノイドコイルを用いて一様の磁場を形成しつつ、高周波の電磁波を供給することでサイクロトロン共鳴を生じさせて、電子及び陽子を加速する加速装置が開示されている。
米国特許第6617810号明細書 米国特許第6914396号明細書
特許文献1及び特許文献2に記載される加速装置において、サイクロトロン共鳴を生じさせるためには、荷電粒子の円運動に関する角速度Ωと、電磁波の角速度ωが同一となる必要がある。なお、荷電粒子の円運動に関する角速度Ωは以下の式1から求められる。
Figure 2022044405000002
式1中、qは荷電粒子の電荷、γは荷電粒子の相対論的因子、及びmは荷電粒子の静止質量を示す。ここで、電子の静止質量は0.511MeV/cであるのに対し、陽子の静止質量は電子の質量の約2000倍の938MeV/cである。したがって、電子の円運動に関する角速度Ω1と、陽子の円運動に関する角速度Ω2を同じにしようとすると(電磁波の角速度ωが一定である場合に、荷電粒子として電子を用いた場合でも陽子を用いた場合でもサイクロトロン共鳴を生じさせようとすると)、陽子を加速する際に用いる磁場の強さを、電子を加速する際に用いた磁場の強さの約2000倍にする必要がある。つまり、荷電粒子として陽子を用いる場合においては、磁場を形成するために用いられる電磁石に大量の電流を流す必要が生じてしまい、消費電力が嵩んでしまう。
また、サイクロトロン共鳴を利用した荷電粒子の加速に関する電力効率は、荷電粒子ビームの電流量と空洞容器の長さに依存する。具体的には、当該電力効率は、[荷電粒子ビームのエネルギー×荷電粒子ビームの電流量]/[加速に用いられる電力]、から算出される。したがって、電力効率の向上には、荷電粒子ビームの電流量を増加させるか、荷電粒子ビーム(荷電粒子)のエネルギーを向上させるために空洞容器のストローク(軸方向長さ)を長くする必要がある。他方で、空洞容器のストロークを短くして装置全体をコンパクトなものとする実用的な要請もある。また、荷電粒子ビームの電流量の増加にも限界がある。
そこで、様々な実施形態により、場面や場所、電力効率等の要請に応じた様々なバリエーションで利用することが可能な荷電粒子加速装置及び荷電粒子加速方法を提供する。
一態様に係る荷電粒子加速装置は、空洞容器と、前記空洞容器の一端側から前記空洞容器の内部に向かって、前記空洞容器内の軸方向に相当するz軸に沿って第1の荷電粒子のビームを入射させるビーム供給部と、前記z軸に沿って磁場を形成し、且つ前記z軸に沿って前記磁場の強さを可変する電磁石と、前記z軸に対して直交するx軸及びy軸にて形成される前記空洞容器内のxy平面に、第1電磁波と、前記第1電磁波に対してπ/2の位相差を有する第2電磁波とを供給し、前記xy平面内に前記第1の荷電粒子を加速する回転電場を形成する電磁波供給部と、を具備する。
この構成の荷電粒子加速装置によれば、空洞容器内に形成される磁場を可変することが可能であるため、場面や場所、電力効率等の要請に応じた様々なバリエーションで利用することが可能となる。
また、一態様に係る前記荷電粒子加速装置において、前記電磁石は、超伝導電磁石又は常伝導電磁石である。
また、一態様に係る前記荷電粒子加速装置において、前記磁場の強さは、前記空洞容器内において、前記z軸において所定位置において強く、前記z軸において前記所定位置以外の位置において弱くなるミラー磁場を形成するように前記z軸に沿って可変される。
また、一態様に係る前記荷電粒子加速装置において、前記ビーム供給部は、前記空洞容器の他端側から前記空洞容器の内部に向かって、前記z軸に沿って第2の荷電粒子のビームをさらに入射させる。
また、一態様に係る前記荷電粒子加速装置において、前記空洞容器は、共振空洞容器であり、前記電磁波供給部は、前記共振空洞容器内に、前記第1電磁波と前記第2電磁波とを供給し、前記共振空洞容器内に定在波を発生させて前記回転電場を形成する。
また、一態様に係る前記荷電粒子加速装置において、前記第1電磁波は、前記x軸及び前記y軸のうちの一方に偏波し、前記第2電磁波は、前記x軸及び前記y軸のうちの他方に偏波する。
一態様に係る荷電粒子加速方法は、空洞容器の一端側から前記空洞容器の内部に向かって、前記空洞容器内の軸方向に相当するz軸に沿って第1の荷電粒子のビームを入射させる第1の荷電粒子ビーム入射工程と、前記z軸に沿って磁場を形成し、且つ前記z軸に沿って前記磁場の強さを可変させる磁場形成工程と、前記z軸に対して直交するx軸及びy軸にて形成される前記空洞容器内のxy平面に、第1電磁波と、前記第1電磁波に対してπ/2の位相差を有する第2電磁波とを供給し、前記xy平面内に前記第1の荷電粒子を加速する回転電場を形成する回転電場形成工程と、を含む。
この構成の荷電粒子加速方法によれば、空洞容器内に形成される磁場を可変することが可能であるため、場面や場所、電力効率等の要請に応じた様々なバリエーションで荷電粒子を加速することが可能となる。
また、一態様に係る前記荷電粒子加速方法において、前記磁場形成工程において形成される前記磁場の強さは、前記空洞容器内において、前記z軸において所定位置において強く、前記z軸において前記所定位置以外の位置おいて弱くなるミラー磁場を形成するように前記z軸に沿って可変される。
また、一態様に係る前記荷電粒子加速方法において、前記空洞容器の他端側から前記空洞空洞の内部に向かって、前記z軸に沿って第2の荷電粒子のビームを入射させる第2の荷電粒子ビーム入射工程をさらに含む。
また、一態様に係る前記荷電粒子加速方法において、前記空洞容器は、共振空洞容器であり、前記回転電場形成工程において、前記第1電磁波及び前記第2電磁波は前記共振空洞容器内に供給されることで前記共振空洞容器内に定在波を発生させ、該定在波によって前記回転電場が形成される。
また、一態様に係る前記荷電粒子加速方法に関し、前記回転電場形成工程において、前記第1電磁波は、前記x軸及び前記y軸のうちの一方に偏波し、前記第2電磁波は、前記x軸及び前記y軸のうちの他方に偏波する。
様々な実施形態によれば、場面や場所、電力効率等の要請に応じた様々なバリエーションで利用することが可能な荷電粒子加速装置及び荷電粒子加速方法を提供することができる。
図1は、一実施形態に係る荷電粒子加速装置の構成を示す概略図である。 図2は、図1に示された荷電粒子加速装置における空洞容器内で加速される荷電粒子の様子を概念的に示す概略図である。 図3は、図1に示された荷電粒子加速装置における空洞容器と、空洞容器に接続される導波管を示す概略図である。 図4Aは、図1に示された荷電粒子加速装置における空洞容器に供給され、x軸方向に偏波する第1電磁波を示す概略図である。 図4Bは、図1に示された荷電粒子加速装置における空洞容器に供給され、y軸方向に偏波する第2電磁波を示す概略図である。 図5Aは、定在波の「位相=0」の場合に形成される電場の様子を示す概略図である。 図5Bは、定在波の「位相=π/4」の場合に形成される電場の様子を示す概略図である。 図5Cは、定在波の「位相=π/2」の場合に形成される電場の様子を示す概略図である。 図5Dは、定在波の「位相=3π/4」の場合に形成される電場の様子を示す概略図である。 図5Eは、定在波の「位相=π」の場合に形成される電場の様子を示す概略図である。 図6は、図1に示された荷電粒子加速装置をy軸方向から見たときの荷電粒子の軌道を示す概略図である。 図7は、図1に示された荷電粒子加速装置によって加速された荷電粒子のエネルギー遷移を示す概略図である。 図8は、荷電粒子加速装置において、コイルが空洞容器の外側に巻回される様子を示す概略図である。 図9は、荷電粒子加速装置によって形成される第1の例に係る磁場の様子を示す概略図である。 図10は、第1の例に係る磁場が形成された荷電粒子加速装置によって加速される荷電粒子の様子を模式的に示す概略図である。 図11は、第2の例に係る磁場が形成された荷電粒子加速装置によって加速される荷電粒子の様子を模式的に示す概略図である。 図12は、第2の例に係る磁場が形成された荷電粒子加速装置をy軸方向から見たときの荷電粒子の軌道を示す概略図である。 図13は、第2の例に係る磁場が形成された荷電粒子加速装置によって加速された荷電粒子のエネルギー遷移を示す概略図である。
以下、添付図面を参照して本発明の様々な実施形態を説明する。なお、図面において共通した構成要件には同一の参照符号が付されている。また、或る図面に表現された構成要素が、説明の便宜上、別の図面においては省略されていることがある点に留意されたい。さらにまた、添付した図面が必ずしも正確な縮尺で記載されている訳ではないということに注意されたい。
1.荷電粒子加速装置の構成
一実施形態に係る荷電粒子加速装置1の全体構成の概要について、図1乃至図5Eを参照しつつ説明する。図1は、一実施形態に係る荷電粒子加速装置1の構成を示す概略図である。図2は、図1に示された荷電粒子加速装置1における空洞容器10内で加速される荷電粒子Pの様子を概念的に示す概略図である。図3は、図1に示された荷電粒子加速装置1における空洞容器10と、空洞容器10に接続される導波管15を示す概略図である。図4Aは、図1に示された荷電粒子加速装置1における空洞容器10に供給され、x軸方向に偏波する第1電磁波W1を示す概略図である。図4Bは、図1に示された荷電粒子加速装置1における空洞容器10に供給され、y軸方向に偏波する第2電磁波W2を示す概略図である。図5Aは、定在波の「位相=0」の場合に形成される電場の様子を示す概略図である。図5Bは、定在波の「位相=π/4」の場合に形成される電場の様子を示す概略図である。図5Cは、定在波の「位相=π/2」の場合に形成される電場の様子を示す概略図である。図5Dは、定在波の「位相=3π/4」の場合に形成される電場の様子を示す概略図である。図5Eは、定在波の「位相=π」の場合に形成される電場の様子を示す概略図である。
図1に示すように、荷電粒子加速装置1は、空洞容器10と、荷電粒子を生成して空洞容器10の軸方向に相当するz軸に沿って空洞容器10の内部へと荷電粒子ビームBmを入射させるビーム供給部20と、z軸に沿って磁場Bを形成する電磁石30と、z軸に対して直交するx軸及びy軸にて形成される空洞容器10内のxy平面に、後述する第1電磁波W1及び第2電磁波W2を供給する電磁波供給部40と、を主に具備する。なお、図1に示すように、荷電粒子加速装置1にて加速される荷電粒子ビームを所定のターゲットに照射する場合においては、空洞容器10の出口付近に所望のターゲット100を配してもよい。
なお、ターゲット100の種類は、放射性同位体の生成や中性子の発生に応じて適宜に選択される。例えば、荷電粒子加速装置1を放射性同位体としてアスタチンの生成に応用する場合においては、ターゲット100としてビスマスを用いることができる。
以下、荷電粒子加速装置1を構成する前述の各要素の詳細について説明する。
1-1.空洞容器10
空洞容器10としては、例えば銅など表面が平滑な金属材料から形成されるものを用いることができる。空洞容器10の形状は、図2等に示すように、荷電粒子P(荷電粒子ビームBm)が磁場Bによって円運動することに対応して、円筒状のものを用いることができるが、これに限定されない。空洞容器10として円筒状のものを用いた場合、例えば、半径90cm、長手方向(z軸方向)に延びる長さ210cmのものを一例として用いることができる。
空洞容器10の一端側には、後述するビーム供給部20から出射される荷電粒子ビームBmを空洞容器10内へと引き入れるための開口部(図示せず)が設けられている。なお、空洞容器10内は真空状態に保持される。
さらに、空洞容器10には、一例として、後述する第1導波管45及び第2導波管46が、当該空洞容器10に一体的又は別体に接続されており、後述する電磁波供給部40から発出される第1電磁波W1及び第2電磁波W2が、空洞容器10内へ供給されるように構成されている。なお、電磁波供給部41から空洞容器10へと第1電磁波W1を供給するものとして、第1導波管45に代えて、同軸管や同軸ケーブルを用いてもよい。同様に、第2電磁波W2を供給するものとして、第2導波管46に代えて、同軸管や同軸ケーブルを用いてもよい。
なお、本明細書においては、図1及び図2に示すように、空洞容器10内において、荷電粒子ビームBmの進行方向であって空洞容器10の長手方向をz軸し、z軸に直交する空洞容器10の断面を形成する軸をx軸及びy軸と称するものとする。また、当該断面をxy平面と称するものとする。なお、図1に示されるxy平面は、z軸上の所定位置(例えば、空洞容器10内における管中心近傍)の平面であって、第1電磁波W1が後述する電磁波供給部40から供給される延長線をx軸、第2電磁波W2が電磁波供給部40から供給される延長線をy軸とするものである。
空洞容器10は、空洞容器10内に供給される第1電磁波W1と第2電磁波W2を各々進行波とするのでなく、両者を共振させて定在波を発生させるために、図1に示すように、少なくともx軸及びy軸の延長線上において壁(側壁)が形成される共振空洞容器としてもよい。
1-2.ビーム供給部20
ビーム供給部20としては、電子や陽子等の荷電粒子を放出することが可能なものであればよく、例えば、マルチカスプイオン源、デュオプラズマトロンイオン源、及び電子サイクロトロン共鳴イオン源等を用いることができる。
ビーム供給部20から出射される荷電粒子ビームBmは、図1に示すように、共振空洞10に設けられる開口部を介してz軸に沿って共振空洞10内へと入射される。
1-3.電磁石30
電磁石30は、一般的なコイル形状のものを用いることができる。具体的には、電磁石30のコイルを構成する線材として、一般的な常伝導材料を用いることができるが、消費電力を抑制する観点から、高温超伝導材料を用いることが好ましい。電磁石30は、図1に示すように、空洞容器10の外側を巻回するように設けられる。
電磁石30は、図1に示すように、一つのコイルを空洞容器10の外側に一様に巻回させて、通電されると(電流が供給されると)、空洞容器10の内部に所定の強さ(例えば、8テスラ)の磁場Bをz軸方向に形成する。この場合、磁場Bの強さは、z軸方向において一定となるが、後述するように、z軸方向に沿って磁場Bの強さが可変されるように、複数種類の電磁石30を共振空洞10に沿って併設させるように設けられる。
1-4.電磁波供給部40
電磁波供給部40は、一般的に知られる発振器を用いることができる。電磁波供給部40は、例えば荷電粒子として陽子(陽子ビーム)がビーム供給部20から放出される場合においては、100MHz~200MHzの高周波の電磁波を発振するものであればよく、110MHz~130MHzの高周波の電磁波を発振するものが好ましい。
電磁波供給部40は、空洞容器10内へ第1電磁波W1を発振する第1電磁波供給部40Aと、空洞容器10内へ第2電磁波W2を発振する第2電磁波供給部40Bと、を有することができる。なお、第1電磁波供給部40Aと空洞容器10との間には、前述のとおり、一例として第1導波管45が形成されている。また、第2電磁波供給部40Bと空洞容器10との間には、前述のとおり、一例として第2導波管46が形成されている。なお、第1導波管45及び第2導波管46の代わりに、同軸管や同軸ケーブルを用いてもよい。
なお、一例として用いられる第1導波管45と第2導波管46は、図1に示すように、第1電磁波W1及び第2電磁波W2を、z軸上の所定位置のxy平面上に供給することができるように設けられる。ここで、所定位置とは、例えば空洞容器10内における管中心近傍とすることができる。これにより、第1導波管45と第2導波管46は、互いに直交するように設けられる。また、第1導波管45及び第2導波管46は、空洞容器10に対して一体的又は別体に接続される。
第1電磁波供給部40Aから発振される第1電磁波W1は、第1導波管45内を経由して、x軸に沿って空洞容器10内のxy平面内へと伝播される。第1電磁波W1は、図4Aに示すように、x軸に偏波するものを用いることができる。
第2電磁波供給部40Bから発振される第2電磁波W2は、第2導波管46内を経由して、y軸に沿って空洞容器10内のxy平面内へと伝播される。第2電磁波W2は、図4Bに示すように、y軸に偏波するものを用いることができる。なお、第1導波管45及び第2導波管46の代わりに、同軸管又は同軸ケーブルが用いられる場合においては、第1電磁波W1はx軸に偏波する必要はなく、第2電磁波W2はy軸に偏波する必要はない。
ここで、第1導波管45の長さは、図3に示すように、第2導波管46の長さよりもλ/4長く設定される。これにより、第1電磁波W1の周波数と第2電磁波W2の周波数とが同一(例えば、両者の周波数が121MHz)である場合、第1電磁波W1は第2電磁波W2に比してπ/2位相遅れて空洞容器10内に伝播されることとなる。なお、第1電磁波W1と第2電磁波W2とのπ/2の位相差は、第1導波管45及び第2導波管46の長さによって調整する代わりに、第1電磁波W1を発振する第1電磁波供給部40Aと、第2電磁波W2を発振する第2電磁波供給部40Bとで適宜調整してもよい。
このように、空洞容器10内へと伝播した第1電磁波W1と第2電磁波W2は、空洞容器10内でπ/2位相ずれた状態で合成される。ここで、空洞容器10が前述した共振空洞容器である場合、第1電磁波W1と第2電磁波W2が合成されて、共振空洞容器内に回転するTE111モードの定在波が形成される。
このように形成された定在波は、第1電磁波W1及び第2電磁波W2と同じ周波数(例えば、121MHz)を有し、これに伴って、xy平面上に回転電場を形成する。
図5A乃至図5Eを参照しつつ、回転電場の詳細を説明する。
まず、定在波の位相が0の場合、第1電磁波W1に対してπ/2位相先に空洞容器10内に伝播する第2電磁波W2によってy軸に沿って電場がxy平面に形成される。
次に、定在波の位相がπ/4の場合、第2電磁波W2の成分に第1電磁波W1の成分が加わって、図5Bに示すようなベクトルの電場がxy平面に形成される。
次に、定在波の位相がπ/2の場合、位相が0の場合とは逆に、第1電磁波W1によってx軸に沿って電場がxy平面に形成される。
次に、定在波の位相が3π/4の場合、第1電磁波W1の成分に第2電磁波W2の成分が加わって、図5Dに示すようなベクトルの電場がxy平面に形成される。
最後に、定在波の位相がπの場合、第2電磁波W2によってy軸に沿って電場がxy平面に形成される。この場の電場のベクトルは、図5Eに示すように、位相が0の場合に形成される電場のベクトルと逆向きとなる。
以上のとおり、第1電磁波W1と第2電磁波W2が合成されて形成される定在波によって、xy平面上で回転する回転電場が形成される。
2.荷電粒子加速装置による荷電粒子の加速
次に、前述にて詳述した荷電粒子加速装置1による荷電粒子が加速される原理の詳細を、図6及び図7を参照しつつ説明する。図6は、図1に示された荷電粒子加速装置1をy軸方向から見たときの荷電粒子Pの軌道を示す概略図である。図7は、図1に示された荷電粒子加速装置1によって加速された荷電粒子Pのエネルギー遷移を示す概略図である。なお、図6及び図7に示される概略図は、便宜的に、一様の強さの磁場Bが形成されている空洞容器10内に荷電粒子ビームBmを入射させた場合であることを付言する。また、図6及び図7におけるz=0(cm)は、空洞容器10の入口に相当し、z=210(cm)は、空洞容器10の出口に相当する。
まず、ビーム供給部20から出射された荷電粒子ビームBmは、磁場Bと平行であるz軸方向を進行方向として空洞容器10の一端側から空洞容器10内に入射される。この際、荷電粒子ビームBmの進行方向と磁場Bの方向はz軸方向で一致している(互いに同方向のベクトルであってもよいし、互いに逆方向のベクトルであってもよい)。その後、荷電粒子ビームBmにおける各荷電粒子Pは、空洞容器10内をz軸に沿って進行するにつれて前述のとおり形成される電場の影響を受けて、xy平面内の所定方向のベクトル(x軸方向及びy軸方向の合成ベクトル)に加速される。これにより、荷電粒子Pは、z軸と直交する進行方向の成分を有することとなる。
なお、第1電磁波W1及び第2電磁波W2の合成波(例えば、前述の定在波)によって空洞容器10内に形成される電場は、第1電磁波W1及び第2電磁波W2が空洞容器10内に供給される位置(例えば、図1に示されるように、空洞容器10の略管中心)のxy平面上において最も強い電場が形成され、その位置から離れるにしたがって次第に弱くなるように形成される。
次に、z軸と直交する進行方向の成分を有する荷電粒子Pには、磁場Bに起因するローレンツ力が作用する。これにより、荷電粒子Pは、z軸を中心として時計回り(又は反時計回り)に円運動することとなる(図2参照)。
円運動する荷電粒子Pに対しては、前述のとおり形成される回転電場によって円周方向に連続的に(常に)加速されることとなる。これにより、荷電粒子Pが進む軌道は、z軸に沿った進行方向、ローレンツ力による円運動、及び回転電場による加速が組み合わされて、図6に示されるように螺旋状となる。つまり、荷電粒子Pは、空洞容器10内をz軸方向に進行するにあたっては、次第に回転半径が大きくなるように螺旋状に円運動する。
なお、荷電粒子Pが回転電場によって円周方向に加速されることにより、荷電粒子Pのエネルギーは、図7に示されるように次第に大きくなる。図7に示される例においては、空洞空洞10の一端側に入射されたz=0における荷電粒子Pのエネルギーはおよそ0MeV付近(例えば、50KeV程度)であるものの、z=210(cm)においては20MeVを超える程度となる。
以上のとおり、一実施形態に係る荷電粒子加速装置1を用いて荷電粒子Pを加速することによって、荷電粒子P(荷電粒子ビーム)のエネルギーを効率的に向上させることができる。
3.空洞容器10内に形成される磁場の具体例
次に、空洞容器10内に形成される磁場の具体例について、以下説明する。
3-1.第1の例
まず、荷電粒子加速装置1における空洞容器10内に形成される第1の例の磁場について、図8乃至図10を参照しつつ説明する。図8は、荷電粒子加速装置1において、コイルが空洞容器10の外側に巻回される様子を示す概略図である。図9は、荷電粒子加速装置1によって形成される第1の例に係る磁場Bの様子を示す概略図である。図10は、第1の例に係る磁場Bが形成された荷電粒子加速装置1によって加速される荷電粒子Pの様子を模式的に示す概略図である。なお、第1の例において用いられる空洞容器10の長さは210cmとする。
第1の例に係る荷電粒子加速装置1は、基本的には、前述のとおり説明した一実施形態に係る荷電粒子加速装置1と同じ構成であるが、通電される電流量が各々異なる複数のコイルが空洞容器10の外側に巻回されている。
つまり、空洞容器10を取り囲むように、複数の異なるコイルが図8に示されるように巻回される。具体的には、z軸方向に沿って、空洞容器10の一端側から他端側に向かって、第1コイル31、第2コイル32、第3コイル33、及び第4コイル34が空洞容器10の外側を独立的に巻回するように敷設されている。第2コイル32と第3コイル33は、図8に示すように、空洞容器10の略中央付近(z=100付近)に敷設され、第1コイル31は空洞容器10の一端側に敷設され、第4コイル34は空洞容器10の他端側に敷設される。
さらに、第1コイル31よりも手前側(つまり、ビーム供給部20と空洞容器10の間であって、空洞容器10の外側)に第5コイル35が敷設されている。さらにまた、第4コイル34よりも外側(空洞容器10の外側)に第6コイル36が敷設されている。
第1コイル31乃至第6コイル36に通電される電流量は、それぞれ独立的に管理される。一例として、第1コイル31には5.90×10A、第2コイル32には5.06×10A、第3コイル33には5.43×10A、第4コイル34には1.02×10A、第5コイル35には1.28×10A、第6コイル36には1.32×10Aの電流が通電されると、空洞容器10内にはミラー磁場が形成される。つまり、空洞容器10内において、空洞容器10の一端側付近においては弱い磁場が形成され、空洞容器10の中央付近においては強い磁場が形成され、空洞容器10の他端側付近においては弱い磁場が形成される。図9に示すように、z=0付近で磁場(ガイド磁場)は8.08テスラ程度であるのに対し、z=120付近では磁場(ガイド磁場)は8.20テスラ程度となる。
ここで、荷電粒子Pが図9に示すようなミラー磁場内を進行する場合において、荷電粒子Pの進行方向(z軸に沿った方向であって、空洞容器10の一端側から他端側へ向かう方向)に対して磁場の強さ(磁束密度)が次第に弱くなる場合(例えば、空洞容器10の略中央付近から他端側の位置)には、ミラー効果に基づいて荷電粒子Pの進行方向の速度が加速される(ここでの「加速」は、回転電場による円周方向の加速とは別である)。他方、荷電粒子Pの進行方向に対して磁場の強さ(磁束密度)が次第に大きくなる場合(例えば、空洞容器10の一端側から略中央付近の位置)には、ミラー効果に基づいて荷電粒子Pの進行方向の速度は減速される(図10の概念図参照)。ここで、電場が最も強くなる位置が、図1に示したように空洞容器10における略中央付近である場合、空洞容器10における略中央付近において荷電粒子Pの進行速度を減速させることで、荷電粒子Pは強い電場内に長時間滞在することが可能となる。この結果、荷電粒子Pは長時間強い電場による加速を受けることができるため、荷電粒子Pのエネルギーを効率的に向上させることができる。
以上のとおり説明した第1の例に係る磁場を形成することによって、図10に示すように、荷電粒子Pの進行方向の速度(加減速)を制御することが可能となる。これにより、空洞容器10内において、電場(回転電場)の強い場所に合わせて、磁場の強さを可変させることが可能となり、荷電粒子Pのエネルギーを効率的に向上させることができる。
3-2.第2の例
次に、荷電粒子加速装置1おける空洞容器10内に形成される第2の例の磁場について、図11乃至図13を参照しつつ説明する。図11は、第2の例に係る磁場Bが形成された荷電粒子加速装置1によって加速される荷電粒子Pの様子を模式的に示す概略図である。図12は、第2の例に係る磁場Bが形成された荷電粒子加速装置1をy軸方向から見たときの荷電粒子Pの軌道を示す概略図である。図13は、第2の例に係る磁場Bが形成された荷電粒子加速装置1によって加速された荷電粒子Pのエネルギー遷移を示す概略図である。なお、第2の例において用いられる空洞容器10の長さも210cmとする。
第2の例に係る荷電粒子加速装置1は、前述の第1の例に係る荷電粒子加速装置1と構成は全く同じであるが、第1コイル31乃至第6コイル36に通電される電流量が異なる。
つまり、第2の例に係る荷電粒子加速装置1においては、第1コイル31に通電される電流と第2コイル32に通電される電流との差、及び第3コイル33に通電される電流と第4コイル34に通電される電流の差が、第1の例に比して大きく設定される。これにより、ミラー効果に基づく荷電粒子Pへの加減速が第1の例に比して顕著となる。
具体的には、第2の例においては、荷電粒子Pがミラー磁場内を進行するにあたり、進行方向に対して磁場の強さ(磁束密度)が急激に大きくなる場合(例えば、空洞容器10の一端側から略中央付近の位置)には、ミラー効果に基づいて荷電粒子Pの進行方向の速度は減速されるに留まらず、進行方向が反転する。逆に、進行方向が反転した荷電粒子Pは、その反転した進行方向に対して磁場の強さ(磁束密度)が急激に小さくなる場合(例えば、空洞容器10の略中央付近から一端側の位置)には、ミラー効果に基づいて荷電粒子Pは著しく加速されて、空洞容器10の一端側に到達する。つまり、荷電粒子Pは、図12に示すように、空洞容器10の一端側から入射された後、途中で進行方向を反転して、再び当該一端側へと戻る軌道を辿る。
また、図12に示すような軌道を辿る荷電粒子Pは、図13に示すように、最終的には20MeV程度になるまでエネルギーが向上される。つまり、第2の例に係る荷電粒子加速装置1は、半分の長さの空洞容器10で、荷電粒子Pを加速することが可能であるといえる。これにより、空洞容器10の外側に巻回される複数のコイルのうち、例えば、第1コイル31と第2コイル32だけで荷電粒子Pのエネルギーを向上させることができる。したがって、電磁石30の数を減らすことで、荷電粒子加速装置1全体としての電力効率を向上(電力消費を低減)させることが可能となる。
第2の例においては、空洞容器10の半分(図11においては、例えば左半分)にて荷電粒子Pを、空洞容器10の半分のストロークで効率的に加速することができるという効果を活用して、空洞容器10の他端側から別の荷電粒子ビームBmを入射させることが可能となる(図11参照)。
この場合、空洞容器10の他端側から別の荷電粒子ビームBmが入射されると、当該別の荷電粒子ビームBmに含まれる荷電粒子P‘は、荷電粒子Pが空洞容器10の左半分の領域で辿った軌道と同様(実際には、反転した軌道)の軌道を辿る。つまり、荷電粒子P’は、空洞容器10の他端側から入射されて、途中回転電場によって加速されつつ進行方向が反転して、最終的には当該他端側へと到達する。
このように、第2の例においては、一つの空洞容器10を用いて、複数の荷電粒子ビームを加速することが可能である。
以上、様々な実施形態を例示したが、上記実施形態はあくまで一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置換、変更を行うことができる。また、各構成や、形状、大きさ、長さ、幅、厚さ、高さ、数等は適宜変更して実施することができる。荷電粒子加速装置1の各部の配置や構成等は、上記実施形態には限定されない。
1 荷電粒子加速装置
10 共振空洞
20 ビーム供給部
30 電磁石
40 電磁波供給部
45 第1導波管
46 第2導波管
B 磁場
Bm 荷電粒子ビーム
P 荷電粒子
W1 第1電磁波
W2 第2電磁波

Claims (11)

  1. 空洞容器と、
    前記空洞容器の一端側から前記空洞容器の内部に向かって、前記空洞容器内の軸方向に相当するz軸に沿って第1の荷電粒子のビームを入射させるビーム供給部と、
    前記z軸に沿って磁場を形成し、且つ前記z軸に沿って前記磁場の強さを可変する電磁石と、
    前記z軸に対して直交するx軸及びy軸にて形成される前記空洞容器内のxy平面に、第1電磁波と、前記第1電磁波に対してπ/2の位相差を有する第2電磁波とを供給し、前記xy平面内に前記第1の荷電粒子を加速する回転電場を形成する電磁波供給部と、
    を具備する荷電粒子加速装置。
  2. 前記電磁石は、超伝導電磁石又は常伝導電磁石である、請求項1に記載の荷電粒子加速装置。
  3. 前記磁場の強さは、前記空洞容器内において、前記z軸において所定位置において強く、前記z軸において前記所定位置以外の位置において弱くなるミラー磁場を形成するように前記z軸に沿って可変される、請求項1又は2に記載の荷電粒子加速装置。
  4. 前記ビーム供給部は、前記空洞容器の他端側から前記空洞容器の内部に向かって、前記z軸に沿って第2の荷電粒子のビームをさらに入射させる、請求項1乃至3のいずれか一項に記載の荷電粒子加速装置。
  5. 前記空洞容器は、共振空洞容器であり、
    前記電磁波供給部は、前記共振空洞容器内に、前記第1電磁波と前記第2電磁波とを供給し、前記共振空洞容器内に定在波を発生させて前記回転電場を形成する、請求項1乃至4のいずれか一項に記載の荷電粒子加速装置。
  6. 前記第1電磁波は、前記x軸及び前記y軸のうちの一方に偏波し、前記第2電磁波は、前記x軸及び前記y軸のうちの他方に偏波する、請求項1乃至5のいずれか一項に記載の荷電粒子加速装置。
  7. 空洞容器の一端側から前記空洞容器の内部に向かって、前記空洞容器内の軸方向に相当するz軸に沿って第1の荷電粒子のビームを入射させる第1の荷電粒子ビーム入射工程と、
    前記z軸に沿って磁場を形成し、且つ前記z軸に沿って前記磁場の強さを可変させる磁場形成工程と、
    前記z軸に対して直交するx軸及びy軸にて形成される前記空洞容器内のxy平面に、第1電磁波と、前記第1電磁波に対してπ/2の位相差を有する第2電磁波とを供給し、前記xy平面内に前記第1の荷電粒子を加速する回転電場を形成する回転電場形成工程と、
    を含む、荷電粒子加速方法。
  8. 前記磁場形成工程において形成される前記磁場の強さは、前記空洞容器内において、前記z軸において所定位置において強く、前記z軸において前記所定位置以外の位置おいて弱くなるミラー磁場を形成するように前記z軸に沿って可変される、請求項7に記載の荷電粒子加速方法。
  9. 前記空洞容器の他端側から前記空洞容器の内部に向かって、前記z軸に沿って第2の荷電粒子のビームを入射させる第2の荷電粒子ビーム入射工程をさらに含む、請求項7又は8に記載の荷電粒子加速方法。
  10. 前記空洞容器は、共振空洞容器であり、
    前記回転電場形成工程において、前記第1電磁波及び前記第2電磁波は前記共振空洞容器内に供給されることで前記共振空洞容器内に定在波を発生させ、該定在波によって前記回転電場が形成される、請求項7乃至9のいずれか一項に記載の荷電粒子加速方法。
  11. 前記回転電場形成工程において、前記第1電磁波は、前記x軸及び前記y軸のうちの一方に偏波し、前記第2電磁波は、前記x軸及び前記y軸のうちの他方に偏波する、請求項7乃至10のいずれか一項に記載の荷電粒子加速方法。
JP2020150015A 2020-09-07 2020-09-07 荷電粒子加速装置及び荷電粒子加速方法 Active JP7497870B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020150015A JP7497870B2 (ja) 2020-09-07 2020-09-07 荷電粒子加速装置及び荷電粒子加速方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020150015A JP7497870B2 (ja) 2020-09-07 2020-09-07 荷電粒子加速装置及び荷電粒子加速方法

Publications (2)

Publication Number Publication Date
JP2022044405A true JP2022044405A (ja) 2022-03-17
JP7497870B2 JP7497870B2 (ja) 2024-06-11

Family

ID=80679110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020150015A Active JP7497870B2 (ja) 2020-09-07 2020-09-07 荷電粒子加速装置及び荷電粒子加速方法

Country Status (1)

Country Link
JP (1) JP7497870B2 (ja)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530260A (ja) 2001-03-01 2004-09-30 エル−3・コミュニケ−ションズ・コ−ポレ−ション 多段空洞サイクロトロン共鳴加速器

Also Published As

Publication number Publication date
JP7497870B2 (ja) 2024-06-11

Similar Documents

Publication Publication Date Title
US6060833A (en) Continuous rotating-wave electron beam accelerator
US4197510A (en) Isochronous cyclotron
US20220408541A1 (en) Circular accelerator
JPS587040B2 (ja) センケイカソクキ
CN207802493U (zh) 花瓣型加速器及其c型回转电磁铁
Trbojevic CBETA-Cornell University Brookhaven National Laboratory electron energy recovery test accelerator
US3450931A (en) Cyclotron motion linear accelerator
JP2022044405A (ja) 荷電粒子加速装置及び荷電粒子加速方法
CN107211523B (zh) 射频腔
JP3857096B2 (ja) 荷電粒子ビームの出射装置及び円形加速器並びに円形加速器システム
US2953750A (en) Magnetic cable
RU2058676C1 (ru) Способ охлаждения пучка заряженных частиц
JP2001338800A (ja) 中性子発生装置
JPH11214200A (ja) 荷電粒子加速器
JP3027822B2 (ja) 荷電粒子ビームのマイクロバンチング方法及びそのための装置
JP5565798B2 (ja) 加速機能付き偏向電磁石システム
JP2022084397A (ja) Ecrイオン源
JPH05326189A (ja) マイクロ波によるプラズマ発生装置
US2803767A (en) Radiation sources in charged particle accelerators
Alton et al. An advanced ECR ion source with a large uniformly distributed ECR plasma volume for multiply charged ion beam generation
JP2003109800A (ja) 電子加速装置
JP6091332B2 (ja) マイクロトロン
Dyubkov et al. Numerical analysis of cavity mode operation and electron beam dynamics in Lebedev institute microtron
JP2022093859A (ja) 加速器および粒子線治療装置
JP2001052896A (ja) 粒子加速・蓄積装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240523

R150 Certificate of patent or registration of utility model

Ref document number: 7497870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150