JP2022042503A - Culture vessel and method for producing cultured cell - Google Patents

Culture vessel and method for producing cultured cell Download PDF

Info

Publication number
JP2022042503A
JP2022042503A JP2021142527A JP2021142527A JP2022042503A JP 2022042503 A JP2022042503 A JP 2022042503A JP 2021142527 A JP2021142527 A JP 2021142527A JP 2021142527 A JP2021142527 A JP 2021142527A JP 2022042503 A JP2022042503 A JP 2022042503A
Authority
JP
Japan
Prior art keywords
culture
culture vessel
resin
stacked
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021142527A
Other languages
Japanese (ja)
Inventor
聡子 本杉
Satoko Motosugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
AGC Techno Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Techno Glass Co Ltd filed Critical AGC Techno Glass Co Ltd
Publication of JP2022042503A publication Critical patent/JP2022042503A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide culture vessels that can suppress unexpected movement of cultured cells when a plurality of the culture vessels is stacked and used, and to provide methods for producing cultured cells using the culture vessel.SOLUTION: In a culture vessel 1 having a culture surface 18 and stacked in layers and used, a protrusion 26 that regulates the movement of the stacked culture vessel 1 of the same type in the plane direction is provided on an upper surface 22a of the culture vessel 1, and when each vertex of the rectangle whose area is maximum in the area inside the protrusion 26 on the upper surface 22a is clockwise from point A to point D, the heights HA to HD (mm) of point A to point D measured using a column satisfy 0≤HM/L×100000≤200 (however, HM is the difference in height between the midpoint of the diagonal line AC and the midpoint of the diagonal line BD, and L is the length (mm) of the diagonal line of the rectangle).SELECTED DRAWING: Figure 2

Description

本発明は、培養容器及び培養細胞の製造方法に関する。 The present invention relates to a culture vessel and a method for producing cultured cells.

生命現象を解明する基礎研究、創薬研究等においては、培養細胞が広く利用されている。特に3次元培養で得られる細胞が凝集した3次元細胞塊(スフェロイド)は、生体内と同様に立体的な構造を有しているため、2次元培養で得た細胞に比べて試験精度が向上することが期待されている。3次元培養としては、例えば、マイクロプレートの各ウェルの底面や、ディッシュの底面等に孔径100~1,000μmの微細ウェル(マイクロウェル)が多数形成された培養容器(微細加工容器)を用いた培養方法が知られている(特許文献1)。微細加工容器に細胞を播くと、各微細ウェルの中で細胞が会合し、細胞塊が形成される。 Cultured cells are widely used in basic research and drug discovery research to elucidate biological phenomena. In particular, the three-dimensional cell mass (spheroid) in which the cells obtained by the three-dimensional culture are aggregated has a three-dimensional structure similar to that in the living body, so that the test accuracy is improved as compared with the cells obtained by the two-dimensional culture. It is expected to do. As the three-dimensional culture, for example, a culture container (microprocessed container) in which a large number of fine wells (microwells) having a pore diameter of 100 to 1,000 μm were formed on the bottom surface of each well of the microplate, the bottom surface of the dish, or the like was used. A culture method is known (Patent Document 1). When cells are sown in a microfabrication container, the cells associate in each microwell to form a cell mass.

培養時や運搬時に揺れによって細胞塊が微細ウェルから飛び出すと、細胞塊同士が重なり、プレートリーダー、セルイメージャー等による測定や観察が困難になる。特許文献2には、植物細胞を効率良く培養するために、複数個の培養容器を積み上げて培養することが提案されている。 When cell masses pop out of the fine wells due to shaking during culturing or transportation, the cell masses overlap each other, making it difficult to measure or observe with a plate reader, cell imager, or the like. Patent Document 2 proposes stacking and culturing a plurality of culture containers in order to efficiently cultivate plant cells.

特許第6400575号公報Japanese Patent No. 6400575 特開2011-78386号公報Japanese Unexamined Patent Publication No. 2011-78886

培養時や運搬時に複数個の培養容器を積み上げると、揺れを充分に抑制することは困難である。特に微細ウェルから細胞塊が飛び出すことを充分に抑制するには、培養容器を積み重ねた状態での揺れを最小限に留めることが重要である。 When a plurality of culture containers are stacked during culturing or transportation, it is difficult to sufficiently suppress shaking. In particular, in order to sufficiently suppress the cell mass from popping out from the fine wells, it is important to minimize the shaking in the state where the culture vessels are stacked.

本発明は、複数個を積み上げた状態の揺れが低減され、培養細胞の予期せぬ動きを抑制できる培養容器、及び前記培養容器を用いた培養細胞の製造方法を提供することを目的とする。 An object of the present invention is to provide a culture vessel capable of reducing shaking in a state in which a plurality of cells are stacked and suppressing unexpected movement of cultured cells, and a method for producing cultured cells using the culture vessel.

本発明は、以下の構成を有する。
[1]培養面を有し、複数個を積み上げて使用する培養容器であって、
前記培養容器の上面には、積み上げられた同型の培養容器が前記上面の面方向に動くことを規制する突起が前記上面の外縁に沿って設けられ、
前記培養容器の上面の平面視形状と相似形状で、かつその周縁が前記突起の上面の内縁に一致する領域内で面積が最大になる矩形の各頂点を時計回りに点A、点B、点C、点Dとしたとき、
高さが35mmで、かつ高さ方向に垂直な平坦な上端面を有する支柱上に、前記培養容器を前記培養容器の上面が上を向くように置いた状態で測定される、前記点A、点B、点C、点Dのそれぞれの前記支柱の下端からの高さH(mm)、H(mm)、H(mm)、H(mm)が、下式1及び下式2を満たす、培養容器。
0≦H/L×100000≦200 ・・・式1
=|(H+H)/2-(H+H)/2| ・・・式2
(ただし、前記式中、Lは前記矩形の対角線の長さ(mm)である。)
[2]前記培養容器の上面の平面視形状が正円であり、正円の前記領域内で面積が最大になる矩形の各頂点を時計回りに点A、点B、点C、点Dとする、[1]に記載の培養容器。
[3]前記培養容器の上面の平面視形状が矩形であり、矩形の前記領域の各頂点を時計回りに点A、点B、点C、点Dとする、[1]に記載の培養容器。
[4]前記培養面に、細胞接着抑制剤を塗布してなる低接着コート膜が形成されている、[1]~[3]のいずれかに記載の培養容器。
[5]前記培養容器の材質が、ポリスチレン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリカーボネート樹脂及びシリコーン樹脂から選ばれる少なくとも1種の樹脂である、[1]~[4]のいずれかに記載の培養容器。
[6]前記培養面に複数の微細ウェルが形成されている、[1]~[5]のいずれかに記載の培養容器。
[7][1]~[6]のいずれかに記載の培養容器のみを複数個使用し、細胞培養、及び細胞培養後の運搬のいずれか一方又は両方を、前記培養容器の複数個を積み上げた状態で行う、培養細胞の製造方法。
The present invention has the following configurations.
[1] A culture container having a culture surface and used by stacking a plurality of them.
On the upper surface of the culture vessel, a protrusion that regulates the movement of the stacked culture vessels of the same type in the plane direction of the upper surface is provided along the outer edge of the upper surface.
Points A, B, and points clockwise at each apex of a rectangle having a shape similar to the plan view shape of the upper surface of the culture vessel and having the maximum area in a region whose peripheral edge coincides with the inner edge of the upper surface of the protrusion. When C and point D are set
The point A, which is measured in a state where the culture vessel is placed so that the upper surface of the culture vessel faces upward on a support column having a height of 35 mm and a flat upper end surface perpendicular to the height direction. The heights HA (mm), BB (mm), HC (mm), and HD (mm) from the lower ends of the columns at points B, C , and D are the following formulas 1 and the following formulas. A culture vessel that satisfies 2.
0 ≦ HM / L × 100,000 ≦ 200 ・ ・ ・ Equation 1
HM = | ( HA + HC) / 2- ( H B + HD ) / 2 |
(However, in the above formula, L is the diagonal length (mm) of the rectangle.)
[2] The shape of the upper surface of the culture vessel in a plan view is a perfect circle, and each vertex of the rectangle having the maximum area in the region of the perfect circle is clockwise as points A, B, C, and D. The culture vessel according to [1].
[3] The culture vessel according to [1], wherein the top surface of the culture vessel has a rectangular shape in a plan view, and the vertices of the rectangular region are clockwise at points A, B, C, and D. ..
[4] The culture vessel according to any one of [1] to [3], wherein a low adhesion coat film formed by applying a cell adhesion inhibitor is formed on the culture surface.
[5] Any of [1] to [4], wherein the material of the culture container is at least one resin selected from polystyrene resin, polyester resin, polyethylene resin, polypropylene resin, acrylic resin, polycarbonate resin and silicone resin. The culture container described in Crab.
[6] The culture vessel according to any one of [1] to [5], wherein a plurality of fine wells are formed on the culture surface.
[7] Using only a plurality of culture vessels according to any one of [1] to [6], stacking a plurality of the culture vessels for either or both of cell culture and transportation after cell culture. A method for producing cultured cells, which is carried out in a state of being in a state of being.

本発明によれば、複数個を積み上げた状態の揺れが低減され、培養細胞の予期せぬ動きを抑制できる培養容器、及び前記培養容器を用いた培養細胞の製造方法を提供することを目的とする。 An object of the present invention is to provide a culture vessel capable of reducing shaking in a state where a plurality of cells are stacked and suppressing unexpected movement of cultured cells, and a method for producing cultured cells using the culture vessel. do.

実施形態の培養容器を示した平面図である。It is a top view which showed the culture container of an embodiment. 図1の培養容器のI-I断面図である。FIG. 3 is a cross-sectional view taken along the line II of the culture vessel of FIG. 図2の培養容器の複数個を積み重ねて使用する様子を示した断面図である。It is sectional drawing which showed the state which the plurality of culture containers of FIG. 2 are stacked and used. 図1の培養容器の点A~Dの高さを測定する様子を示した断面図である。It is sectional drawing which showed the state of measuring the height of the point A to D of the culture container of FIG. 図1の培養容器の培養面を拡大して示した断面図である。FIG. 3 is an enlarged cross-sectional view showing the culture surface of the culture vessel of FIG. 1. 他の実施形態の培養容器を示した平面図である。It is a top view which showed the culture vessel of another embodiment. 図6の培養容器のII-II断面図である。FIG. 6 is a cross-sectional view taken along the line II-II of the culture vessel of FIG. 図7の培養容器の複数個を積み重ねて使用する様子を示した断面図である。It is sectional drawing which showed the state which the plurality of culture vessels of FIG. 7 are stacked and used. 図6の培養容器の点A~Dの高さを測定する様子を示した断面図である。6 is a cross-sectional view showing how the heights of points A to D of the culture vessel of FIG. 6 are measured. 図6の培養容器の培養面を拡大して示した断面図である。FIG. 6 is an enlarged cross-sectional view showing the culture surface of the culture vessel of FIG. 図1の培養容器を5枚積重ねて評価したときの様子を示した断面図である。It is sectional drawing which showed the state when 5 culture containers of FIG. 1 were stacked and evaluated. 図6の培養容器を5枚重ねて評価した時の様子を示した断面図である。It is sectional drawing which showed the state when 5 culture containers of FIG. 6 were piled up and evaluated.

本明細書における用語の意味及び定義は以下である。
「~」で表される数値範囲は、~の前後の数値を下限値及び上限値とする数値範囲を意味する。
「微細ウェルの開口端」とは、微細ウェルを全周にわたって周回する最上部を結んだ境界線である。微細ウェルの周囲に平坦面がある場合、その平坦面と微細ウェルの落ち込みとの境界線が微細ウェルの開口端である。
「微細ウェルの開口形状」とは、開口端の平面視形状である。
「微細ウェルの開口の直径」とは、微細ウェルの開口端の平面視での直径であり、開口端の平面視形状が正円でない場合はその平面視形状に対する内接円の直径とする。
「微細ウェルの開口面積」とは、平面視で微細ウェルの開口端が占める領域の面積である。
「微細ウェルの深さ」は、微細ウェルを周回する最上部に上方から最も多く接する面を基準面としたときの、微細ウェルの最深部と基準面との距離である。微細ウェルの周囲が平坦面である場合、その平坦面は基準面と一致する。
The meanings and definitions of the terms used herein are as follows.
The numerical range represented by "-" means a numerical range in which the numerical values before and after "-" are the lower limit value and the upper limit value.
The "open end of the fine well" is a boundary line connecting the uppermost portions that orbit the fine well all around. When there is a flat surface around the fine well, the boundary line between the flat surface and the dip of the fine well is the open end of the fine well.
The "opening shape of the fine well" is a plan-view shape of the opening end.
The "diameter of the opening of the fine well" is the diameter of the opening end of the fine well in a plan view, and if the plan view shape of the opening end is not a perfect circle, it is the diameter of the inscribed circle with respect to the plan view shape.
The "opening area of the fine well" is the area of the area occupied by the open end of the fine well in a plan view.
The "depth of the fine well" is the distance between the deepest part of the fine well and the reference surface when the surface that is most in contact with the top that orbits the fine well from above is used as the reference plane. If the perimeter of the fine well is a flat surface, the flat surface coincides with the reference surface.

以下、本発明の培養容器の実施形態の一例を示し、図面に基づいて説明する。なお、以下の説明において例示される図の寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, an example of an embodiment of the culture vessel of the present invention will be shown and described with reference to the drawings. It should be noted that the dimensions and the like of the figures exemplified in the following description are examples, and the present invention is not necessarily limited to them, and the present invention can be appropriately modified without changing the gist thereof. ..

[第1実施形態]
図1及び図2に示すように、本実施形態の培養容器1は、容器本体10と、蓋部20とを備えるディッシュである。
容器本体10は、円板状の底部12と、底部12の外縁部から全周にわたって垂直に立ち上がる周壁部14と、底部12の下面12bに、その外縁に沿って全周にわたって下方に突出して設けられた円環状の環状突起16と、を備えている。容器本体10の底面、すなわち底部12の上面12aは培養面18になっている。図5に示すように、この例の容器本体10の培養面18には、複数の微細ウェル19が形成されている。すなわち、培養容器1は複数の微細ウェル19を有する微細加工容器である。
[First Embodiment]
As shown in FIGS. 1 and 2, the culture container 1 of the present embodiment is a dish including a container main body 10 and a lid portion 20.
The container body 10 is provided on a disk-shaped bottom portion 12, a peripheral wall portion 14 that rises vertically from the outer edge portion of the bottom portion 12 over the entire circumference, and a lower surface 12b of the bottom portion 12 so as to project downward along the outer edge thereof. It is provided with an annular protrusion 16 and an annular protrusion 16 formed therein. The bottom surface of the container body 10, that is, the upper surface 12a of the bottom portion 12 is the culture surface 18. As shown in FIG. 5, a plurality of fine wells 19 are formed on the culture surface 18 of the container body 10 of this example. That is, the culture container 1 is a microfabricated container having a plurality of microwells 19.

蓋部20は、円板状の上面部22と、上面部22の外縁部から全周にわたって垂直に垂下された周壁部24と、上面部22の上面22aに、上面22aの外縁に沿って全周にわたって上方に突出して設けられた円環状の突起26と、を備えている。 The lid portion 20 is formed on the disk-shaped upper surface portion 22, the peripheral wall portion 24 vertically hung from the outer edge portion of the upper surface portion 22 over the entire circumference, and the upper surface portion 22a of the upper surface portion 22 along the outer edge of the upper surface portion 22a. It is provided with an annular protrusion 26 provided so as to project upward over the circumference.

培養容器1では、容器本体10に蓋部20を被せることで、容器本体10の培養面18の上方の開口を開閉自在に閉じることができる。容器本体10に蓋部20を被せた状態では、蓋部20の周壁部24が容器本体10の周壁部14の外側に位置する。 In the culture container 1, the opening above the culture surface 18 of the container body 10 can be freely opened and closed by covering the container body 10 with the lid portion 20. In a state where the lid portion 20 is covered with the container main body 10, the peripheral wall portion 24 of the lid portion 20 is located outside the peripheral wall portion 14 of the container main body 10.

図3に示すように、培養容器1は、容器本体10に蓋部20を被せた状態で、複数個を積み重ねることができる。同型の複数個の培養容器1を積み重ねた状態では、蓋部20の上面22a上に積み重ねられた培養容器1の容器本体10の環状突起16が、蓋部20の突起26の内側に嵌まる。これにより、蓋部20の上面22aの面方向における、蓋部20の上面22a上に積み重ねられた培養容器1の動きが規制される。 As shown in FIG. 3, a plurality of culture containers 1 can be stacked with the container body 10 covered with the lid portion 20. In a state where a plurality of culture containers 1 of the same type are stacked, the annular protrusion 16 of the container body 10 of the culture container 1 stacked on the upper surface 22a of the lid 20 is fitted inside the protrusion 26 of the lid 20. As a result, the movement of the culture vessel 1 stacked on the upper surface 22a of the lid 20 in the plane direction of the upper surface 22a of the lid 20 is restricted.

突起26の長さ方向に垂直な断面形状は、この例では矩形であるが、蓋部20の上面22a上に積み重ねられた培養容器1の動きを規制できる範囲であれば、半円形等であってもよい。
蓋部20の上面22aに設けられる突起26は、蓋部20の上面22a上に積み重ねられた培養容器1の面方向の動きを規制できる範囲であれば、環状の連続した突起には限定されず、複数の突起が断続的に形成されていてもよい。
The cross-sectional shape perpendicular to the length direction of the protrusion 26 is rectangular in this example, but is semi-circular or the like as long as the movement of the culture vessel 1 stacked on the upper surface 22a of the lid 20 can be regulated. You may.
The protrusions 26 provided on the upper surface 22a of the lid 20 are not limited to the continuous annular protrusions as long as the movement of the culture vessel 1 stacked on the upper surface 22a of the lid 20 in the plane direction can be regulated. , A plurality of protrusions may be formed intermittently.

培養容器1は、以下に説明する測定方法によって測定される点A~Dの4点の高さが特定の条件を満たす。
まず、図1に示すように、培養容器1の上面部22の上面22aの平面視形状と相似形状で、かつその周縁が突起26の上面26aの内縁26bに一致する領域E内で、面積が最大になる矩形の各頂点を時計回りに点A、点B、点C、点Dとする。
In the culture vessel 1, the heights of the four points A to D measured by the measuring method described below satisfy a specific condition.
First, as shown in FIG. 1, the area is similar to the plan view shape of the upper surface 22a of the upper surface portion 22 of the culture vessel 1 and the area thereof is within the region E whose peripheral edge coincides with the inner edge 26b of the upper surface 26a of the protrusion 26. Let each vertex of the maximum rectangle be a point A, a point B, a point C, and a point D in the clockwise direction.

この例では、上面部22の上面22aの平面視形状は正円であり、突起26は蓋部20の上面22aの外縁に沿って全周にわたって円環状に形成されているため、領域Eはその外周が突起26の上面26aの内縁26bに沿う正円の領域である。この領域E内において、面積が最大になる矩形、すなわち正方形の4つの頂点を時計回りに点A、点B、点C、点Dとする。4つの点A~Dは、いずれも領域Eの外周、すなわち突起26の上面26aの内縁26b上に位置する。領域Eの平面視形状が正円の場合、点A~Dを決定する際の矩形(正方形)は、当該正円の中心を基準とする回転方向において、Hが最大となる矩形(正方形)を設定し、支柱100の下端112からの高さが最大となる点をAとする。 In this example, the plan view shape of the upper surface 22a of the upper surface portion 22 is a perfect circle, and the protrusion 26 is formed in an annular shape over the entire circumference along the outer edge of the upper surface portion 22a of the lid portion 20, so that the region E is the region E thereof. The outer periphery is a region of a perfect circle along the inner edge 26b of the upper surface 26a of the protrusion 26. In this region E, the rectangle having the maximum area, that is, the four vertices of the square are clockwise as points A, B, C, and D. All four points A to D are located on the outer periphery of the region E, that is, on the inner edge 26b of the upper surface 26a of the protrusion 26. When the plan view shape of the region E is a perfect circle, the rectangle (square) for determining points A to D is the rectangle (square) having the maximum HM in the rotation direction with respect to the center of the perfect circle. Is set, and the point where the height from the lower end 112 of the support column 100 is the maximum is set as A.

図4に示すように、高さが35mmで、かつ高さ方向に垂直な平坦な上端面110を有する支柱100上に、培養容器1の蓋部20を上面22aが上を向くように置く。なお、図4には、2つの支柱100の上に培養容器1の蓋部20を載置した状態を示しているが、支柱100上に培養容器1を安定に載置した状態で測定できれば、支柱100の数は2つでなくてもよい。 As shown in FIG. 4, the lid portion 20 of the culture vessel 1 is placed on the support column 100 having a height of 35 mm and a flat upper end surface 110 perpendicular to the height direction so that the upper surface 22a faces upward. Note that FIG. 4 shows a state in which the lid 20 of the culture container 1 is placed on the two columns 100, but if the measurement can be performed in a state where the culture container 1 is stably placed on the columns 100, The number of columns 100 does not have to be two.

このように、培養容器1の蓋部20を支柱100上に置いた状態で、突起26の上面26a上の4つの点A、点B、点C、点Dについて、それぞれ支柱100の下端112からの高さH(mm)、H(mm)、H(mm)、H(mm)を測定する。
培養容器1は、このように測定される点A~Dの高さH~Hが下式1及び下式2を満たす。
In this way, with the lid 20 of the culture vessel 1 placed on the support column 100, the four points A, B, C, and D on the upper surface 26a of the protrusion 26 are respectively from the lower end 112 of the support column 100. The heights of HA (mm), BB (mm), HC (mm), and HD (mm) are measured.
In the culture vessel 1, the heights HA to HD of the points A to D measured in this way satisfy the following formulas 1 and 2.

0≦H/L×100000≦200 ・・・式1
=|(H+H)/2-(H+H)/2| ・・・式2
ただし、前記式中、Lは、点A~Dを各頂点とする矩形の対角線の長さ(mm)である。
0 ≦ HM / L × 100,000 ≦ 200 ・ ・ ・ Equation 1
HM = | ( HA + HC) / 2- ( H B + HD ) / 2 |
However, in the above formula, L is the length (mm) of the diagonal line of the rectangle whose vertices are points A to D.

は、点Aと点Cの中点(対角線ACの中点)の高さと、点Bと点Dの中点(対角線BDの中点)の高さとの差を示している。Lは、対角線ACの長さ(=対角線BDの長さ)である。 HM indicates the difference between the height of the midpoint between the points A and C (the midpoint of the diagonal AC) and the height of the midpoint between the points B and D (the midpoint of the diagonal BD). L is the length of the diagonal AC (= the length of the diagonal BD).

/L×100000で表される値は、0~200であり、0~100が好ましく、0~50がより好ましく、0~30がさらに好ましく、0~25が特に好ましく、0~20が最も好ましい。H/L×100000で表される値が前記範囲内であれば、培養容器1の上面22aの歪みが小さく、複数個の培養容器1を積み上げたときのがたつきが低減される。これにより、複数個の培養容器1を積み上げた状態での揺れが抑制される。そのため、培養面の各微細ウェルで細胞塊を培養する場合、微細ウェルから細胞塊が飛び出すことが抑制されるため、細胞塊の測定や観察が容易になる。 The value represented by HM / L × 100000 is 0 to 200, preferably 0 to 100, more preferably 0 to 50, still more preferably 0 to 30, particularly preferably 0 to 25, and 0 to 20. Most preferred. When the value represented by HM / L × 100,000 is within the above range, the strain of the upper surface 22a of the culture container 1 is small, and the rattling when a plurality of culture containers 1 are stacked is reduced. As a result, shaking in a state where a plurality of culture containers 1 are stacked is suppressed. Therefore, when the cell mass is cultured in each fine well on the culture surface, the cell mass is suppressed from popping out from the fine well, which facilitates measurement and observation of the cell mass.

容器本体10の培養面18には、サイズが均一な細胞塊が得られやすい点から、サイズが均一な複数の微細ウェル19が形成されていることが好ましい。図1及び図5に示す例は、培養面18における各微細ウェル19の周囲に平坦面がない態様である。なお、培養面18における各微細ウェル19の周囲は平坦面になっていてもよい。
微細ウェル19の開口形状は、特に限定されず、例えば、円形、楕円形、多角形、不規則な形状を例示できる。
It is preferable that a plurality of fine wells 19 having a uniform size are formed on the culture surface 18 of the container body 10 from the viewpoint that a cell mass having a uniform size can be easily obtained. The example shown in FIGS. 1 and 5 is an embodiment in which there is no flat surface around each fine well 19 on the culture surface 18. The circumference of each fine well 19 on the culture surface 18 may be a flat surface.
The opening shape of the fine well 19 is not particularly limited, and examples thereof include a circular shape, an elliptical shape, a polygonal shape, and an irregular shape.

微細ウェル19の開口の平均直径d(図5)は、100~2500μmが好ましく、200~2000μmがより好ましく、400~1000μmがさらに好ましい。微細ウェル19の開口の平均直径dが前記範囲の下限値以上であれば、充分なサイズの細胞塊が形成されやすい。微細ウェル19の開口の平均直径dが前記範囲の上限値以下であれば、微細ウェル間の隙間が小さくなり、培養面に多くの微細ウェルを効率良く形成できるため、培養できる細胞塊の数が多くなる。なお、微細ウェルの開口の平均直径dは、任意の10個の微細ウェルの直径を測定して平均した値である。微細ウェルの開口の直径の測定は、平面観察像を用いて実施できる。 The average diameter d (FIG. 5) of the opening of the fine well 19 is preferably 100 to 2500 μm, more preferably 200 to 2000 μm, still more preferably 400 to 1000 μm. When the average diameter d of the opening of the fine well 19 is equal to or larger than the lower limit of the above range, a cell mass having a sufficient size is likely to be formed. When the average diameter d of the openings of the fine wells 19 is equal to or less than the upper limit of the above range, the gap between the fine wells becomes small and many fine wells can be efficiently formed on the culture surface, so that the number of cell masses that can be cultured increases. Will increase. The average diameter d of the openings of the fine wells is a value obtained by measuring and averaging the diameters of 10 arbitrary fine wells. The measurement of the diameter of the opening of the fine well can be performed using a planar observation image.

微細ウェル19の開口面積は、0.008mm以上4.9mm以下が好ましく、0.03mm以上3.1mm以下がより好ましく、0.13mm以上0.8mm以下がさらに好ましい。微細ウェル19の開口面積が前記範囲の上限値以下であれば、微細ウェル19から細胞がこぼれることを抑制しやすく、均一な大きさのスフェロイドを形成しやすい。
なお、微細ウェル19の開口面積は、レーザ顕微鏡(キーエンス社製)等によって測定される。
The opening area of the fine well 19 is preferably 0.008 mm 2 or more and 4.9 mm 2 or less, more preferably 0.03 mm 2 or more and 3.1 mm 2 or less, and further preferably 0.13 mm 2 or more and 0.8 mm 2 or less. When the opening area of the fine well 19 is equal to or less than the upper limit of the above range, it is easy to prevent cells from spilling from the fine well 19, and it is easy to form a spheroid having a uniform size.
The opening area of the fine well 19 is measured by a laser microscope (manufactured by KEYENCE CORPORATION) or the like.

微細ウェル19の平均深さh(図5)は、50~1200μmが好ましく、100~1000μmがより好ましく、200~600μmがさらに好ましい。微細ウェル19の平均深さhが前記範囲の下限値以上であれば、細胞塊が微細ウェルから飛び出しにくく、安定して保持されやすい。微細ウェル19の平均深さhが前記範囲の上限値以下であれば、培地を添加したときに微細ウェルに泡が発生し難く、また発生したとしても泡を除きやすい。なお、微細ウェルの平均深さhは、任意の10個の微細ウェルについて、微細ウェルの深さ(基準面と微細ウェルの最深部との距離)を測定して平均した値である。微細ウェルの深さの測定は、3次元測定器による測定や、シリコーンゴム等で微細ウェルを型取りしたものを測定することで実施できる。 The average depth h (FIG. 5) of the fine well 19 is preferably 50 to 1200 μm, more preferably 100 to 1000 μm, and even more preferably 200 to 600 μm. When the average depth h of the fine well 19 is not less than the lower limit of the above range, the cell mass is less likely to pop out from the fine well and is easily held stably. When the average depth h of the fine wells 19 is not more than the upper limit of the above range, bubbles are less likely to be generated in the fine wells when the medium is added, and even if bubbles are generated, bubbles are easily removed. The average depth h of the fine wells is a value obtained by measuring and averaging the depths of the fine wells (distance between the reference plane and the deepest part of the fine wells) for any 10 fine wells. The depth of the fine well can be measured by measuring with a three-dimensional measuring device or by measuring the fine well molded with silicone rubber or the like.

微細ウェル19の配置パターンは、特に限定されず、規則的なパターンで形成してもよく、不規則に形成してもよく、規則的な部分と不規則な部分が混在していてもよい。規則的な配置パターンとしては、例えば、隙間なく並べた正方形の各頂点に微細ウェルを配置するパターン、隙間なく並べた正六角形の各頂点と中央に微細ウェルを配置するパターン、千鳥状のパターンを例示できる。 The arrangement pattern of the fine wells 19 is not particularly limited, and may be formed in a regular pattern, irregularly formed, or a mixture of regular portions and irregular portions. As a regular arrangement pattern, for example, a pattern in which fine wells are arranged at each vertex of a square arranged without gaps, a pattern in which fine wells are arranged at each vertex of a regular hexagon arranged without gaps and a fine well in the center, and a staggered pattern are used. It can be exemplified.

培養面18に形成される微細ウェル19の数は、単位面積あたり、10個/cm以上が好ましく、10~10000個/cmがより好ましく、15~5000個/cmがさらに好ましく、20~1500個/cmが特に好ましい。 The number of fine wells 19 formed on the culture surface 18 is preferably 10 pieces / cm 2 or more, more preferably 10 to 10000 pieces / cm 2 , still more preferably 15 to 5000 pieces / cm 2 , and 20 per unit area. ~ 1500 pieces / cm 2 is particularly preferable.

培養容器1の材質としては、樹脂またはガラスを例示できる。
樹脂としては、ポリスチレン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリカーボネート樹脂、シリコーン樹脂、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル、高密度ポリエチレン、ポリエーテルサルファン、PET共重合体、パーマノックス(サーモフィッシャーサイエンティフィック商標)、シクロオレフィンポリマー樹脂及びサイトップ(AGC商標)から選ばれる1種が好ましく、透明性が高く、薬剤吸着性が低いという点から、ポリスチレン樹脂が特に好ましい。培養容器1を構成する樹脂は、1種でもよく、2種以上でもよい。
ガラスとしては、石英ガラス、ホウケイ酸ガラス、リン酸ガラス、化学強化ガラス等を例示できる。培養容器1を構成するガラスは、1種でもよく、2種以上でもよい。
As the material of the culture container 1, resin or glass can be exemplified.
Resins include polystyrene resin, polyester resin, polyethylene resin, polypropylene resin, acrylic resin, polycarbonate resin, silicone resin, polyethylene terephthalate (PET), polyvinyl chloride, high-density polyethylene, polyether sulfan, PET copolymer, and perm. One selected from Knox (Thermofisher Scientific trademark), cycloolefin polymer resin and Cytop (AGC trademark) is preferable, and polystyrene resin is particularly preferable from the viewpoint of high transparency and low drug adsorption. The resin constituting the culture container 1 may be one kind or two or more kinds.
Examples of the glass include quartz glass, borosilicate glass, phosphoric acid glass, and chemically strengthened glass. The glass constituting the culture container 1 may be one kind or two or more kinds.

培養容器1の周壁部14は透明でも不透明でもよい。周壁部14を不透明とする場合、色調としては黒や白など、光を通しづらい色味がより好ましい。周壁部14を不透明にすることによって、顕微鏡での観察時に光の反射による観察しづらさを軽減することができる。周壁部14を不透明にする方法としては、特に限定されず、例えば、微粒子を添加する方法、顔料等の着色料を添加する方法等を用いることができる。黒の場合はカーボン等、白の場合は酸化チタン等を用いることができる。 The peripheral wall portion 14 of the culture vessel 1 may be transparent or opaque. When the peripheral wall portion 14 is opaque, the color tone is more preferably black or white, which makes it difficult for light to pass through. By making the peripheral wall portion 14 opaque, it is possible to reduce the difficulty of observing due to the reflection of light when observing with a microscope. The method for making the peripheral wall portion 14 opaque is not particularly limited, and for example, a method of adding fine particles, a method of adding a coloring agent such as a pigment, or the like can be used. In the case of black, carbon or the like can be used, and in the case of white, titanium oxide or the like can be used.

底部12の平均厚みは、80μm以上2000μm以下が好ましい。培養容器1がガラスの場合、平均厚みは100μm以上250μ以下がより好ましく、130μ以上200μm以下がさらに好ましい。培養容器1が樹脂の場合、300μm以上1800μm以下がより好ましく、500μm以上1500μm以下がさらに好ましく、810μm以上1000μm以下がより一層好ましい。培養容器1の平均厚みが前記範囲内であれば、微細ウェル19形成による培養容器1の変形が低減でき、積み重ね時の歪みも軽減できる。 The average thickness of the bottom portion 12 is preferably 80 μm or more and 2000 μm or less. When the culture vessel 1 is made of glass, the average thickness is more preferably 100 μm or more and 250 μm or less, and further preferably 130 μm or more and 200 μm or less. When the culture vessel 1 is a resin, it is more preferably 300 μm or more and 1800 μm or less, further preferably 500 μm or more and 1500 μm or less, and even more preferably 810 μm or more and 1000 μm or less. When the average thickness of the culture vessel 1 is within the above range, the deformation of the culture vessel 1 due to the formation of the fine wells 19 can be reduced, and the strain during stacking can also be reduced.

培養容器1の製造方法は、特に限定されず、例えば、射出成形法によって成形できる。
微細ウェル19を形成する方法としては、例えば、レーザ照射を例示できる。樹脂製の容器本体10の底面である培養面18にレーザ光が照射されると、培養面18を構成する樹脂が溶解及び気化して、非常に滑らかな表面を持つ微細ウェル19が形成される。微細ウェル19の開口周辺には、溶解した樹脂が盛り上がって土手部が形成されてもよい。この場合、微細ウェルを周回する土手部の最上部が当該微細ウェルの開口端となる。
The method for producing the culture container 1 is not particularly limited, and can be molded by, for example, an injection molding method.
As a method for forming the fine well 19, for example, laser irradiation can be exemplified. When the culture surface 18 which is the bottom surface of the resin container body 10 is irradiated with laser light, the resin constituting the culture surface 18 is dissolved and vaporized to form fine wells 19 having a very smooth surface. .. Around the opening of the fine well 19, the melted resin may be raised to form a bank portion. In this case, the uppermost portion of the bank portion that goes around the fine well is the open end of the fine well.

レーザ光源としては、特に限定されず、COレーザを例示できる。微細ウェル19の配置及びサイズは、レーザ光の照射位置や出力、時間等の照射条件を調節することによって調節できる。
レーザ出力は、例えば、1~100Wの範囲で固定し、レーザ照射時間は、例えば、0.1~100μsの範囲で固定してレーザ照射を行うことで、各微細ウェル19のサイズを均一にできる。
The laser light source is not particularly limited, and a CO 2 laser can be exemplified. The arrangement and size of the fine wells 19 can be adjusted by adjusting the irradiation conditions such as the irradiation position, output, and time of the laser beam.
By fixing the laser output in the range of 1 to 100 W, for example, and fixing the laser irradiation time in the range of 0.1 to 100 μs and performing laser irradiation, the size of each fine well 19 can be made uniform. ..

培養面18には、細胞の接着を抑制する低接着コート膜を形成してもよい。低接着コート膜が形成されることで、培養細胞を取り出しやすくなる。低接着コート膜は、例えば、細胞接着抑制剤を塗布することによって形成できる。細胞接着抑制剤としては、リン脂質ポリマー(2-メタクリロイルオキシエチルホスホリルコリン等)、ポリヒドロキシエチルメタアクリレート、フッ素含有化合物、ポリエチレングリコールを例示できる。細胞接着抑制剤としては、1種を単独で使用してもよく、2種以上を併用してもよい。
なお、培養容器1の容器本体10全体又は培養面18をシリコーン樹脂等の細胞接着抑制効果のある樹脂や、前記細胞接着抑制剤を配合した合成樹脂等で成形すれば、低接着コート膜を形成しなくても培養面18に細胞が接着することを抑制できる。
A low adhesion coat film that suppresses cell adhesion may be formed on the culture surface 18. The formation of a low-adhesion coat film facilitates the removal of cultured cells. The low adhesion coat film can be formed, for example, by applying a cell adhesion inhibitor. Examples of the cell adhesion inhibitor include phospholipid polymers (2-methacryloyloxyethyl phosphorylcholine and the like), polyhydroxyethyl methacrylates, fluorine-containing compounds, and polyethylene glycol. As the cell adhesion inhibitor, one type may be used alone, or two or more types may be used in combination.
If the entire container body 10 or the culture surface 18 of the culture container 1 is molded with a resin having a cell adhesion inhibitory effect such as a silicone resin or a synthetic resin containing the cell adhesion inhibitor, a low adhesion coat film is formed. It is possible to prevent cells from adhering to the culture surface 18 without doing so.

培養面18には、細胞を接着させやすくする易接着コート膜を形成してもよい。易接着コート膜を形成する材料としては、コラーゲン、ゼラチンを例示できる。易接着コート膜を形成する材料としては、1種を単独で使用してもよく、2種以上を併用してもよい。なお、培養容器1の容器本体10全体又は培養面18を細胞接着効果のある樹脂や、細胞易接着コート剤を配合した合成樹脂等で成形してもよい。
また、コート剤以外でも、プラズマ処理、コロナ放電等の物理的処理を行い、細胞を接着しやすくしてもよい。
An easy-adhesion coat film may be formed on the culture surface 18 to facilitate the adhesion of cells. Examples of the material for forming the easy-adhesive coating film include collagen and gelatin. As the material for forming the easy-adhesion coating film, one type may be used alone, or two or more types may be used in combination. The entire container body 10 or the culture surface 18 of the culture container 1 may be molded with a resin having a cell adhesion effect, a synthetic resin containing a cell easy adhesion coating agent, or the like.
In addition to the coating agent, physical treatment such as plasma treatment and corona discharge may be performed to facilitate the adhesion of cells.

(培養細胞の製造方法)
以下、培養容器1を用いた培養細胞の製造方法について説明する。
同型の培養容器1のみを複数個使用し、細胞培養、及び細胞培養後の運搬のいずれか一方又は両方を、複数個の培養容器1を積み上げた状態で行う。本実施形態では、細胞培養時にのみ複数個の培養容器1を積み上げてもよく、運搬時にのみ複数個の培養容器1を積み上げてもよく、細胞培養時と運搬時の両方で複数個の培養容器1を積み上げてもよい。
(Manufacturing method of cultured cells)
Hereinafter, a method for producing cultured cells using the culture vessel 1 will be described.
Only a plurality of culture containers 1 of the same type are used, and one or both of cell culture and transportation after cell culture are performed in a state where a plurality of culture containers 1 are stacked. In the present embodiment, a plurality of culture containers 1 may be stacked only during cell culture, or a plurality of culture containers 1 may be stacked only during transportation, and a plurality of culture containers may be stacked both during cell culture and during transportation. 1 may be piled up.

培養容器1の蓋部20の上面22aに突起26が設けられていることで、蓋部20の上面22a上に積み重ねられた培養容器1の面方向の動きが規制される。さらに、突起26の上面26aの内縁26bに沿う領域の4つの点A~Dの高さH~Hが前記式1及び前記式2を満たしているため、複数個の培養容器1を積み重ねた状態におけるがたつきが低減され、揺れにくくなる。これらのことから、培養細胞の予期せぬ動きを抑制できる。そのため、培養面に微細ウェルを形成した場合には、微細ウェルから細胞塊が飛び出すことが抑制され、細胞塊の測定や観察が容易になる。 By providing the protrusion 26 on the upper surface 22a of the lid 20 of the culture container 1, the movement of the culture container 1 stacked on the upper surface 22a of the lid 20 in the surface direction is restricted. Further, since the heights HA to HD of the four points A to D in the region along the inner edge 26b of the upper surface 26a of the protrusion 26 satisfy the formula 1 and the formula 2, a plurality of culture containers 1 are stacked. The rattling in the rattling state is reduced and it becomes difficult to shake. From these facts, unexpected movement of cultured cells can be suppressed. Therefore, when a fine well is formed on the culture surface, the cell mass is suppressed from popping out from the fine well, and the measurement and observation of the cell mass become easy.

[第2実施形態]
図6及び図7に示すように、本実施形態の培養容器2は、容器本体30と、蓋部40とを備えるマイクロプレートである。
容器本体30は、平面視形状が矩形の板状の底部32と、底部32の外縁部から全周にわたって垂直に立ち上がる周壁部34と、底部32の周壁部34の内側から立ち上がり、各ウェル35を形成する複数の円筒状の筒部36と、底部32の下面32bに、その外縁に沿って全周にわたって下方に突出して設けられた環状突起38と、を備えている。
[Second Embodiment]
As shown in FIGS. 6 and 7, the culture container 2 of the present embodiment is a microplate provided with a container body 30 and a lid portion 40.
The container body 30 rises from the inside of the plate-shaped bottom portion 32 having a rectangular plan view, the peripheral wall portion 34 that rises vertically from the outer edge portion of the bottom portion 32 over the entire circumference, and the peripheral wall portion 34 of the bottom portion 32, and provides each well 35. A plurality of cylindrical tubular portions 36 to be formed, and annular projections 38 provided on the lower surface 32b of the bottom portion 32 so as to project downward over the entire circumference along the outer edge thereof are provided.

この例の培養容器2では、底部32と筒部36によって形成される各ウェル35の底面が培養面37になっている。複数のウェル35は平面視で縦横にマトリックス状に配列されている。図10に示すように、各ウェル35の培養面37には、複数の微細ウェル39が形成されている。すなわち、培養容器2は複数の微細ウェル39を有する微細加工容器である。 In the culture vessel 2 of this example, the bottom surface of each well 35 formed by the bottom portion 32 and the cylinder portion 36 is the culture surface 37. The plurality of wells 35 are arranged vertically and horizontally in a matrix in a plan view. As shown in FIG. 10, a plurality of fine wells 39 are formed on the culture surface 37 of each well 35. That is, the culture vessel 2 is a microfabricated container having a plurality of microwells 39.

蓋部40は、平面視形状が矩形の上面部42と、上面部42の外縁部から垂直に垂下された周壁部43と、上面部42の上面42aの外縁に沿って全周にわたって上方に突出するように設けられた矩形の環状の突起44と、を備えている。 The lid portion 40 projects upward along the entire circumference along the upper surface portion 42 having a rectangular plan view shape, the peripheral wall portion 43 vertically hung from the outer edge portion of the upper surface portion 42, and the outer edge of the upper surface portion 42a of the upper surface portion 42. It is provided with a rectangular annular protrusion 44, which is provided so as to be used.

培養容器2におけるウェル35の配置パターンは、特に限定されず、例えば、マトリックス状、千鳥状を例示できる。ウェル35の平面視の開口形状は、円形には限定されず、例えば、矩形であってもよい。
培養容器2が有するウェル35の数は、特に限定されず、例えば、1~1536個が挙げられる。
The arrangement pattern of the wells 35 in the culture vessel 2 is not particularly limited, and examples thereof include a matrix shape and a staggered shape. The opening shape of the well 35 in a plan view is not limited to a circle, and may be, for example, a rectangle.
The number of wells 35 included in the culture vessel 2 is not particularly limited, and examples thereof include 1 to 1536.

ウェル35の平均深さは、6.0~12.0mmが好ましく、5.7~10.8mmがより好ましい。ウェル35の平均深さが前記範囲の下限値以上であれば、内容物がこぼれにくい。ウェル35の平均深さが前記範囲の上限値以下であれば、溶液の分注、排出が容易になる。 The average depth of the wells 35 is preferably 6.0 to 12.0 mm, more preferably 5.7 to 10.8 mm. If the average depth of the wells 35 is equal to or greater than the lower limit of the above range, the contents are less likely to spill. When the average depth of the wells 35 is not more than the upper limit of the above range, the solution can be easily dispensed and discharged.

図8に示すように、培養容器2は、複数個を積み重ねることができる。同型の複数個の培養容器2を積み重ねた状態では、上面部42の上面42aに設けられた突起44が、上面部42の上面42a上に積み重ねられた培養容器2の環状突起38の内側に嵌まる。これにより、上面部42の上面42aの面方向における、上面部42の上面42a上に積み重ねられた培養容器2の動きが規制される。 As shown in FIG. 8, a plurality of culture containers 2 can be stacked. In a state where a plurality of culture containers 2 of the same type are stacked, the protrusion 44 provided on the upper surface 42a of the upper surface portion 42 fits inside the annular protrusion 38 of the culture container 2 stacked on the upper surface 42a of the upper surface portion 42. circle. As a result, the movement of the culture vessel 2 stacked on the upper surface 42a of the upper surface portion 42 in the plane direction of the upper surface portion 42a of the upper surface portion 42 is restricted.

突起44の長さ方向に垂直な断面形状は、この例では矩形であるが、上面部42の上面42a上に積み重ねられた培養容器2の動きを規制できる範囲であれば、半円形等であってもよい。
上面部42の上面42aに設けられる突起44は、上面部42の上面42a上に積み重ねられた培養容器2の面方向の動きを規制できる範囲であれば、環状の連続した突起には限定されず、複数の突起が断続的に形成されていてもよい。
The cross-sectional shape perpendicular to the length direction of the protrusion 44 is rectangular in this example, but is semi-circular or the like as long as the movement of the culture vessel 2 stacked on the upper surface 42a of the upper surface portion 42 can be regulated. You may.
The protrusion 44 provided on the upper surface 42a of the upper surface portion 42 is not limited to the continuous annular protrusion as long as the movement of the culture vessel 2 stacked on the upper surface 42a of the upper surface portion 42 in the surface direction can be regulated. , A plurality of protrusions may be formed intermittently.

培養容器2は、以下に説明する測定方法によって測定される点A、点B、点C、点Dの4点の高さが特定の条件を満たす。
まず、図6に示すように、培養容器2の上面部42の上面42aの平面視形状と相似形状で、かつその周縁が突起44の上面44aの内縁44bに一致する領域E内で、面積が最大になる矩形の各頂点を時計回りに点A、点B、点C、点Dとする。
In the culture vessel 2, the heights of the four points A, B, C, and D measured by the measuring method described below satisfy a specific condition.
First, as shown in FIG. 6, the area is similar to the plan view shape of the upper surface 42a of the upper surface portion 42 of the culture vessel 2 and the area thereof is within the region E whose peripheral edge coincides with the inner edge 44b of the upper surface 44a of the protrusion 44. Let each vertex of the maximum rectangle be a point A, a point B, a point C, and a point D in the clockwise direction.

この例では、上面部42の上面42aの平面視形状は矩形であり、突起44は上面部42の上面42aの外縁に沿って全周にわたって矩形の環状に形成されている。そのため、領域Eは、その外周が突起44の上面44aの内縁44bに沿う矩形の領域である。この領域E内において面積が最大になる矩形は領域Eと同一形状であり、突起44の四隅に位置する4つの頂点を時計回りに点A、点B、点C、点Dとする。 In this example, the plan view shape of the upper surface 42a of the upper surface portion 42 is rectangular, and the protrusion 44 is formed in a rectangular ring shape over the entire circumference along the outer edge of the upper surface portion 42a of the upper surface portion 42. Therefore, the region E is a rectangular region whose outer circumference is along the inner edge 44b of the upper surface 44a of the protrusion 44. The rectangle having the maximum area in this region E has the same shape as the region E, and the four vertices located at the four corners of the protrusion 44 are clockwise as points A, B, C, and D.

図9に示すように、高さが35mmで、かつ高さ方向に垂直な平坦な上端面110を有する支柱100上に、培養容器2の蓋部40を上面部42の上面42aが上を向くように置く。なお、第1実施形態と同様に、点A~Dの高さを安定して測定できれば、支柱100の数は2つでなくてもよい。 As shown in FIG. 9, the lid portion 40 of the culture vessel 2 and the upper surface portion 42a of the upper surface portion 42 face upward on the support column 100 having a height of 35 mm and a flat upper end surface 110 perpendicular to the height direction. Put it like. As in the first embodiment, the number of columns 100 does not have to be two as long as the heights of points A to D can be measured stably.

このように、培養容器2を支柱100上に置いた状態で、培養容器2の蓋部20の上面部42の上面42a上の4つの点A、点B、点C、点Dについて、それぞれ支柱100の下端112からの高さH(mm)、H(mm)、H(mm)、H(mm)を測定する。
培養容器2は、このように測定される点A~Dの高さH~Hが前記式1及び前記式2を満たす。
In this way, with the culture vessel 2 placed on the column 100, the columns A, B, C, and D on the upper surface 42a of the upper surface 42 of the lid 20 of the culture container 2 are respectively. The heights HA (mm), BB (mm), HC (mm), and HD (mm) from the lower end 112 of 100 are measured.
In the culture vessel 2, the heights HA to HD of the points A to D measured in this way satisfy the formula 1 and the formula 2.

培養容器2においても、H/L×100000で表される値が0~200であることで、培養容器2の上面部42の上面42aの歪みが小さく、複数個の培養容器2を積み上げたときのがたつきが低減される。これにより、複数個の培養容器2を積み上げた状態での揺れが抑制される。そのため、培養面の各微細ウェルで細胞塊を培養する場合、微細ウェルから細胞塊が飛び出すことが抑制されるため、細胞塊の測定や観察が容易になる。
/L×100000で表される値の好ましい範囲は、第1実施形態におけるH/L×100000で表される値の好ましい範囲と同じである。
Also in the culture vessel 2, since the value represented by HM / L × 100000 is 0 to 200, the strain of the upper surface 42a of the upper surface portion 42 of the culture vessel 2 is small, and a plurality of culture vessels 2 are stacked. Time rattling is reduced. As a result, shaking in a state where a plurality of culture containers 2 are stacked is suppressed. Therefore, when the cell mass is cultured in each fine well on the culture surface, the cell mass is suppressed from popping out from the fine well, which facilitates measurement and observation of the cell mass.
The preferred range of values represented by HM / L × 100,000 is the same as the preferred range of values represented by HM / L × 100,000 in the first embodiment.

図10に示すように、各ウェル35の培養面37には、サイズが均一な複数の微細ウェル39が形成されていることが好ましい。培養面37における各微細ウェル39の周囲には、平坦面があってもよく、平坦面がなくてもよい。微細ウェル39の開口形状、開口の平均直径d(図10)、開口面積、平均深さh(図10)、配置パターン、数等の態様は、第1実施形態の微細ウェル19と同じ態様を例示でき、好ましい態様も同じである。 As shown in FIG. 10, it is preferable that a plurality of fine wells 39 having a uniform size are formed on the culture surface 37 of each well 35. There may or may not be a flat surface around each of the fine wells 39 on the culture surface 37. The opening shape of the fine well 39, the average diameter d of the opening (FIG. 10), the opening area, the average depth h (FIG. 10), the arrangement pattern, the number, and the like are the same as those of the fine well 19 of the first embodiment. It can be exemplified, and the preferred embodiment is the same.

培養容器2の材質としては、培養容器1の材質として例示したものと同じ樹脂及びガラスを例示でき、なかでもポリスチレン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリカーボネート樹脂及びシリコーン樹脂から選ばれる1種が好ましく、ポリスチレン樹脂が特に好ましい。また、培養容器1と同様に筒部36を不透明としてもよい。 As the material of the culture container 2, the same resin and glass as those exemplified as the material of the culture container 1 can be exemplified, and among them, selected from polystyrene resin, polyester resin, polyethylene resin, polypropylene resin, acrylic resin, polycarbonate resin and silicone resin. 1 type is preferable, and polystyrene resin is particularly preferable. Further, the tubular portion 36 may be opaque as in the culture vessel 1.

底部32の平均厚みは、80μm以上2000μm以下が好ましい。培養容器2がガラスの場合、平均厚みは100μm以上250μ以下がより好ましく、130μ以上200μm以下がさらに好ましい。培養容器2が樹脂の場合、300μm以上1800μm以下がより好ましく、500μm以上1500μm以下がさらに好ましく、810μm以上1000μm以下がより一層好ましい。培養容器2の平均厚みが前記範囲内であれば、微細ウェル39形成による培養容器2の変形が低減でき、積み重ね時の歪みも軽減できる。 The average thickness of the bottom portion 32 is preferably 80 μm or more and 2000 μm or less. When the culture vessel 2 is made of glass, the average thickness is more preferably 100 μm or more and 250 μm or less, and further preferably 130 μm or more and 200 μm or less. When the culture vessel 2 is a resin, it is more preferably 300 μm or more and 1800 μm or less, further preferably 500 μm or more and 1500 μm or less, and even more preferably 810 μm or more and 1000 μm or less. When the average thickness of the culture vessel 2 is within the above range, the deformation of the culture vessel 2 due to the formation of the fine well 39 can be reduced, and the strain during stacking can also be reduced.

培養容器2の製造方法は、特に限定されず、例えば、射出成形法によって成形できる。
微細ウェル39を形成する方法としては、微細ウェル19を形成する方法と同じ方法を採用できる。培養面37にも、細胞の接着を抑制する低接着コート膜や、細胞を接着させやすくする易接着コート膜を形成してもよい。
The method for producing the culture container 2 is not particularly limited, and can be molded by, for example, an injection molding method.
As a method for forming the fine well 39, the same method as the method for forming the fine well 19 can be adopted. A low adhesion coat film that suppresses cell adhesion or an easy adhesion coat film that facilitates cell adhesion may also be formed on the culture surface 37.

(培養細胞の製造方法)
以下、培養容器2を用いた培養細胞の製造方法について説明する。
同型の培養容器2のみを複数個使用し、細胞培養、及び細胞培養後の運搬のいずれか一方又は両方を、複数個の培養容器2を積み上げた状態で行う。本実施形態では、細胞培養時にのみ複数個の培養容器2を積み上げてもよく、運搬時にのみ複数個の培養容器2を積み上げてもよく、細胞培養時と運搬時の両方で複数個の培養容器2を積み上げてもよい。
(Manufacturing method of cultured cells)
Hereinafter, a method for producing cultured cells using the culture vessel 2 will be described.
Only a plurality of culture vessels 2 of the same type are used, and one or both of cell culture and transportation after cell culture are performed in a state where a plurality of culture vessels 2 are stacked. In the present embodiment, a plurality of culture containers 2 may be stacked only during cell culture, a plurality of culture containers 2 may be stacked only during transportation, and a plurality of culture containers may be stacked both during cell culture and during transportation. 2 may be stacked.

培養容器2を使用する態様も培養容器1の場合と同様に、上面部42の上面42aに設けられた突起44によって、積み重ねられた培養容器2の面方向の動きが規制される。さらに、突起44の上面44aの内縁44bに沿う領域の4つの点A~Dの高さH~Hが前記式1及び前記式2を満たしているため、積み重ねた培養容器2のがたつきが低減され、揺れにくくなるため、培養細胞の予期せぬ動きを抑制できる。そのため、培養面に微細ウェルを形成した場合には、微細ウェルから細胞塊が飛び出すことが抑制され、細胞塊の測定や観察が容易になる。 Similar to the case of the culture container 1, the embodiment in which the culture container 2 is used also regulates the movement of the stacked culture containers 2 in the plane direction by the protrusions 44 provided on the upper surface 42a of the upper surface portion 42. Further, since the heights HA to HD of the four points A to D in the region along the inner edge 44b of the upper surface 44a of the protrusion 44 satisfy the formula 1 and the formula 2, the stacked culture vessels 2 are loose. Since sticking is reduced and shaking is less likely to occur, unexpected movement of cultured cells can be suppressed. Therefore, when a fine well is formed on the culture surface, the cell mass is suppressed from popping out from the fine well, and the measurement and observation of the cell mass become easy.

なお、本発明の培養容器は、上面上に複数個を積み重ねて使用する培養容器であればよく、培養容器1のようなディッシュや、培養容器2のようなマイクロプレートには限定されない。本発明の培養容器は、例えば、同型の培養容器を積み重ねられる上面を有するフラスコ状の培養容器であってもよい。その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。 The culture vessel of the present invention may be any culture vessel used by stacking a plurality of the culture vessels on the upper surface, and is not limited to a dish such as the culture vessel 1 or a microplate such as the culture vessel 2. The culture vessel of the present invention may be, for example, a flask-shaped culture vessel having an upper surface on which culture vessels of the same type can be stacked. In addition, it is appropriately possible to replace the constituent elements in the above-described embodiment with well-known constituent elements without departing from the spirit of the present invention, and the above-mentioned modifications may be appropriately combined.

以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。
[積み重ねの安定性]
図11及び図12に示すように、同型の5個の培養容器(ディッシュ又はマイクロプレート)を積み重ね、最も上に位置する培養容器の点A~Dの高さ(T~T)を測定し、それら測定値から標準偏差を算出し、積み重ねの安定性を以下の基準で評価した。
◎(優良):標準偏差が0.1以下。
○(良):標準偏差が0.1超0.2以下。
×(不良):標準偏差が0.2超。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following description.
[Stability of stacking]
As shown in FIGS. 11 and 12, five culture vessels (dish or microplate) of the same type are stacked, and the heights (TA to T D ) of points A to D of the culture vessels located at the top are measured. Then, the standard deviation was calculated from those measured values, and the stability of stacking was evaluated according to the following criteria.
◎ (excellent): Standard deviation is 0.1 or less.
○ (Good): Standard deviation is more than 0.1 and 0.2 or less.
× (defective): Standard deviation exceeds 0.2.

[例1]
図1及び図2で例示したような態様で、平面視形状が直径100mmの正円である4種の培養容器(ディッシュ-1~ディッシュ-4、及びディッシュ-6~ディッシュ-9)について、高さH~Hを測定し、H/L×100000で表される値を算出した。結果を表1及び表2に示す。また、ディッシュ-1~ディッシュ-4については、同型の培養容器を積み重ねたときの、最も上に位置する培養容器の高さT~Tを測定し、標準偏差を算出し、安定性を評価した。結果を表1に示す。
[Example 1]
In the manner illustrated in FIGS. 1 and 2, four types of culture vessels (Dish-1 to Dish-4 and Dish-6 to Dish-9) having a circular shape with a diameter of 100 mm in a plan view are high. H A to HD were measured, and a value represented by HM / L × 100,000 was calculated. The results are shown in Tables 1 and 2. For Dish-1 to Dish-4, measure the heights TA to TD of the culture vessels located at the top when stacking culture vessels of the same type, calculate the standard deviation, and determine the stability. evaluated. The results are shown in Table 1.

[例2]
図6及び図7に例示したような態様で、平面視形状が縦85.3mm×横127.6mmの矩形で6個(2×3)のウェルを有する4種の培養容器(マイクロプレート-1~マイクロプレート-4、及びマイクロプレート-9~マイクロプレート-11)について、高さH~Hを測定し、H/L×100000で表される値を算出した。結果を表1及び表2に示す。また、マイクロプレート-1~マイクロプレート-4については、同型の培養容器を積み重ねたときの、最も上に位置する培養容器の高さT~Tを測定し、標準偏差を算出し、安定性を評価した。結果を表1に示す。
[Example 2]
In the manner illustrated in FIGS. 6 and 7, four types of culture vessels (microplate-1) having a rectangular shape with a plan view shape of 85.3 mm in length × 127.6 mm in width and having 6 (2 × 3) wells. The heights HA to HD were measured for the microplate-4 and the microplate-9 to the microplate-11), and the value represented by HM / L × 100,000 was calculated. The results are shown in Tables 1 and 2. For microplates-1 to microplate-4, measure the heights TA to TD of the culture vessels located at the top when stacking culture vessels of the same type, calculate the standard deviation, and stabilize. Gender was evaluated. The results are shown in Table 1.

[例3]
図6及び図7に例示したような態様で、平面視形状が縦85.3mm×横127.6mmの矩形で96個(8×12)のウェルを有する4種の培養容器(マイクロプレート-5~マイクロプレート-8、及びマイクロプレート-12~マイクロプレート-14)について、高さH~Hを測定し、H/L×100000で表される値を算出した。結果を表1及び表2に示す。また、マイクロプレート-5~マイクロプレート-7については、同型の培養容器を積み重ねたときの、最も上に位置する培養容器の高さT~Tを測定し、標準偏差を算出し、安定性を評価した。結果を表1に示す。
[Example 3]
Four types of culture vessels (microplate-5) having 96 (8 × 12) wells in a rectangle having a plan view shape of 85.3 mm in length × 127.6 mm in width in the embodiment as illustrated in FIGS. 6 and 7. -For the microplate-8 and the microplate-12 to the microplate-14), the heights HA to HD were measured, and the value represented by HM / L × 100,000 was calculated. The results are shown in Tables 1 and 2. For microplates-5 to -7 , measure the heights TA to TD of the culture vessels located at the top when stacking culture vessels of the same type, calculate the standard deviation, and stabilize. Gender was evaluated. The results are shown in Table 1.

[例4]
図1及び図2で例示したような態様で、平面視形状が直径150mmの正円である1種の培養容器(ディッシュ-5、ディッシュ-10及びディッシュ-11)について、高さH~Hを測定し、H/L×100000で表される値を算出した。結果を表1及び表2に示す。また、ディッシュ-5については、同型の培養容器を積み重ねたときの、最も上に位置する培養容器の高さT~Tを測定し、標準偏差を算出し、安定性を評価した。結果を表1に示す。
[Example 4]
In the manner illustrated in FIGS. 1 and 2, the heights HA to H of one type of culture vessel (dish-5, dish-10 and dish-11) having a plan-view shape of a perfect circle with a diameter of 150 mm. D was measured and a value represented by HM / L × 100,000 was calculated. The results are shown in Tables 1 and 2. For dish- 5, the heights TA to T D of the culture vessels located at the top when stacking culture vessels of the same type were measured, the standard deviation was calculated, and the stability was evaluated. The results are shown in Table 1.

Figure 2022042503000002
Figure 2022042503000002

Figure 2022042503000003
Figure 2022042503000003

以上の結果のうち、ディッシュ-8及びディッシュ-9については、H/L×100000の値が200を超え、蓋の歪みが大きく、積み重ねに不向きであることがいえる。 Among the above results, it can be said that the values of HM / L × 100,000 for Dish-8 and Dish-9 exceed 200, and the distortion of the lid is large, which makes them unsuitable for stacking.

1,2…培養容器、10…容器本体、12…底部、14…周壁部、18…培養面、19…微細ウェル、20…蓋部、22…上面部、22a…上面、24…周壁部、26…突起、26a…上面、26b…内縁、30…容器本体、32…底部、34…周壁部、35…ウェル、36…筒部、37…培養面、39…微細ウェル、40…蓋部、42…上面部、42a…上面、44…突起、44a…上面、44b…内縁、100…支柱、110…上端面、112…下端。 1,2 ... culture container, 10 ... container body, 12 ... bottom, 14 ... peripheral wall, 18 ... culture surface, 19 ... fine well, 20 ... lid, 22 ... top surface, 22a ... top surface, 24 ... peripheral wall, 26 ... protrusion, 26a ... top surface, 26b ... inner edge, 30 ... container body, 32 ... bottom, 34 ... peripheral wall, 35 ... well, 36 ... tube, 37 ... culture surface, 39 ... fine well, 40 ... lid, 42 ... upper surface portion, 42a ... upper surface, 44 ... protrusion, 44a ... upper surface, 44b ... inner edge, 100 ... support, 110 ... upper end surface, 112 ... lower end.

Claims (7)

培養面を有し、複数個を積み上げて使用する培養容器であって、
前記培養容器の上面には、積み上げられた同型の培養容器が前記上面の面方向に動くことを規制する突起が前記上面の外縁に沿って設けられ、
前記培養容器の上面の平面視形状と相似形状で、かつその周縁が前記突起の上面の内縁に一致する領域内で面積が最大になる矩形の各頂点を時計回りに点A、点B、点C、点Dとしたとき、
高さが35mmで、かつ高さ方向に垂直な平坦な上端面を有する支柱上に、前記培養容器を前記培養容器の上面が上を向くように置いた状態で測定される、前記点A、点B、点C、点Dのそれぞれの前記支柱の下端からの高さH(mm)、H(mm)、H(mm)、H(mm)が、下式1及び下式2を満たす、培養容器。
0≦H/L×100000≦200 ・・・式1
=|(H+H)/2-(H+H)/2| ・・・式2
(ただし、前記式中、Lは前記矩形の対角線の長さ(mm)である。)
A culture container that has a culture surface and is used by stacking a plurality of them.
On the upper surface of the culture vessel, a protrusion that regulates the movement of the stacked culture vessels of the same type in the plane direction of the upper surface is provided along the outer edge of the upper surface.
Points A, B, and points clockwise at each apex of a rectangle having a shape similar to the plan view shape of the upper surface of the culture vessel and having the maximum area in a region whose peripheral edge coincides with the inner edge of the upper surface of the protrusion. When C and point D are set
The point A, which is measured in a state where the culture vessel is placed so that the upper surface of the culture vessel faces upward on a support column having a height of 35 mm and a flat upper end surface perpendicular to the height direction. The heights HA (mm), BB (mm), HC (mm), and HD (mm) from the lower ends of the columns at points B, C , and D are the following formulas 1 and the following formulas. A culture vessel that satisfies 2.
0 ≦ HM / L × 100,000 ≦ 200 ・ ・ ・ Equation 1
HM = | ( HA + HC) / 2- ( H B + HD ) / 2 |
(However, in the above formula, L is the diagonal length (mm) of the rectangle.)
前記培養容器の上面の平面視形状が正円であり、正円の前記領域内で面積が最大になる矩形の各頂点を時計回りに点A、点B、点C、点Dとする、請求項1に記載の培養容器。 Claimed that the plan view shape of the upper surface of the culture vessel is a perfect circle, and each vertex of the rectangle having the maximum area in the region of the perfect circle is clockwise as points A, B, C, and D. Item 1. The culture vessel according to Item 1. 前記培養容器の上面の平面視形状が矩形であり、矩形の前記領域の各頂点を時計回りに点A、点B、点C、点Dとする、請求項1に記載の培養容器。 The culture vessel according to claim 1, wherein the top surface of the culture vessel has a rectangular shape in a plan view, and the vertices of the rectangular region are clockwise at points A, B, C, and D. 前記培養面に、細胞接着抑制剤を塗布してなる低接着コート膜が形成されている、請求項1~3のいずれか一項に記載の培養容器。 The culture vessel according to any one of claims 1 to 3, wherein a low adhesion coat film formed by applying a cell adhesion inhibitor is formed on the culture surface. 前記培養容器の材質が、ポリスチレン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリカーボネート樹脂及びシリコーン樹脂から選ばれる少なくとも1種の樹脂である、請求項1~4のいずれか一項に記載の培養容器。 The item according to any one of claims 1 to 4, wherein the material of the culture container is at least one resin selected from polystyrene resin, polyester resin, polyethylene resin, polypropylene resin, acrylic resin, polycarbonate resin and silicone resin. Culture container. 前記培養面に複数の微細ウェルが形成されている、請求項1~5のいずれか一項に記載の培養容器。 The culture vessel according to any one of claims 1 to 5, wherein a plurality of fine wells are formed on the culture surface. 請求項1~6のいずれか一項に記載の培養容器のみを複数個使用し、細胞培養、及び細胞培養後の運搬のいずれか一方又は両方を、前記培養容器の複数個を積み上げた状態で行う、培養細胞の製造方法。 Using only a plurality of culture vessels according to any one of claims 1 to 6, one or both of cell culture and transportation after cell culture are carried out in a state where a plurality of the culture vessels are stacked. A method for producing cultured cells.
JP2021142527A 2020-09-02 2021-09-01 Culture vessel and method for producing cultured cell Pending JP2022042503A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020147513 2020-09-02
JP2020147513 2020-09-02

Publications (1)

Publication Number Publication Date
JP2022042503A true JP2022042503A (en) 2022-03-14

Family

ID=80629585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021142527A Pending JP2022042503A (en) 2020-09-02 2021-09-01 Culture vessel and method for producing cultured cell

Country Status (1)

Country Link
JP (1) JP2022042503A (en)

Similar Documents

Publication Publication Date Title
JP5921437B2 (en) Culture substrate
EP3351615B1 (en) Cell culture vessel
US20200181552A1 (en) Handling features for microcavity cell culture vessel
JP5954422B2 (en) Microwell plate
JP2020527345A (en) Cell culture vessel
WO2018123663A1 (en) Cell culture substrate and method for producing same
JP2020527345A6 (en) cell culture vessel
WO2017094451A1 (en) Cell culture vessel and sample cell for observation use
US20110207215A1 (en) Cell storage method and cell transport method
JPH03183468A (en) Culture dish
US5795775A (en) Culture vessel and assembly
EP0790300A2 (en) Culture vessel and assembly
JP2022042503A (en) Culture vessel and method for producing cultured cell
US9290735B2 (en) Mammary gland epithelial cell culture
JP3214876U (en) Culture substrate
US20240091778A1 (en) Cell culture vessel
JP3215918U (en) Culture substrate
EP0141104A1 (en) Culture Flask
JP2022095001A (en) Microplate
JP2022044568A (en) Method for observing microplate and cultured cells
JP2579267Y2 (en) Culture vessel
JP2022071581A (en) Microplate
JP2022067072A (en) Culture vessel
JP2022044569A (en) Method for observing microplate and cultured cells
JP2022078638A (en) Microplate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210916